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Abstract—Opportunistic networking is one of the key
paradigms to support direct communication between devices
in a mobile scenario. In this context, the high volatility and
dynamicity of information and the fact that mobile nodes
have to make decisions in condition of partial or incomplete
knowledge, makes the development of effective and efficient
data dissemination schemes very challenging. In this paper
we present algorithms based on well-established models in
cognitive sciences, in order to disseminate both data items, and
semantic information associated with them. In our approach,
semantic information represents both meta-data associated
to data items (e.g., tags associated to them), and meta-data
describing the interests of the users (e.g., topics for which
they would like to receive data items). Our solution exploits
dissemination of semantic data about the users’ interests to
guide the dissemination of the corresponding data items. Both
dissemination processes are based on models coming from
the cognitive sciences field, named cognitive heuristics, which
describe how humans organise information in their memory
and exchange it during interactions based on partial and
incomplete information. We exploit a model describing how
semantic data can be organised in each node in a semantic
network, based on how humans organise information in their
memory. Then, we define algorithms based on cognitive heuris-
tics to disseminate both semantic data and data items between
nodes upon encounters. Finally, we provide initial performance
results about the diffusion of interests among users, and the
corresponding diffusion of data items.

Keywords-opportunistic networks; content diffusion; cogni-
tive heuristics, semantic knowledge;

I. INTRODUCTION

In the Cyber-Physical World (CPW) convergence sce-

nario, the interaction between devices and their users con-

tributes to the increasingly complexity of the information

environment. This is characterised by information flows that

constantly cut across the cyber and physical world. As

discussed in detail in [1], applications exploit information

coming from the physical world (e.g., from sensors) to

optimise their operations in the cyber world. The status of

applications in the cyber world can determine actions in the

physical world (such as configurations of actors in sensor

actor networks, or the users behaviour in social gaming or

other social-oriented applications). In this context, mobile

devices play an important role because they are the actual

representation of their users in the cyber world. In other

terms, mobile devices in the role of proxy of their human

counterparts in the cyber world are in charge of discern and

collect the important information (for their users) that circu-

late in the environment. We can consider data dissemination

in opportunistic networks as an important specific example

of this general concept. Indeed, mobile nodes use direct

communication and the store carry and forward paradigm

to recognise and disseminate relevant information, and the

key challenge is to assess what information is really relevant

for the users and, therefore, what data needs to be exchanged

during contacts to satisfy the users’ interests.

In this paper we jointly cope with two separate but

tightly connected dissemination problems: dissemination of

semantic information and of data items. Namely, we consider

a scenario where semantic information represents both meta-

data associated to data items (e.g., tags associated to them),

and meta-data describing the interests of the users (e.g.

concepts and ideas for which they would like to receive

relevant data items). Our idea is to exploit the semantic data

dissemination to drive the spreading of the corresponding

data items, in a way that resembles how conversations

between humans enable spreading of ideas (i.e., semantic

information), which generates interests for specific types

of content, and ultimately determine content that people

access. Reasonably, two people who meet start talking about

a common interest – that we call key-concept – continue

with other semantically correlated ones that spontaneously

emerge along the conversation. Finally, they can also ex-

change data items based on their interests (which, in this

general example could be, for example, songs or pictures

they keep in their smartphones). The amount of information

exchanged during a conversation depends on: i) how many

concepts related to some topic each person knows, ii) how

long the conversation takes place, and iii) how fast the two

people are able to retrieve from their memory the next proper

concepts on which continuing the conversation.

Our solution aims at mapping this human process into a

set of algorithms for exchange of semantic data and data

items between users’ mobile devices, exploiting models of

the mental processes that drive these exchanges between

humans. In particular we address the above three aspects –

that we can reformulate as memory representation, concept

retrieval, and content selection – through well-established

models belonging to the cognitive science field.



In this paper we assume a scenario where data items

(contents) are equipped with a proper semantic description

(concepts/tags). In oder to face the memory representation

aspect, at the beginning each mobile node builds a local

semantic representation of its own contents through a se-

mantic directed weighted graph where, vertices represent the

semantic concepts associated to data items, and the edges

represent the semantic relationships between concepts. This

solution is inspired by the associative network models of

human memory (AN) coming from the cognitive psychology

field. Upon meeting, under the condition of having common

interests, two devices start to exchange their knowledge,

selecting concepts by navigating their semantic network,

starting from concepts they have in common, and according

to an edge ranking algorithm to drive the navigation process.

Actually, this is an implementation of the Fluency heuristic

(FH), a decision making strategy borrowed from cognitive

psychology, that addresses the concept retrieval aspect pre-

sented above. Finally, mobile nodes after having enriched

their semantic graph with new concepts taken from the

encountered nodes, select and share the data items starting

from those that have the maximum overlap between the

associated tags and the concepts in the semantic networks

just exchanged with the encountered node. In cognitive terms

this refers to the Tallying heuristic (TH), another cognitive

decision strategy used by human brain. A more detailed

description about the cognitive foundations of our approach

can be found in Sec. II.

In this paper we show that starting from a semantic

representation of data in terms of a semantic network

according to AN memory models and exploiting FH and

TH, nodes are able to successfully disseminate knowledge

and the corresponding contents in a very selective way.

Even without an explicit subscription to specific channels

of interest, nodes interested in some topics can acquire new

semantically related concepts and the corresponding new

correlated data items. In scenarios where node interests are

strongly clustered around some main topics, this is a quite

remarkable feature, because with our approach nodes receive

only those data items related to their real interests.

II. COGNITIVE PSYCHOLOGY BACKGROUND

In this section we give a short and functional description

of the cognitive building blocks we exploited to address the

aspects of memory representation, concept retrieval and con-

tent selection in order to devise our dissemination approach.

According to [10], the most prevalent models of human

memory are associative network models, which focus on the

patterns and strength of associative linkages among concepts

in memory. In associative network models, concepts are

represented by nodes that are interconnected by pathways

that vary in strength, reflecting the degree of association

between each pair of concepts. Two related concepts are

connected by links, whose weight represents the activation

level, i.e. how likely it is that one of them is ”accessed” after

the other has been accessed. Exploration of the network (i.e.,

reasoning) , can be done either sequentially or in parallel,

which broadly correspond to depth-first and breadth-first

navigation in standard graph theory, respectively [10]. Here,

we concentrate our focus on the sequential model (SS) leav-

ing the parallel one for future investigations. A sequential

search on AN starts with an activated concept (key-concept)

and proceeds node by node along the pathway that connects

them. When a node has more than one outgoing path, the one

with the strongest activation is selected. If a ”dead end” is

reached, the search is reinitiated. The SS model relies on the

idea of ”strongest activation” that in cognitive terms recall

a well assessed mental model, the Fluency Heuristic that

lies in the context of cognitive heuristics. Briefly, cognitive

heuristics are functional model of mental processes that

human brain uses to quickly take actions even in presence

of incomplete knowledge. Differently from neural networks,

cognitive heuristics do not aim at reproducing the physiology

of the brain’s processes, but model their functionality. Due

to their effectiveness in quickly finding good solutions to

infeasible or impractical problems, they have been success-

fully applied in several fields, such as outcomes of political

elections, forecasting purchase, financial decision making,

and results of sport events [6].

FH is an inference strategy that can be applied when

someone has to choose among two or more alternatives.

Among the alternatives that are recognized the one perceived

as recognized faster (in our case, the link with the strongest

activation) is considered to have an higher value w.r.t. the

selected criterion. Being recognized means that a given

information has been found in the environment a sufficient

number of times to let the brain being familiar with it [11].

Finally, content selection is made by exploiting the Tally-

ing Heuristic (TH). TH uses m out of a total of M cues, in

order to discriminate among alternatives w.r.t. a criterion. For

each alternative, it simply counts the number of favourable

cues without giving any special weight to any of them.

The alternative with the highest number of positive cues is

then selected [12]. In our case, cues are tags associated to

data items, and a tag is favourable if it matches one of the

concepts accessed in their semantic networks by two nodes

during an encounter (i.e., if the nodes have ”spoken” about

a concept that matches the tag).

III. RELATED DATA DISSEMINATION APPROACHES

Many works in literature cope with the problem of the

content distribution in pure OppNets. The first attempt was

in the PodNet Project [7]. It was based on a cooperative

exchange of items driven by the estimated popularity of

the channels the items belong to. More advanced solutions,

e.g. [8], make use of social information about users. One

of the most prominent is ContentPlace[2] in which nodes

fill their caches in order to maximise both a local utility



that refers to the interests of the local user, and a global

utility that identifies the relevance of data items for the other

communities the node is in touch with. An extensive survey

about content diffusion in OppNets can be found in [4].

In [5] and [9] the problem is addressed from a completely

different perspective. The idea is to mimic in functional

terms the human decision making process by exploiting

the Recognition Heuristic and the Take the Best Heuristic,

two of the several cognitive heuristic models present in the

psychological literature[6]. These works prove the suitability

and effectiveness of these heuristics in problems, like data

dissemination in OppNets, where every node has only a

partial knowledge about its environment.

This paper also exploits this approach. However, here

for the first time we exploit both cognitive models for the

representation of concepts and ideas, and cognitive models

for selecting which information is exchanged by nodes

upon encounter. We thus use a much more complete set

of cognitive models together, achieving a more complete

translation of the mental processes used by humans to

exchange knowledge and data. Note that, with respect to the

popular topic based approaches described above, the use of

semantic networks to represent concepts that are then linked

to the data tags can be seen as a generalisation of the use

of topics to categorise data, much closer to the way humans

categorise information in their memory.

IV. COGNITIVE HEURISTICS FOR DATA AND CONTENT

DISTRIBUTION IN OPPNETS

In the following, we show how concepts coming from the

cognitive science area can be exploited to design schemes for

disseminating both the semantic knowledge and its related

content items in an opportunistic network. Firstly, we show

how a cognitive model of memory is used to represent the

semantic concepts owned by a user. Then, we describe how

simple cognitive heuristics like fluency and tallying can be

used to select the most relevant information to pass from

one node to the other upon contact.

A. Semantic Network Creation

In Sec. II, we stated that the semantic concepts of a

node and the relations between them are described using an

AN model. More formally, each user’s semantic network is

defined as a dynamic weighted graph G = {V,E, f(e, t)} :
t ∈ T , where t is the time, V is the set of vertices (i.e.

semantic concepts) in the graph and E is the set of edges (i.e.

the connections between semantic concepts). In an AN, links

are associated with a strength value that reflects the degree

of association between each pair of concepts in memory.

In G, this value is computed by a remembering function

f(e, t). Being t0 the creation time of the edge eij , we have

the initial setting f(eij , t0) = 1. At any other time instant

t > t0, f(eij , t) decreases exponentially depending on the

length of the interval [t′, t] , where t′ is the last time eij

was “activated” (i.e. used in interactions with other peers,

and thus “refreshed” in memory). Thus, we have:

f(eij , t) = e−βij(t−t′) (1)

where βij is the “speed of forgetting”, taken in accordance

with the experimental curve obtained in [13]. In real human

memory, rarely accessed information is more likely forgotten

than frequently used one, hence, βij = γ

pt
ij

, where γ is a

speed regulator parameter and ptij is the “popularity” of

edge eij , i.e. the number of times it was used during the

encounters of a specific user with other peers until time t. If

the value of f(eij , t) falls below a remember threshold fmin,

eij is removed from G. In order to create the initial graph

G at t0 = 0, we assume that the the data available locally

at each user is associated with a set of tags, as in real social

networks like Flickr, Twitter, Instagram, etc. As shown in

the example of Fig. 1, for each data item, its tags are linked

together in order to form a clique. Then, each set of vertices

carrying the same label (i.e. they where created from tags

having the same name) is merged together, forming a single

vertex. In the example, the two cliques are merged using the

common vertex “lake” as a pivot.

Figure 1. Creation process of a user Semantic Network.

B. Semantic knowledge dissemination

We now describe how a node, when meeting another

peer, is able to retrieve from its memory the most relevant

semantic information to be exchanged. The main role in

this process is played by the fluency heuristic. In this phase,

we call the node’s semantic network G = (V,E, f(e, t))
the donor network, while the other peer’s semantic network

G′ = (V ′, E′, f ′(e′, t)) is termed the recipient network.

The two nodes swap roles (donor and receipient) to re-

alise a bidirectional exchange of information. The subgraph

C = (V̄ , Ē, f̄(ē, t)) selected from the donor network to be

passed to the recipient one is called the contributed network.

In the following, we assume that resource consumption

constraints limit the number of exchangable concepts to

a value tag limit. The subsequent description follows the

specification given in Alg. 1 and 2. Like in a real human

communication, we assume that the dialogue starts from a

set of common semantic concepts, i.e. a set of key vertices

K = {vk|vk ∈ V ∩ V ′} (line 3 of Alg. 1). The relevance of

a vertex is increased every time it is included in K during

information exchanges with other peers. In our system,

the key vertices relevance is augmented by increasing the



popularities ptij of all the edges attached to them (lines 5–

7). In order to compute the contributed network, vertices and

edges are selected from the donor network by first ordering

the key vertices by their relevance in memory. This is done

by summing up the weights of their incoming edges (line

8). Taking the sorted key vertices one at a time, edges and

vertices are visited and passed from the donor network to the

contributed one using Alg. 2, based on fluency, here applied

to evaluate whether to follow an edge eij or not. Fluency

favours recognized edges (i.e. the one seen more than a

given amount of times, see Sec.II) against unrecognized

one, assuming the former are more relevant than the latter.

Hence, we start by excluding all unrecognized edges, i.e.

those whose popularity is below a recognition threshold θrec
(line 5 of Alg. 2). The subsequent discrimination made by

Algorithm 1 Contributed Network computation at time t∗

1: Let G = (V,E, f(e, t)) be the donor network;

2: Let C = (V̄ , Ē, f̄(ē, t)) be the contributed network;

3: Let K be the set of key vertices, K ⊆ V

4: for each vi ∈ K do

5: for each eij ∈ E do

6: increase popularity of eij
7: end for

8: Let relij =
∑

eij∈E f(eij , t
∗)

9: end for

10: for each vi ∈ K taken in desc. order w.r.t. relij do

11: C = visit(vi, 1, t
∗ − t)

12: end for

13: Send C to the other node

fluency is based on the perceived speed of retrieval from

memory. In order to replicate this fact in our system we

assume that: (i) the highest the remembering value of an

edge, the most relevant the edge is; (ii) the relevance of an

edge decreases as long as we get farther from a key vertex;

(iii) The longer the contact time, the longer the time available

to retrieve a concept from memory after another one close

by in the network has been retrieved, and thus the higher

the relevance of the connecting edge. We take into account

all these observations by computing, for each outgoing edge

eij of a vertex vi, a retrieval weight quantity

w(eij , n, t
∗ − t) = f(eij , t

∗)
1− e−τ(t∗−t)

n
(2)

where t, t∗ are the times at which the contact starts and

ends, n is the the number of hops in the shortest path

to the nearest key vertex and τ is a “speed” factor that

regulates the dependancy of this value on the communication

duration (t∗ − t). We sort the edges w.r.t. their retrieval

weight value. Taking them one at a time in descending order,

we include the selected edge in the contributed network and

continue the donor network exploration from this connection

(lines 6–14). All the edges whose retrieval value is below

a threshold wmin are not considered (line 7). Note that the

remembering value (eq. 1) in memory of selected edges is

set to 1, since inclusion in the exchanged data corresponds

to an “activation” in memory of those connections. When

Algorithm 2 Function visit(vi, n, t
∗ − t)

1: Let G = (V,E, f(e, t)) be the donor network;

2: Let C = (V̄ , Ē, f̄(ē, t)) be the contributed network;

3: if |V̄ | < tag limit then

4: V̄ ∪ = vi
5: Let R = {eij ∈ E|pt

∗

ij ≥ θrec}
6: for each eij ∈ R in desc. order w.r.t. w(eij , n, t

∗

− t) do

7: if w(eij , n, t
∗ − t) ≥ wmin then

8: Ē∪ = eij
9: f(eij , t

∗) = 1
10: f̄(ē, t∗) = 1
11: C∪ = visit(vj , n+ 1, t∗ − t)
12: end if

13: end for

14: end if

15: Return C

|V̄ | = tag limit and/or no other paths (i.e. edges) can be

selected from the donor network, the contributed network

computation ends and the resulting graph is passed to the

recipient node. This peer merges the contributed network to

the recipient one by simply adding all the missing vertices

and edges. This process correspond to an enrichment of the

semantic knowledge of the recipient peer in terms of both

concepts (i.e. vertices) and relationships between them (i.e.

edges). All the edges received form the donor network (new

or already present) set their remembering value in memory

to 1 (i.e. they are “activated” by the “conversation”).

C. Semantic data dissemination

The previous selection of the most relevant semantic

concepts, with respect to the current interaction, drives the

next step in the data exchange process: the selection of

relevant data items to exchange. In order to carry out this

operation, we exploit another simple decision rule derived

from the cognitive science field: the tallying heuristic. For

this step, we refer to the pseudo-code given in Alg. 3. In

our scenario, each data item is associated to a set of tags,

that we term as its semantic description (semanticDesc(i)
in Alg. 3, line 6). We consider the vertices selected for

inclusion in the contributed network as the m “cues” (out

from all the M nodes in the donor network) needed by

the tallying heuristic. Counting the number of favourable

cues simply corresponds to counting the cardinality of the

intersection between each data item semantic description

and the set of nodes included in the contributed network

(lines 5–7). We consider that the other party sends to the

node the list of the IDs of the items it already owns.

Thus, those data items can be directly pruned out from the



selection process (line 4). Moreover, like for the exchange

of semantic concepts, we assume that there is a maximum

number of exchangeable data items data limit. Thus, once

the data items have been ranked according to tallying, the

first data limit ones are selected to be passed to the other

interacting peer (lines 8–9).

Algorithm 3 Tallying algorithm

1: Let V̄ be the nodes of the contributed network;

2: Let I be the set of data items of the node

3: Let J be the data items owned by the other peer

4: Let I ′ = I − J

5: for each i ∈ I ′ do

6: Let tall(i) = |semanticDesc(i) ∩ V̄ |
7: end for

8: Rank I ′ in descending order according to the tall values

9: Send the first data limit items of I ′ to the other node

V. PERFORMANCE EVALUATION

A. Simulated Environment

In this section, we show the results of the proposed

solution obtained in a simulated environment. The scenario

consists of 99 mobile nodes moving in a 10002m area.

Peers’ movement patterns are taken according to the HCMM

model [3]. This is a mobility model that integrates temporal,

social and spatial notions in order to obtain an accurate rep-

resentation of real user movements. Specifically, in HCMM

the simulation space is divided in cells representing different

social communities. In this preliminary study, we consider

that there exists only one social community. Data assigned

to these nodes is selected from the CoPhIR dataset [14]. This

dataset is made up of more than 100M images coming from

Flickr. For each user’s image, it is possible to know the list

of associated tags. In order to create a useful dataset to test

our solution we proceeded in the following way. Images

were selected in order to have the initial users’ semantic

knowledge clustered around three main concepts. Figure 2

represents the entire knowledge present in the network at

the beginning of each simulation, i.e. the graph of the

union of all nodes’ initial semantic networks. We pointed

our attention on such initial configuration in order to both

study the ability of each user to retrieve the information

semantically related to its initial interests and to analyze

the overall permeation of data in the network. We observed

and studied the evolution of the knowledge and content

acquisition processes generated by the interactions between

users. Here, we defined two different measures of knowledge

and content dissemination. We measure knowledge dissem-

ination (KD) by computing how much of the starting global

knowledge reaches nodes at the end of the simulation. 100%
would mean that all semantic data reach all nodes. Given the

clustered structure of the initial overall semantic network

(i.e. the fact that users’ interests are clustered) we don’t

expect to reach 100% for this index. We also define a second

measure, the coverage, as the portion of items owned by

a node over all the items that contain a tag matching one

of the concepts in its semantic network. For this index we

expect to reach 100%, as this means that users receive all

the data items related to concepts they have in their semantic

network. Results reported in the following simulations are

the statistics collected on 10 different tests obtained from 10

different mobility traces of the HCMM model and averaged

across all nodes. Each simulation experiment ran for 25000
sec (required for our indices to reach stationarity).
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Figure 2. Initial knowledge graph defined as the union of all nodes’
semantic networks at the beginning of the simulation

B. Experimental results

In order to simplify the analysis, in the following we set

θrec = 5. As stated in Section IV, the remembering process

plays (both in human brain and in our model) an important

role in knowledge acquisition. Figure 3a shows that different

settings of remembering threshold fmin produce largely

different results in knowledge acquisition. As one could

expect, the longer the tags lifetime in the semantic network,

the higher the diffusion they reach. Interestingly, there exist

a threshold (50s) under which nodes’ semantic networks

cannot grow, triggering an information loss process that

leads to a decrease of the owned knowledge. In Figure 3b

we can notice that the coverage follows, even with a certain

delay, the tag dissemination trend reaching the convergence

after 1000s. This delay is a peculiar behaviour of our

approach and it is due to some kind of inertia related to

the spreading of tags and data items (tags spread first,

data items are ”pulled” as a side effect). Indeed, there

is a transient moment (from 200s to 800s) where nodes

start to increase their knowledge faster than they exchange

correlated data items. When the semantic networks growth

starts to slow down the data dissemination process reaches

the convergence.

Due to space limits we do not show the results concerning

to the impact of the retrieval value on the knowledge

dissemination. However, as one can expect, the knowledge
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Figure 3. Knowledge diffusion (a) and Content coverage (b) over time for different remember thresholds

dissemination increases with both the maximum number

of tags shared and the minimum retrieval value threshold.

However, in contrast with the common sense, it is not true

that the more tags nodes exchange the more data items they

receive. As shown in Table I, we measured the dissemination

performance for different values of tag and data limits

noticing that even passing almost 10 tags and 5 contents

for each encounter we reach a data dissemination greater

than 70%. It is worth noting that, this value refers to the

spreading of the all data items present in the network, that

differs from the coverage measure which refers to percentage

of items received by nodes w.r.t. their acquired knowledge.

In the light of these results we can state that once set the

tag limit, increasing the data limit does not affect the content

dissemination performance, but has a strong impact on the

convergence speed of this index. For example, we observed a

difference of more that 10000s on the convergence time be-

tween the parameter pairs (tag limit = 10, data limit =
2) and (tag limit = 10, data limit = 10). This behaviour

has a strong impact in terms of resource consumption,

because our approach turns to be thrifty both in terms of

memory and bandwidth usage.

Data Limit

Tag Lim. 2 5 10

5 0.67 ± 0.11 0.64 ± 0.12 0.64± 0.12

10 0.75 ± 0.10 0.71 ± 0.10 0.71± 0.10

25 0.79 ± 0.05 0.79 ± 0.05 0.79± 0.05

Table I
FINAL MEAN CONTENT DISSEMINATION WITH CONFIDENCE

INTERVALS AT 95%

VI. CONCLUSION

In this paper we presented a model enabling nodes be-

longing to an opportunistic network to deal with semantic

knowledge and content dissemination. According to the

CPW convergence scenario where nodes are actual avatars

of their users, we based our solution on well established

models coming from the cognitive science field. Namely,

we exploited the associative network memory model to

craft a representation of the semantic knowledge on which

we run two fast and frugal decision making strategies, i.e.

Fluency and Tallying Heuristics, in order to identify which

semantic data and data items to exchange between nodes

upon encounters. Preliminary results demonstrate the feasi-

bility of our model to take advantage of the data semantic

aspects in order to disseminate relevant information among

nodes. Moreover, the initial sensitivity analysis conducted

highlights the (sometimes not obvious) relations between the

model parameters.
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