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Abstract—It is often argued that the Future Internet will be
a very large scale content-centric network. Scalability issues
will stem even more from the amount of content nodes will
generate, share and consume. In order to let users become
aware and retrieve the content they really need, thesenodes
will be required to swiftly react to stimuli and assert the
relevance of discovered data under uncertainty and only
partial information. The human brain performs the task of
information filtering and selection using the so-called cognitive
heuristics, i.e. simple, rapid, low-resource demanding, yet very
effective schemes that can be modeled using a functional
approach. In this paper we propose a solution based on one
such heuristics, namely the recognition heuristic, for dealing
with data dissemination in opportunistic networks. We show
how to model an algorithm that exploits the environmental
information in order to implement an effective dissemination
of data based on the recognition heuristic, and provide a
performance evaluation of such a solution via simulation.

I. INTRODUCTION

In the Future Internet scenario, mobile devices will be
part of a crowded information landscape. Data generation
and consumption patterns will be very dynamic, with a
large fraction of data being produced and stored on the user
devices themselves. A considerable part of these data will
also be very contextualized, i.e. relevant only at specific
times and/or geographic areas, and of interest only for
specific groups of users. Solutions like web servers, CDNs
will not be sufficient efficiently manage and disseminate data
in such dynamic conditions, while users collaboration will
be a must. Conventional P2P approaches will also not be
enough, due to the presence of mobile nodes and challenged
networking conditions, as in opportunistic networking sce-
narios [12]. According to this view, data dissemination
paradigms are required, in which individual (mobile) nodes
contribute a fraction of their resources to circulate data,
selecting those data items to store based on their utility for
the overall dissemination process. To optimize this process,
each node should react quickly to the discovery of new data
items and it should consider which are the most useful items
to take among at a given point in time. This selection should
be performed swiftly, since the contextualized nature of
information could make it aged before a complex evaluation
process has ended. Moreover, not all the variables required
to perform a complete evaluation may be known. Finally,
nodes - in general - will contribute limited resources to
the dissemination process (e.g. in terms of computing and
storage capabilities). Thus, the data selection process must
be very lightweight and able to perform a sharp distinction
between data items, since only a very limited part of them
could be stored.

One way to overcome these problems is to add autonomic
capabilities to those devices. In this paper, we explore a new
(to the best of our knowledge) direction in the autonomic
networking field, i.e., we exploit results coming from the
cognitive psychology area, by using models of how the
human brain assesses the relevance of information under
partial knowledge. With respect to conventional artificial
intelligence approaches, we do not seek to reproduce the
physiology of cognition, but exploit functional description
of cognitive processes, termed in the literature cognitive
heuristics (e.g. [6]). In computer science, heuristics are
computational methods that try to optimize a problem by
producing stochastically good results. They are obtained by
pruning the search space through an iterative improvement
of a candidate solution, with regard to a given measure
of quality. On the other hand, cognitive heuristics are fast,
frugal and adaptive strategies of the brain that allow humans
to face complex situations by addressing simpler problems.
Cognitive heuristics are characterized by the fact that they
are effective, simple rules, requiring little estimation time
and working under incomplete knowledge of the problem
space. They may act by ignoring the quality criterion used
to evaluate the goodness of the final results, yet producing
very effective results. Due to these characteristics, they
are a very good candidate for translating a mental process
of information selection and acquisition to devices with
limited resources, dealing with a very dynamic and crowded
information context.

Among these heuristics, Goldstein and Gigerenzer [6], [5]
have studied and modelled one of the simplest and more
effective of them: the recognition heuristic. This heuristic
assumes that merely recognizing an object is sufficient to
take decisions that would theoretically require much more
information about the object’s properties. A detailed descrip-
tion of the recognition heuristic is provided in Section III.
This kind of heuristic has proved to be not only fast and
frugal, but it is also ecologically rational, in the sense
that it exploits structures of information coming from the
environment in order to work.

In this paper, we want to exploit the fast and frugal
recognition heuristic in an opportunistic networking sce-
nario. In this scenario, nodes carry some data, are interested
in acquiring specific types of content and have the possibility
to store some of the data encountered when moving in the
environment. We propose an exploitation of the recognition
heuristic to let each node rapidly decide which is the utility
of taking one data item instead of another upon making
direct (i.e. one-hop) contact with other nodes. First of all we
define the requisites needed to implement the recognition



heuristic in an opportunistic environment by defining the
main variables involved in this process. Then, we propose an
algorithm inspired by the model of Goldstein and Gigerenzer
that exploits the recognition heuristic in order to simplify
and limit the complexity of the data selection task. Finally,
we evaluate by simulation the data diffusion process when
nodes exploit the proposed solution.

The rest of this paper is organized as follows. In Section II
we briefly survey the state of the art on data dissemina-
tion in opportunistic networks. In Section III we give a
more precise description of the recognition heuristic. In
Section IV we introduce how the recognition heuristic can
be implemented by mobile devices, while in Section V
we define an algorithm that exploits it for the purpose of
data dissemination in an opportunistic network. Section VI
presents the experimental results obtained via simulation.
Finally, Section VII concludes the paper.

II. RELATED WORK

Data dissemination algorithms have been proposed for di-
verse families of mobile networks. The work in [14] is repre-
sentative of a body of work focused on caching strategies for
well-connected MANETs. In this paper we focus on more
challenged networking environments, where such policies
cannot be applied. To the best of our knowledge, the most
advanced approaches for data dissemination in opportunistic
networks exploit information about users social relationships
to drive the dissemination process [15], [4], [2]. Specifically,
the work in [15] defines a pub/sub overlay in which brokers
are the most “socially-connected” nodes, i.e., those nodes
that are expected to be most available and easily reachable in
the network. SocialCast [4] proposes a first attempt to exploit
social information in dissemination processes. This is also
the goal of the work in [2], where, however, a more refined
and complete approach is used. Specifically, dissemination
is driven by the social structure of the network users, such
that nodes store data items that are likely of interest to
users they have social relationships with (and who, therefore,
are expected to be in touch in the near future). Other data
dissemination schemes for opportunistic networks include
those defined in the PodNet project [8] which, however, do
not exploit social information, but incorporate well-known
caching policies such as uniform and greedy selection.

With respect to these approaches, in this paper we take a
completely new direction, by borrowing models of human
cognitive processes coming from the cognitive psychology
domain. As this approach is still totally unexplored, in this
paper we limit the set of contextual information that we use
to the very minimum, and, for example, we do not exploit
information about users social structures. This allows us to
obtain initial exploratory results about the feasibility of this
novel approach.

III. THE RECOGNITION HEURISTIC

Heuristics are simple and adaptive strategies used by
living species (including humans) to perform specific tasks
in face of limited time, knowledge and computational ca-
pabilities.The main characteristic of heuristics is that they
do not make use of all the information required - in
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Figure 1. Ecological Rationality of the recognition heuristic

principle - to find an exact solution to a given problem.
They reach a decision using only limited knowledge and
using a process simple enough to produce a decision in
short time. One of the simplest of such heuristics is the
recognition heuristic. The recognition heuristic works by
inferring that a recognized object has an higher value than
an unrecognized one, with respect to a given criterion. It
works even when the real criterion value is not available,
not known or requires further, more complex (and longer
and expensive) reasoning to be computed. It exploits the
presence in the environment of some mediators that carry
information (coded in variables) used by the heuristic to
approximate the value of objects with respect to the criterion.
Mediators spread these variables in the environment, thus
determining which objects are recognized. As shown in Fig.
1, the correlation that binds the criterion and the mediator is
called the ecological correlation. The relationship between
the mediator and the contents of recognition memory is
called the surrogate correlation, since the mediator is a
surrogate for the inaccessible criterion. Finally, the accuracy
of the recognition heuristic is called the recognition validity.

In order to better understand how the recognition heuristic
works, Gigerenzer and Goldstein [5] use, as an example,
the estimation of a university endowment. In this case the
criterion is the value of the endowment. This is generally
not publicly available. Anyway, newspapers could act as
mediators, since they periodically publish news related to
the biggest universities. The number of times a university
institution appears on newspapers could be a strong indicator
that it has larger endowments than institutions that do not
or rarely appear on the media. In this case, newspapers
play the role of mediators and the mediator variable related
to the criterion is the number of citations. When a person
has to choose which university has the biggest endowments
between a couple of institution names, she uses the recog-
nition heuristic and chooses a recognized name against an
unknown one. Clearly, in this case, newspapers influence the
recognition, since the more they cite an institution, the more
probably it will be recognized. This example highlights the
so-called ecological rationality of the recognition heuristic,
i.e. the fact that the recognition ability is reinforced by the
stimuli received from the environment.

The simple description of the recognition heuristic made
it a powerful tool for making predictions about a given
criterion. The recognition heuristic can be exploited as
a support in decision-making processes. As such, it has
been successfully used in various fields [9], like financial



decision-making processes [11], forecasting future purchase
activities [7] or even sport events results [13] or political
election outcomes [10].

IV. THE RECOGNITION HEURISTIC FOR DATA
DISSEMINATION IN OPPORTUNISTIC NETWORKS

To define how to exploit the recognition heuristic, here-
after we consider a scenario in which each data item pertains
to a specific channel (or interest). Each node generates
and owns some items of possibly different channels. It is
interested in retrieving and keeping items belonging to a
specific channel only. In this scenario nodes collaboratively
contribute to the diffusion of information by storing and
exchanging some of the items they discover coming in
contact with other devices, even if those items do not belong
to the channel they are interested in. We assume that node
contribute a limited shared storage space to the diffusion
process (whose size is throughout denoted with S). The
diffusion process happens through contacts between nodes.
When two nodes come in contact, they exchange summaries
of their data items. The node ranks data items stored by itself
and by the encountered peer according to their utility, and
updates its storage space by storing the most useful items
only (until the storage space is full). Computing the utility
of items for the diffusion process is a hard (or impossible)
target criterion to evaluate for a single node, as it requires
in general complete knowledge of the status of the network.
Thus, the application of a simple, fast and effective strategy
such as the recognition heuristic can significantly reduce the
complexity of evaluating this criterion.

In order to exploit the recognition heuristic, the first step
is to define the elements upon which recognition will be
made. After that, we need to design a proper algorithm
that, starting from the recognition heuristic, effectively filters
the information, with the aim of maximizing the utility
of the exchange of objects among nodes. To this end, in
this section we characterize the elements that allow to use
the recognition heuristic in this environment. In the next
section, we define an algorithm that relies on this heuristic,
a modified version from one present in the cognitive science
literature. The aim of this algorithm is to limit as much as
possible the use of precise attributes and complex operations
by effectively filtering out most of the information using the
recognition heuristic only.

In order to use the recognition heuristic in our scenario,
some steps must be followed. Specifically, we have to
identify:

• the features (like the name of cities or universities in the
examples of Goldstein and Gigerenzer) that are highly
correlated with the selection criterion and that are thus
spread by the mediators;

• the environmental mediators;
• the way by which nodes implement the heuristic based

on the information collected from mediators
As for the first point, we consider two simple factors that

determine the utility of a data item, i.e., the popularity of its
channel, and its availability (these factors have always been
considered as fundamental in the data management litera-
ture, starting from the area of web caching [1]. Specifically,

the utility of a data items is positively correlated with the
popularity of its channel (how many users are interested
in that item), and negatively correlated with its availability
(how many times that item is already replicated).

As for the second point, we use nodes themselves as
mediators, while the variables they spread are, respectively,
the channel they are interested into, and the set of items they
are currently storing in their shared storage space.

As for the third point, the bottomline idea is to use two
recognition heuristics to separately recognize channels and
data items. Intuitively, a node recognizes a channel as soon
as it becomes “enough popular”, i.e., as soon as the node
encounters enough nodes that are interested in that channel.
Furthermore, a node recognizes a data item it is “spread
enough”, i.e., as soon as it is encountered on at least a
given number of other nodes. This approach is very similar
to what is referred to as inference-from-memory in [5]. More
specifically, each node maintains a separate recognition
cache for channels and data items. Entries of the cache
correspond to channels of interest for or data items carried
by encountered nodes, respectively. Each entry contains a
counter and a TTL associated with the channel or data item.
Whenever a node interested in a channel (or storing a data
item) is encountered, the associated counter is incremented
and the TTL reset. When the counter reaches a certain
threshold, the corresponding channel or data item is deemed
as recognized. Furthermore, the TTL is incremented at each
time slot. When the cache becomes full and replacement
must occur, the entry with the highest TTL is selected for
replacement. If it corresponds to a recognized channel (or
data item), this entry is stored in a Bloom filter. Otherwise,
it is dropped. The complete recognition algorithm is shown
in Algorithm 1.

Intuitively the algorithm keeps track of encountered chan-
nels or data items until they are recognized. When the cache
is empty, the entry corresponding to the least recently seen
object is selected. Bloom filters allow nodes to distinguish,
among entries that are not in the cache, those that correspond
to recognized items (stored in the Bloom filter), and not
recognized items. This is important in case such items are
encountered again, as, if they are in the Bloom filter, they can
be immediately recognized again. Note that this algorithm
mimics the way in which the human brain refreshes, flushes
and recalls “items” in memory.

V. A MODIFIED Take The Best ALGORITHM FOR
OPPORTUNISTIC NETWORKS

Having described how to implement heuristics, we now
present an algorithm that exploit them in the data dissemina-
tion process. Also in this case, we take inspiration from the
cognitive psychology literature [6]. The algorithm defined
in [6] (named Take the Best) mimics a fast and frugal way
of reasoning for choosing among two alternatives. The goal
of the algorithm is comparing two objects. To this end,
objects are tested against an ordered set of cues, stopping
at the first (best) cue that discriminates among them. When
none of the cues can discriminate, the algorithm chooses
by some additional discriminating criterion, which usually
requires much more complex information to be evaluated



Algorithm 1 Recognition algorithm
1: Let i be an observed channel/item;
2: Let H be a hashed index of removed channels/items
3: Let Rθ be the recognition threshold
4: if Cache.contains( i ) then
5: Increment i counter
6: reset i.TTL
7: else
8: if Cache is full then
9: Select the item o with the oldest TTL

10: if o.counter ≥ Rθ then
11: Move o to H
12: end if
13: Drop o
14: end if
15: Put i in the Cache
16: i.counter = 1
17: Set i.TTL
18: end if
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Figure 2. Modified Take The Best Algorithm

with respect to the cues. We propose to adapt this algorithm
in the scenario we are considering. When a node meets
another peer, it ranks the objects of the other node using
an adaptation of the Take The Best algorithm, depicted in
Fig. 2 and Algorithm 2. The first two cues we considered
consist of the recognition of channels and items, using the
algorithm presented in Section IV. The first cue is the
channel recognition: items of recognized channels are ranked
higher than the others and selected for the next steps. If
the total size of remaining items (considering both the node
and the peer shared storage spaces) is greater than S (the
size of the node’s shared storage space), items are further
discriminated using the second cue, i.e. the recognition
of items. In this case the recognition assumes a negative
meaning, as recognized items (already very spread) are
ranked lower than the others and they are not considered
anymore. If further discrimination have to be carried out
to fill the node’s shared storage space, the precise value
of estimated availability of items is considered, and less
available items are ranked higher. As for the original Take
The Best Algorithm, not all the steps are required, and the
last (and more costly) one is run only on a subset of the
items.

A. The Less–is–More Effect

Goldstein and Gigerenzer show that the recognition
heuristic [5] and the Take The Best algorithm are subject
to the so-called less–is–more effect [6]: When increasing
the number of recognized items, the number of accurate
inferences will increase up to a certain point, but thereafter
decrease. This is due to the diminished discrimination power
of the recognition heuristic, since too many items are rec-
ognized at the same time. In order to take advantage of the

Algorithm 2 Modified Take The Best Algorithm
1: Let R be a set of items received from another node;
2: M be the actual storage content
3: Let S be the storage capacity limit
4: Let C be the channel chache and O be the item cache
5: Let HC and HI be the hashes of old recognized channels and items
6: Let RCθ be the recognition threshold for channels
7: Let RIθ be the recognition threshold for items
8: Let I = R−M
9: Let recChannels = ∅

10: for each i ∈ I do
11: if C.contains(i.channel) & i.channel.counter ≥ RCθ OR

HC .contains(r) then
12: recChannles ∪ = i
13: end if
14: end for
15: Let recItems = ∅
16: if recChannels.size + M .size > S then
17: for each r ∈ recChannels do
18: if (O.contains(r) & NOT r.counter ≥ RIθ) OR NOT

HI .contains(r) then
19: recItems ∪ = r
20: end if
21: end for
22: if recItems.size + M .size > S then
23: Let M ′ = M ∪ recItems
24: Rank M ′ in ascending order according to the counters of its

items
25: Select and keep in M the first S objects of M ′

26: else
27: M ∪ = recItems
28: end if
29: else
30: M ∪ = recChannels
31: end if

less–is–more effect, the storage capacity of the recognition
caches should be adapted in order to achieve the maximum
accuracy. Identifying autonomic algorithms to adjust this
capacity is one of the key directions of future work.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm by simulating the
following scenario. We consider 45 nodes, divided into three
different groups. In order to simulate real user movement
patterns, nodes move in a 4 x 4 grid (1000 m wide),
according to the HCMM model [3]. The HCMM model
is a mobility model that integrates temporal, social and
spatial notions in order to obtain an accurate representation
of real user movements. In the simulation scenario, groups
represent set of users that have social and spatial relation-
ships. Groups are initially assigned to a home cell and any
physical contact among groups is avoided. Thus, the only
way to exchange and obtain data among groups is through
node mobility. Nodes can move in the cell of their group
only. A few nodes in each group (named travellers) bridge
between communities by visiting more than one group.
This model well represents social communities, in which
people typically stay, with a few people commuting between
different communities due to different social relationships.
In the simulation settings, each group has two travellers,
one for each of the other groups. The objects available in
the network are assigned to channels and there are as many
channels (nc) as groups. Each channel has a total of 99
objects and each group originates 1/nc items per channel,
i.e. there are 33 items of each channel per group. All the
objects are generated at the start of the simulation. Each



node subscribes to one channel only. Within each group,
node interests follow a Zipf law with parameter 1. Interests
are rotated, so that the most popular channel in a group
is the second in another and the third one in the other,
and so on. Note that in this scenario data items can reach
interested users in communities other than those where they
are generated only through nodes mobility. Therefore, it
allows us to highlight the effectiveness of the data dissem-
ination algorithm. The simulation runs for 50,000 seconds.
At the start of the simulation each node subscribes to a given
channel. The performance figure is the hit rate, computed at
various time instants after the simulation starts. It is defined
as the ratio between the number of retrieved objects of the
subscribed channel and the total amount of objects of the
channel. By default, on each node, the channel recognition
cache size is 3 (i.e. all channels can be recognized), the items
recognition cache is 10, and the shared storage space has 10
slots (items are assumed to be of equal size). Simulation
have been replicated in independent conditions 10 times,
and confidence intervals (with 95% confidence level) have
been computed. As they are very narrow, in the plot we only
show the central values of the confidence intervals.

Simulations were run changing the values of the thresh-
olds for both the channel and the items recognitions and by
varying size of the shared storage space, S. The first set of
experiments (Figs. 3–4) shows, first of all, that by using the
recognition heuristic the system is able, after some time, to
reach 100% hit rate. This is a very important result. Using
the proposed recognition heuristic result in an extremely
lightweight data dissemination system, which nevertheless
proves to be very effective. Another aspect highlighted by
this set of results is the effect of varying the item recognition
threshold with different values of the channel recognition
threshold. The main result is that for very low value of
the item threshold (RIθ = 2) the information diffusion
algorithm is not able to obtain a 100% hit rate. For the
other values, changes in the item threshold implies little or
almost no differences in the algorithm performance. This
results (particularly evident in Fig. 4) are a sign of the
less− is−more effect. In order to have a in-depth analyses
of this case, Fig. 5 shows the results obtained by fixing
RIθ = 2 and varying the channel threshold. Such a low
value of the item threshold implies a higher probability of
recognizing items as widespread. As a consequence, at a
given time all the items are recognized as too diffused by
all the nodes. In this case, items are not exchanged anymore,
since all of them are not recognized as useful. In the other
cases in Fig. 3 and 4, not all the items were recognized as too
diffused, thus allowing to reach a 100% hit rate. RIθ = 2,
as in Fig. 5, always leads to lower performances. Moreover,
this figure highlights that different values of the channel
threshold imply different information diffusion speeds. The
lower RCθ, the more rapid the convergence of the algorithm.
The longer it takes to converge, the higher is the probability
for a node to see more copies of a given data before starting
to take it. Thus, with a slower convergence rate, is more
probable to have all the items recognized as widespread
at increasingly further points from 100% of hit rate. The
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Figure 4. Hit Ratio with a Channel threshold = 10

effect of RCθ values on the convergence speed is visible
also with other values of RIθ. Fig. 6 reports the results
achieved with RIθ = 10. In this case, the hit rate always
converges to 100%, but , as in the previous figure , the
convergence velocity is strongly determined by the different
values of RCθ. Fig. 7 highlights the effects of the shared
storage space to the algorithm effectiveness. The results are
obtained with RCθ = 2, RIθ = 5. The number of slots of
the shared memory is fixed to 2 and 50, respectively. A larger
amount of shared memory allows a greater replication factor,
since is more probable that multiple copies of the same data
can be stored by different nodes at the same time. This fact
easy the diffusion of items, thus increasing the converge
speed. Nonetheless, even a very low number of slots does
not affect the final performance (100% hit rate). On the other
hand, they result in a slower convergence rate, due to the
increased difficulty to share and spread items in the network.

VII. CONCLUSIONS

Cognitive heuristics are models of how the human brain
assess the relevance of information using only partial knowl-
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edge of the problem space and very limited resources. In this
paper we present an initial attempt to exploit these models
(already established and coded in the cognitive psychology
field) to drive data dissemination processes in opportunistic
networking environments. Specifically, we show how a fast
and frugal cognitive heuristic, i.e. the recognition heuristic,
can be used. The recognition heuristics discriminates objects
with respect to a given criterion, without requiring to collect
all the information needed to exactly compute the criterion.
It assumes that recognized objects have higher value (with
respect to the criterion) than non recognized objects, and
discriminates among them accordingly. Several instances of
recognition can be chained together, in order to model how
the human brain discriminates in complex scenarios, solving
efficiently complex decision making problems. In this paper
we adapt these models to address the data dissemination
problem in content-centric mobile networks. We first define
an algorithm by way of which the recognition heuristic can
be implemented by the nodes of an opportunistic network.
Then, we show how nodes can efficiently combine multiple
instances of the recognition heuristic to assess the relevance
of available data objects, thus deciding what to store and
what to drop. Simulation results show the potential of such
an approach and highlight how a correct tuning of the
heuristic parameters leads to a fast and highly effective
dissemination of data items. In particular, the emergence of
the less-is-more effect (well understood in the cognitive psy-
chology field) highlights that an optimal configuration exists
for the recognition algorithm to obtain the best performance.

Results presented in this paper are promising, and provide
strong indications that using cognitive heuristics to cope
with scalability issues in Future Internet environments is a
sensible direction. Key topics for future research include a
complete understanding of the heuristic parameters on the

data dissemination efficiency. Specifically, analytical models
are required to understand the impact and the interplay
of the parameters. For example, results presented in the
paper already highlight a non-trivial joint effect on the
data dissemination efficiency played by the thresholds used
by the different recognitions heuristics. Furthermore, un-
derstanding how data dissemination works when additional
context information (such as social relationships between
users) is exploited is another interesting topic. Finally, it will
also be interesting to understand whether other heuristics
(beyond recognition) can be effectively applied to the data
dissemination or other related problems.

VIII. ACKNOWLEDGEMENTS

This work is funded by the EC under the FET-
AWARENESS RECOGNITION Project, grant 257756.

REFERENCES

[1] Abdullah Balamash and Marwan Krunz. An overview of web caching
replacement algorithms. IEEE Communications Surveys and Tutorials, 6(1-
4):44–56, 2004.

[2] Chiara Boldrini, Marco Conti, and Andrea Passarella. Design and performance
evaluation of contentplace, a social-aware data dissemination system for
opportunistic networks. Comput. Netw., 54:589–604, March 2010.

[3] Chiara Boldrini and Andrea Passarella. Hcmm: Modelling spatial and temporal
properties of human mobility driven by users’ social relationships. Comput.
Commun., 33:1056–1074, June 2010.

[4] Paolo Costa, Cecilia Mascolo, Mirco Musolesi, and Gian Pietro Picco. Socially-
aware routing for publish-subscribe in delay-tolerant mobile ad hoc networks.
IEEE Journal on Selected Areas in Communications, 26(5):748–760, 2008.

[5] Gerd Gigerenzer and Daniel G. Goldstein. Models of ecological rationality:
The recognition heuristic. Psychological Review, 109(1):75–90, 2002.

[6] Daniel G. Goldstein and Gerd Gigerenzer. Reasoning the fast and frugal way:
Models of bounded rationality. Psychological Review, 103(4):650–669, 1996.

[7] Daniel G. Goldstein and Gerd Gigerenzer. Fast and frugal forecasting. Int.
Journal of Forecasting, 25:760–772, 2009.

[8] Vincent Lenders, Martin May, Gunnar Karlsson, and Clemens Wacha. Wireless
ad hoc podcasting. SIGMOBILE Mob. Comput. Commun. Rev., 12:65–67,
January 2008.

[9] Julian N. Marewski, Wolfgang Gaissmaier, and Gerd Gigerenzer. Good
judgments do not require complex cognition. Cogn. Process, 11:103–121, 2010.

[10] Julian N. Marewski, Wolfgang Gaissmaier, Lael J. Schooler, Daniel G. Gold-
stein, and Gerd Gigerenzer. From recognition to decisions: Extending and
testing recognition-based models for multialternative inference. Psychonomic
Bulletin & Review, 17(3):287–309, 2010.

[11] Marco Monti, Laura Martignon, Gerd Gigerenzer, and Nathan Berg. The impact
of simplicity on financial decision-making. In Proc. of CogSci 2009, July 29 -
August 1 2009, Amsterdam, the Netherlands, pages 1846–1851. The Cognitive
Science Society, Inc., 2009.

[12] L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data for-
warding in disconnected mobile ad hoc networks. Communications Magazine,
IEEE, 44(11):134 –141, 2006.

[13] Sascha Serwe and Christian Frings. Who will win wimbledon? the recognition
heuristic in predicting sports events. J. Behav. Dec. Making, 19(4):321–332,
2006.

[14] Liangzhong Yin and Guohong Cao. Supporting cooperative caching in ad hoc
networks. IEEE Trans. Mob. Comput., 5(1):77–89, 2006.

[15] Eiko Yoneki, Pan Hui, ShuYan Chan, and Jon Crowcroft. A socio-aware
overlay for publish/subscribe communication in delay tolerant networks. In
ACM MSWiM 2007, pages 225–234, 2007.


