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Abstract

Opportunistic networks are challenging mobile ad hoc
networ ks characterised by frequent disconnections and par-
titioning. In this paper we focus on data-dissemination ser-
vices, i.e. cases in which data should be disseminated in
the network without a priori knowledge about the set of in-
tended destinations. e propose a general autonomic data-
dissemination framework that exploits information about
the users’ context and social behaviour, to decide how to
replicate and replace data on nodes’ buffers. Furthermore,
our data-dissemination scheme explicitly takesinto account
resource constraints, by jointly considering the expected
utility of data replication and the associated costs. The re-
sults we present show that our solution is able to improve
data availability, provide fairness among nodes, and reduce
the network load with respect to reference proposals avail-
ableintheliterature.

1. Introduction

type of data. This data generation and access model is one
of the key features of the Web 2.0 model.

If nodes’ and network’s resources were unlimited, data
dissemination would be trivially achieved by flooding-
based schemes such as epidemic routing [14]. However,
such solutions become unsuitable as soon as resource con-
sumption is considered. Therefore, the first contributibn o
this paper is proposing a general framework rfesource-
aware data dissemination schemes. Specifically, as de-
scribed in detail in Section 3, in our framework data dissem-
ination is driven by the trade-off between the expecied
ity of data for users, and the associatest of in terms of re-
source consumption. Besides being completely distributed
the proposed framework is general enough to be customis-
able to any definition of utility, and to consider any set of re
sources. Providing such a general framework differergtiate
our work from the PodNet project [9], which just proposes
heuristics for data dissemination applications. A utility
based system is also proposed in [1]. However, this paper

Opportunistic networks are wireless mobile self- considers routing protocols instead of data-disseminatio

organising networks in which the network topology is as- services, and assumes knowledge about the overall network

sumed to be extremely dynamic and unstable. Discon-Status (€.g., the set of nodes where a given data is cur-
nections of nodes, high churn rates, dynamic creation andrently replicated, the statistics of meeting times betwaen
merging of partitions are considered as normal features of"0des in the network), which might be impractical to ob-
the network instead of exceptions, as in the conventionalt@in- Energy-delay and storage-delay tradeoffs are invest
MANET paradigm. Specifically, nodes’ movements are gated in [13], but this work focuses again on routing issues,
exploited to bridge disconnected partitions, allowing end and does pot extend the framework to the general resource-
to-end communication despite prolonged disconnection pe-consumption problem.

riods. Research on opportunistic-network protocols has The second contribution of this paper is to customise the
mainly focused on routing issues (see [11, 16] for surveys framework by proposing an autonontontext-based data-

on this topic). In this paper we focus instead data dissemination scheme (see Sections 3 and 4). Exploiting
dissemination protocols, to support applications in which context information about the users has proved to result in
the set of users interested in receiving a given data is notparticularly efficient forwarding schemes for opportuiaist
known in advance. Data dissemination protocols are re-networks [2, 3, 5]. In this paper we exploit context infor-
quired to support user-generated content applicationsrinp  mation about the users, their habits, the social communi-
vasive networks, in which users dynamically produce con- ties to which they belong to define the utility of data. Un-
tent on their mobile devices, and share it with a dynamic der this approach nodes autonomically learn, without re-
and possibly unknown set of peers interested in the samequiring centralised information, the network state and the
users’ behaviour. Furthermore, it achieves a cooperative
data-dissemination scheme, by which users not only look
for data they are personally interested to, but also help dis
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seminating data of interest to users they have acquaintancés overall utility, subject to the constraints imposed bg t
with. To the best of our knowledge, including the social di- resource limitations. Therefore, it selects the data tohfet
mension to data-dissemination protocols is an originat con according to the solution of the following problem:
tribution of this paper.

In Sections 5 and 6 we compare our solution with the { max 3, U2 4+ 3, ULz )
best heuristics proposed in [9], showing that our utility- s.t. resource constraints are met
based approach provides a more flexible solution, able to

optimise given target performance figures, such as, for ex-whereU,ip ) and U,Eb) are the utility of thek-th peer’s and

ample, the hit rate or the fairness among users. local object, respectively, and, are the variables of the
. problem.
2. Reference scenario By assuming thain resources have to be managed at
As in [9], we assume a podcasting-like application, in each node, and by denoting with,, 7 = 1,...,m the per-
which data are organised in differefeeds (or channels). centage of consumption of resouroelated to thé:-th data

Data dissemination is based on pair-wise contacts betweerfi.e.,0 < ¢;;, < 1), the problem statement in Equation 1 can
nodes. During a contact, nodes advertise the channel theye cast to a Multi-costrained 0-1 Knapsack Problem (MKP)
are interested into, and exchange an index of the data ob{[8]):

jects they store in their buffer. The data dissemination pol

icy decides which object each node should fetch from the max ), Upzy,
other peer. In general, data objects might be associatéd wit st Ycrrek <1 j=1,....m 2
a TTL value, such that they can be discarded when the TTL r € {0,1} vk

expires. We assume that users are organised in communi-
ties. Each community represent a social group (e.g., a work-
ing environment, a sport team, etc.). We assume that, a
any point in time, each user is associated with one “home”
community (e.g., the office mates during working hours).
Users can also have social relationships outside their hom
communities, and therefore occasionally “visit” other ecom
munities. Accordingly, to represent users behaviour, we
consider the home-cell community-based mobility model
(HCMM [4]), which is a group-based socially-inspired mo-
bility model. In HCMM user’s movements are driven by the
attraction exerted by i) other peers on the user (e.g., Userg 1, Context-aware utility
move to meet their friends), and ii) the attraction exerted b
physical locations on the user (e.g., users move to their of-
fice building). Finally, since communities represent homo-
geneous social group, we assume that the probability that
user is interested in a given channel is the same for all use
of the same community.

Note that, as the number of constraints is equal to the
number of resources, which is not expected to be high, com-
tputing the optimal solution or accurate approximations of
the optimal solution is fast from a computational standpoin
8]. The formulation in Equation 2 is quite flexible, as it can
e used for any set or managed resources, and for any defi-
nition of the utility function. In the following of this seicin,
we provide our definition of the utility function, which, by
exploiting context information, captures the utility oftda
objects based on the users’ social behaviour.

According to our reference scenario, the utility function
should reflect not only the utility for the local users, bl
the utility for the other members of the user’s communities.
aTherefore, we define the utility value computed locally by a
hode for a data objedét as:

3. A framework for resource-aware data dis-

semination whereu(® is the utility for the local useru\®) is the util-

According to the scenario laid down in Section 2, the ity for the i-th community the user belongs to, andis a
goal of the data-dissemination protocol is selecting, upon cooperation index (a real number between 0 and 1), which

nodes’ encounters, which data objects should be fetChEddeﬁneS the Wi||ingness of the user to Cooperate with tte

To this end, we exploit a utility-based approach, as follows community. It is clear that this utility definition permits a
Upon a pair-wise contact, nodes exchange an index of thesocial, non-greedy behaviour.

data they are carryirig Each node computes thility of In general, we define the utility of an object for a com-
the data objects stored by the other peer (i.e.ptee's ob- munity (or for the local user) as a function céntext pa-
jects) and of the data objects it currently stores (i.e., the rameters that describe the community (or the local user) it-
local objects). The node then selects those data objech (el—se|f_ This permits to seeg) andu,(c‘fg in a homogeneous
ther locally stored or available at the peer) that maximise way. They can be seen as the utilities related toittte

ISince in opportunistic networks data are carried in forrraage bun- context the user is in touch with, considering th? local user
dles, the index is typically much shorter than the data itself just as one of these contexts. Therefore, Equation 3 can be

U, = ug) + Zwlugi 3)




expressed as assuming that availability and residual TTL are indepehden
U = Z Wil (4) parameters, we define the value of the data object as

v = fy(availability) - g,(TTL) . (6)
The first step to define the utility function is identifying
the parameters it should depend on. Specifically, we use tha/Ve also assume to have two system-wide parametgis,
definition provided by Equation 5. Note that, to simplify the andv.q., that are the minimum and maximum values of
notation, in Equation 5 we remove the explicit indication of any data (i.e.vmin < v < vimaz). While the residual TTL

the context and the data object the utility refers to (uén can be easily computed, to quantify the data availability we
Equation 5 is any of the(?) factors in Equation 4 for any  assume that the local node has an estimate of the probability
data object). of users in the context to actually receive the data objest, d
noted a,, (we will discuss how to obtain such estimates
u = fy(access probabilitwalue in concrete example in Section 4). Based on the above re-
context stabilityresources’ consmuptign marks we can defing, () andg, () as follows:
)
In Equation 5 we identify four main parameters: { o) = Umaz — gx/vmaa: - \/Uming eMpav 1)
gv() = \/Umaz - \/vmaz - \/vmin e 0TTL
e Access probability. This parameter should capture the )

likelihood that the data object will be accessed by users The definition off,, andg, is the simplest one satisfying the

in the context. The highest the access probability, the following requirements:

trz)c:tr.e the data should be useful for the users in the con- 1. v should be in the intervaby,i,, vmas]

2. f, should be minimum whemp,, is maximum (i.e.,
Pav = 1), and maximum whemp,,, is minimum (i.e.,

Pav = 0)

e Value. This parameter quantifies the advantage for the
users in the context brought by the fact that the local
user stores that particular data object. It can also be
seen as the marginal utility for the users of the local 3. g, should be minimum wheff'T"L is minimum (i.e.,
node storing the data. We will discuss in more depth TTL = 0), and maximum whe'T'L is maximum
this parameter in the following of the section. (theoreticallyTTL = o).

e Context stability. This parameter captures the stability _ L&t us now focus on thaccess probability parameter.
of the context the utility refers to, and is a sort of re- Theoretically, each user could have a different access prob
liability index for the previous two parameters (access aPility to any given data object. However, we choose to
probability, value). The lower the context stability the consider a singleggregate parameter for all users sharing

lower the utility should be. a similar context. This relies on the fact that users areén th
same context because they share interests, and therefore we
¢ Resource consumption. As we will describe in the fol-  can reasonably assume a rather homogeneous access prob-

lowing, thevalue parameter describes the value of the ability across users of the same context. The access prob-
data object for the users in the context, irrespective of ability is throughout referred to as,., and is computed as
any costs related to storing or fetching it. This parame- described in Section 4.

ter permits to trade off the value of the data objectand  As mentioned before, theontext stability parameter is

its associated costs. meant to be a reliability index for the access probability

h ¢ thi . id ib| and value indexes. The value and the access probability
In the rest of this section we provide a possible concrete are the way in which we embed context information de-

realisation of the gengral form in Equation 5. Let usfirstly i o4 from the users’ social behaviour in the data dissem-
focus.on Lhe c?ntrlt}utlc(;n . ;’,f thevaju;e pargmetgi;.ai\lNe ination policy. Therefore, their contribution should be re
quantify the value of a data object as a function o . duced in case of unstable contexts (e.g., due to high user

ability in the context, and itsesdual TTL. The rationale churn rates, or significant variability of the access prabab

behind considering the availability is thedre data in the ity, etc.). Based on the value and access probability defini-
context should be preferably stored (thus, should more valu tions described above, it is reasonable to quantify the con-

able). This idea is porrowed from common p2_p SYStems o ¢ stability through the coefficients of variation of the a
(e.g., BitTorrent), which try to preferentially replicadata cess and availability probabilitiest(,.. andcv,q., respec-

that are less widespread, since data b_eing alreaqu spr&eac_i alEively). Specifically, we define the context stability index
easy to get from the network. The rationale behind consid- (¢s) as follows:

ering the residual TTL is the fact that data that are going to
become invalid quite soon should not be of high value. By es(CUpacy CVpap) = e~ hmax(cvpac,cpav) (8)



The last contribution to the utility function we have to e we introduce aeliability index (the context stability)
define is related to theesource consumption. To quantify to take into consideration possible variability of the in-
this parameter, we need to aggregate consumption relatedto  formation describing the users’ social behavior;
each data object over all resource. To this end, we define an

aggregate consumptieras the weighted sum of the single- ~ ® We use &eneral resource consumption index (not lim-
resource consumptions, i.e., iting to the data size only) which permits to take into
consideration any set of resources to be managed.
Z;L w;Cj S L .
c= Zmiw , 9) The framework proposed in this section is quite general,
J=1"7 and can be specialised for managing a number of differ-

wherew; is the weight assigned to resourceNote that this €Nt resources. In the following of the paper, we explain
definition also allows us to rank resources based on their rel NOW this framework can be implemented by exploiting Hi-

ative importance (computing similar aggregates is commonBOP: @ context-aware framework for data forwarding and
when defining heuristics for solving MKPs). Finally, the dissemination we have proposed in [2], and we Investigate
contribution to the utility function related to the resoest (e performance of the framework when applied to manage

consumption is defined as: the nodes’ buffer space.

1 4. HiBOp-D: a context-aware data dissemina-

o (10) tion protocol

To implement our framework in a real opportunistic net-
work we exploit the algorithms for managing context in-
formation defined by HiBOp [2], which is a context-aware
routing protocol for opportunistic networks. The resudtin
protocol is a HiBOp customisation for data-dissemination,
that we call HiBOp-D.

Given the utility function of Section 3.1, designing a data
dissemination protocol that works according to that wtilit
means i) to define which are the contexts a node operates
in, and ii) how the information about these contexts is col-
lected. Regarding the first problem, we need a way of de-
tecting the communities a node belongs to and matching
them to the current environment the node is in. The detec-
tion of communities is not a trivial task and researchers are
7 (11) still working on it (see [6] for first approach to the problem)
eme Assuming that each node keeps track of the most frequent
events of its life, we suppose that, as each node spends the
most of its time with nodes of the communities it belongs
ﬁto, the most frequent events will correspond to events re-

the same general form of utility functions widely adopted in 12t€d 0 tfhese qu?][nunities_ For trr?ckir}g the molst freqllient
the literature about cache replacement systems ([12]).[15] eYe”tS 0 ”Of‘es e, we borrowf[ e History t_ab € mecha-
Usually, in this field the utility is defined as the product of NiSM from HIBOp protocol. In HIBOp, the History table

the access probability by the value of the data. Furthermore ke((ajps track of thf} h|storyb?f the enwronment In Wh;::h ﬁ.aCh
resource consumption is usually considered just in terms ofn? he opedrate\i} thus ena r']ng, sfome s.tat|st|cs c:jn_t i |§|§ory
data size. Our definition of the utility function is more gen- ofthe node. Ve assume the information stored in the His-

eral from this standpoint, as it allows for any set of managed tor()j/ tabblle to be relevant with respect to the communities the
resources, and it still valid in the limit case of negligile ~ "°9€ belongs to.

source consumptions (in that case, the consumption contri- We a!so malljtaln HIBOp’s .mechamsm for collecting
bution tou simply disappears). context information. In the HiBOp protocol, nodes pe-

In conclusion, the main features of the proposed frame-iodically send a summary of their personal information
work we would like to highlight are as follows: (which we called !dentlty Table) to all other nodes in ragho
range. Then, the information collected during these Neigh-
e we explicitly take into considerationsers social be- bour Discovery phases is inserted into the History table for
havior through the access probability, the context sta- keeping track of the history of the environment in which
bility and the value parameters; each node operates.

fco =

Through this definition we comply with the following re-
quirements: i) the consumption function should be equal to
1 when resources’ consumption is negligible (this is nec-
essary for the following definition of the utility function)
and ii) the usefulness of the data should decrease than
linearly with the consumption increase. As far as the latter
point, please note that by tuning theparameter, it is pos-
sible to control the impact of the consumption on the utility
function.

Based on the above discussion we are finally in the po-
sition of defining a concrete formula for the utility funatio
of a data, related to a particular context. Specifically, we
specialise Equation 5 as follows:

U = Pac " CS -

wherecs is defined as in Equation 8,is defined as in Equa-
tions 6 and 7, and is the resources’ consumption related to
the data, as defined in Equation 9. Note that Equation 11 ha



As we want to detect the interests of the communities a Node Speed uniformin [1,1.86]m/s
node belongs to, and the current data distribution (needed Buffer size 10 objects
for computing availability value), we extend the HiBOp Transmission Range 20m
solution adding to the personal information (IT table) ex- Sampling period 5s
changed during the Neighbour Discovery phase the follow- A 15

ing data:
- . Table 1: Configuration Parameters
e Interests: each node specifies the channels he is inter-

ested in; 5. Simulation Setup

To evaluate our utility-based data-dissemination frame-
work, we consider a very simple scenario. We consider
just a single community, and focus on intracommunity dy-

e Local availability: the ease with which a node can re- namics only. Nodes move according to the Random Way-

trieve information of each channels. point (RWP) mobility model, following to the procedure de-
The data transmitted by current neighbours are then pro-Scfibed in [10] for RWP convergence. While, in general, so-
cial based mobility models (such as HCMM) fits better our

cessed at the end of each neighbour discovery phase; X N
Specifically, the interests of each peer are used to computd'@mework, HCMM and RWP are equivalent when just a

the access probability of the CC (Eq. 12), the cache Compo_single community is con;idgred [4]. The evaluation with
sition of each peer is used to evaluate the current avatiabil MOre than one community is left as a future work. The

for each channel (Eq. 13), and the local availability is used Single-community scenario is a worst-case scenario for our
to compute the ease that your peers have to retrieve infor_data-dlssemmatmn framework, as the advantage of exploit
ing information about users’ social behaviour is likely ® b

mation for each channel (Eq. 14):
(Ea. 14) much more evident in the case of several groups of users,

e Cache composition: for each channel, a node specifies
the fraction of cache space occupied,;

Dac,ch = Z di.cn/Nee (12) each with different interests. Therefore, this setup alow
ieCccC to evaluate the framework in a rather limiting, unfavoueabl
case.
Pavich = i;c SZ’Ch/iE;C Si (13) In our setup data objects can belong to three different
W channels. Each node is interested into one channel. In-
Dav.ch = Z %7,7 (14) terests are distributed among nodes according to the Zipf's
ieccC Nee law. The nodes move, with a typical pedestrian speed, in a

250x250m cell. In the middle of this cell, an Access Point
(AP) stores 100 data objects for each channel. These objects
are generated before the simulation begins and remain the
same for the whole duration of the experimeéRT (L. = co).

All the data objects have the same size, equal to 50 KB.
Nodes’ buffer size is set to 10 objects only, so as to test the
framework in a resource constrained environment as far as

wheres¢" is equal to 1 if node is interested to channeh
(otherwise it is equal to 0)$; is total cache space of node
i, S¢" is the amount of cache space of nadeccupied by
channelch. CC values are basically samples that are used
to compute historical values. They are added to the History
table according to a time-window average:

h h
pt(lc?Ch - apz(zc?ch + (1 - a)pac,ch

l l
p((u)),ch - ap((u)),ch + (1 - a)pavaCh

h h ~
pt(w),ch - apz(w)ych + (1 - a)pav,ch

In addition, for each parameter, we keep lastalues, in
order to compute the coefficients of variation.

Summarising, our context-aware utility function for a

data objecti belonging to channeth is given byU; =
uglocal) + ug}Listo7'y), where:

1 l L
u(local) o pfzr?,ch'f'”(pc(lg,ch 'gv(TTLi)‘CSEJz

7 - eHci (15)
(history) pii?ch'f"’(p((:;),ch, ~g7,(TTL7,)<cs£/};’)
u; = , (16)
eHCi
wherep('"! is equal tol for all channels in which the

local user is interested, otherwise is sebto

buffer limitations. Furthermore, we consider only the buff
as the constrained resources to be managed according to the
scheme in Equation 2. Reference values for other config-
uration parameters are summarised in Table 1. Note that,
since all data objects have the same size, all objects of the
same channel have the same utility for a given node, and
thus the utility computed by Equation 11 is the utility of the
channel.

The performance of the following policies for choosing
which data objects to store upon a pair-wise contact is com-
pared:

Context-aware (CA) Objects are selected based on the
context-aware utility function explained in Sections 3
and 4.

Access Probability (aP) This policy can be viewed as a
special case of our utility function in Equation 11,



When Only the access probabmty iS Considered. Nodes Average HitRate - Access Probability Average HitRate - Context-aware
tend to preferentially select data objects of the channel
the local user is interested.

I —

3

L
A e— K

Average HitRate [%]
Average HitRate [%]

- — k//fﬁ
. . 40 1 40 —
Uniform (U) Objects are selected randomly among all § . ;«ﬁ@w | g ZEa |
. . . *
available objects in the local and peer’s buffers (regard- e w e TR Py e R
less the channel they belong to). This policy has been e g ettt

proved to be one of the best in [9].

Uniform mono-channel (UM) Nodes select a channel at
random, and store all objects of that channel. We con- Average HiRae - Uniorm Average HiRate - Unifom Mono-charnel
sider this version of the uniform policy as we found
that nodes under the aP and CA policies tend to store

Figure 1: Average hit rate (aP) Figure 2: Average hit rate (CA)

Average HitRate [%]
Average HitRate [%]

. . 20 . X 20 —
objects of a unique channel only. o] s o] e
The performance of these policies is evaluated in terms " = = = @ © @ « = B
of the quality of service (QoS) perceived by the users and Oh1 —— Ch2 —x— Ch3 —%— Oh1 —— Ch2 —x— Ch3 %

the resource consumption. The QoS is measured in termsFigure 3: Average hit rate (U) Figure 4: Average hit rate (UM)
of hit rate, system utility and fairness level. To measuee th

hit rate, we simulate a user periodically requesting (with a ) . . .
period equal to 300s) a data objects for each channel (theent popularity. Also note that there is basically no differ-

object of a given channel is randomly selected according?nce’ n cr)]ur st_atup,.belthen thi.u ancti) Li'M p.oI|C|esa_;£ere—
to a uniform distribution). We consider a hit if the object %re, exlc anglr;)g Iim? eb' at? 0 fJ(taﬁts € ong|hng to | ! hr.en
is available on at least one node’s buffer, a miss otherwise.C1aNMNEIS O @ BUIK 0T ObJeCLS of the same channel achieve

The system utility is computed as the sum of the Channel;heh_sameF_resultslwf;enl theh_sﬂlt_ec;c]ion ri]S done i?. a gnifglrm
hit rate weighted with the access probability of each chan- as |onr.] 'ggg%/s h'- aiso highlig ts; at EO po |cyf|s ad e,
nel, i.e., SU = 3", pacshr:. The faimess of each policy to reach a % hit rate, not even when the sum of nodes

has been computed according to the Jain’s fairness inde>pUffers would b,e gnough for storing all the data objects for
[7] (using the hit rate as a measure of the service level 0b__all channels (this is the case for nodes more than 30). This

tained by each channel). Resource consumption has beel? because_ no policy is able to control the replication level
measured in terms of the traffic generated in the network, OL.d ata o.bjects acrr:)ss the networlt:. .Th's results, for scc)jme'
i.e., the average number of data transmitted by all nodesg {cfects, |nh.|mo;e t ahn one copy being prgsgnt on .Tobles
during the simulations. This includes data exchanged for utters, while, for other, not even a copy being available.

context creation, buffer state messages, request messagé proving the policies to achieve higher diversity of stbre

and data objects themselves. Simulations run for 90000s?° jects is one of the most required extensions of our frame-
ork.

Exchanges of data objects upon nodes’ contacts start aftefVOr¥ o _
Figure 5 shows the system utility index. Beisd/ a

an initial transitory required to build nodes’ context. Re- X o= 4
sults shown in the following section have a 95% confidence MeasuUre of user satisfaction, it is quite expected thatfhe a
policy, by favouring the most popular channel, satisfies the

interval, obtained through the independent replicatiah-te s : >
majority of the users. However, Figure 6 shows that this is

nigue. paid in terms of fairness. On the other hand, uniform poli-
6. Simulation Results cies achieve, by definition, the highest fairness, at thé cos

of lowest system utility. Therefore, a better trade off be-
6.1 Impact of network size tween the maximisation of the overall utility and fairness

In this first set of experiments we evaluate the perfor- should be met. Figure 5 highlights that this trade off can
mance of the policies under a variable number of nodes,be satisfactorily reached by the CA policy. Its fairneslev
ranging from 8 to 72. approaches that of the uniform policies while still maintai

The Access Probability policy (Figure 1) serves chan- ing an higher level of user satisfaction (between 10% and
nels in a way proportional to the probability that they are 20% more).
requested by nodes: channel 1 receives the best servite,the Beside being a good trade-off between user satisfaction
channel 2, and finally channel 3. On the opposite, the Uni- and fairness, the utility-based framework shows a reseurce
form policy (Figure 3) guarantees to all channels an equal saving advantage as well. Figure 7 shows the traffic over-
level of service in terms of hit rate. Between these two head for all caching policies. The most efficient policy is aP
extremes lies our context-aware caching policy (Figure 2), because, once node interests have spread all over the net-
which maintains the same ordering as the Access Probabilwork, values for access probabilities don’t change anymore
ity policy but reduces the gap between channels with differ- during the simulation. This results in fewer exchanges of
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show that, preloading data on nodes at the beginning of the
simulation doesn't affect data dissemination performance

data objects (basically, only nodes sharing the same interHowever, this is just a preliminary result, which should be
est exchange objects). In the CA policy, the utility rank- confirmed with further analysis.

ing changes dynamically based on the availability measure,
thus resulting in a slightly higher traffic overhead. The-uni 6.3 Turning the AP off

form policies waste more resources because they don't take The AP is fundamental to the regeneration of data ob-

into account the state of the network, and thus objects areJects in the network: in fact, even when all nodes have

exchanged at every association between nodes. We hav§g|ateq 4 given object, the AP guarantees that this object
also made a separate analysis for traffic due to data ob-

) X can be injected into the network again. In order to eval-
ject exchanges and traffic due to protocol overhead (CON- ;40 how the presence of the AP affects the behaviour of
text information, message requests, cache state message

!ﬁ'le system, we fill nodes’ buffers at the beginning of each
It's interesting to note that total traffic overhead is stigh Y g g

: simulation, and “turn off” the AP. We explore two different
dependent on the overhead due to protocol operations [8,,icies for initial filling: uniform filling, where data toé
9]. Therefore, data exchanged for building node context ., hieq on nodes’ buffers are selected uniformly among all
are negligible. This result is particularly significant toro

) X ) available objects, and maximum diversity filling, where ob-
context-aware caching policy, which was expecteq to gen'jects are copied on nodes as to minimise replications. We
erqte more protocol .overhead Fhan the others. This EXPECLonsider the case of 16 nodes, in which not all objects can
tation has been confirmed, but its relevance has been drasttﬁt into nodes’s buffers to highlight the importance of the AP
cally reduced. role in this challenged setting.

6.2 Adding off-line prefetching Table 2 shows that when the AP is off a certain level
In the previous experiment, nodes’ buffers were empty at of service is maintained, though highly downgraded. This
the beginning of the simulation. In this second set of exper- shows that, when the buffer size is very small, the AP is
iment we want to evaluate the impact of preloaded buffers key to provide a reasonable service level. These resutis als
on the evolution of the system. We consider to different show that, in these settings, the different initial fillinglip
filling policies: uniform filling, in which nodes’ buffers ar  cies seem to have no, or very little effect, on system perfor-
filled at random at the beginning of the simulation, and max- mance for all caching policies. While still preliminary, ghi
imum diversity filling, in which nodes’ buffers are filled as set of results suggests interesting properties of the syste
to maximize the diversity of data objects (i.e. avoid repli- related to the AP role. We are analysing the system in more
cation). We fix the number of nodes to 16. Figures 10- 13 depth to achieve better understanding on this point.

Figure 6: Fairness



. Average HiRate . Average HitRate chl ch2 ch3
. » (= aP 56.04 + 0.00 | 24.81 +£0.00 | 18.54 % 0.00
A £ CA(orig) | 1.79+1.23 | 0.00+0.00 | 92.44 + 1.69
- o 0.61£0.60 | 0.56+0.62 | 98.10 + 1.54
‘s i 89.66 = 0.66 | 9.92+0.10 | 0.00 +0.00
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Figure 10: Average hitrate (aP)Figure 11: Average hit rate CA (fix) | 42.04 £8.59 | 34.33 +7.46 | 22.95+ 15.94
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Table 3: Percentage of nodes’ buffer occupied by each channel.

Average HitRate Average HitRate

modification is able to fix the CA misbehaviour. We are
currently investigating the applicability of this modifi€ah
policy in more general settings.
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In this paper we have introduced a new autonomic

(UM) utility-based data-dissemination framework for oppoigtin
_ _ tic networks which heavily exploit context information
uniform max div about the users’ social behaviour. We have compared the
AP on AP off AP on AP off f f the f Kk with oth Ut

aP | 3538 £0.16 | 9.33£0.32 | 3538 £0.14 | 943+037 | Performance of the framework with other solutions con-
CA | 26.23+0.30 | 6.09+0.39 | 26.10+0.26 | 6.06 £ 0.44 sidered among the best in the literature. Results have
U ]2393+0.17 | 5.45+£0.23 | 23.88+£0.20 | 5.65 £0.25 shown that our approach is flexible enough to achieve dif-
UM | 22924+0.39 | 4.24£1.06 | 2293+0.35 | 6.34+1.34 ferent targets, and specifically can be customised either to

achieve the maximum hit rate for most popular data, or to
achieve a fairer behaviour with acceptable reduction of the
hit rate. We have also shown preliminary yet interesting
results showing that, in particularly challenged scersario
network elements, such as Access Points, that can store

. o L ” _ o all available data, are key. We have also highlighted some
and a simple modification to fix it. Specifically, we consider

L ) N possible unstable behaviour of our framework, and shown
a scenario with 16 nodes, but with transmission range equal

. ) ; ) a simple modification to fix it. The presented results are
to 80m (instead of 20m). This results in an increase of the still quite preliminary, however they highlight that a itgit

average number of neighbours from 0.3 to about 5. There-,qeq framework is an interesting direction to be further in

fore, in this setting basically each node quickly achieves | qqigated to provide data dissemination services in oppor
a complete view of what is available in the buffers of all tunistic networks.

the other nodes. Qualitatively, since the CA policy takes
into consideration availability to compute utility, theakt References
spread channels at the beginning of the simulation become
the most useful. All nodesnmediately discard objects of

the other channels, which cannot be later resumed, due to
the absence of the AP. In this case, the initial configuration
of the simulation environment plays a key role in determin-  [2]
ing which channel is going to “survive”. Table 3 shows the
percentage of total buffer space (considering all the riodes
buffers as a single shared buffer) occupied by each channel [3]
for the utility-based policies (CA and aP only). CA results
refer to different simulation runs. Note that aP does not suf

fer from this problem as it does not take into account the [4l
dynamically changing state of the nodes’ buffers.

A simple fix to this problem for the CA policy is as fol-
lows. When nodes meet, they compute the utility of the
channel as usual, but then they use the utility values to de- [g]
fine theshare of local buffer to be occupied by each chan-
nel’'s objects. The last row in Table 3 shows that this simple

Table 2: System utility with and without the AP.

6.4 Dense scenario

The last set of results we show highlight a mis-behaviour
of the CA policy that arises in denser scenarios without AP
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