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Abstract—In this paper we present and evaluate a social
network model which exploits fundamental results coming
from the social anthropology literature. Specifically, our model
focuses on ego networks, i.e., the set of active social rela-
tionships for a given individual. The model is based on a
function that correlates the level of emotional closeness of a
social relationship to the time invested in it. The size of the
social network is limited by the time budget a person invests
in socializing. We exploit the model to define a constructive
algorithm to generate synthetic social networks. Experimental
results show that our model satisfies, on average, known
properties of ego networks such as the size, the composition
and the hierarchical structure.
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I. INTRODUCTION

The emerging pervasive and social networks are drasti-
cally changing the (information) society. First of all, we are
experiencing a convergence between the cyber/virtual and
physical worlds. The convergent cyber/physical world will
be content-centric where content generated in the physical
space is immediately transferred to the cyber space (e.g.,
multimodal sensing), and cyber outcomes have immediate
impact on physical space. Humans are at the core of
this convergence; each person has several (mobile) devices
through which he/she can interact with the virtual world
thus linking the physical world and the electronic world
of users devices [1]. In this scenario, human and online
social networks have a very important role for accessing and
circulating the massive scale of content that is circulating in
the network/society. By translating human relationships in
the electronic world, we embed in electronic devices the key
characteristics that enable humans to effectively handling
and sharing large amount of information.

Human relationships can be exploited in the virtual world
for fast and effective circulation of data with spatial temporal
value and for content provision and personalized context,
such as by sharing information of mutual relevance.

There is significant evidence suggesting that human social
networks (i.e. the set of social relationships people maintain
with each other) are not particularly affected by specific
communication technologies [2]. Therefore, it is reasonable
to see the properties and structures of human social networks
as an invariant with respect to the evolution of the underlying
means supporting social interactions.

Human social networks exhibit remarkable dynamism and
structural properties that may significantly affect the quality

of the information (i.e., trust and reputation, relevance,
reliability, etc.) and the way information may circulate; it
is conjectured necessary to transverse only a small number
of human social relationships in order to connect any pair
of people resulting in the “small world concept”. Therefore,
understanding and modeling human social networks is a
fundamental step in designing efficient protocols for data
dissemination in the cyber-physical world. In this paper we
present a first important step in this direction. Specifically by
exploiting social anthropology results we have developed a
model of the ego network, i.e., the model describing the set
of active social relationships of an individual. Results from
Dunbar et al. [3], [4] indicate that human relationships have
a hierarchical structure and, on average, an individual has up
to 150 active social relationships, i.e., the Dunbar number.
These results constitute the bases for the model developed
in this paper.

The properties of the ego networks are summarized in the
next section and our model is presented in Section III. In
Section IV we define the functions and the parameters that
characterize the model while in Section V we validate the
model and formulate the conclusions.

II. EGO NETWORKS

Ego networks are a particular category of social networks
made up of an individual (an “ego”) and the people (“alters”)
with which the ego has some kind of social relationship.

There are limits to the amount of social relationships that
an individual can maintain, this is due to cognitive and
time constraints [5]. In fact, keeping social relationships
demands cognitive resources and time available to invest
on them and both resources are limited. Different studies
about ego network size have been conducted (e.g. in [4], [6],
and [7]). It has been demonstrated that ego networks have a
hierarchical structure that consists of a series of concentric
layers of acquaintanceship with increasing sizes. Dunbar et
al. suggests that the layers in an ego network are: “support
clique”, “sympathy group”, “band” and “active network”
(the whole network) with sizes ∼ 5, ∼ 12, ∼ 35 and ∼ 150
respectively, [3], [4]. The layers are hierarchically inclusive,
so that each layer includes all inner levels. This structure is
depicted in Figure 1. Sometimes in this paper, we use the
term external part of a layer in order to refer to the part of
the layer not overlapped with its inner levels.



Support clique and sympathy group are made up by a
relatively small number of alters the ego is emotionally
closest to. On the other hand the alters connected to the
ego by weak ties, which represent the greatest part of the
network, are included in the external layers. Each layer of
the network has specific characteristics: support clique and
sympathy group are well-defined in size and composition
(see [8] and [9]) as well as the active network is ([4]), while
no accurate information is currently available in literature
about the band level. Therefore in this paper we do not
explicitly model the band level and we consider it merged
within the active network layer.

Regarding the correlations among the layers’ sizes, the
study in [8] suggests that there is a linear correlation between
support clique and sympathy group. On the contrary there
is no information in literature about possible correlations of
their sizes and the size of the active network layer.

Relationships in social networks may be classified into
different categories such as: kin, friends, neighbors, work
colleagues, etc.. Moreover alters may be characterized by
their gender, age, education level, marital status and so on.
In social networks each relationship is also characterized
by a level of emotional closeness. Strong relationships have
a higher level of emotional closeness compared with weak
ties. As suggested by Hill & Dunbar, the emotional closeness
level may be the key parameter to consider in order to select
in which layer a relationship has to be included [4].

The level of emotional closeness is positively correlated
with the “frequency of contact”, which is estimated with
the inverse of the “time since last contact” [4]. The latter
also reflects the time invested in a particular relationship
[5], therefore it is generally assumed that there is a relation
between the time invested in a relationship and the level of
emotional closeness. Maintaining a relationship at high level
of emotional closeness requires a lot of time invested in it,
for both friends and kin. On the contrary, for low levels of
emotional closeness, kin relationships require less invested
time than the relationships with friends [5].

III. THE MODEL

Our model allows to define ego network graphs that, on
average, have the properties described in literature, such as
the size, the hierarchical structure and the composition of
each layer. The model is based on parameters and functions,
defined in Section IV, that are obtained exploiting results in
the reference literature about the average ego network.

As previously said, the size of the network is limited by
cognitive and time constraints. Since cognitive constraints
are not easily quantifiable, our model focuses on time
constraints, associating to each ego a certain time budget
for handling his/her social relationships. In the model each
relationship requires a specific amount of time, therefore the
size of the ego network is constrained by the time budget.

Support clique: ~5

Sympathy group: ~12

Band: ~35

Network: ~150

Figure 1. Hierarchical ego networks’ structure. The black circle represents
the ego; dark red circles refer to the kin; light green ones refer to non-kin.

In order to know the time requested by each relationship,
the model exploits a function that, given the level of emo-
tional closeness of a relationship, returns the related amount
of time to handle it. The level of emotional closeness is
distributed according to known probability distributions, and
identifies the layer a relationship belongs to. Each layer of
the ego network is related to specific interval of values of
emotional closeness. The function that correlates emotional
closeness and time is defined in order to obtain, on average,
networks with a specific expected size.

The size of the sympathy group follows a specific dis-
tribution and it is independent of the network size. On
the contrary it is linearly correlated to the support group
according to a ratio defined by a probability distribution.

As previously said, the literature proposes different cat-
egorizations of relationships and alters. Our model only
considers the kinship with the ego and the gender of the
alters because there are many data available about these
categories [8], [4]. Therefore, each relationship in the model
is characterized by the type (kin or not-kin) and by the
gender of the alter according to the composition of an
average ego network. Our model simply considers static ego
networks. Including the evolution over time, studied in [10],
represents an interesting future work.

In the following subsection we present an algorithm for
the generation of ego network graphs that are based on the
presented model.

A. The Algorithm

The algorithm generates an ego network graph iteratively,
following the proposed model. It adds relationships to the
network from the inner to the outers layers, until the time
budget is completely spent. To construct the ego graph,
the algorithm exploits a set of functions (hd, fS , fW , fB ,
fA,D and fE) and parameters (µl and m) whose values are
obtained in Section IV from the analysis of an average net.

The first step is the creation of an ego and the assignment
of its gender. The gender of the ego is saved in the variable g
that can take values M (male) and F (female). The algorithm
extracts g form a Bernoulli distribution Ber(m) where m
is the probability that gen = M (line 2-3).

The next step is the extraction of the sympathy group size
ssym from the known probability density function fS (line
4). The mean value of fS is µsym that is the size we expect
to obtain, on average, by the algorithm execution.



1: procedure CREATEEGONETMODEL
2: g ← EXTRACTFROM(Ber (m))
3: ego← CREATEEGO(g)
4: ssym ← EXTRACTFROM(fS)
5: w ← EXTRACTFROM(fW )
6: ssup ← ssym · w
7: bdg ← EXTRACTFROM(fB)
8: done =← False, tot← 0, i← 0
9: repeat

10: l← SELECTLAYER(i, ssup, ssym)
11: a, d← EXTRACTFROM(fA,D|L=l,G=g)
12: e← EXTRACTFROM(fE|D=d in

(
lowl,d,upl,d

)
)

13: t← hd (e)
14: if t/2 < bdg − tot then
15: r ← CREATERELATIONSHIP(l, a, d, e, t)
16: ADDRELATIONSHIP(ego, r)
17: tot← tot+ t
18: i← i+ 1
19: else
20: done← True
21: end if
22: until done
23: return ego . snet is the final value of i
24: end procedure

Figure 2. The algorithm pseudocode

Once the algorithm knows the value of ssym, it can obtain
the size of the support clique ssup. In order to do this
the algorithm randomly extracts the ratio w between the
two layers’ sizes from the density function fW . Once w
is extracted, the algorithm sets ssup = ssym · w (lines 5-6).
The expected value of ssup is µsup.

Since the probability density functions used in the model
return continuous values, but layer sizes have to be natural
numbers, values are rounded using the dithering method
[11]. Moreover each negative value is converted into a zero.

In the next step the algorithm assigns the time budget bdg.
This amount is extracted from the known probability density
function fB (line 7).

At this point the main loop starts (lines 9-22). For
each iteration the algorithm sets the parameters for a new
relationship that is created only if there is enough time
available. The total amount of time spent by the created
relationships, is kept in the variable tot, that is updated after
each relationship addition. The variable tot is initialized
before the loop begins together with the control variable
done and the counter i, which represents the current size of
the network (line 8).

By the knowledge of the current size i and the layer sizes
ssup and ssym, the algorithm infers the current layer l. The
variable l takes the values in the set L: sup (support clique),
sym (sympathy group) or net (active network) (line 10).

For each relationship, the algorithm has to set the type of
the relationship d and the gender of the alter a. The variable

d takes the values K and NK, in case of kin and non-kin
relationship respectively. The variable a, such as g, takes
values M (male) or F (female). The algorithm randomly
extracts the values of a and d from the joint probability mass
functions fA,D. Since each layer has a different composition,
which also depends on the gender of the ego, there is a
specific function fA,D|L=l,G=g for each layer l and for each
gender g. The functions refer only to the composition of the
external part of the layers. Considering the current layer l
and the gender of the ego g, the algorithm extracts a and d
from the function fA,D|L=l,G=g (line 11).

For each relationship, the algorithm has to assign a level
of emotional closeness to the variable e using the probability
density functions fE . There are two different fE functions,
one to use in case of kin relationship fE|D=K, and the other
for non-kin relationship fE|D=NK, therefore the algorithm
selects the proper function according to d. The extraction
from fE|D=d is limited in an interval of emotional closeness(
lowl,d,upl,d

)
related to the current layer l and the type of

the current relationship d (line 12). The method to infer these
intervals is described in the Subsection IV.G.

To relate the emotional closeness e to the time required to
handle it, the algorithm is based on functions hd that return
an amount of time given a level of emotional closeness.
There are two different functions hK and hNK, for kin and
non-kin relationships respectively. Using the proper function
hd the algorithm sets the amount of time t given the level of
emotional closeness e (line 13). Functions hd must satisfy
some properties listed in the Subsection IV.H.

The current relationship has to be added to the ego
network only if there is enough time available. However if
the algorithm discards a relationship when t > bdg−tot, the
final value of tot is always less than the time budget bdg.
Since we want that E[tot] = E[bdg] the condition to add
a relationship to the network is t/2 < bdg − tot (lines 14-
18). When the previous condition gets false, the boolean
control variable done becomes equal to True, therefore the
loop ends and the algorithm returns the object ego with the
related ego network (lines 19-23).

The final value of the counter i represents the network
size snet. If the functions and the parameters of the model
are defined satisfying the properties given in the following
subsections, the algorithm generates, on average, ego net-
works with the expected size µnet.

IV. PARAMETERS AND FUNCTIONS

In this section we define all the parameters and functions
the model uses exploiting results in the reference literature.

A. Layer sizes

In the literature there are different values for the layer
sizes, often with significant differences. In [7], the authors
collected all the required data about layer sizes and extracted
the mean value for each layer. Therefore, basing on this



Table I
COMPOSITION OF SYMPATHY GROUP

a, d g = M g = F

a = M, d = K 2.28 15.98% 2.38 16.64%

a = F, d = K 2.47 17.26% 3.53 24.72%

a = M, d = NK 7.38 51.61% 2.02 14.14%

a = F, d = NK 2.17 15.15% 6.36 44.51%

sum 14.3 100% 14.3 100%

work, we set the mean support clique size µsup = 4.6, the
mean sympathy group size µsym = 14.3 and the mean active
network size µnet = 132.5.

B. Parameter m

Parameter m is the probability to have a male ego, that
is gen = M. We can reasonably assume that m = 0.50.

C. Function fS
The sympathy group size distribution is presented in a

histogram format ([8]) which can be fitted by a Gamma
distribution. As fS must be consistent with the mean
size of the sympathy group µsym, we obtained fS =
Gamma(4.1, 3.49) with mean 14.3.

D. Function fW
The ratio between the support clique and the sympathy

group sizes is given by the function fW . Since we have set
the mean sizes µsup and µsym, we define fW thought a nor-
mal distribution with mean equal to µsup/µsym = 0.3217.
We have no explicit information about the standard vari-
ation of the distribution, however it can be experimentally
approximated, using the scatter plot proposed in [8]. A good
approximation is obtained by setting the standard variation
to half of the mean, therefore the function is defined as
fW = Normal(0.3217, 0.1608).

E. Function fB
We have no exact information about the distribution of

time spent in socializing but we know that on average a per-
son spends for it about the 20% of the time [12]. Therefore
we define fB with a mean value equal to 8760 · 0.2 = 1752
where 8760 is the number of hours in a year. In this way
expected value of time budget is E[bdg] = 1752.

The probability function fB directly influences the distri-
bution of the network sizes, therefore we chose its distri-
bution and parameters experimentally, after we have done
some tests, in order to obtain a network size distribution
close to the one presented in [4]. The function we selected
is fB = Gamma(205.48, 8.5264).

F. Functions fA,D
Dunbar & Spoors in [8] studied the composition of the

sympathy group for male and female egos. Considering the
given mean size µsym, that is independent of the gender of
the ego, the resulting compositions are reported in Table I.

Table II
COMPOSITION OF ACTIVE NETWORK LAYER (EXTERNAL PART)

a, d g = M g = F

a = M, d = K 11.46 9.70% 17.35 14.68%

a = F, d = K 18.00 15.23% 17.18 14.53%

a = M, d = NK 52.50 44.41% 38.90 32.91%

a = F, d = NK 36.24 30.66% 44.78 37.88%

sum 118.2 100% 118.2 100%

In the same work, the authors studied the support clique
and they observed that there are not significant differences
between the compositions of the two layers. For this reason
we can set the function fA,D|L=sym, that refers to the
external part of the layer, with the values in Table I,
related to the whole sympathy group. Moreover we can set
fA,D|L=sup = fA,D|L=sym.

Regarding the external part of the active network layer
we can indirectly estimate its composition starting from
results in [6]. Specifically, we set fA,D|L=net with the results
presented in Table II.

G. Emotional closeness intervals and functions fE
As shown in Figure 3 the value of emotional closeness

will be extracted by different range of the fE distribution
depending on the layer. The intervals of emotional closeness
can not be chosen arbitrarily but they must be consistent with
the expected layer sizes (µsup, µsym and µnet) and with the
probability density functions fE . The probability to extract
a value of emotional closeness in an interval must be equal
to the proportion of the network the related layer represents.

Our model uses two different density functions for kin
fE|D=K and non-kin fE|D=NK, therefore, in order to define
the intervals, we need to know the mean proportion of kin for
each layer. Using the Equation (1) we obtain the probability
k′l to have a kin in the external part of a layer l.

k′l =
∑

a∈{M,F}

(
m · fA,D|L=l,G=M (a,K)

+ (1−m) · fA,D|L=l,G=F (a,K)
)

,∀ l ∈ L
(1)

Using the values k′l it is possible to obtain the probability
to have a kin, kl, in the whole layer l by the Equation (2),
where c is a sublayer of l.

kl =
∑
c⊆l

µ′c
µl
· k′c ,∀ l ∈ L (2)

For example, the probability to have a kin in the whole
network, knet, is:

knet =
µ′net · k′net + µ′sym · k′sym + µ′sup · k′sup

µnet
(3)

Considering a type of relationship d, the probability to
extract a value from fE|D=d in the interval

(
lowl,d,upl,d

)
related to a layer l, must be equal to the expected proportion



Figure 3. Distribution of emotional closeness for kin with the proportion
of the network for each layer and the related limits.

of the network the layer l represents, considering only
relationships with type d.

Knowing the cumulative distribution functions FE of
the densities fE , it is possible to calculate the limits of
the intervals of emotional closeness, considering them as
quantiles that satisfy the following equations:

FE|D=K (lowsup,K) = 1− µsup · ksup

µnet · knet
(4)

FE|D=NK (lowsup,NK) = 1− µsup · (1− ksup)
µnet · (1− knet)

(5)

FE|D=K (lowsym,K) = 1− µsym · ksym

µnet · knet
(6)

FE|D=NK (lowsym,NK) = 1− µsym · (1− ksym)
µnet · (1− knet)

(7)

For example, considering kin relationships and the support
clique layer, the limit lowsup,K defines an area in fE whose
size is equal to µsup·ksup

µnet·knet
(the dark area in Figure 3) where

µsup · ksup is the number of kin relationships in the support
clique and µnet · knet is the number of kin relationships in
the whole network.

The lower limits for the active network layer are
lownet,d = 0 while the upper limits are upsup,d = emax,
where emax is the max value of emotional closeness,
upsym,d = lowsup,d and upnet,d = lowsym,d, for each type
of relationship d.

Distributions of emotional closeness for kin and non-
kin are presented in [6]. As we do not have the exact
distributions’ values, we can only approximate them. Setting
the maximum level of emotional closeness emax = 1,
obtained distributions are fE|D=K = Gamma(0.2, 2.296)
and fE|D=NK = Normal(0.5, 0.172), both defined only in
the interval (0, emax). Considering the cumulative distribu-
tions FE it is possible to solve the Equation (4), (5), (6)
and (7), obtaining the limits of the intervals of emotional
closeness: lowsup,K = 0.8582, lowsup,NK = 0.8185,
lowsym,K = 0.6852 and lowsym,NK = 0.7247.

H. Functions hd
hd functions correlates the level of emotional closeness

to the time spent in a relationship. Considering the studies
[4] and [5] we know that hd functions are increasing with
the level of emotional closeness and that hK returns lower

or equal values than hNK . The latter observation is due to
the fact that kin relationships demand less time invested on
them than non-kin relationships. However, for high level of
emotional closeness, the invested time in social relationships
is equal for both kin and non-kin, therefore we set the
following constraint:

hK (emax) = hNK (emax) (8)

where emax is the maximum level of emotional closeness.
Since the network size snet is limited by time constraints,

it is fundamental to properly define the functions hd in order
that E[snet] = µnet. In order to do this we impose that,
in an average network with size µnet, the total amount of
time spent in relationships is equal to the main value of
the time budget E[sbdg], obtained from the density function
fB . Considering the given density functions of emotional
closeness fE and the proportion of kin in the network knet,
the constraint can be expressed by the Equation (9). In this
equation, the value of the integral is the weighted sum of
the expected values of the functions hK and hNK, multiplied
for the probability to have a kin or a non-kin respectively.

µnet ·
∫ [

hK(e) · fE|D=K(e) · knet

+hNK(e) · fE|D=NK(e) · (1− knet)
]
de = E[bdg]

(9)

Through the graphics in [5] and in [4], we presume that
hd functions have an exponential trend therefore we define
a generic h function: h(e) = ce + t0 − 1. The parameter t0
is the value returned by h(0). It can be considered as the
minimum amount of time spent in a relationship in order to
keep it active.
hK and hNK have the same form as h but have different

values for the parameters c and t0: respectively cK and t0K
in hK, and cNK and t0NK in hNK.

As previously said hK has to return lower or equal values
than hNK therefore t0K must be less or equal than t0NK.
We have no any indication on how estimate t0 parameters,
therefore we assume to be reasonable to set t0K = 0.5 and
t0K = 2. In order to extract parameters c we can put in
a system the Equation (8) and (9) where µnet = 132.5,
knet = 0.2817 and E[bdg] = 1752.

With numeric methods we can solve the system of equa-
tions with a very good approximation obtaining cK =
95.3275 and cNK = 93.8275. Finally we can define the
functions:

hK(e) = 95.3275e − 0.5 (10)
hNK(e) = 93.8275e + 1 (11)

V. RESULTS

We have implemented the algorithm presented in Section
III.A in Java programming language and we performed
100.000 run tests creating as many ego network graphs.
Results are presented in the Tables III and IV.



Table III
RESULTS: LAYER SIZES AND TIME BUDGET

min max avg st. dev.

snet 3 510 132.84 65.80

ssym 0 74 14.06 7.25

ssup 0 43 4.62 3.55

bdg 195.62 5197.87 1748.40 598.42
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Figure 4. Network Sizes Distribution in Simulations

As we can see, the average network size converges to a
value close to the expected value 132.5. The little gap is due
to approximation errors.

Also the mean average of the sympathy group is very
close to the reference value 14.3. In this case the gap is
due to the correlation between the time budget and the size
of the layer. The algorithm extracts ssym values from the
distribution fS but in a few cases the algorithm exhausts
the time budget before completing to populate the sympathy
group layer, making lower its mean size. This happens
especially when the algorithm extracts a low value for bdg.
In our tests, the sympathy group size is constrained by time
budget in the 3.17% of the runs.

The average size of the support clique meets perfectively
its expected value. Such as in case of the sympathy group,
the time budget extracted can constrain the size of the layer
however, in case of the support clique, this happened only
in the 0.38% of the runs.

The shapes of the layer size distributions are similar to the
distributions in the reference literature. See for example the
shape of the network size distribution presented in Figure 4.

In Table IV we can see that the composition of the
network is coherent with the fA,D functions we set. Male
egos have smaller network than females. This is due to
female egos have a little more kin relationships which
request less time that non-kin relationships.

We have validated the model, demonstrating that it allows
generating ego network graphs that are coherent with the
results in the reference literature. In future work, the model
may be extended in order to consider evolution over time
and the connections among different ego networks.
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Table IV
RESULTS: COMPOSITION OF THE NETWORK

ai, di g = M (49.85%) g = F (50.15%)

ai = M, di = K 13.63 10.35% 19.97 14.89%

ai = F, di = K 20.37 15.48% 20.93 15.61%

ai = M, di = NK 59.44 45.17% 41.50 30.96%

ai = F, di = NK 38.16 29.00% 51.68 38.54%

sum 131.59 100% 134.08 100%

of Oxford, which have been fundamental to deeply under-
stand the structures of human social networks, and how to
correctly model them.
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