
1 of 16 

Experimental Analysis of TCP Performance 

in Static Multi-hop Ad Hoc Networks
 

Giuseppe Anastasi, Emilio Ancillotti  Marco Conti, Andrea Passarella 

Pervasive Computing & Networking Lab. (PerLab) 

Dept. of Information Engineering  

University of Pisa, Italy 
{firstname.lastname}@iet.unipi.it 

CNR-IIT 

National Research Council, Italy 
{firstname.lastname}@iit.cnr.it 

Abstract 

Many previous papers have pointed out that TCP performance in multi-hop ad hoc networks (MANETs) is 

sub-optimal. This is due to several TCP design principles that reflect the characteristics of wired networks 

dominant at the time when TCP was designed that do not hold in MANETs. Based on this evidence, several 

TCP variants have been proposed in the literature. However, little effort has been devoted to investigate the 

performance of TCP in a real environment, even in a static scenario. Most of the work relies on simulation. 

In this chapter we provide an experimental analysis of TCP in static multi-hop ad hoc networks. We 

investigate the TCP performance in a simple, but interesting, scenario, i.e., a chain topology with different 

number of hops. We highlight some results contrasting with simulations and show that these discrepancies 

are due to the different protocols -- or different protocol implementations -- used in practice with respect to 

simulation tools. 

1. Introduction 

TCP (Transmission Control Protocol) is the de facto standard for reliable connection-oriented 

transport protocols, and is normally used over IP (Internet Protocol) to provide end-to-end reliable 

communications to Internet applications. Although TCP is independent from the underlying 

network technology, some assumptions in its design are clearly inspired from the characteristics of 

wired networks dominant at the time when it was conceived. TCP implicitly assumes that nodes are 

static (i.e., they do not change their position over time), and packet loss is almost always due to 

congestion phenomena causing buffer overflows at intermediate routers. These assumptions do not 

hold in MANETs as the network topology may change due to node movements and failures (e.g., 

because battery is exhausted). In addition, packet losses due to buffer overflow are rare event in 

MANETs while losses due to link layer contention are largely dominant [Fu03]
1
. 

Many papers have pointed out that the drastic difference between MANETs and the legacy Internet 

may lead to poor performance of TCP over MANETs. Based on this observation, researchers have 

proposed (and are still proposing) TCP or 802.11 modifications aimed at addressing this problem 

(see Section 2 for a detailed discussion on the literature).  

Almost all these studies rely on simulation, and many of them do not consider some important 

details (e.g., the routing protocol is often omitted). To the best of our knowledge, very few 

experimental analyses have been carried out so far [Gu04, Kaw05]. On the other side, previous 

                                                 

1 Packet losses due to transmission errors are recovered through link-layer retransmissions.  

4 The threshold is given by ALLOWED_HELLO_LOSS*HELLO_INTERVAL, where HELLO_INTERVAL is the 

time interval (in seconds) between successive HELLO messages sent by the same node, while 

ALLOWED_HELLO_LOSS is the number of HELLO messages that must be lost before assuming that a link failure 

has occurred. 
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experimental studies have shown that certain aspects of real MANETs are often not effectively 

captured in simulation tools [Ana04]. Furthermore, available software and hardware products often 

use parameters settings different from those commonly assumed in simulation tools. Finally, real 

operating conditions are often different from those modeled in simulation experiments. For 

example, interferences caused by WiFi hotspots or other devices in the proximity are inevitable in 

practice. For all the above reasons, we believe it is of great importance to measure TCP 

performance in a real environment. 

In this chapter we provide an experimental analysis of TCP over an IEEE 802.11 multi-hop ad hoc 

network in an indoor environment. For the sake of simplicity, and for better comparison with 

previous simulation results, our analysis is limited to static networks with a chain topology and a 

limited number of hops. However, our experimental testbed is made up with off-the-shelf products 

that are largely used within the community. Specifically, we consider two very popular routing 

protocols, i.e., AODV [Per03, AodvUU] and OLSR [Ton04, Cla03] which take a different approach 

on building routes (reactive vs. proactive). In addition, in our experiments we consider TCP 

NewReno, available with Linux distributions. 

Our experimental outcomes  are normally aligned with simulation results. However, we also found 

some results contrasting with simulation. We discovered that such discrepancies are due to different 

protocols – or protocol implementations – used in practice with respect to common simulation tools. 

For example, we have found that the TCP delayed ACK policy implemented in common simulation 

tools is not completely compliant with standard Linux implementations when the congestion 

window size is limited to very small values. We show that in the real world this moves the TCP 

optimal operating point with respect to what can be measured by simulation. Also, we have found a 

significant performance difference when AODV uses HELLO messages to detect link failures 

(which is the standard in the real implementation)with respect to the case when AODV relies on 

link-level notifications (which is the standard in the simulation tools). 

The main contribution of this chapter is therefore to advocate the use of real experimentation when 

evaluating TCP performance over MANETs. While we acknowledge the importance of simulation 

in this field, we believe that, whenever feasible, a continuous verification of simulation results 

against real-world measurements is necessary to gain clear understanding of the TCP behavior. 

The rest of the chapter is organized as follows. Section 2 is devoted to related work. Section 3 

describes the testbed we relied upon for our experimental analysis, the methodology we used, and 

the performance indices we measured.  Section 4 discusses the results obtained. Finally, Section 5 

concludes the chapter. 

2. Related Work 

In the last years several papers have analyzed the TCP performance over MANETs. Most of them 

are targeted at demonstrating that TCP exhibits poor performance in MANETs. Typically, these 

papers propose enhancements to the standard protocol to improve performance. A comprehensive 

survey on TCP developments for multi-hop ad hoc networks is available in [Pap05]. In addition, 

some reliable transport protocols designed from scratch and optimized for the MANET environment 

have also been proposed in [Sun03, Ana05].  

A lot of papers have pointed out that node mobility may severely degrade the TCP performance 

[Ahu00, Cha01, Dye01, Liu01, Hol02, Fu02, Sun03] due to the protocol inability to manage 

efficiently mobility effects. Node movements may cause route failures and route changes which 

results in packet losses and delayed ACKs at the sender side. TCP misinterprets these events as a 

sign of congestion and activates the congestion control mechanism. This leads to unnecessary 

retransmissions and throughput degradation [Ana05]. In addition, mobility may exacerbate the 

unfairness between competitive TCP sessions [Tan99].  
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Other papers have addressed TCP performance in static MANETs. In a static environment the 

maximum achievable throughput is limited by the interaction (at the MAC level) between 

neighboring nodes [Li01]. According to the IEEE 802.11 MAC protocol, each node must sense the 

medium before starting transmissions. In addition, interferences may cause collisions at the 

destination node. Hence, it can be shown that in a string (or chain) topology, like the one shown in 

Figure 1, the expected maximum bandwidth utilization is only 0.25 [Li01]. However, the 802.11 

MAC protocol is not able to find the optimum schedule of transmissions by itself. In particular, in a 

chain topology it happens that nodes early in the chain starve later nodes (similar remarks apply to 

other network topologies as well). Thus, in practice performance is even worse than expected.  

 

 

Figure 1. A MANET with chain topology. 

The above limitations are inherent to the characteristics of multi-hop ad hoc networks, and cannot 

be accounted to the TCP protocol. However, the interaction between TCP mechanisms (mainly the 

congestion control algorithm) and MAC-layer issues (hidden/exposed node problem, exponential 

backoff scheme, etc) may lead to several, unexpected, serious instability and fairness problems in 

some specific scenarios, as shown in [Xu01, XuS02, XuB02]. 

The TCP congestion window size is also responsible for suboptimal performance in almost every 

scenario which may result in throughput degradation and instability [Xu01, Fu03]. In [Fu03] it has 

been shown that, for a given network topology and traffic pattern, there exist an optimal value of 

the TCP congestion window size at which the TCP throughput is maximized. However, TCP does 

not operate around this optimal value and typically grows its average window size much larger, 

leading to decreased throughput (throughput degradation is in the order of 5-30% with respect to the 

optimal case) and increased packet losses. The very reason for this suboptimal behavior is the origin 

of packet losses. Unlike traditional wired networks, in MANETs packet losses caused by buffer 

overflows at intermediate nodes are rare events, while packet losses due to link-layer contention are 

largely dominant.  

An interesting issue is, thus, how to select the maximum congestion window size to achieve optimal 

throughput. Several papers have faced this challenge. They mainly refer to chain topologies for the 

sake of simplicity. [Fu03] and [Li01] suggest setting the maximum window size to ¼ of the chain 

length (i.e., h/4 if h is the number of hops). The rule is based on consideration about spatial reuse. In 

[Che03, Che04] the problem of properly setting the maximum congestion window is bounded to the 

bandwidth-delay product. The authors provide a systematic solution to this problem by proposing 

an adaptive mechanism that sets the maximum congestion window according to the hop count of 

the TCP connection. An alternative scheme (SCA) that provides an effective spatial reuse without 

limiting the maximum window size is proposed in [Pap04]. SCA increases the sending rate during 

the congestion avoidance phase more slowly than in the legacy protocol, so as to reduce the number 

of  on-the-fly packets. Simulation results show that the SCA mechanism stabilise the sending 

window to a relatively small value.  

Most of the analyses on TCP performance, especially under static conditions, do not consider any 

specific routing protocol. On the other hand, the effects of routing protocols have been investigated 

in [Ahu00, Dye01, Osi06]. In [Ahu00] four different routing protocols are considered: the Ad hoc 

On-demand Distance Vector (AODV [Per03]) protocol, the Dynamic Source Routing (DSR 

[Joh04]) protocol, the Destination-Sequenced Distance Vector (DSDV [Per94]) protocol, and the 

Signal Stability-based Adaptive (SSA, [Dub97]) protocol. In [Dye01] the authors consider two on-

demand routing protocols (DSR [Joh04] and AODV [Per03]), and an adaptive proactive protocol 
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(ADV [Bop01]). The simulation results show that ADV maximizes the TCP performance under a 

variety of conditions. In [Osi06] the authors quantify the TCP performance degradation caused by 

the underlying routing traffic. Based on simulation measurements they determine the admissible 

operation range where the level of such degradation can be still acceptable for end users.  

As there are different versions of the TCP protocol around (Tahoe, Reno, NewReno, SACK, Vegas, 

etc.), many authors have compared the performance of different TCP versions, mainly in terms of 

throughput and fairness [Xu01, Rak05, Kim05]. Conclusions are however contrasting. From 

[Rak05] it appears that in static MANETs with AODV routing protocol TCP-Vegas outperforms 

TCP-NewReno both in terms of maximum achievable throughput and fairness. However, [Kim05] 

shows that the performance of TCP-NewReno and TCP-Vegas depend on the underlying routing 

protocol. TCP-NewReno is actually less efficient than TCP-Vegas on top of AODV, but 

outperforms TCP-Vegas when using OLSR [Kim05].  

Almost all the papers cited above rely on simulation. Real testbeds are seldom used and, in many 

cases, their use is aimed at validating simulation results. Recently, an experimental analysis in static 

conditions has been carried out in [Kaw05]. TCP is therein evaluated in chain and cross topologies 

with different number of hops. Performance metrics include throughput, average delay and delay 

standard deviation (jitter) experienced by TCP segments. TCP performance is investigated by 

varying three different parameters: RTS/CTS mechanism (enabled/disabled), Selective ACK 

(enabled/disabled), and congestion window size. The maximum congestion windows size is either 

unclamped or limited to 3/2 h, where h is the number of hops between the sender and the 

destination node. It is not clear why they limit the maximum size to 3/2 h (previous simulation 

analyses would suggest different values [Li01, Xu01, Fu03, Che04]). Finally, no routing protocol is 

used. 

Another experimental analysis is reported in [Gu04] where the authors evaluate the impact of Rate 

Based Pacing (RBP, [Agg00]) on TCP performance. They also consider chain topologies with 

different number of hops, and use (a modified version of )AODV as the routing protocol. However, 

they do not evaluate the effects of the routing protocol on TCP performance. In addition, they 

assume unclamped congestion window size, and consider only a single TCP flow. Their 

experimental results show that TCP-Reno outperforms TCP RBP. 

In our work we evaluated the effects of the routing protocol by considering two different routing 

protocols (i.e., AODV and OLSR). In addition, we considered different values for the congestion 

window size and evaluated the optimal window size in a real environment.  

3. Experimental Environment 

3.1. Testbed description 

Our testbed consisted of IBM R-50 laptops equipped with integrated Intel Pro-Wireless 2200 

wireless cards. All the laptops were running the Linux Kernel 2.6.12 with the latest available 

version of the ipw2200 driver (1.1.2). Wireless cards follow the IEEE 802.11b specifications. We 

decided to limit their maximum bit rate to 2 Mbps to compare experimental results with simulation 

results available in the literature. The RTS/CTS was active and the threshold was set to 100 bytes so 

that RTS/CTS handshake was enabled for TCP data segments and disabled for TCP 

acknowledgments. The transmission power of the wireless cards was set to the minimum allowed 

value (-12db) so as to reduce the transmission range and make possible to perform real multi-hop 

experiments in an indoor environment.  

Figure 2 shows the indoor environment where the experiments were carried out. It is a real working 

environment with offices and labs. In particular, there are several WiFi Access Points in the 

proximity. Although this environment influenced significantly our performance measures, we 
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believe that it is important to test the TCP performance in a real working environment. In our 

experiments we considered a chain topology with five nodes deployed as in  

Figure 2. In all the experiments node N1 was the sender, while the receiver (and the number of 

active nodes) depended on the specific scenario. Specifically, we considered four different scenarios 

with hop count ranging from 1 to 4. For example, in the 3-hop scenario, node N4 was the receiver 

(node N5 was not active). The distance between nodes was chosen in such a way that only adjacent 

nodes were within the transmission range of each other.  

N1

N2N3

N4

N5

N1

N2N3

N4

N5

 

Figure 2. Indoor environment and network topology used in our experiments. 

We used ftp-like traffic, i.e., the sender node had always a packet ready to send. To this end, we 

developed a simple client/server application using Linux sockets. At the server side we used the 

TCP_WINDOW_CLAMP socket parameter to bind the size of the advertised window to the desired 

maximum value. The segment size was constant in all the experiments with the transport-layer 

payload size set to 1460 byets. To capture TCP segment we used tcpdump, while to analyze the 

experiments results we used tcpstat and tcptrace (enhanced by our shell scripts).   

As anticipated, we considered two different routing protocols, i.e., AODV and OLSR. AODV (Ad 

hoc On-demand Distance Vector, [Per03]) is a well-known reactive protocol that uses RREQ, 

RREP and RERR messages to discover and maintain routes to the destination, and can use two 

different mechanisms for neighbour discovery and local connectivity maintenance, i.e., link layer 

information provided by the underlying MAC protocol, or HELLO messages that are periodically 

exchanged between all nodes in the MANET. In our experiments we used the AODV 

implementation for Linux by the Uppsala University (AODV-UU [AodvUU]) version 0.9.1. To 

maintain one-hop connectivity we used HELLO messages since the ipw2200 driver doesn’t 

provide link-layer failure information. All the AODV parameters were set to their default values. 

OLSR (Optimized Link State Routing, [Cla03]) is an optimization of the classical link state 

algorithm for mobile ad hoc networks (it is thus a proactive protocol). OLSR periodically floods the 

network with route information so that each node can build locally a routing table containing the 

complete information of routes to all possible destinations within the ad hoc network. Similarly to 

AODV, OLSR employs a neighbour discovery procedure based on HELLO messages. In our 

testbed we used the OLSR_UniK implementation for Linux version 0.4.10 [Tøn04]. We set all the 

parameter values to their default values. We only disabled the OLSR hysteresis process because it 

was shown to degrade TCP throughput in a not acceptable way [Anc06].   

3.2. Performance measures 

In our analysis we considered the following two performance measures. 
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• Throughput, i.e., the average number of byte successfully received by the final destination 

per unit time. 

• Retransmission index, i.e., the percentage of segments re-transmitted by the sender TCP.  

The throughput was measured at the application layer as the number of bytes (successfully) 

received by the destination process in a given time interval, divided by the duration of the time 

interval. 

The re-transmission index (rtx) was obtained as  

ndestinatiothebyreceivedlysuccessfulsegmentsduplicatednonof

sourcethebytedretransmitsegmentsof
rtx

−

=

#

#
  

The re-transmission index allows us to evaluate the ability of TCP to handle transmission in an 

efficient way. It is worthwhile to emphasize that re-transmitted segments consume energy both at 

the sender and intermediate nodes. As nodes in a MANET may have limited power budget, it is 

important to manage (re-)transmission efficiently. Therefore, a small value for the re-transmission 

index is highly desirable. 

3.3. Methodology 

When dealing with real testbeds one of the main difficulties is that experiments cannot be repeated 

exactly in the same way as external conditions may vary from time to time -- sometimes during the 

same experiment -- and there is definitely no control on them. Therefore, successive experiments 

carried out under the same operating conditions may provide outcomes that differ significantly from 

each other. In addition, comparison of performance measurements obtained in different scenarios or 

operating conditions becomes hard or even impossible. To achieve more statistical accuracy, we 

replicated each experiment 5 times, and averaged the performance measures over the entire set of 5 

replicas. In addition, experiments with similar parameter values (e.g., with different maximum cwnd 

size but with all other parameters set to the same values) were performed in an interleaved way. For 

instance, we performed, back to back, the first replica of experiments with maximum cwnd size 

equal to 2, 3, 4, and 32, respectively. Then, we performed the second replica of each experiment, 

and so on. 

In the next section, we always make reference to average values. In addition, in many cases we also 

show the maximum and minimum values measured in the 5 replicas. Each replica was 120 s long, 

and consisted of a file transfer. To perform multiple replicas the whole process of experimentation 

(data generation, logging and archiving) was automated using shell scripts. 

4. Experimental Results 

In this section we describe the results obtained from our experiments in different scenarios. 

Specifically, we considered four chain topologies with different number of hops (from 1 to 4) as 

shown in Figure 2. In the first set of experiments we considered AODV as the routing protocol, and 

assumed that there is single TCP flow in the network. The purpose was to investigate the influence 

of the maximum congestion window size on TCP performance, and compare our experimental 

results with previous simulation results. Then, we extended our analysis with AODV routing 

protocol by considering the effects of interfering traffic. Finally, we repeated the above experiments 

by using OLSR instead of AODV.  

4.1. Influence of the maximum congestion window size 

To evaluate the influence of the maximum congestion window (cwnd) size we clamped the 

congestion window to some specific values. Specifically, we considered maximum cwnd sizes of 2, 
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3, and 4, and performed also experiments where the window size is unclamped. In the plots below 

the latter case is referred to as window size equal to 32.  

Previous simulation studies [Che04, Fu03] have shown that in our scenarios, the optimal value for 

TCP cwnd is 2. However, previous studies do not highlight the behavior of TCP over OLSR for 

varying cwnd size, nor the performance of TCP over AODV when Hello Messages are used to 

discover neighbor nodes. Therefore we evaluated through ns-2 [Ns-2] the optimal value of TCP 

cwnd in these configurations, using the same operational parameters used in experimental analysis. 

Figure 3 shows that also our simulative analysis indicates that 2 is the optimal value for TCP cwnd. 
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Figure 3. Throughput over AODV (left) and OLSR (right) vs. number of hops vs. cwnd size. NS-2 results. 
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Figure 4. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window 

size in the 1-hop scenario. The routing protocol is AODV. 

The results obtained in our experimental analysis, both in terms of throughput and percentage of re-

transmissions, are shown in Figure 4 through Figure 7. We found that in our experiments a 

maximum cwnd of size 2 never provides optimal performance. Specifically, in the 1-hop scenario 

an unclamped congestion window seems to be the best choice. This is because in the 1-hop scenario 

there is no competition between neighboring nodes as in multi-hop scenarios. In the other scenarios, 

a cwnd limitation appears to be beneficial but the optimal cwnd size appears to be 3 (in the 2-hop 

scenario the throughput with maximum cwnd equal to 4 is slightly better, but the re-transmission is 

significantly higher). 

This discrepancy with previous simulation results is due to a different behavior between the TCP 

version implemented in the Linux distribution used in our testbed (Linux Kernel 2.6.12) and the one 

implemented in common simulation tools (e.g ns-2 [Ns-2]) when the maximum cwnd of size is set 

to 2. By a detailed analysis of traces we found that the simulated TCP receiver sends back one 

acknowledgement every other segment, while the real (i.e., Linux) TCP receiver sends back one 
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acknowledgement every segment. When the maximum cwnd size is 3 (or larger) both the real and 

simulated TCP send back one acknowledgement every other segment. The increased number of 

acknowledgments managed in the real testbed when the maximum cwnd size is equal to 2, makes 

the throughput suboptimal.  
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Figure 5. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window 

size in the 2-hop scenario. The routing protocol is AODV. 
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Figure 6. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window 

size in the 3-hop scenario. The routing protocol is AODV. 

To confirm our conclusion we used the ns-2 simulation tool [Ns-2], and ran simulation experiments 

where we modeled the above conditions (note that we used the same AODV-UU code both in the 

real and in the simulated experiments). Specifically, we set the delayed ACK option at the receiver 

TCP when the maximum cwnd size was equal to 3, 4 and, 32, respectively. Instead, we disabled this 

option in case of maximum cwnd size was equal to 2. Therefore, in the latter case the TCP receiver 

sends back one TCP ACK every segment received , while in all other cases it sends one TCP ACK 

every other segment. We observed that the optimal window was 3 as in the real experiments. 

From the above results it also appears that TCP throughput with optimal cwnd size is not so 

different from that with unclamped congestion window. This is in contrast with previous simulation 

studies which observe a significant throughput improvement with optimal cwnd size. This 

discrepancy can be explained in terms of the mechanism used by the AODV routing protocol for 

detecting link failures. More precisely, the link failure detection mechanism based on HELLO 

messages generates frequent route failures with associated throughput oscillations and performance 

degradation. This issue is  described in detail in the next section. 
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Figure 7. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window 

size in the 4-hop scenario. The routing protocol is AODV. 

4.2. Influence of HELLO messages 

AODV may take two different approaches for link failure detection. It can either exploit link failure 

notifications from the underlying layer (provided that this service is available), or rely upon a 

periodic exchange of HELLO messages. In the former case AODV learns that a link failure has 

occurred as soon as it receives an explicit notification from the underlying layer (hereafter, this 

approach will be referred to as AODV-LL). In the latter case each node listens for HELLO 

messages that are periodically broadcast by each other node in the network. A node assumes that a 

link failure has occurred if it has previously received a HELLO message from a neighbor and, then, 

for that neighbor does not receive any packets (HELLO messages or anything else) for more than a 

predefined threshold
4
 (hereafter, this approach will be referred to as AODV-HELLO). In the 

AODV-UU implementation only HELLO messages and AODV control messages (e.g., RREQ and 

RREP) are considered for neighbor connectivity assessment (i.e., data messages are not taken into 

consideration). 

The AODV protocol in our testbed uses HELLO messages since the ipw2200 driver (version 1.1.2) 

does not provide link failure notifications. Assuming default parameter values 

(HELLO_INTERVAL = 1s, and ALLOWED_HELLO_LOSS = 2), HELLO messages are sent every 

1s, and the timeout associated with link failure detection is 2s. In other words , a link failure is 

assumed in our testbed if a node fails to receive two consecutive HELLO messages from its 

neighbor. To compare the TCP behavior with AODV-LL and AODV-HELLO we thus used the ns-

2 simulation tool [Ns-2]. Specifically, we assumed that the interference range (IF_Range) is equal 

to the carrier sensing range (CS_Range) and both are twice as large as the transmission range, and 

set all the other parameters as in the experimental testbed.  

Figure 8 and Figure 9 show the throughput (left-side plot) and congestion window size (right-side 

plot) vs. time with AODV-LL and AODV-HELLO, respectively. These results are related to the 3-

hop scenario with maximum cwnd of size 2. However, we found similar results for the other 

scenarios and maximum cwnd sizes as well.  

We can observe that with AODV-HELLO, the short link-failure detection timeout (2s) causes false 

link-failure detections that forces AODV to trigger a new route discovery process. During route 

discovery process no segment is transmitted towards the final destination and the instant throughput 

decreases to zero, as shown in Figure 9 (left). In addition, the TCP sender experiences delayed 

ACKs and/or timeouts which trigger the congestion control mechanism. This is because the cwnd 

size decreases to one when the throughput is null as shown in Figure 9 (right).  
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Figure 8. Throughput (left) and congestion window size (right) vs. time when using AODV-LL in the 3-hop 

scenario with maximum cwnd of size 2. The interference range (IF_Range) is assumed equal to the Carrier 

Sensing Range (CS_Range).  
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Figure 9. Throughput (left) and congestion window size (right) vs. time when using AODV-LL in the 3-hop 

scenario with maximum cwnd of size 2. The interference range (IF_Range) is assumed equal to the Carrier 

Sensing Range (CS_Range).  
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Figure 10. Throughput (left) and congestion window size (right) vs. time when using AODV-LL in the 3-hop 

scenario with maximum cwnd of size 2. The interference range (IF_Range) is less than the Carrier Sensing 

Range (CS_Range). 

When using AODV-LL there is no link failure notification from the data link layer below and, 

hence, the TCP cwnd size and throughput remain constant, as shown in Figure 8. The difference in 

detections between the two methods can be explained as follows. In the AODV-HELLO case it’s 

sufficient to loose two broadcast packets to detect a link failure. In the AODV-LL case a link 
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failure is detected when a unicast packet is lost. Since unicast packets are re-transmitted up to 7 

times, while broadcast packets are transmitted just once, the AODV-HELLO mechanism proves to 

detect link failures quite more frequently than AODV-LL. In conclusion, the TCP throughput whit 

AODV-HELLO is significantly lower than that with AODV-LL. In addition, frequent false link-

failure detections make the TCP throughput with clamped cwnd size not so different from the 

throughput with unclamped congestion window. Actually, the TCP throughput is limited by false 

link-failures rather than the cwnd size.  

We also did some simulations runs by assuming IF_Range<CS_Range, which is more realistic. As 

expected, we observed no difference when using AODV-LL, and a reduced number of false link-

failure detections when using AODV-HELLO (see Figure 10). 

4.3. Influence of the background traffic 

We also investigated the influence of interfering traffic. To this end, we considered the 3-hop 

scenario described above and added a CBR (Continuous Bit Rate) session to it. This CBR session 

has N3 as its source node and N2 as it recipient node, and uses UDP as the transport protocol. It 

inject in the network a periodic traffic pattern with a bit rate equal to 192 Kbps, which correspond 

to the bit rate of an MP3 stream. The results obtained in this scenario (throughout referred to as 3-

hop-UDP) are shown in Figure 11. There is no qualitative difference with the results in , except that 

TCP throughputs are lower and the retransmission indices greater. As in the 3-hop scenario without 

background traffic, the optimal cwnd size is 3. But, as above, there are not significant differences 

associated with the various maximum cwnd sizes.  
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Figure 11. Throughput (left) and percentage of retransmitted segments (right) vs. maximum cwnd size in the 3-

hop scenario with background periodic UDP traffic . The routing protocol is AODV. 

The results discussed above are summarized in Table 1 and Table 2, where minimum and maximum 

values measured in the various experiments are also reported. 

4.4. Analysis with OLSR routing protocol  

To conclude our analysis we also performed some experiments with a routing protocol different 

from AODV. We used OLSR which is a proactive protocol (while AODV is a reactive protocol). 

The results obtained, in terms of throughput and percentage of re-transmissions, are summarized in 

Table 3 and Table 4, respectively.  

Experiments with AODV and OLSR were carried out in different days. Therefore, a direct 

comparison of results in corresponding scenarios does not make sense because of different external 

conditions. However, we can observe that the results with OLSR are not very different from those 

with AODV under the same conditions. An important issue is that the retransmission index with 

OLSR is always significantly lower than that with AODV. We observed that the latter results is 

confirmed by simulations.  
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One possible reason for this behavior is the different parameter values used by AODV and OLSR to 

manage HELLO messages. OLSR sends HELLO messages periodically every HELLO_INTERVAL 

and considers the information provided by a HELLO message valid for NEIGHB_HOLD_TIME 

seconds. Assuming default parameter values, HELLO_INTERVAL is set to 2s and 

NEIGHB_HOLD_TIME to 6s. Therefore, when using OLSR a node considers a link as broken if it 

fails to receive three consecutive HELLO messages from its neighbor. Instead, as described above, 

with AODV a node assumes a link failure when it fails to receive two consecutive HELLO 

messages. Hence, OLSR is more robust to false link failures. In addition, since routing protocols 

flush out the queue of pending transmissions when they detect a link failure, if AODV detects a 

larger number of link failures the fraction of segments discarded is larger as well. 

Table 1.  Throughput (in Kbps) vs. maximum cwnd size with AODV. 

W=2 W=3 W=4 W=32  

Scenario Avg min-max avg min-max avg min-max avg min-max 

1-hop 1387,5 1382-1392 1455,8 1463-1467 1479,4 1446-1507 1508,7 1500-1512 

2-hop 441,2 390-533 538,2 677-432 553,9 524-626 526 448-559 

3-hop 343,6 225-412 397,8 334,9-453 377,46 274-425 363,6 261-422 

4-hop 235,2 146-290 263,3 195-315,4 224,14 145-274 232,9 148-262 

3-hop-UDP 229 194-259 260,7 243-304 244 152-366 258 175-375 

Table 2. Percentage of re-transmissions vs. maximum cwnd size with AODV. 

W=2 W=3 W=4 W=32  

Scenario Avg min-max avg min-max avg min-max avg min-max 

1-hop 0 0-0 0 0-0 0 0-0 0 0-0 

2-hop 2,3 0,98-3,4 1,3 0,25-2,58 1,84 0,81-2,33 2,16 1,25-3,62 

3-hop 1,57 0,65-2,85 1,12 0,5-1,7 1,8 1,25-2,9 4,58 3,3-6,4 

4-hop 4 2,2-6,9 3,6 2,2-6,3 3,9 3,4-4,5 7,1 4,7-8,4 

3-hop-UDP 5,1 3,9-6,3 3,9 2,2-4,7 4,5 1,3-6,7 4,4 2,1-7 

Table 3. Throughput (in Kbps) vs. maximum cwnd size with OLSR. 

W=2 W=3 W=4 W=32  

Scenario avg min-max avg min-max avg min-max avg min-max 

1-hop 1369,13 1331-1396 1456 1428-1471 1473,6 1439-1503 1523,9 1518-1531 

2-hop 627,3 581-650 676,3 616-705 698,4 668-719 696,5 638-723 

3-hop 213,4 126-330 282,1 130-390 229,9 83-351 275,5 131-438 

4-hop 175,1 139-214 172,8 155-195 151,8 87-189 162,55 121-213 

3-hop-UDP 238,9 201-276 259,3 193-302 218,7 202-258 233,3 174-262 

Table 4. Percentage of re-transmissions vs. maximum cwnd size with OLSR. 

W=2 W=3 W=4 W=32  

Scenario avg min-max avg min-max avg min-max avg min-max 

1-hop 0 0-0 0 0-0 0 0-0 0 0-0 

2-hop 0 0-0 0,07 0-0,22 0 0-0 0 0-0 

3-hop 1,09 0,56-2,33 1,12 0,19-2,47 1,45 0,72-2,86 1,87 0,61-2,53 

4-hop 3,55 1,4-7,22 3,2 2,3-5 3,85 2,5-5,25 4,8 2,8-7,44 

3-hop-UDP 1,5 1,3-1,9 1,36 0,8-2,25 1,35 0,33-2,44 1,8 1,14-2,25 

5. Conclusions 

TCP performance over multi-hop ad hoc networks (MANETs) have been extensively analyzed in 

many previous studies. However, most of them are based on simulation results, and some of then 

takes simplistic assumptions, e.g., they do not consider the effect of the routing protocol. On the 
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other hand, several previous studies have shown the importance of an experimental analysis when 

dealing with MANETs. In this chapter we have used an experimental testbed based on WiFi 

technology, and measured the TCP performance in an indoor environment by considering two 

different routing protocols (i.e, AODV and OLSR). 

For the sake of simplicity and, also, for better comparison of experimental and simulation results, 

we have limited our analysis to static networks with a chain topology and a limited number of hops. 

We have found some interesting results contrasting with simulations. In particular, we have found 

that in our testbed with a chain topology of four hops or less, the optimal performance is achieved 

with a maximum cwnd size equal to 3 (instead of 2, as suggested by simulation). In addition, the 

TCP performance with limited congestion window size is not so different from that achievable with 

an unclamped congestion window. We have shown that these discrepancies are due to the different 

protocols -- or different protocol implementations -- used in practice with respect to simulation 

tools. 

In conclusion, by showing cases in which real TCP implementations and popular simulation 

implementations behave pretty differently, we believe that this work can further motivate to take a 

experimental approach in further investigating the TCP behavior over MANETs. 
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