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Abstract
Opportunistic networks are challenging mobile ad hoc

networks characterised by frequent disconnections and par-
titioning. In this paper we focus on data dissemination ser-
vices, i.e. cases in which data should be disseminated in
the network without a priori knowledge about the set of in-
tended destinations. We propose a general autonomic data
dissemination framework that exploits information about
the users’ context and social behaviour, to decide how to
replicate and replace data on nodes’ buffers. Furthermore,
our data dissemination scheme explicitly takes into account
resource constraints, by jointly considering the expected
utility of data replication and the associated costs. The re-
sults we present show that our solution is able to improve
data availability, provide fairness among nodes, and reduce
the network load, with respect to reference proposals avail-
able in the literature.

1. Introduction
Opportunistic networks are wireless mobile self-

organising networks in which the topology is extremely
dynamic and unstable. Disconnections of nodes, high
churn rates, dynamic creation and merging of partitions
are considered as normal features of the network instead
of exceptions, as in the conventional MANET paradigm.
Specifically, nodes’ movements are exploited to bridge
disconnected partitions, allowing end-to-end communica-
tion despite prolonged disconnection periods. Research
on opportunistic-network protocols has mainly focused on
routing issues so far [9]. In this paper we focus instead
on data dissemination services, to support applications in
which the set of users interested in receiving a given data is
not known in advance. Data dissemination services are re-
quired to support, e.g., user-generated content applications
in pervasive networks, in which users dynamically produce
content on their mobile devices, and share it with a dynamic
and possibly unknown set of peers interested in the same
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type of data. This data generation and access model is one
of the key features of the Web 2.0 paradigm.

If nodes’ and network’s resources were unlimited, data
dissemination would be trivially achieved by flooding-
based schemes. However, such solutions become unsuit-
able as soon as resource consumption is considered. There-
fore, the first contribution of this paper is proposing a gen-
eral framework for resource-aware data dissemination ser-
vices. Specifically, as described in detail in Section 2, in
our framework data dissemination is driven by the trade-
off between the expected utility of data for users, and the
associated cost of in terms of resource consumption. Be-
sides being completely distributed, the proposed framework
is general enough to be customisable to any definition of
utility, and to consider any set of resources. Providing such
a general framework differentiates our work from the Pod-
Net project [7], which proposes heuristics for data dissem-
ination services. A utility-based system is also proposed
in [1], which, however, considers routing protocols instead
of data dissemination services, and assumes global knowl-
edge about the network status, which might be impractical
to obtain. Energy-delay and storage-delay tradeoffs are in-
vestigated in [10], which focuses again on routing issues
only. Our proposal is completely structure-less, and thus
differentiate itself also from data dissemination schemes re-
quiring some type of network structure, such as multicast
trees [13], or broker overlay networks [12].

The second contribution of this paper is to customise the
framework by proposing an autonomic, context-based data
dissemination scheme (see Sections 2 and 3). Exploiting
context information about the users has proved to result in
particularly efficient forwarding schemes for opportunistic
networks [2]. Our scheme dynamically learns context infor-
mation about the users, their habits, the social communities
to which they belong, and exploit this knowledge to com-
pute the utility of data objects. Furthermore, in our scheme
nodes not only look for data their users are interested into,
but also help disseminating data of interest to users they
have acquaintance with. To the best of our knowledge, in-
cluding the social dimension to data dissemination proto-
cols is an original contribution of this paper.



In Sections 4 and 5 we compare our solution with the
best heuristics proposed in [7], showing that our utility-
based approach provides a more flexible solution, able to
optimise given target performance figures, such as, for ex-
ample, the hit rate or the fairness among users.

2. Data dissemination framework
2.1. Reference scenario

There are numerous applications for opportunistic net-
working environments that can benefit from a data dis-
semination service, particularly in opportunistic networks.
Examples include sharing of user-generated content (clips,
photos, texts, . . . ), feeds updates, customised advertise-
ments, etc. As one concrete example to test our data dis-
semination framework, we focus on the same podcasting
application considered in [7]. Data objects (e.g., files, news
updates, etc.) are organised in different channels (or feeds)
to which users can subscribe. Data objects can be generated
wherever in the network. The node that generates an object
also decides the channel(s) the object belongs to. The data
dissemination scheme is responsible for bringing to each
interested user the data objects of the channels they are sub-
scribed to. At the high level, with respect to this particu-
lar application, our data dissemination scheme provides a
topic-based pub/sub kind of service.

We assume that users can be grouped in communities,
each community representing a social group (e.g., a work-
ing environment, a sport team, etc.). We assume that, at
any point in time, each user is associated with one “home”
community (e.g., the office mates during working hours) in
which they roam. Users can also have social relationships
outside their home communities, and therefore occasionally
move to “visit” other communities. Finally, we assume that
each user subscribes to each given channel with some prob-
ability. Since communities represent homogeneous social
group, we assume that the subscription probabilities are the
same for all users of the same community.
2.2. Data dissemination scheme

The data dissemination scheme we propose is com-
pletely structure-less. In our scheme each node, upon meet-
ing a peer, opportunistically evaluates which data objects
available on the peer should be pulled and stored in its local
buffer. Data dissemination occurs because nodes pull data
objects upon meeting with each other.

To enable nodes to decide which objects to pull, we use
a utility-based approach, under the assumption that nodes
can dynamically compute a utility value for each data ob-
ject. The main idea of the proposed framework is that each
node constantly aims at maximising the total utility of the
data objects it stores in the local buffer. Thus, upon each
contact with a peer, the node computes the utility of the
data objects stored by the peer (i.e., the peer’s objects) and
of the data objects it currently stores (i.e., the local objects).

For each object, it also computes the cost in terms of re-
sources’ consumption related to storing it (e.g., the buffer
occupation for a local objects, the buffer occupation and the
fetching cost for peer’s objects). Then, the node selects the
set of data objects (either local or peer’s objects) that max-
imises its total utility, subject to the constraints imposed by
the resource limitations. Finally, it fetches those data ob-
jects in the identified set, that are stored on the peer (as
well as any additional data objects stored on the peer the
local user has explicitly requested). Our framework aims
at a global goal (efficiently disseminating data in the whole
network), by using local rules and knowledge only (as will
be clear from the following, we define utility functions such
that nodes do not require any global knowledge to compute
them). Such an approach is suitable to an opportunistic net-
working environment, where global knowledge and control
is hard (or even impossible) to achieve. The definition of the
utility function, and the related results we present hereafter,
are an initial step to quantitatively understand how such an
approach works in practice.

Formally, upon each contact with a peer, the node identi-
fies the set of objects to store by solving the following prob-
lem: {

max
∑

k U
(p)
k x

(p)
k +

∑
k U

(l)
k x

(l)
k

s.t. resource constraints are met
(1)

where U
(p)
k and U

(l)
k are the utility of the k-th peer’s and lo-

cal object, respectively, and xk ∈ {0, 1} are the variables of
the problem. By assuming that m resources have to be man-
aged at each node, and by denoting with cjk, j = 1, . . . ,m
the percentage of consumption of resource j related to the
k-th data (i.e., 0 ≤ cjk ≤ 1), the problem in Equation 1 can
be cast to a Multi-costrained 0-1 Knapsack Problem (MKP)
([6]):  max

∑
k Ukxk

s.t.
∑

k cjkxk ≤ 1 j = 1, . . . ,m
xk ∈ {0, 1} ∀k

(2)

Note that, based on the above formulation, when the
same data object is stored both locally and on the peer’s
buffer, the local object will be preferred as long as fetching
has a non-negligible cost. Selecting the peer’s copy will re-
sult in a higher cost (due to fetching costs), and will thus
result in a solution of the problem with lower utility with
respect to the solution that keeps the local copy. Also note
that, as the number of constraints is equal to the number
of resources, which is not expected to be high, computing
the optimal solution or accurate approximations of the op-
timal solution is fast from a computational standpoint [6].
The formulation in Equation 2 is quite flexible, as it can be
used for any set or managed resources, and for any defini-
tion of the utility function. In the following of this section
we propose a social-aware definition of the utility. Section 3
presents the protocol that nodes execute during meetings to
gather the information required to compute this function.



2.3. Context-aware utility
The utility value of a data object represents the utility

of storing the object, for the node that computes the utility
value. We define the utility function so as to capture the util-
ity of an object for i) the local user of the node, and ii) the
communities the local user is in touch with. Therefore, the
values computed by our function reflect the social relation-
ships of the local user, as they represent the “social utility”,
for the node, of storing the data objects. Specifically, we
define the utility value for a data object k as:

Uk = u
(l)
k +

∑
i

ωiu
(c)
k,i (3)

where u(l) is the utility component related to the local user,
u

(c)
k,i is the component related to the i-th community the user

is acquainted with, and ωi is a cooperation index (a real
number between 0 and 1), which defines the willingness of
the user to cooperate with the i-th community. It is clear
that this utility definition permits a social, non-greedy be-
haviour.

In general, we define each utility component of Equa-
tion 3 as a function of context parameters that describe the
local user or the considered community. A discussion about
these parameters in the most general case can be found
in [4]. In this paper, we consider a simplified, yet signifi-
cant, case, in which each utility component is a function of
i) the access probability to the object, ii) the object avail-
ability in the context, and iii) the object size. The function
we define to compute utility components is the same for all
components. The values of the parameters change depend-
ing on the considered component (e.g., the access probabil-
ity to a data object for the local user and for the communities
the user is in touch with will, in general, be different). This
permits to handle all utility components in Equation 3 in a
homogeneous way. Specifically, by denoting by pac the ac-
cess probability to the object, by pav the probability that the
object is available in the considered context, and by s the
size of the object, the utility components are computed as1:

u =
pac · e−λpav

s
. (4)

Equation 4 has the same general form of utility functions
widely adopted in the literature about cache replacement
systems (e.g.,[11]), where utility is defined as the product
of the access probability by the value of the data object.
In our definition, the object’s value is a decreasing func-
tion of the object’s availability (i.e., the more the object is
spread, the lesser it is useful), which is inspired from the
“rarest first” policy of BitTorrent. Finally, normalising by
the object’s size is also common in the literature, as it al-
lows for very simple and effective approximations of the
multi-constrained knapsack problem defined by Equation 2.

1Since there are no distinctions between the definition of the compo-
nents for the local user and its communities, hereafter we drop the indices
used in Equation 3.

3. Context-aware data dissemination protocol
To implement our framework in a real opportunistic

network we define HiBOp-D, an extension of the HiBOp
context-aware routing framework defined in [2]. Before
presenting the HiBOp-D details, it is worth discussing a few
assumptions that we consider.

In general, our framework requires that each user can
detect the communities they are acquainted with, so as to
separately gather context information related to the differ-
ent communities, and correctly compute the utility compo-
nents as per Equations 3 and 4. Some preliminary results on
autonomic community detection can be found in [5], how-
ever, this is still an open research problem. To show that
our framework can be used even with imperfect knowledge
about the communities’ structure, in HiBOp-D nodes con-
sider just two contexts that can always been identified, i.e.,
i) the context related to the local user, and ii) the context
describing the historical information about all the users met
in the past. The latter context aggregates all information
related to the different communities a user visits. There-
fore, with respect to the general definition in Equation 3,
in HiBOp-D nodes compute two utility components, repre-
senting the local user, and the aggregate of all communities,
respectively.

Furthermore, to compute the utility components accord-
ing to Equation 4, each node has to estimate the access
probability and availability of data objects related to each
context. For simplicity, in the following we describe a sim-
plified way to compute these indices that leverages some
features of the podcasting scenario described in Section 2.1.
Extending the algorithms to more general cases is quite sim-
ple. Firstly, we consider that, given a particular context, the
access probability is the same for all data objects belong-
ing to the same channel. Furthermore, we approximate the
availability of each data object of a channel with the aggre-
gate availability of all the channel’s objects. That is, we see
pav as the probability of “seeing” objects of the channel in
the context. This approximation allows us to significantly
reduce the state required by the protocol. We are currently
investigating ways of maintaining information about avail-
ability at a finer granularity, while still keeping the protocol
state at a reasonable level.

Since, according to these assumptions, the access prob-
ability and availability are the same for each channel, and
each utility value consists of two components, HiBOp-D
must compute four indices for each channel, i.e., the access
and the availability probabilities for the local and the histor-
ical contexts. Hereafter, the indices related to data objects
of channel j will be denoted, respectively, as p

(l)
ac,j , p

(h)
ac,j ,

p
(l)
av,j , and p

(h)
av,j .

When a node meets a peer, it must know which data ob-
jects are stored on the peer’s buffer, and the objects’ size.
To this end, upon a contact, nodes exchange an index of the



data they are storing with a unique object ID and the object
size2. The rest of HiBOp-D deals with gathering informa-
tion to compute the four parameters of the utility compo-
nents. For the generic channel j, the access probability for
the local context (p(l)

ac,j) is 1 if the user is interested into the
channel, or 0 if the user is not interested. The access proba-
bility for the historical context (p(h)

ac,j) is seen as the average
access probability of nodes met in the past. This index is
dynamically computed over time as follows. Periodically,
each node broadcasts the set of channels it is subscribed
to. Once every period, each node computes a sample of
the access probability for the historical context (denoted as
sac,j), as sac,j =

∑N
i=1 δij/N where N is the number of

nodes met in the period, and δij is equal to 1 if the i-th
met node is interested in channel j, and 0 otherwise. The
access probability for the historical context (p(h)

ac,j) is com-
puted as the smoothed average of the sac,j samples, i.e.,
p
(h)
ac,j ← αp

(h)
ac,j + (1 − α)sac,j . The rationale of the al-

gorithms to compute the availability indices is similar. The
local availability (p(l)

av,j) is seen as the average availability
of channels on nodes met in the past, i.e., it is a measure of
how “easy” is for the local user to see objects of the chan-
nel j on the neighbours’ buffers. To compute p

(l)
av,j , each

node periodically broadcasts the fraction of the buffer occu-
pied by each objects of each channel (hereafter fij denotes
the fraction of the i-th node’s buffer occupied by objects of
channel j). At the end of each period, a sample of the local
availability (sav,j) is computed as sav,j =

∑N
i=1 fij/N ,

and p
(l)
av,j is updated as p

(l)
av,j ← αp

(l)
av,j + (1 − α)sav,j .

Finally, the availability for the historical context (p(h)
av,j) is

seen as a measure of how “easy” is, for the nodes the lo-
cal user met in the past, to access data objects of channel
j. To compute it, nodes also broadcast their current value
of p

(l)
av,j . At the end of each period, a sample of historical

availability is computed as ŝav,j =
∑N

i=1 p
(l)
av,j,i/N , and

the the availability for the historical context is updated as
p
(h)
av,j ← αp

(h)
av,j + (1 − α)ŝav,j . The detailed mechanisms

used to implement these computations by exploiting the Hi-
BOp framework are presented in [4].

4. Simulation Setup
To properly simulate users’ movements driven by social

behaviour, we consider the Home-cell Community based
Mobility Model defined in [3]. In HCMM user’s move-
ments are driven by the attraction exerted on the user by
i) other peers (e.g., users move to meet their friends), and
ii) physical locations (e.g., users move to their office build-
ing). In this work we consider a very simple scenario, as
a first step to analyse the performance of the utility-based

2Since in opportunistic networks data are carried in form of large bun-
dles, the index is typically much shorter than the data itself.

Node Speed uniform in [1,1.86] m/s
Buffer size 10 objects

Transmission Range 20m
Sampling period 5s

λ 15

Table 1: Configuration Parameters

framework. Specifically, we consider just a single com-
munity, and focus on intracommunity dynamics only. It is
easy to show that in HCMM, in the case of a single commu-
nity, users move according to the corrected Random Way-
point (RWP) mobility model [8]. The single-community
scenario is a worst-case scenario for our data dissemina-
tion framework, as the advantage of exploiting information
about users’ social behaviour is likely to be much more evi-
dent in the case of several groups of users, each with differ-
ent subscription distributions.

In our setup data objects can belong to three different
channels, and we assume that 100 distinct data objects ex-
ist for each channel. These objects are generated before
the simulation begins and never expire. All the data objects
have the same size, equal to 50 KB. Each node is interested
into one channel, and interests are distributed among nodes
according to a Zipf’s distribution (with parameter equal to 1
in our simulations). The nodes move, with a typical pedes-
trian speed, in a 250x250m cell. In a first set of experi-
ments, we assume that an Access Point (AP) is placed in
the middle of the cell, which constantly stores all the 300
data objects. In such configuration, nodes can get what-
ever data object they want when passing by the AP. In this
case the data dissemination system helps distributing data
without relying on a unique AP only. This is particularly
relevant in sparse scenarios, in which contacts with the AP
might be quite sporadic. In a second set of experiments, we
assume that the AP is not available. In this case data objects
are available in the network just because they are stored by
nodes. In all experiments nodes’ buffer size is set to 10 ob-
jects, so as to test the framework in a resource constrained
environment as far as buffer limitations. Furthermore, we
consider only the buffer as the constrained resources to be
managed according to the scheme in Equation 2. Reference
values for other configuration parameters are summarised
in Table 1.

In the following, we compare the following policies,
used to choose the data objects to store upon a contact:
Context-aware (CA) Objects are selected according to our

framework, by using the context-aware function as per
Equations 3 and 4.

Access Probability (aP) Objects are selected according to
our framework, but by considering the access proba-
bility only in Equation 4.

Uniform (U) Objects are selected randomly among all
available objects in the local and peer’s buffers (regard-
less the channel they belong to). This policy has been
proved to be one of the best in [7].



Uniform mono-channel (UM) Nodes randomly select a
channel, and store objects of that channel only. We
consider this version of the uniform policy as we found
that nodes under the aP and CA policies tend to store
objects of a unique channel only.

The performance of these policies is evaluated in terms of
the quality of service (QoS) perceived by the users and the
resource consumption. The QoS is measured in terms of
hit rate, system utility and fairness (both per user and per
channel). To measure the hit rate, we simulate a user pe-
riodically requesting (with a period equal to 300s) a data
object for each channel (the object of a given channel is
randomly selected according to a uniform distribution). We
consider a hit if the object is available on at least one node’s
buffer, a miss otherwise. The system utility is computed
as the sum of the channel hit rate weighted with the access
probability of each channel, i.e., SU =

∑
i pac,ihri. The

fairness (with respect to the hit rate) of each policy has been
computed according to the Jain’s fairness index. Resource
consumption has been measured in terms of the traffic gen-
erated in the network, i.e., the average number of data trans-
mitted by all nodes during the simulations. This includes
data exchanged for context creation, buffer state messages,
request messages and data objects themselves. Simulations
run for 90000s. Exchanges of data objects upon nodes’ con-
tacts start after an initial transitory required to build nodes
context. Results shown in the following section have a 95%
confidence interval, obtained through the independent repli-
cation technique. For space reasons, in the following we
show the system utility, fairness, and traffic overhead re-
sults only. Non-aggregated results showing the hit rate of
each channel for each policy can be found in [4].

5. Simulation Results
5.1. Impact of network size

In this first set of experiments we evaluate the perfor-
mance of the policies under a variable number of nodes,
ranging from 8 to 72. We assume the Access Point is avail-
able. In this configuration, we have replicated experiments
by initially filling the nodes’ buffers with different policies
(including empty buffers, random uniform selection over all
the 300 messages with and without replication on different
nodes). However, when the AP is available, the initial fill-
ing of nodes’ buffers does not have a significant impact on
the results [4]. Figure 1 shows the system utility index. Be-
ing SU a measure of user satisfaction, it is quite expected
that the aP policy, by favouring the most popular channel,
satisfies the majority of the users. However, Figure 2 shows
that this is paid in terms of per-user fairness (the per-channel
fairness provides similar results). Uniform policies achieve,
by definition, the highest fairness, at the cost of lowest sys-
tem utility. Figure 1 highlights that a better trade off can
be reached by the CA policy. Its fairness level approaches
that of the uniform policies while still maintaining an higher
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level (between 10% and 20%) of user satisfaction. Also
note that there is basically no difference, in our setup, be-
tween the U and UM policies. Figure 1 also highlights that
no policy is able to reach 100% hit rate, not even when
the sum of nodes’ buffers would be enough for storing all
the data objects for all channels (this is the case for nodes
greater than 30). This is because no policy is able to con-
trol the replication level of data objects across the network.
Improving the policies to achieve higher diversity of stored
objects is one of the most compelling extensions of our
framework. Beside providing flexible trade-offs between
user satisfaction and fairness, the utility-based framework is
resource-efficient, as well. Figure 3 shows the traffic over-
head figures. The most efficient policy is aP because, once
node interests have spread all over the network, values for
access probabilities don’t change anymore. This results in
fewer exchanges of data objects (basically, only nodes shar-
ing the same interest exchange objects). In the CA policy,
the utility ranking changes dynamically based on the avail-
ability measure, thus resulting in a slightly higher traffic
overhead. The uniform policies waste more resources be-
cause they don’t take into account the state of the network,
and thus objects are exchanged at every association between
nodes.

5.2. Turning the AP off
The AP is fundamental to the regeneration of data ob-

jects in the network: in fact, even when all nodes have
deleted a given object, the AP guarantees that this object
can be injected into the network again. We consider two
filling policies of nodes’ buffers at the simulation start: uni-
form filling, where data to be copied on nodes’ buffers are
selected uniformly among all available objects, and maxi-
mum diversity filling, where objects are copied on nodes as
to minimise replications. We consider the case of 16 nodes,
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uniform max div
AP on AP off AP on AP off

aP 35.38± 0.16 9.33± 0.32 35.38± 0.14 9.43± 0.37
CA 26.23± 0.30 6.09± 0.39 26.10± 0.26 6.06± 0.44
U 23.93± 0.17 5.45± 0.23 23.88± 0.20 5.65± 0.25

UM 22.92± 0.39 4.2± 1.06 22.93± 0.35 6.34± 1.34

Table 2: System utility with and without the AP.

in which not all objects can fit into nodes buffers to highlight
the importance of the AP role in this challenged setting. Ta-
ble 2 shows that when the AP is off a certain level of service
is maintained, though highly downgraded. This shows that,
when the buffer size is very small, the AP is key to provide
a reasonable service level. These results also show that, in
these settings, the different initial filling policies seem to
have no, or very little effect, on system performance.

5.3. Dense scenario
The last set of results we show highlight a mis-behaviour

of the CA policy that arises in denser scenarios without AP,
and a simple modification to fix it. Specifically, we con-
sider a scenario with 16 nodes, but with transmission range
equal to 80m (instead of 20m). With this setting nodes have
a higher number of neighbours, and quickly achieve a com-
plete view of what is available in the buffers of all the other
nodes. Since the CA policy takes into consideration avail-
ability to compute utility, the most useful channel at the
beginning of the simulation tends to be the only one that
survives. This is because nodes’ choices tend to be synchro-
nised as a side effect of the complete knowledge about avail-
ability that each node quickly achieves. Thus, the initial ob-
jects’ allocation on buffers determines the channel that will
survive, and different simulation runs provide completely
different performance results. Table 3 shows the percent-
age of total buffer space (considering all the nodes’ buffers
as a single shared buffer) occupied by each channel for the
utility-based policies (CA and aP only).

A simple fix to this problem for the CA policy is as fol-
lows. When nodes meet, they compute the utility of the
channel as usual, but then they use the utility values to de-
fine the share of local buffer to be occupied by each chan-
nel’s objects. The last row in Table 3 shows that this simple
modification is able to fix the CA misbehaviour, as less use-
ful channels never disappear. We are currently investigating
the applicability of this modified CA policy in more general
settings.

ch1 ch2 ch3
aP 56.04± 0.00 24.81± 0.00 18.54± 0.00

CA (orig) 0.61± 0.60 0.56± 0.62 98.10± 1.54
89.66± 0.66 9.92± 0.10 0.00± 0.00
0.00± 0.00 99.25± 1.04 0.00± 0.00

CA (fix) 42.04± 8.59 34.33± 7.46 22.95± 15.94

Table 3: Percentage of nodes’ buffer occupied by each channel.
6 Conclusions

In this paper we have introduced a new autonomic
utility-based data dissemination framework for opportunis-
tic networks which exploits context information about the
users’ social behaviour. We have compared the performance
of the framework with other solutions considered among the
best in the literature. Results have shown that our approach
is flexible enough to achieve different targets, and specifi-
cally can be customised either to achieve the maximum hit
rate for most popular data, or to achieve a fairer behaviour
with acceptable reduction of the hit rate. We have also
shown preliminary yet interesting results showing that, in
particularly challenged scenarios, network elements, such
as Access Points, that can store all available data, are key.
The preliminary results we have presented highlight that a
utility-based framework is an interesting direction to be fur-
ther investigated to provide data dissemination services in
opportunistic networks.
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