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Abstract

Opportunistic networks are wireless mobile networks in
which a continuous end-to-end path between a source and
a destination is not necessary. Messages are stored at in-
termediate nodes, and opportunistically forwarded when a
more suitable next hop towards the destination becomes
available. A very interesting aspect is understanding how
users’ mobility patterns impact on the performance of rout-
ing protocols. Starting from this motivation, in this paper
we take into consideration group mobility models, whose
movement patterns have shown to be remarkably similar to
real-world user movements. We consider routing protocols
representative of a broad range of schemes, and highlight
the impact of users social relationships and movement pat-
terns on the protocols’ performance.

1. Introduction

Opportunistic networks are emerging as one of the most
interesting evolutions of the legacy MANET paradigm. In
MANETs a continuous end-to-end path has to be estab-
lished prior to exchange messages between a sender and a
receiver. This means that all nodes wishing to communicate
have to stay simultaneously connected to a common inter-
network. This assumption may be rarely met in pervasive
networking environment. Mobile devices (phones, PDAs,
etc.) carried by users may be just sporadically connected
to a common network, e.g. because users turn them off,
or they get out of reach of other nodes, or due to the intrin-
sic variability and instability of wireless links. Furthermore,
despite the increasing penetration of 3G and WiFi networks,
assuming that the core infrastructure will be so extended to
seamlessly cover any mobile device users may carry on is
not very realistic. Legacy MANET solutions fail to provide
end-to-end connectivity in such a scenario. Instead, oppor-
tunistic networks are designed to enable users communica-
tions even when the endpoints areneverconnected through
a common inter-network at the same time.

Not surprisingly, routing & forwarding is currently one

of the hottest topic in this research domain. Forwarding
is generally multi-hop and based on thestore-carry-and-
forward paradigm. Nodes store messages they have to
forward and carry them until they encounter another node
deemed more suitable to bring the message (closer) to the
eventual destination. A range of routing schemes have been
proposed for opportunistic networks (see [6] for a detailed
survey). It is possible to categorise them based on the
amount of information they leverage to autonomically learn
the features of the network they are immersed in. On the
one end of the spectrum, in pure dissemination schemes,
nodes are oblivious to any available information. They just
rely on aggressively spreading the messages in the network,
seeking to reach the destination. On the opposite end of the
spectrum, context-aware schemes leverage context informa-
tion available in the network to selectively identify good
next hops towards the destination. We use HiBOp as rep-
resentative of the latter class, and we briefly describe it in
Section 2 (the complete description of HiBOp, along with
other example of context-aware routing protocols, can be
found in [1]). The most popular example of the former class
is Epidemic forwarding [8], that we also take as the refer-
ence point for this work. Epidemic adopts limited-scope,
TTL-based flooding. When two nodes (say, A and B) get
in touch, they exchange summary vectors that summarise
the set of messages each one is carrying in its buffer. Then,
node A (node B) receives from node B (node A) those mes-
sages that it is not yet carrying and are available in node’s
B (node’s A) buffer. For eachreceivedmessage the associ-
ated TTL counter is decreased. When the counter reaches
0, the associated message can be only delivered directly to
the destination. Note that nodes do not discard forwarded
messages and keep disseminating them upon encountering
other nodes.

Routing in opportunistic networks intrinsically exploits
nodes movements to overcome temporary network parti-
tions. Therefore, users’ mobility patterns actually play a
key role in determining routing protocols performance. In
this paper, we look at how characteristic features of human
mobility affect routing in opportunistic networks. By com-
paring the performance of protocols at the opposite ends



of the spectrum, we provide indication for a wide range of
routing approaches.

Understanding the dependence between routing and mo-
bility patterns is not widely addressed in the literature. The
papers most closely related to our work are [3] and [5]. The
work in [3] starts by modelling the distributions of contact
times and inter-contact times between nodes observed in
real traces. Authors find a good fit with power-law (heavy
tailed) distributions, and analyse the impact of the param-
eter determining the tail heaviness on Epidemic-like pro-
tocols. Furthermore, they also show that popular mobility
models such as Random Waypoint and Random Walk are
not able to model those heavy tails, and are thus not the
best choice to precisely study realistic opportunistic net-
works. Authors of [5] take the footsteps of [3] and pro-
pose the Community-based Mobility Model (CMM) based
on social networks theories (see Section 3.1). They show
that CMM is able to capture the heavy-tail characteristics of
contact and inter-contact times. They also show that legacy-
MANET routing protocols performance are completely dif-
ferent when CMM is used instead of Random Waypoint. In
this paper we adopt a slightly modified version of CMM (as
described in section 3.2), that however maintains the mod-
elling accuracy of CMM.

The original contribution of this paper is twofold. On
the one hand, we provide a sensitiveness analysis of rele-
vant examples (Epidemic and HiBOp) of routing protocols
for opportunistic networks, with respect to key parameters
that determine users movement patterns. On the other hand,
we compare the performance achieved by Epidemic and Hi-
BOp both in terms of users’ QoS and resource consump-
tion. By highlighting the sensitiveness to users’ movement
patterns of two routing schemes at the opposite ends of the
spectrum, we thus provide valuable indications for a broad
range of routing schemes.

2. History Based Opportunistic Routing
HiBOp is a context-based forwarding protocol for oppor-

tunistic networks (completely described in [1]). The con-
text is a collection of information that describes the com-
munity in which the user lives and the history of social re-
lationships among users. At each node, basic data used to
build the context can be personal information about the user
(e.g. name), about her residence (e.g. address), about her
work (e.g. institution), etc. In HiBOp nodes share their
own data during contacts, and thus learn the context they
are immersed in. Messages are forwarded through nodes
that share more and more context data with the message
destination. In the following we will assume that users are
willing to share their personal data with all other nodes, not
taking in consideration privacy and security problems (for
further information see [1]).

More in detail, we assume that each node locally stores
an Identity Table (IT), that contains personal information

Table 1. Identity Table
Personal Information Residence
Name John Doe City Pisa
Email j.doe@iit.cnr.it Street Via Garibaldi, 2

. . . . . .

on the user that owns the device (an example is reported in
Table 1). Nodes exchange ITs when getting in touch. At
each node, its own IT and the set of current neighbours ITs
represent theCurrent Context, which provides a snapshot of
the context the node is currently in.

Current context is useful in order to evaluate theinstan-
taneousfitness of a node to be a forwarder. But even if
a node is not a good forwarder because of its current lo-
cation/neighbors, it could be a valid carrier because of its
habits and past experiences. Under the assumption that hu-
mans are most of the time “predictable”, it is important to
collect information about the context data seen by each node
in the past, and the recurrence of these data in the node’s
Current Context. To this end, each data seen in the Cur-
rent Context (i.e., each row in neighbours ITs) is recorded
in a History Table (HT), together with a Continuity Proba-
bility index, that represents the probability of encountering
that data in the future (actually more indices are used, as
described in [1]).

The main idea of HiBOp forwarding is looking for nodes
that show increasingmatchwith personal data of the desti-
nation. High match means high similarity between node’s
and destination’s contexts and, therefore, high probability
for those nodes to encounter each other. Therefore, a node
wishing to send a message through HiBOp specifies (any
subset of) the destination’s Identity Table in the message
header. Any node in the path between the sender and the
destination asks encountered nodes for their match with the
destination, and hands over the message if an encountered
node shows a greater match than its own. The detailed algo-
rithms to evaluate matches are described in [1]. It is worth
recalling here that matches are evaluated as delivery proba-
bilities, and distinct probabilities are computed based onthe
Current Context (PCC) only and on the History (PH ) only.
The final probability is evaluated via standard smoothed av-
erage, asP = α · PH + (1 − α) · PCC , 0 ≤ α ≤ 1. Theα
parameters allows HiBOp to tune the relative importance of
the Current Context and History.

In HiBOp just the source node is allowed to replicate
the message, in order to tightly control the trade-off be-
tween reliability and message spread. Specifically, the
source node replicates the message until the joint loss prob-
ability of nodes used for replication is below a system-
defined threshold (pmax

l ). HiBOp forwards a distinctsin-
gle copy of the message along thek distinct paths, where

k = min

{

j|
∏j

i=0(1 − p(i)) ≤ pmax
l

}

, beingp(i) is the

delivery probability of thei-th node used for replication.
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3. Group-based Mobility Models
Group-based mobility models are increasingly popular

in the opportunistic networks research, because they are
able to precisely represent human mobility. Besides tra-
ditional group-based mobility models (see [7]) new mod-
els have been proposed inspired by social network theo-
ries. Specifically, we focus on the Community Based Mo-
bility Model (CMM) proposed in [5], which is based on
small-world theories [4]. CMM has shown to accurately re-
produce distinctive statistical properties of real-worldusers
mobility patterns.

3.1. Original CMM
In CMM every node belongs to a social community

(group). Nodes that are in the same social community
are calledfriends, while nodes in different communities
are callednon-friends. Relationships between nodes are
modelled through social links (each link has an associated
weight). At the system start-up, all friends have a link to
each other. Also two nodes that are not friends can have
a link, according the therewiring probability (pr) parame-
ter. Specifically, for each node, each link towards a friend is
rewired to a non-friend withpr probability.

Social links are then used to drive node movements.
Nodes move in a grid, and each community is initially ran-
domly placed in a square of the grid. Nodes’ movement is
made up of two component: first, a node has to select the
cell towards which to move. Node selects the target cell
according to the social attraction exerted by each cell on
the node. Attraction is measured as the sum of the links’
weights between the node and the nodes currently moving
in or towards the cell. The target cell is finally selected
based on the probabilities defined by cells’ attraction (i.e.,
if aj is the attraction of cellj, then the probability of select-
ing that cell isaj/

∑

j aj). After selecting the target cell,
the “goal” within that cell (the precise point towards which
the node will be heading) is selected according to a uniform
distribution. Finally, speed is also selected accordinglyto
a uniform distribution within a user-specified range. CMM
also allows for collective group movements. Specifically,
once everyreconfiguration periodnodes of each group se-
lect a (different) cell and move to that cell. Reconfigurations
are synchronous across groups, i.e., all groups start moving
to the new cell at the same time. Therefore, during recon-
figurations nodes of different groups may get in touch.

In a nutshell, CMM models the fact that humans are so-
cial (belong to groups), move towards other people they
have relationships with (most likely within their group, but
also outside their group), and occasionally move collec-
tively with their group.

3.2. Home-Cell CMM
Despite its nice properties, by running simulations we

have identified a side effect of CMM which may not be
desirable. When nodes move outside their group (due to

rewired links), they become a sort ofleadersin their com-
munity, and other nodes follow them. Such a behavior can
be also demonstrated analytically [2]. Intuitively, a nodeis
seen as member of a cellas soon asit selects that cell for
the next movement (notwhen the node reaches the cell).
Therefore, for the whole duration of that node’s movement,
thetargetcell exerts a possibly strong attraction on the that
node’s friends. As the movement can last for several sec-
onds, the probability of at least another node in the group to
follow that node tends to be high. Ultimately, nodes move-
ments outside the group starting cell generate an avalanche
effect that brings all other nodes outside the cell. Groups
tends therefore to mix a lot, and the physical association
between a group and the “home” cell in which nodes were
initially placed disappears.

This behavior fails in modelling scenarios in which there
is a strong link between nodes of a group and a physi-
cal place (a cell in the grid). For example, in working
places, when someone goes out of an office, the other col-
leagues usually do not follow him in all his movements
(or however they should not!). To take this into account,
we slightly modified the definition of groups social attrac-
tion. In the resulting Home-cell Community based Mobil-
ity Model (HCMM), each node is attracted by itshome cell
(i.e. the cell to which its community was assigned after a
reconfiguration), based on the social attraction exerted on
that node by all other nodes that are part of its group,irre-
spectiveof the current physical location of those nodes. In a
sense, the social links between nodes of the same group are
translated in a global attraction exerted by the group home
cell. Social attraction towards nodes of different groups is
evaluated as in CMM. When a node is in its home cell, the
cell for the next movement is selected as in CMM. How-
ever, after a node reaches a cell which is not its home, it
stays in the “foreign” cell with a given probability (pe) for
the next movement, and goes back home with probability
1−pe. Therefore, it roams in the foreign cell for an average
number of rounds equal tope/1 − pe.

HCMM allows us to model a different kind of scenario,
in which nodes are attracted towards a place (e.g., their of-
fice building) in which usually people of their group roam.
Nodes are also attracted outside that place because of so-
cial relationships between groups, and spend some time in
the foreign groups before heading back home. We have
checked that HCMM still generates heavy-tail distributions
for contact and inter-contact times, which is required to
model realistic humans movements [2].

4. Routing and Social Mobility Patterns
The goal of this work is understanding how different hu-

mans mobility patterns impact on routing performance in
opportunistic networks. We focus on Epidemic and HiBOp,
to show how representative protocols belonging to opposite
classes of routing schemes are sensitive to human move-
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ments’ parameters.
We identify three main scenarios for our study. In the

first one (Section 4.1), we analyse the reactivity of routing
protocols to sudden contacts among groups. Specifically,
we focus on closed groups (i.e.,pr = 0), and then we force
groups to collectively move with varying frequency. Mes-
sages addressed to nodes outside the group can be delivered
only during contacts between different group members dur-
ing collective movements1. This analysis allows us to un-
derstand if routing protocols are able to exploit even those
few chances to find good routes. We analysed this aspect by
varying the reconfiguration interval parameter.

In the second scenario, (Section 4.2), we analyse the ef-
fect of social relationships between users. We want to un-
derstand how routing protocols react to different levels of
users’ sociality, measured as the probability of users hav-
ing relationships outside their reference group. We clearly
achieve this by varying the rewiring parameter (pr). The
higherpr, the more nodes are “social”, the lesser groups are
closed communities.

In the third scenario, we look at how protocols work in
completely closed groups. In this case no rewiring nor re-
configurations are allowed, and we place a different group
in each cell of the grid. Therefore, the only chance of de-
livering messages between groups is by exploiting contacts
between nodes at the borders of the cells. We study the rout-
ing protocols performance as a function of the nodes’ trans-
mission range. Basically, this scenario allows us to under-
stand how protocols can exploit contacts that are not related
to social relationships, but just happen because of physical
co-location (e.g., contacts between people working for dif-
ferent companies in the same floor of a building).

We tested routing performance in terms of QoS per-
ceived by users and resource consumption. The users QoS
is evaluated in terms of messages delay and packet loss.
Message delay is evaluated based on the first replica reach-
ing the destination, while we counted a packet loss if all
replicas get lost. Resource consumption is evaluated in
terms of buffer occupation and bandwidth overhead. Specif-
ically, the bandwidth overhead is computed as the ratio be-
tween the number of bytes generated in the whole network
during a simulation run and the number of bytes generated
by the senders. Note that we count in all overheads related
to routing and forwarding, such as exchange of Identity Ta-
bles, requests for delivery probabilities, etc.

To highlight the effect of mobility only, we assume i)
infinite buffers, ii) an ideal MAC level that completely
avoids congestion impairments2, iii) an ideal physical chan-
nel where nodes experience 0% packet loss within a circu-

1The probability of contacts due to groups choosing adjacentcells is
typically low due to the high number of cells with respect to the number of
groups.

2We are extending simulations in order to take into account congestion.

Table 2. Users QoS (reconf)
reconf (s) HiBOp Epidemic

2250 0± 0 0± 0
ploss (%) 9000 7.61± 1.49 5.56± 1.37

36000 26.7± 1.07 25.49± 1.07
2250 1158.32± 74.52 894.84± 61.02

delay (s) 9000 3525.40± 255.09 3172.04± 230.72
36000 5732.36± 185.65 5562.04± 190.41

lar transmission range and 100% packet loss outside; and
iv) “infinite” bandwidth (in the sense that messages can be
always exchanged when nodes get in touch). As throughly
discussed in [1], this setup tends to favour dissemination-
based schemes such as Epidemic. Finally, unless otherwise
stated, our setup consists of 30 nodes evenly divided in three
groups. We assume a square of size 1250mx1250m, divided
in a 5x5 grid. The default transmission range is 125m. Un-
less otherwise stated 2 nodes for group generate messages,
with an interspacing time exponentially distributed (with
average 300s). Each message is destined to a friend or to
a non-friend with 50% probability. Messages are timed-out
after 18000s. Each simulation runs at least for 90000s (of
simulated time). For particular setups we increased the run
lengths so as to achieve a minimum amount of characteristic
events in each run (e.g. reconfiguration runs with reconfig-
uration interval equal to 36000s last for 397000s). During
the last 18000s senders do not generate any new message .
Furthermore, statistics are collected by eliminating the ini-
tial transitory regime. Each setup was replicated 50 times:
statistics presented hereafter are averaged over the 50 repli-
cas, with confidence interval at 95% confidence level.
4.1. Impact of Groups’ Movements

It is worth recalling that in this scenario the rewiring
probability is 0, and thus, except for reconfigurations, nodes
do not have chances to meet. The reconfiguration interval
varies between 2250s, 9000s, and 36000s. Table 2 shows
the QoS performance as a function of the reconfiguration
interval. As expected, both packet loss and delay increase
with this parameter, because messages addressed outside
the group of the sender are forced to wait for a reconfigura-
tion. Note that, even though HiBOp provides higher packet
loss and delay, the difference with Epidemic is quite thin.
Note that, as buffers and bandwidth are not limited, Epi-
demic gives a reference upper bound on the performance
achievable by any routing protocol. These results clearly
shows that HiBOp is able to identify very good paths even
during sporadic, sudden contacts during reconfigurations
among nodes belonging to different groups.

The good performance in terms of users QoS shown by
HiBOp comes along with a drastic reduction in resource us-
age. Figure 1 shows the buffer occupation over time as a
percentage of the duration of a simulation run (points are av-
erage values over the replicas). HiBOp is much less greedy
in spreading messages, and therefore the buffer occupation
is drastically reduced. This is a general difference between
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Figure 2. Bandwidth overhead (reconf)
Epidemic and HiBOp, which is confirmed in all scenar-
ios we have tested. The extent of this reduction depends
on the scenario, and can be as high as an order of magni-
tude. Finally, Figure 2 shows the bandwidth overhead of
the two protocols. It allows us to highlight a main differ-
ence between HiBOp and Epidemic, related to how they
react to movement patterns. Reducing the reconfiguration
interval (from 36000s down to 2250s) means increasing the
forwarding opportunities, because nodes get in touch with
more peers more frequently. Epidemic does not use these
additional “connectivity resources” wisely, as it is basedon
flooding. Therefore, the bandwidth overhead steadily in-
creases. HiBOp behaves radically different. When groups
do not mix (reconfiguration interval equal to 36000s) paths
for messages going outside the sender’s group are seldom
available. In this case Epidemic uses less resources because
it just floods the group. HiBOp instead periodically looks
for new forwarding opportunities that are clearly unavail-
able. We are improving HiBOp to reduce overhead in this
case. When groups mix a lot, (reconfiguration interval at
2250), nodes meet frequently and context information is
thus able to spread between groups. HiBOp immediately
finds very good paths towards destinations and does not
need to replicate the messages broadly, thus resulting again
in low overhead. At a reconfiguration interval of 9000s,
there is an intermediate regime in which context informa-
tion about nodes outside groups is available but is not very
precise, and HiBOp needs to spread messages slightly more
aggressively to reach the destinations.
4.2. Impact of Users’ Sociality

To understand the impact of users sociality on routing
performance we vary the rewiring parameter (pr). A major
difference occurs when the original CMM or the Home-cell
CMM is adopted. As discussed in Section 3.1 CMM ex-
hibits a “leader-follower” behavior: nodes follow their lead-
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Figure 3. Bandwidth overhead (CMM)
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Figure 4. Bandwidth overhead (HCMM)
ers and move with them all around the grid. Thus, nodes
belonging to different communities are continuously mixed
together, and varyingpr does not highlight any different be-
havior, because the effect of social relationships is masked
by the chaotic and mixed movement of nodes. Just to give a
representative example, Figure 3 shows the bandwidth over-
head for differentpr values. Besides this, the comparison
between HiBOp and Epidemic basically highlights the same
features presented in Section 4.1: HiBOp delivers almost
the same QoS to users, while drastically reducing the re-
source usage. Thanks to the very mixed environment, aver-
age delays are very small (few seconds) in both cases, and
the packet loss is 0%.

With HCMM things are quite different. When a node
goes to a cell different from its home it shows to nodes in the
“foreign” cell context information related to its home cell,
thus becoming a good next hop for messages destined to its
friends. On the other hand, it roams in the foreign cell for
a number of rounds and collects context data about nodes
in that cell. When it then comes back to the home cell, this
knowledge can effectively be used for sending messages to
that particular foreign cell. Indeed, that node is likely togo
back to thesameforeign cell after a while, because the so-
cial links towards nodes in that cell are still active. Clearly,
when HCMM is used, the routing performance are sensi-
tive to the users sociality, because users having social re-
lationships with other groups are the only possible way of
getting messages out of the originating group. This sen-
sitiveness impacts differently on the resource usage of Hi-
BOp and Epidemic, as shown by Figure 4. Similar remarks
drawn with respect to reconfiguration intervals apply also
here. The higher the users sociality (highpr), the higher
the mix between nodes and the forwarding opportunities.
While Epidemic naively uses all these resources spreading
messages, HiBOp leverages nodes’ mixing (and the result-
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Table 3. Average delay (HCMM)
pr HiBOp Epidemic

0.03 206.66± 51.81 135.86± 18.14
delay (s) 0.1 134.58± 11.72 83.66± 7.54

0.5 107.99± 7.99 75.45± 6.87

ing spread of context information) to identify good paths
more and more accurately.

As far as the QoS performance figures (Table 3), again
the packet loss is negligible, while – as expected – the aver-
age delay decreases as users become more social. However,
the performance of HiBOp are still not far from the bound
represented by Epidemic. It is also interesting to note that
the delay of messages towards friends node tends to slightly
increaseas users become more social, because they spend
(on average) more time outside their home group. However,
as shown by Table 3, the advantage of connecting more ef-
ficiently users between groups as users become more social
overwhelms the slight performance reduction experienced
by friends.
4.3. Breaking Closed Groups

In this set of simulations we use a 3x3 grid with 9 groups
of 5 nodes each. Just one node, located in the upper left cell
sends messages, destined to a node in the lower right cell.
Recall that the only way a message can reach its final desti-
nation is through edge contacts with nodes between which
no social relation exists. By varying nodes’ transmission
range we can analyse how this edge effect impacts on for-
warding. We use three values for the transmission range,
i.e. 62.5m, 125m and 250m. Therefore, nodes cover – on
average – less than half a cell, slightly less than a cell, and
one and a half cell.

The bottomline of the results is that HiBOp is not suit-
able for networks with no sociality. At very small trans-
mission ranges (62.5m) HiBOp is not able to deliver ac-
ceptable QoS (Table 4). HiBOp needs a minimum num-
ber of contacts between users to spread context informa-
tion around. Indeed, at 125m HiBOp restores acceptable
QoS at least in terms of packet loss, and is fully effective at
250m. Also in this case Epidemic and HiBOp behave differ-
ently with respect to the bandwidth overhead (Figure 5). At
62.5m HiBOp seldom forwards messages. As context data
is not circulating, nodes in the sender’s group are almost all
equally fit to carry the messages closer to the destination.
At high transmission range the context data is circulating
effectively, and therefore good paths can be identified soon.
Again, note that Epidemic is not able to exploit rich con-
nectivity scenarios without flooding the network.

5. Conclusions
In this paper we have analysed the sensitiveness of a

broad range of routing schemes for opportunistic networks
to real-world users mobility patterns. Our main findings
can be summarised as follows. Context-based routing ac-
tually provides an effective congestion control mechanism,

Table 4. Users QoS (closed groups)
range (m) HiBOp Epidemic

62.5 65.79± 9.29 0± 0
ploss (%) 125 0± 0 0± 0

250 0± 0 0± 0
62.5 15579.56± 734.45 531.79± 19.14

delay (s) 125 568.08± 157.71 103.00± 2.59
250 1.51± 0.64 23.35± 0.52
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Figure 5. Bandwidth overhead (HCMM)
and, with respect to dissemination-based routing, provides
acceptable QoS with drastically lower overhead, unless in
very adverse scenarios. Indeed, HiBOp is able to auto-
matically learn the connectivity opportunities determined
by users movement patterns, and exploit them efficiently.
This autonomic, self-learning feature is completely absent
in dissemination-based routing schemes.

Our results also suggest a hybrid scheme for networks
with varying levels of users’ sociality. When groups are
very isolated, context data cannot circulate, and cannot be
used for taking effective forwarding decisions. In such
cases, dissemination-based schemes seems the only way to
enable communication between groups. As soon as users
become more social, context information spreads in the net-
work, and context-based routing becomes a preferable solu-
tion. An interesting follow-up of this work is how to exploit
context information to distinguish these different scenarios
and select the appropriate routing scheme.

From a complementary standpoint, our results show
that in opportunistic networksusers sociality helps routing:
users’ relationships outside their “home” community allow
context information to spread in the network, and make for-
warding more and more efficient.
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