
1 of 16

Experimental Analysis of TCP Performance

in Static Multi-hop Ad Hoc Networks

Giuseppe Anastasi, Emilio Ancillotti Marco Conti, Andrea Passarella

Pervasive Computing & Networking Lab. (PerLab)

Dept. of Information Engineering

University of Pisa, Italy
{firstname.lastname}@iet.unipi.it

CNR-IIT

National Research Council, Italy
{firstname.lastname}@iit.cnr.it

Abstract

Many previous papers have pointed out that TCP performance in multi-hop ad hoc networks (MANETs) is

sub-optimal. This is due to several TCP design principles that reflect the characteristics of wired networks

dominant at the time when TCP was designed that do not hold in MANETs. Based on this evidence, several

TCP variants have been proposed in the literature. However, little effort has been devoted to investigate the

performance of TCP in a real environment, even in a static scenario. Most of the work relies on simulation.

In this chapter we provide an experimental analysis of TCP in static multi-hop ad hoc networks. We

investigate the TCP performance in a simple, but interesting, scenario, i.e., a chain topology with different

number of hops. We highlight some results contrasting with simulations and show that these discrepancies

are due to the different protocols -- or different protocol implementations -- used in practice with respect to

simulation tools.

1. Introduction

TCP (Transmission Control Protocol) is the de facto standard for reliable connection-oriented

transport protocols, and is normally used over IP (Internet Protocol) to provide end-to-end reliable

communications to Internet applications. Although TCP is independent from the underlying

network technology, some assumptions in its design are clearly inspired from the characteristics of

wired networks dominant at the time when it was conceived. TCP implicitly assumes that nodes are

static (i.e., they do not change their position over time), and packet loss is almost always due to

congestion phenomena causing buffer overflows at intermediate routers. These assumptions do not

hold in MANETs as the network topology may change due to node movements and failures (e.g.,

because battery is exhausted). In addition, packet losses due to buffer overflow are rare event in

MANETs while losses due to link layer contention are largely dominant [Fu03]
1
.

Many papers have pointed out that the drastic difference between MANETs and the legacy Internet

may lead to poor performance of TCP over MANETs. Based on this observation, researchers have

proposed (and are still proposing) TCP or 802.11 modifications aimed at addressing this problem

(see Section 2 for a detailed discussion on the literature).

Almost all these studies rely on simulation, and many of them do not consider some important

details (e.g., the routing protocol is often omitted). To the best of our knowledge, very few

experimental analyses have been carried out so far [Gu04, Kaw05]. On the other side, previous

1 Packet losses due to transmission errors are recovered through link-layer retransmissions.

4 The threshold is given by ALLOWED_HELLO_LOSS*HELLO_INTERVAL, where HELLO_INTERVAL is the

time interval (in seconds) between successive HELLO messages sent by the same node, while

ALLOWED_HELLO_LOSS is the number of HELLO messages that must be lost before assuming that a link failure

has occurred.

2 of 16

experimental studies have shown that certain aspects of real MANETs are often not effectively

captured in simulation tools [Ana04]. Furthermore, available software and hardware products often

use parameters settings different from those commonly assumed in simulation tools. Finally, real

operating conditions are often different from those modeled in simulation experiments. For

example, interferences caused by WiFi hotspots or other devices in the proximity are inevitable in

practice. For all the above reasons, we believe it is of great importance to measure TCP

performance in a real environment.

In this chapter we provide an experimental analysis of TCP over an IEEE 802.11 multi-hop ad hoc

network in an indoor environment. For the sake of simplicity, and for better comparison with

previous simulation results, our analysis is limited to static networks with a chain topology and a

limited number of hops. However, our experimental testbed is made up with off-the-shelf products

that are largely used within the community. Specifically, we consider two very popular routing

protocols, i.e., AODV [Per03, AodvUU] and OLSR [Ton04, Cla03] which take a different approach

on building routes (reactive vs. proactive). In addition, in our experiments we consider TCP

NewReno, available with Linux distributions.

Our experimental outcomes are normally aligned with simulation results. However, we also found

some results contrasting with simulation. We discovered that such discrepancies are due to different

protocols – or protocol implementations – used in practice with respect to common simulation tools.

For example, we have found that the TCP delayed ACK policy implemented in common simulation

tools is not completely compliant with standard Linux implementations when the congestion

window size is limited to very small values. We show that in the real world this moves the TCP

optimal operating point with respect to what can be measured by simulation. Also, we have found a

significant performance difference when AODV uses HELLO messages to detect link failures

(which is the standard in the real implementation)with respect to the case when AODV relies on

link-level notifications (which is the standard in the simulation tools).

The main contribution of this chapter is therefore to advocate the use of real experimentation when

evaluating TCP performance over MANETs. While we acknowledge the importance of simulation

in this field, we believe that, whenever feasible, a continuous verification of simulation results

against real-world measurements is necessary to gain clear understanding of the TCP behavior.

The rest of the chapter is organized as follows. Section 2 is devoted to related work. Section 3

describes the testbed we relied upon for our experimental analysis, the methodology we used, and

the performance indices we measured. Section 4 discusses the results obtained. Finally, Section 5

concludes the chapter.

2. Related Work

In the last years several papers have analyzed the TCP performance over MANETs. Most of them

are targeted at demonstrating that TCP exhibits poor performance in MANETs. Typically, these

papers propose enhancements to the standard protocol to improve performance. A comprehensive

survey on TCP developments for multi-hop ad hoc networks is available in [Pap05]. In addition,

some reliable transport protocols designed from scratch and optimized for the MANET environment

have also been proposed in [Sun03, Ana05].

A lot of papers have pointed out that node mobility may severely degrade the TCP performance

[Ahu00, Cha01, Dye01, Liu01, Hol02, Fu02, Sun03] due to the protocol inability to manage

efficiently mobility effects. Node movements may cause route failures and route changes which

results in packet losses and delayed ACKs at the sender side. TCP misinterprets these events as a

sign of congestion and activates the congestion control mechanism. This leads to unnecessary

retransmissions and throughput degradation [Ana05]. In addition, mobility may exacerbate the

unfairness between competitive TCP sessions [Tan99].

3 of 16

Other papers have addressed TCP performance in static MANETs. In a static environment the

maximum achievable throughput is limited by the interaction (at the MAC level) between

neighboring nodes [Li01]. According to the IEEE 802.11 MAC protocol, each node must sense the

medium before starting transmissions. In addition, interferences may cause collisions at the

destination node. Hence, it can be shown that in a string (or chain) topology, like the one shown in

Figure 1, the expected maximum bandwidth utilization is only 0.25 [Li01]. However, the 802.11

MAC protocol is not able to find the optimum schedule of transmissions by itself. In particular, in a

chain topology it happens that nodes early in the chain starve later nodes (similar remarks apply to

other network topologies as well). Thus, in practice performance is even worse than expected.

Figure 1. A MANET with chain topology.

The above limitations are inherent to the characteristics of multi-hop ad hoc networks, and cannot

be accounted to the TCP protocol. However, the interaction between TCP mechanisms (mainly the

congestion control algorithm) and MAC-layer issues (hidden/exposed node problem, exponential

backoff scheme, etc) may lead to several, unexpected, serious instability and fairness problems in

some specific scenarios, as shown in [Xu01, XuS02, XuB02].

The TCP congestion window size is also responsible for suboptimal performance in almost every

scenario which may result in throughput degradation and instability [Xu01, Fu03]. In [Fu03] it has

been shown that, for a given network topology and traffic pattern, there exist an optimal value of

the TCP congestion window size at which the TCP throughput is maximized. However, TCP does

not operate around this optimal value and typically grows its average window size much larger,

leading to decreased throughput (throughput degradation is in the order of 5-30% with respect to the

optimal case) and increased packet losses. The very reason for this suboptimal behavior is the origin

of packet losses. Unlike traditional wired networks, in MANETs packet losses caused by buffer

overflows at intermediate nodes are rare events, while packet losses due to link-layer contention are

largely dominant.

An interesting issue is, thus, how to select the maximum congestion window size to achieve optimal

throughput. Several papers have faced this challenge. They mainly refer to chain topologies for the

sake of simplicity. [Fu03] and [Li01] suggest setting the maximum window size to ¼ of the chain

length (i.e., h/4 if h is the number of hops). The rule is based on consideration about spatial reuse. In

[Che03, Che04] the problem of properly setting the maximum congestion window is bounded to the

bandwidth-delay product. The authors provide a systematic solution to this problem by proposing

an adaptive mechanism that sets the maximum congestion window according to the hop count of

the TCP connection. An alternative scheme (SCA) that provides an effective spatial reuse without

limiting the maximum window size is proposed in [Pap04]. SCA increases the sending rate during

the congestion avoidance phase more slowly than in the legacy protocol, so as to reduce the number

of on-the-fly packets. Simulation results show that the SCA mechanism stabilise the sending

window to a relatively small value.

Most of the analyses on TCP performance, especially under static conditions, do not consider any

specific routing protocol. On the other hand, the effects of routing protocols have been investigated

in [Ahu00, Dye01, Osi06]. In [Ahu00] four different routing protocols are considered: the Ad hoc

On-demand Distance Vector (AODV [Per03]) protocol, the Dynamic Source Routing (DSR

[Joh04]) protocol, the Destination-Sequenced Distance Vector (DSDV [Per94]) protocol, and the

Signal Stability-based Adaptive (SSA, [Dub97]) protocol. In [Dye01] the authors consider two on-

demand routing protocols (DSR [Joh04] and AODV [Per03]), and an adaptive proactive protocol

4 of 16

(ADV [Bop01]). The simulation results show that ADV maximizes the TCP performance under a

variety of conditions. In [Osi06] the authors quantify the TCP performance degradation caused by

the underlying routing traffic. Based on simulation measurements they determine the admissible

operation range where the level of such degradation can be still acceptable for end users.

As there are different versions of the TCP protocol around (Tahoe, Reno, NewReno, SACK, Vegas,

etc.), many authors have compared the performance of different TCP versions, mainly in terms of

throughput and fairness [Xu01, Rak05, Kim05]. Conclusions are however contrasting. From

[Rak05] it appears that in static MANETs with AODV routing protocol TCP-Vegas outperforms

TCP-NewReno both in terms of maximum achievable throughput and fairness. However, [Kim05]

shows that the performance of TCP-NewReno and TCP-Vegas depend on the underlying routing

protocol. TCP-NewReno is actually less efficient than TCP-Vegas on top of AODV, but

outperforms TCP-Vegas when using OLSR [Kim05].

Almost all the papers cited above rely on simulation. Real testbeds are seldom used and, in many

cases, their use is aimed at validating simulation results. Recently, an experimental analysis in static

conditions has been carried out in [Kaw05]. TCP is therein evaluated in chain and cross topologies

with different number of hops. Performance metrics include throughput, average delay and delay

standard deviation (jitter) experienced by TCP segments. TCP performance is investigated by

varying three different parameters: RTS/CTS mechanism (enabled/disabled), Selective ACK

(enabled/disabled), and congestion window size. The maximum congestion windows size is either

unclamped or limited to 3/2 h, where h is the number of hops between the sender and the

destination node. It is not clear why they limit the maximum size to 3/2 h (previous simulation

analyses would suggest different values [Li01, Xu01, Fu03, Che04]). Finally, no routing protocol is

used.

Another experimental analysis is reported in [Gu04] where the authors evaluate the impact of Rate

Based Pacing (RBP, [Agg00]) on TCP performance. They also consider chain topologies with

different number of hops, and use (a modified version of)AODV as the routing protocol. However,

they do not evaluate the effects of the routing protocol on TCP performance. In addition, they

assume unclamped congestion window size, and consider only a single TCP flow. Their

experimental results show that TCP-Reno outperforms TCP RBP.

In our work we evaluated the effects of the routing protocol by considering two different routing

protocols (i.e., AODV and OLSR). In addition, we considered different values for the congestion

window size and evaluated the optimal window size in a real environment.

3. Experimental Environment

3.1. Testbed description

Our testbed consisted of IBM R-50 laptops equipped with integrated Intel Pro-Wireless 2200

wireless cards. All the laptops were running the Linux Kernel 2.6.12 with the latest available

version of the ipw2200 driver (1.1.2). Wireless cards follow the IEEE 802.11b specifications. We

decided to limit their maximum bit rate to 2 Mbps to compare experimental results with simulation

results available in the literature. The RTS/CTS was active and the threshold was set to 100 bytes so

that RTS/CTS handshake was enabled for TCP data segments and disabled for TCP

acknowledgments. The transmission power of the wireless cards was set to the minimum allowed

value (-12db) so as to reduce the transmission range and make possible to perform real multi-hop

experiments in an indoor environment.

Figure 2 shows the indoor environment where the experiments were carried out. It is a real working

environment with offices and labs. In particular, there are several WiFi Access Points in the

proximity. Although this environment influenced significantly our performance measures, we

5 of 16

believe that it is important to test the TCP performance in a real working environment. In our

experiments we considered a chain topology with five nodes deployed as in

Figure 2. In all the experiments node N1 was the sender, while the receiver (and the number of

active nodes) depended on the specific scenario. Specifically, we considered four different scenarios

with hop count ranging from 1 to 4. For example, in the 3-hop scenario, node N4 was the receiver

(node N5 was not active). The distance between nodes was chosen in such a way that only adjacent

nodes were within the transmission range of each other.

N1

N2N3

N4

N5

N1

N2N3

N4

N5

Figure 2. Indoor environment and network topology used in our experiments.

We used ftp-like traffic, i.e., the sender node had always a packet ready to send. To this end, we

developed a simple client/server application using Linux sockets. At the server side we used the

TCP_WINDOW_CLAMP socket parameter to bind the size of the advertised window to the desired

maximum value. The segment size was constant in all the experiments with the transport-layer

payload size set to 1460 byets. To capture TCP segment we used tcpdump, while to analyze the

experiments results we used tcpstat and tcptrace (enhanced by our shell scripts).

As anticipated, we considered two different routing protocols, i.e., AODV and OLSR. AODV (Ad

hoc On-demand Distance Vector, [Per03]) is a well-known reactive protocol that uses RREQ,

RREP and RERR messages to discover and maintain routes to the destination, and can use two

different mechanisms for neighbour discovery and local connectivity maintenance, i.e., link layer

information provided by the underlying MAC protocol, or HELLO messages that are periodically

exchanged between all nodes in the MANET. In our experiments we used the AODV

implementation for Linux by the Uppsala University (AODV-UU [AodvUU]) version 0.9.1. To

maintain one-hop connectivity we used HELLO messages since the ipw2200 driver doesn’t

provide link-layer failure information. All the AODV parameters were set to their default values.

OLSR (Optimized Link State Routing, [Cla03]) is an optimization of the classical link state

algorithm for mobile ad hoc networks (it is thus a proactive protocol). OLSR periodically floods the

network with route information so that each node can build locally a routing table containing the

complete information of routes to all possible destinations within the ad hoc network. Similarly to

AODV, OLSR employs a neighbour discovery procedure based on HELLO messages. In our

testbed we used the OLSR_UniK implementation for Linux version 0.4.10 [Tøn04]. We set all the

parameter values to their default values. We only disabled the OLSR hysteresis process because it

was shown to degrade TCP throughput in a not acceptable way [Anc06].

3.2. Performance measures

In our analysis we considered the following two performance measures.

6 of 16

• Throughput, i.e., the average number of byte successfully received by the final destination

per unit time.

• Retransmission index, i.e., the percentage of segments re-transmitted by the sender TCP.

The throughput was measured at the application layer as the number of bytes (successfully)

received by the destination process in a given time interval, divided by the duration of the time

interval.

The re-transmission index (rtx) was obtained as

ndestinatiothebyreceivedlysuccessfulsegmentsduplicatednonof

sourcethebytedretransmitsegmentsof
rtx

−

=

#

#

The re-transmission index allows us to evaluate the ability of TCP to handle transmission in an

efficient way. It is worthwhile to emphasize that re-transmitted segments consume energy both at

the sender and intermediate nodes. As nodes in a MANET may have limited power budget, it is

important to manage (re-)transmission efficiently. Therefore, a small value for the re-transmission

index is highly desirable.

3.3. Methodology

When dealing with real testbeds one of the main difficulties is that experiments cannot be repeated

exactly in the same way as external conditions may vary from time to time -- sometimes during the

same experiment -- and there is definitely no control on them. Therefore, successive experiments

carried out under the same operating conditions may provide outcomes that differ significantly from

each other. In addition, comparison of performance measurements obtained in different scenarios or

operating conditions becomes hard or even impossible. To achieve more statistical accuracy, we

replicated each experiment 5 times, and averaged the performance measures over the entire set of 5

replicas. In addition, experiments with similar parameter values (e.g., with different maximum cwnd

size but with all other parameters set to the same values) were performed in an interleaved way. For

instance, we performed, back to back, the first replica of experiments with maximum cwnd size

equal to 2, 3, 4, and 32, respectively. Then, we performed the second replica of each experiment,

and so on.

In the next section, we always make reference to average values. In addition, in many cases we also

show the maximum and minimum values measured in the 5 replicas. Each replica was 120 s long,

and consisted of a file transfer. To perform multiple replicas the whole process of experimentation

(data generation, logging and archiving) was automated using shell scripts.

4. Experimental Results

In this section we describe the results obtained from our experiments in different scenarios.

Specifically, we considered four chain topologies with different number of hops (from 1 to 4) as

shown in Figure 2. In the first set of experiments we considered AODV as the routing protocol, and

assumed that there is single TCP flow in the network. The purpose was to investigate the influence

of the maximum congestion window size on TCP performance, and compare our experimental

results with previous simulation results. Then, we extended our analysis with AODV routing

protocol by considering the effects of interfering traffic. Finally, we repeated the above experiments

by using OLSR instead of AODV.

4.1. Influence of the maximum congestion window size

To evaluate the influence of the maximum congestion window (cwnd) size we clamped the

congestion window to some specific values. Specifically, we considered maximum cwnd sizes of 2,

7 of 16

3, and 4, and performed also experiments where the window size is unclamped. In the plots below

the latter case is referred to as window size equal to 32.

Previous simulation studies [Che04, Fu03] have shown that in our scenarios, the optimal value for

TCP cwnd is 2. However, previous studies do not highlight the behavior of TCP over OLSR for

varying cwnd size, nor the performance of TCP over AODV when Hello Messages are used to

discover neighbor nodes. Therefore we evaluated through ns-2 [Ns-2] the optimal value of TCP

cwnd in these configurations, using the same operational parameters used in experimental analysis.

Figure 3 shows that also our simulative analysis indicates that 2 is the optimal value for TCP cwnd.

50

100

150

200

250

300

350

400

3 3.5 4 4.5 5 5.5 6

AODV, throughput vs. cwnd size vs. # of hop

w = 1

w=2

w=3

W=4

W=32

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Chain lenght (# of hop)

0

50

100

150

200

250

300

350

400

3 3.5 4 4.5 5 5.5 6

OLSR, throughput vs. cwnd size vs. # of hop

w = 1

w=2

w=3

W=4

W=32

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Chain lenght (# of hop)

Figure 3. Throughput over AODV (left) and OLSR (right) vs. number of hops vs. cwnd size. NS-2 results.

0

200

400

600

800

1000

1200

1400

1600

2 3 4 32

AODV, 1-hop

th
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Maximun window size (# of packets)

0

0.5

1

1.5

2

2.5

2 3 4 32

AODV, 1-hop

P
e
r
c
e
n
ta
g
e
 o
f
r
e
tr
a
n
s
m
is
s
io
n
s
 (
%
)

Maximun window size (# of packets)

Figure 4. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window

size in the 1-hop scenario. The routing protocol is AODV.

The results obtained in our experimental analysis, both in terms of throughput and percentage of re-

transmissions, are shown in Figure 4 through Figure 7. We found that in our experiments a

maximum cwnd of size 2 never provides optimal performance. Specifically, in the 1-hop scenario

an unclamped congestion window seems to be the best choice. This is because in the 1-hop scenario

there is no competition between neighboring nodes as in multi-hop scenarios. In the other scenarios,

a cwnd limitation appears to be beneficial but the optimal cwnd size appears to be 3 (in the 2-hop

scenario the throughput with maximum cwnd equal to 4 is slightly better, but the re-transmission is

significantly higher).

This discrepancy with previous simulation results is due to a different behavior between the TCP

version implemented in the Linux distribution used in our testbed (Linux Kernel 2.6.12) and the one

implemented in common simulation tools (e.g ns-2 [Ns-2]) when the maximum cwnd of size is set

to 2. By a detailed analysis of traces we found that the simulated TCP receiver sends back one

acknowledgement every other segment, while the real (i.e., Linux) TCP receiver sends back one

8 of 16

acknowledgement every segment. When the maximum cwnd size is 3 (or larger) both the real and

simulated TCP send back one acknowledgement every other segment. The increased number of

acknowledgments managed in the real testbed when the maximum cwnd size is equal to 2, makes

the throughput suboptimal.

0

200

400

600

800

1000

1200

1400

1600

2 3 4 32

AODV, 2-hop

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Maximun window size (# of packets)

0

1

2

3

4

5

6

7

8

2 3 4 32

AODV, 2-hop

P
e
r
c
e
n
ta
g
e
 o
f
r
e
-t
r
a
n
s
m
is
s
io
n
s
 (
%
)

Maximun window size (# of packets)

Figure 5. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window

size in the 2-hop scenario. The routing protocol is AODV.

0

200

400

600

800

1000

1200

1400

1600

2 3 4 32

AODV, 3-hop

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Maximun window size (# of packets)

0

1

2

3

4

5

6

7

8

2 3 4 32

AODV, 3-hop

P
e
r
c
e
n
ta
g
e
 o
f
r
e
-t
r
a
n
s
m
is
s
io
n
s
 (
%
)

Maximun window size (# of packets)

Figure 6. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window

size in the 3-hop scenario. The routing protocol is AODV.

To confirm our conclusion we used the ns-2 simulation tool [Ns-2], and ran simulation experiments

where we modeled the above conditions (note that we used the same AODV-UU code both in the

real and in the simulated experiments). Specifically, we set the delayed ACK option at the receiver

TCP when the maximum cwnd size was equal to 3, 4 and, 32, respectively. Instead, we disabled this

option in case of maximum cwnd size was equal to 2. Therefore, in the latter case the TCP receiver

sends back one TCP ACK every segment received , while in all other cases it sends one TCP ACK

every other segment. We observed that the optimal window was 3 as in the real experiments.

From the above results it also appears that TCP throughput with optimal cwnd size is not so

different from that with unclamped congestion window. This is in contrast with previous simulation

studies which observe a significant throughput improvement with optimal cwnd size. This

discrepancy can be explained in terms of the mechanism used by the AODV routing protocol for

detecting link failures. More precisely, the link failure detection mechanism based on HELLO

messages generates frequent route failures with associated throughput oscillations and performance

degradation. This issue is described in detail in the next section.

9 of 16

0

200

400

600

800

1000

1200

1400

1600

2 3 4 32

AODV, 4-hop
th
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Maximun window size (# of packets)

0

1

2

3

4

5

6

7

8

2 3 4 32

AODV, 4-hop

P
e
r
c
e
n
ta
g
e
 o
f
r
e
-t
r
a
n
s
m
is
s
io
n
s
 (
%
)

Maximun window size (# of packets)

Figure 7. Throughput (left) and percentage of retransmitted segments (right) vs. maximum congestion window

size in the 4-hop scenario. The routing protocol is AODV.

4.2. Influence of HELLO messages

AODV may take two different approaches for link failure detection. It can either exploit link failure

notifications from the underlying layer (provided that this service is available), or rely upon a

periodic exchange of HELLO messages. In the former case AODV learns that a link failure has

occurred as soon as it receives an explicit notification from the underlying layer (hereafter, this

approach will be referred to as AODV-LL). In the latter case each node listens for HELLO

messages that are periodically broadcast by each other node in the network. A node assumes that a

link failure has occurred if it has previously received a HELLO message from a neighbor and, then,

for that neighbor does not receive any packets (HELLO messages or anything else) for more than a

predefined threshold
4
 (hereafter, this approach will be referred to as AODV-HELLO). In the

AODV-UU implementation only HELLO messages and AODV control messages (e.g., RREQ and

RREP) are considered for neighbor connectivity assessment (i.e., data messages are not taken into

consideration).

The AODV protocol in our testbed uses HELLO messages since the ipw2200 driver (version 1.1.2)

does not provide link failure notifications. Assuming default parameter values

(HELLO_INTERVAL = 1s, and ALLOWED_HELLO_LOSS = 2), HELLO messages are sent every

1s, and the timeout associated with link failure detection is 2s. In other words , a link failure is

assumed in our testbed if a node fails to receive two consecutive HELLO messages from its

neighbor. To compare the TCP behavior with AODV-LL and AODV-HELLO we thus used the ns-

2 simulation tool [Ns-2]. Specifically, we assumed that the interference range (IF_Range) is equal

to the carrier sensing range (CS_Range) and both are twice as large as the transmission range, and

set all the other parameters as in the experimental testbed.

Figure 8 and Figure 9 show the throughput (left-side plot) and congestion window size (right-side

plot) vs. time with AODV-LL and AODV-HELLO, respectively. These results are related to the 3-

hop scenario with maximum cwnd of size 2. However, we found similar results for the other

scenarios and maximum cwnd sizes as well.

We can observe that with AODV-HELLO, the short link-failure detection timeout (2s) causes false

link-failure detections that forces AODV to trigger a new route discovery process. During route

discovery process no segment is transmitted towards the final destination and the instant throughput

decreases to zero, as shown in Figure 9 (left). In addition, the TCP sender experiences delayed

ACKs and/or timeouts which trigger the congestion control mechanism. This is because the cwnd

size decreases to one when the throughput is null as shown in Figure 9 (right).

10 of 16

0

100

200

300

400

500

600

60 80 100 120 140

AODV-LL, W = 2, IF_range = CS_ range
T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

time (sec)

0

0.5

1

1.5

2

2.5

60 80 100 120 140

AODV-LL, W = 2, IF_range = CS_range

C
o
n
g
e
s
ti
o
n
 w
in
d
o
w
 s
iz
e
 (
#
 p
c
k
)

time (sec)

Figure 8. Throughput (left) and congestion window size (right) vs. time when using AODV-LL in the 3-hop

scenario with maximum cwnd of size 2. The interference range (IF_Range) is assumed equal to the Carrier

Sensing Range (CS_Range).

0

100

200

300

400

500

600

60 80 100 120 140

AODV-HELLO, W = 2, IF_range = CS_range

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

time (sec)

0

0.5

1

1.5

2

2.5

60 80 100 120 140

AODV-HELLO, W = 2, IF_range = CS_range

C
o
n
g
e
s
ti
o
n
 w
in
d
o
w
 s
iz
e
 (
#
 p
c
k
)

time (sec)

Figure 9. Throughput (left) and congestion window size (right) vs. time when using AODV-LL in the 3-hop

scenario with maximum cwnd of size 2. The interference range (IF_Range) is assumed equal to the Carrier

Sensing Range (CS_Range).

0

100

200

300

400

500

600

60 80 100 120 140

AODV-HELLO, W = 2, IF_range < CS_range

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

time (sec)

0

0.5

1

1.5

2

2.5

60 80 100 120 140

AODV-HELLO, W = 2, IF_range < CS_range

C
o
n
g
e
s
ti
o
n
 w
in
d
o
w
 s
iz
e
 (
#
 p
c
k
)

time (sec)

Figure 10. Throughput (left) and congestion window size (right) vs. time when using AODV-LL in the 3-hop

scenario with maximum cwnd of size 2. The interference range (IF_Range) is less than the Carrier Sensing

Range (CS_Range).

When using AODV-LL there is no link failure notification from the data link layer below and,

hence, the TCP cwnd size and throughput remain constant, as shown in Figure 8. The difference in

detections between the two methods can be explained as follows. In the AODV-HELLO case it’s

sufficient to loose two broadcast packets to detect a link failure. In the AODV-LL case a link

11 of 16

failure is detected when a unicast packet is lost. Since unicast packets are re-transmitted up to 7

times, while broadcast packets are transmitted just once, the AODV-HELLO mechanism proves to

detect link failures quite more frequently than AODV-LL. In conclusion, the TCP throughput whit

AODV-HELLO is significantly lower than that with AODV-LL. In addition, frequent false link-

failure detections make the TCP throughput with clamped cwnd size not so different from the

throughput with unclamped congestion window. Actually, the TCP throughput is limited by false

link-failures rather than the cwnd size.

We also did some simulations runs by assuming IF_Range<CS_Range, which is more realistic. As

expected, we observed no difference when using AODV-LL, and a reduced number of false link-

failure detections when using AODV-HELLO (see Figure 10).

4.3. Influence of the background traffic

We also investigated the influence of interfering traffic. To this end, we considered the 3-hop

scenario described above and added a CBR (Continuous Bit Rate) session to it. This CBR session

has N3 as its source node and N2 as it recipient node, and uses UDP as the transport protocol. It

inject in the network a periodic traffic pattern with a bit rate equal to 192 Kbps, which correspond

to the bit rate of an MP3 stream. The results obtained in this scenario (throughout referred to as 3-

hop-UDP) are shown in Figure 11. There is no qualitative difference with the results in , except that

TCP throughputs are lower and the retransmission indices greater. As in the 3-hop scenario without

background traffic, the optimal cwnd size is 3. But, as above, there are not significant differences

associated with the various maximum cwnd sizes.

0

200

400

600

800

1000

1200

1400

1600

2 3 4 32

AODV, 3-hop with UDP

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Maximun window size (# of packets)

0

1

2

3

4

5

6

7

8

2 3 4 32

AODV, 3-hop with UDP

P
e
r
c
e
n
ta
g
e
 o
f
r
e
-t
r
a
n
s
m
is
s
io
n
s
 (
%
)

Maximun window size (# of packets)

Figure 11. Throughput (left) and percentage of retransmitted segments (right) vs. maximum cwnd size in the 3-

hop scenario with background periodic UDP traffic . The routing protocol is AODV.

The results discussed above are summarized in Table 1 and Table 2, where minimum and maximum

values measured in the various experiments are also reported.

4.4. Analysis with OLSR routing protocol

To conclude our analysis we also performed some experiments with a routing protocol different

from AODV. We used OLSR which is a proactive protocol (while AODV is a reactive protocol).

The results obtained, in terms of throughput and percentage of re-transmissions, are summarized in

Table 3 and Table 4, respectively.

Experiments with AODV and OLSR were carried out in different days. Therefore, a direct

comparison of results in corresponding scenarios does not make sense because of different external

conditions. However, we can observe that the results with OLSR are not very different from those

with AODV under the same conditions. An important issue is that the retransmission index with

OLSR is always significantly lower than that with AODV. We observed that the latter results is

confirmed by simulations.

12 of 16

One possible reason for this behavior is the different parameter values used by AODV and OLSR to

manage HELLO messages. OLSR sends HELLO messages periodically every HELLO_INTERVAL

and considers the information provided by a HELLO message valid for NEIGHB_HOLD_TIME

seconds. Assuming default parameter values, HELLO_INTERVAL is set to 2s and

NEIGHB_HOLD_TIME to 6s. Therefore, when using OLSR a node considers a link as broken if it

fails to receive three consecutive HELLO messages from its neighbor. Instead, as described above,

with AODV a node assumes a link failure when it fails to receive two consecutive HELLO

messages. Hence, OLSR is more robust to false link failures. In addition, since routing protocols

flush out the queue of pending transmissions when they detect a link failure, if AODV detects a

larger number of link failures the fraction of segments discarded is larger as well.

Table 1. Throughput (in Kbps) vs. maximum cwnd size with AODV.

W=2 W=3 W=4 W=32

Scenario Avg min-max avg min-max avg min-max avg min-max

1-hop 1387,5 1382-1392 1455,8 1463-1467 1479,4 1446-1507 1508,7 1500-1512

2-hop 441,2 390-533 538,2 677-432 553,9 524-626 526 448-559

3-hop 343,6 225-412 397,8 334,9-453 377,46 274-425 363,6 261-422

4-hop 235,2 146-290 263,3 195-315,4 224,14 145-274 232,9 148-262

3-hop-UDP 229 194-259 260,7 243-304 244 152-366 258 175-375

Table 2. Percentage of re-transmissions vs. maximum cwnd size with AODV.

W=2 W=3 W=4 W=32

Scenario Avg min-max avg min-max avg min-max avg min-max

1-hop 0 0-0 0 0-0 0 0-0 0 0-0

2-hop 2,3 0,98-3,4 1,3 0,25-2,58 1,84 0,81-2,33 2,16 1,25-3,62

3-hop 1,57 0,65-2,85 1,12 0,5-1,7 1,8 1,25-2,9 4,58 3,3-6,4

4-hop 4 2,2-6,9 3,6 2,2-6,3 3,9 3,4-4,5 7,1 4,7-8,4

3-hop-UDP 5,1 3,9-6,3 3,9 2,2-4,7 4,5 1,3-6,7 4,4 2,1-7

Table 3. Throughput (in Kbps) vs. maximum cwnd size with OLSR.

W=2 W=3 W=4 W=32

Scenario avg min-max avg min-max avg min-max avg min-max

1-hop 1369,13 1331-1396 1456 1428-1471 1473,6 1439-1503 1523,9 1518-1531

2-hop 627,3 581-650 676,3 616-705 698,4 668-719 696,5 638-723

3-hop 213,4 126-330 282,1 130-390 229,9 83-351 275,5 131-438

4-hop 175,1 139-214 172,8 155-195 151,8 87-189 162,55 121-213

3-hop-UDP 238,9 201-276 259,3 193-302 218,7 202-258 233,3 174-262

Table 4. Percentage of re-transmissions vs. maximum cwnd size with OLSR.

W=2 W=3 W=4 W=32

Scenario avg min-max avg min-max avg min-max avg min-max

1-hop 0 0-0 0 0-0 0 0-0 0 0-0

2-hop 0 0-0 0,07 0-0,22 0 0-0 0 0-0

3-hop 1,09 0,56-2,33 1,12 0,19-2,47 1,45 0,72-2,86 1,87 0,61-2,53

4-hop 3,55 1,4-7,22 3,2 2,3-5 3,85 2,5-5,25 4,8 2,8-7,44

3-hop-UDP 1,5 1,3-1,9 1,36 0,8-2,25 1,35 0,33-2,44 1,8 1,14-2,25

5. Conclusions

TCP performance over multi-hop ad hoc networks (MANETs) have been extensively analyzed in

many previous studies. However, most of them are based on simulation results, and some of then

takes simplistic assumptions, e.g., they do not consider the effect of the routing protocol. On the

13 of 16

other hand, several previous studies have shown the importance of an experimental analysis when

dealing with MANETs. In this chapter we have used an experimental testbed based on WiFi

technology, and measured the TCP performance in an indoor environment by considering two

different routing protocols (i.e, AODV and OLSR).

For the sake of simplicity and, also, for better comparison of experimental and simulation results,

we have limited our analysis to static networks with a chain topology and a limited number of hops.

We have found some interesting results contrasting with simulations. In particular, we have found

that in our testbed with a chain topology of four hops or less, the optimal performance is achieved

with a maximum cwnd size equal to 3 (instead of 2, as suggested by simulation). In addition, the

TCP performance with limited congestion window size is not so different from that achievable with

an unclamped congestion window. We have shown that these discrepancies are due to the different

protocols -- or different protocol implementations -- used in practice with respect to simulation

tools.

In conclusion, by showing cases in which real TCP implementations and popular simulation

implementations behave pretty differently, we believe that this work can further motivate to take a

experimental approach in further investigating the TCP behavior over MANETs.

References

[AodvUU] AODV-UU, AODV Linux Implementation, University of Uppsala. Available at:

http://core.it.uu.se/AdHoc/AodvUUImpl.

[Agg00] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the Performance of TCP

Pacing”, Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000

[Alt03] E. Altman and T. Jimenez, “Novel Delayed ACK Techniques for improving TCP

Performance in Multihop Wireless Networks," Proceedings of the IFIP International

Conference on Personal Wireless Communications (PWC 2003), Venice, Italy,

September 23-25, 2003,. Lecture Notes in Computer Science, N. 2775, pp. 237-250.

[Ana04] G. Anastasi, E. Borgia, M. Conti, E. Gregori, “Wi-Fi in Ad Hoc Mode: A Measurement

Study, Proceedings of the IEEE International Conference on Pervasive Computing and

Communications (PerCom 2004), Orlando (Florida), March 14-17, 2004.

[Ana05] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella, “TPA: A Transport Protocol for Ad

hoc Networks”, Proceedings of the IEEE Symposium on Computers and

Communications (ISCC 2005), Cartagena (Spain), June 27-30, 2005.

[Anc06] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. Pinizzotto, “A Layer-2

Architecture for Interconnecting Multi-hop Hybrid Ad Hoc Networks to the Internet,” in

Proceedings of WONS 2006, Les Menuires, France, January, 18–20 2006, pp. 87-96.

[Ahu00] A. Ahuja, S. Agarwal, J. Sing, R. Shorey, “Performance of TCP over Different Routing

Protocols in Mobile Ad Hoc Networks”, Proceedings of the IEEE Vehicular Technology

Conference (VTC 2000), pp. 2315-2319, May 2000.

[Bop01] R. Boppana, S. Konduru, “An Adaptive Distance Vector Routing Algorithm for Mobile

Ad Hoc Networks”, Proceedings of IEEE Infocom 2001, Vol. 3. pp. 1753-1762, April

2001.

[Cha01] K. Chandran, S. Raghunathan, S. Venkatesan, R. Prakash, “A Feedback Based Scheme

for Improving TCP Performance in Ad Hoc Wireless Networks”, IEEE Personal

Communication Magazine, Special Issue on Ad Hoc Networks, Vol. 8, N. 1, pp. 34-39,

February 2001.

14 of 16

[Che03] K. Chen, Y. Xue, K. Nahrstedt, “On setting TCP's congestion window limit in mobile

ad hoc networks”, Proceedings of the IEEE International Conference on

Communications (ICC 2003), Vol 2, pp. 1080-1084, USA, May 11-15, 2003.

[Che04] K. Chen, Y. Xue, S. Shah, K. Nahrstedt, “Understanding Bandwidth-Delay Product in

Mobile Ad Hoc Networks”, Computer Communications, Vol. 27, pp. 923-934, 2004.

[Cla03] T. Clausen and P. Jaquet, “Optimized Link State Routing Protocol (OLSR),” RFC 3626,

October 2003. Available: http://www.ietf.org/rfc/rfc3626.txt.

[Dub97] R. Dube, C. Rais, K. Wang, S. Tripathi, “Signal Stability-based Adaptive (SSA) Routing

for Ad Hoc Mobile Networks”, IEEE Personal Communications Magazine, pp. 36-45.

[Dye01] T.D. Dyer, R.V. Boppana “A Comparison of TCP Performance over Three Routing

Protocols for Mobile Ad Hoc Networks”, Proceedings of the ACM Symposium on

Mobile Ad Hoc Networking & Computing (MobiHoc), October 2001.

[Fu02] Z. Fu, X. Meng, S. Lu, “How Bad TCP Can Perform in Mobile Ad Hoc Networks”,

Proceedings of the IEEE Symposium on Computers and Communications (ISCC 2002),

Taormina-Giardini Naxos (Italy), July 2002, pp. 298-303.

[Fu03] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The Impact of Multihop

Wireless Channel on TCP Throughput and Loss”, Proceedings of IEEE INFOCOM

2003, San Francisco (California), March 30.April 3, 2003.

[Gu04] A. Gupta, I. Wormsbecker, C. Williamson, “Experimental Evaluation of TCP

Performance in Multi-hop Wireless Ad Hoc Networks”, Proceedings of IEEE/ACM

MASCOTS, pp. 3-11, Volendam, Netherlands, October 2004

[Hol02] G. Holland and N. Vaidya, “Analysis of TCP Performance over Mobile Ad Hoc

Networks”, Wireless Networks, Vol.8, pp. 275-288, 2002.

[Joh04] D. B. Johnson, D. A. Maltz and Y.-C. Hu, “The Dynamic Source Routing Protocol for

Mobile Ad Hoc Networks (DSR)”, Internet Draft, July 19 2004. Available:

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt.

[Kaw05] V. Kawadia, P. Kumar, “Experimental investigation into TCP Performance over

Wireless Multihop Networks”, Proc. of ACM SigCom 2005 Workshops, Philadelphia

(PA), August 22-25, 2005.

[Kim00] D. Kim, C. Toh, Y. Choi, “TCP-Bus: Improving TCP Performance in Wireless Ad-Hoc

Networks”, Journal of Communications and Networks, vol.3, no.2, pp. 1-12 June 2001.

[Kim05] D. Kim, H. Bae, J. Song, J.-C. Cano, “Analysis of the Interaction between TCP Variants

and Routing Protocols in MANETs”, Proceedings of the IEEE International Conference

on Parallel Processing Workshops (ICPPW’05), pp. 380-386, June 14-17, 2005,.

[Li01] J. Li, C. Blake, D. De Couto, H. Lee, R. Morris, “Capacity of Ad Hoc Wireless

Networks”, Proc. ACM/IEEE International Conference in Mobile Computing and

Networking (MobiCom 2001), Rome, Italy, July 2001.

[Liu01] J. Liu and S. Singh, “ATCP: TCP for Mobile Ad Hoc Networks”, IEEE Journal on

Selected Areas in Communications, Vol. 19, N. 7, pp. 1300-1315, July 2001.

[Ns-2] The Network Simulator - ns-2 (version 2.28). http://www.isi.edu/nsnam/ns/index.html.

[Oli05] R. de Oliveira, T. Braun, “A Dynamic Adaptive Acknowledgment Strategy for TCP over

Multihop Wireless Networks”, Proceedings of IEEE Infocom 2005, Vol. 3, pp. 1863-

1874, Miami, USA, March 13-17, 2005,.

15 of 16

[Osi06] E. Osipov, C. Tschudin, “Evaluating the Effect of Ad Hoc

Routing on TCP Performance in IEEE 802.11 Based MANETs”, Proc. 6th International

Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking

(NEW2AN), March 2006.

[Pap04] S. Papanastasiou, M. Ould-Khaoua, “TCP Congestion Window Evolution and Spatial

Reuse in MANETs”, Journal of Wireless Communications and Mobile Computing, Vol.

4, N. 6, pp 669-682, Sept. 2004.

[Pap05] S. Papanastasiou, M. Ould-Khaoua, L. MacKenzie, “TCP Developments in Mobile Ad

Hoc Networks”, Chapter 30 in Handbook of Algorithms and Wireless Networking and

Mobile Computing (A. Bouchercke editor).

[Par97] V.D. Park and M.S. Corson, “A Highly Adaptive Distributed Routing Algorithm for

Mobile Wireless Networks”, Proceedings of IEEE INFOCOM '97, Kobe (Japan), 1997,

Vol. 3, pp. 1405-1413.

[Per94] C. Perkins, P. Bhagwat, “Higly Dynamic Destination-Sequenced Distance Vector Routing

(DSDV) for Mobile Computers”, Proc. of the Conference on Communications

Architectures, Protocols and Applications, pp. 234-244, New York, 1994.

[Per03] C. Perkins, E. Belding-Royer, S. Das, “Ad hoc On-Demand Distance Vector (AODV)

Routing”, RFC 3561, July 2003. Available at: http://www.ietf.org/rfc/rfc3561.txt

[Rak05] S. El Rakabawy, C. Lindemann, M. Vernon, “Improving TCP Performance for Multihop

Wireless Networks”, Proceedings of the IEEE International Conference on Dependable

Systems and Networks (DSN 2005), 2005.

[Sun03] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar, “ATP: A Reliable

Transport Protocol for Ad hoc Networks,” Proc. ACM Symposium on Mobile Ad Hoc

Network and Computing (MobiHoc 2003), Annapolis (Maryland), June 2003.

[Sun01] D. Sun and H. Man, “ENIC - An Improved Reliable Transport Scheme for Mobile Ad

Hoc Networks”, IEEE Globecom Conference, 2001 (San Antonio, TX), Nov. 2001, Vol.

5, pp. 2852-2856.

[Tan99] K. Tang, M. Gerla, “Fair Sharing of MAC under TCP in Wireless Ad Hoc Networks”,

Proceedings of IEEE MMT’99, Venice (I), October 1999.

[Ton04] A. Tønnesen, “Implementation of the OLSR specification (OLSR UniK)”, Version

0.4.10, University of Oslo. Available at: http://www.olsr.org/.

[Wan02] F. Wang and Y. Zhang, “Improving TCP Performance over Mobile Ad-Hoc Networks

with Out-of-Order Detection and Response”, Proceedings of the third ACM

International Symposium on Mobile Ad Hoc Networking &Computing (MobiHoc 2002),

pp. 217-225, Lausanne, Switzerland, 2002.

[Xu01] S. Xu, T. Saadawi, “Performance Evaluation of TCP Algorithms in Multi-hop Wireless

Packet Networks”, Wireless Communications and Mobile Computing, Vol. 2 (2001), N.

1, pp.85-100.

[XuS02] S. Xu, T. Saadawi, “Revealing the problems with 802.11 medium access control

protocol in multi-hop wireless ad hoc networks”, Computer Networks, Vol. 38 (2002),

pp. 531.548.

[XuB02] K. Xu, S. Bae, S. Lee, M. Gerla, “TCP Behavior across Multihop Wireless Networks

and the Wired Networks”, Proceedings of the ACM Workshop on Mobile Multimedia

(WoWMoM 2002), Atlanta (GA), September 28, 2002, pp. 41-48.

16 of 16

[Xu05] K. Xu, M. Gerla, L. Qi, Y. Shu, “TCP Unfairness in Ad Hoc Wireless Networks and a

Neighborhood RED Solution”, Wireless Networks, Vol. 11, pp. 383-399.

