
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A BitTorrent proxy for Green Internet file sharing: Design
and experimental evaluation

Giuseppe Anastasi a, Ilaria Giannetti a, Andrea Passarella b,*

a Dept. of Information Engineering, University of Pisa, via Diotisalvi 2, 56122 Pisa, Italy
b IIT-CNR, via G. Moruzzi 1, 56124 Pisa, Italy

a r t i c l e i n f o

Article history:
Received 22 September 2009
Received in revised form 17 November 2009
Accepted 20 November 2009
Available online 5 December 2009

Keywords:
P2P file sharing
BitTorrent
Energy efficiency
Green Internet

a b s t r a c t

Recent studies have shown that the Internet-related energy consumption represents a significant, and
increasing, part of the overall energy consumption of our society. Therefore, it is extremely important
to look for energy-efficient Internet applications and protocols. The largest contribution to this energy
consumption is due to Internet edge devices (PCs and data centers). As a particularly significant example,
in this paper we address the fact that users leave their PCs continuously powered on for satisfying con-
nectivity requirements of Peer-to-Peer (P2P) file sharing applications, like BitTorrent (currently the most
popular P2P Internet platform). To reduce these energy consumptions, without penalizing the Quality of
Service of BitTorrent users, in this paper we propose a novel architecture based on the introduction of a
BitTorrent proxy. BitTorrent users delegate the download operations to the proxy and, then, power off
their PC, while the proxy downloads the requested files. We implemented our solution and validated it
in a realistic testbed. Experimental results show that, with respect to the legacy BitTorrent approach,
our solution is very effective in reducing the energy consumption without introducing any QoS degrada-
tion. Specifically, our results show that the proxy-based solution can provide up to 95% reduction in the
energy consumption and, at the same time, a significant reduction in the average file download time.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Several reports indicate that the total Internet-related energy
consumption is already very high and is expected to increase even
more in the next future as the Internet role in the society will ex-
pand. About 74 TeraWatts hours (TWh) per year of electricity are
consumed in USA by Internet equipments [1]. Although this just
accounts for 2–3% of the global electricity consumption in USA
[2], it is nevertheless a remarkable number. It is estimated that
about 32% of this energy could be saved by just using power man-
agement techniques on Internet-connected devices [1]. These fig-
ures have stimulated the efforts of the networking community to
reduce the Internet-related energy consumption, and greening of
the Internet is nowadays one of the hottest research topics.

Researchers’ efforts tend to concentrate on the network edges –
i.e., data centers and personal computing devices (PCs) – as there is
not so much room for energy savings inside the Internet core [3]. In
this paper we focus on PCs as they are widespread and very numer-
ous (over a billion in the world [2]). In 2007 data centers in USA ac-
counted for approximately 2 TWh per year, while office and home
PCs accounted for approximately 16 TWh per year [4]. Further-

more, PCs are typically managed by common users who are not
very eager to address the energy problem and, so, they often leave
their PC always powered on. For example, the PC Energy Report by
the UK National Energy Foundation [5] has highlighted that about
21% of the PCs used at work are almost never switched off during
nights and weekends, thus causing a energy wastage of about
1.5 TWh of electricity per year (corresponding to about 700,000
tons of CO2). This energy wastage could be easily avoided by just
switching off PCs, e.g., using a centralized shutdown solution such
as the NightWatchman [5]. However, many PCs are intentionally
left on by their users, especially at home, to perform networking
activities like, for example, Peer-to-Peer (P2P) file-sharing. Recent
studies [6] indicate that a very large fraction of nowadays Internet
traffic is P2P (40–73%), and BitTorrent is the most popular P2P plat-
form accounting for 50–75% of the overall P2P traffic. Hence, focus-
ing on ‘‘green” P2P solutions is a very sensible research direction
towards an energy-friendly Internet.

Motivated by these figures and trends, in this paper we propose
an energy-efficient version of BitTorrent (EE-BT) which, given its
popularity, is a particularly suitable case to maximize the possible
energetic impact of a novel, green P2P solution. EE-BT relies on a
proxy-based architecture and is aimed at minimizing the energy
consumption of user’s PCs using BitTorrent for P2P file sharing.
Obviously, in this paper we customize the proposed solution to
the BitTorrent platform. However the ideas and concepts presented

0140-3664/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2009.11.016

* Corresponding author.
E-mail addresses: giuseppe.anastasi@iet.unipi.it (G. Anastasi), ilaria.giannetti@

iet.unipi.it (I. Giannetti), andrea.passarella@iit.cnr.it (A. Passarella).

Computer Communications 33 (2010) 794–802

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

Author's personal copy

here can be easily extended to other P2P platforms as well. The
proposed solution is also orthogonal to the body of research look-
ing at legal issues such as Digital Right Management (DRM) for P2P
(see, for example, Chapter 1 of [7]). Solutions for enforcing DRMs
can be incorporated in our architecture. In these solutions, typi-
cally content is distributed according to a conventional P2P service,
but users need to obtain a licence from the copyright owner to be
able to use the content. In our architecture the same licence should
be handed over by the user to the proxy. As the proxy is assumed to
be trusted by the user, this is perfectly reasonable.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 presents our proxy-based solution for
energy-efficient file sharing through BitTorrent. In Section 4 we de-
rive some analytical formulas to quantify the energy efficiency of
our solution, with respect to the legacy BitTorrent approach. In
Section 5 we apply these formulas to the case of an experimental
scenario and discuss the obtained results. Section 6 concludes
the paper.

2. Related work

Traditional power management techniques [8] that switch the
Network Interface Card (NIC) in a low-power sleep mode when
the PC is not using the network are inadequate in an environment
where permanent-connections are required. In the literature we
can identify three power-management techniques compatible with
persistent connectivity requirements: adaptive link rate, switching
between different power management levels, and proxy-based
techniques.

Techniques based on adaptive link rate rely on the evidence that
the NIC’s energy consumption strongly depends on the supported
link rate. For example, the power consumption of typical Ethernet
NICs increases from 1 W for 10/100 Mb/s, to 7 W for 1 Gb/s and up
to 15 W for 10 Gb/s [9]. The basic idea of adaptive link rate is, thus,
to adjust the link rate according to the real traffic needs. The idea is
known as Adaptive Link Rate (ALR) [9] or Rapid PHY Selection (RPS)
[10].

Techniques based on switching between different power man-
agement levels are targeted to NICs with different power modes,
from completely sleeping to completely active (implemented as
programmable FPGA technology or ASIC block technology). They
switch the NIC from one mode to another, depending on the net-
work activity, using a sleeping algorithm, such as the Dynamic
Ethernet Link Shutdown (DELS) [11,12].

While these two techniques can provide some energy savings,
they can be used only when a NIC with appropriate hardware sup-
port is available. In addition, they do not seem the best approach
for our environment where downloading a file can take several
hours. In this case, we believe that delegating the management
of the download operations to a proxy, and shutting down the PC
during the download phase, is a more effective solution. Possibly,
the proxy should be running on a multi-service computer that
must be always on anyway for providing other network services
(e.g., DHCP, DNS etc.).

The idea of using a proxy for energy saving is not new. Proxy-
based architectures have been proposed in the field of mobile com-
puting for ensuring energy-efficient Internet access from mobile
personal devices. However, in that case, the proxy architecture is
intended for supporting legacy client-server applications [13].
The proxy is used as a surrogate of the mobile client on the fixed
network, thus allowing the mobile device to be temporarily discon-
nected from the system and save energy [14].

More recently, the idea of a Network Connectivity Proxy (NCP)
has been proposed for achieving energy efficiency in fixed as well
as mobile PCs that require permanent connection to the Internet

[15–17]. An NCP is an entity capable of maintaining the network
presence on behalf of a sleeping PC, managing all packets destined
to it. In practice, whenever receiving a packet the NCP performs
one of the following actions, depending on the packet type [18]:
(i) discards the packet; (ii) directly responds to the packet; (iii)
re-directs the packet to another (active) computer for further pro-
cessing; (iv) queues the packet for deferred processing by the PC
when it wakes up; or (v) wakes up the sleeping PC and passes it
the packet for appropriate processing. The NCP requires a wakeup
mechanism on the sleeping PC to wake up it when necessary, e.g., a
Wake On LAN (WoL) NIC [15]. The latter is a special NIC with aux-
iliary source power, an external wakeup signal and the capacity to
recognize wakeup packets in auxiliary power. The NCP can be
implemented either as part of the computer’s NIC [16], or as an
external entity (e.g., a USB-connected device [19], or a software
module running on a router [18], switch [16] or separate computer
[15,20] in the same LAN).

NCPs provide a general framework for saving energy in Internet-
connected PCs during idle periods. However, they are not specifi-
cally tailored to P2P applications. Instead, our solution introduces
a P2P energy-aware platform that makes possible to completely
shut down the user’s PC during the entire download process. Unlike
NCPs, our solution does not require any specific wakeup mechanism
(like the WoL NIC), which might not be available in all PCs. If avail-
able, the wakeup mechanism could be easily integrated in our archi-
tecture for waking up the PC as soon as the proxy has completed the
download operation. However, P2P file-sharing applications, gener-
ally, do not require that the downloaded file is immediately trans-
ferred from the proxy to the user’s PC. Instead, this can be done a
later time, for example when the user re-connects.

Our proxy-based solution is also different from the Green BitTor-
rent proposal in [21]. There, the authors modify the legacy BitTor-
rent protocol to allow those peers that have already completed
their download process and are not currently involved in any upload
operation to put their PC in sleep mode, thus saving energy. From the
viewpoint of a generic tagged peer, the other peers in the same
swarm can be in one of the following states: connected, sleeping,
and unknown. When the number of connected peers is less than a
pre-defined threshold, the tagged peer can explicitly wakeup a
sleeping peer by sending a special wakeup message to it. Green Bit-
Torrent assumes that PCs are equipped with a WoL NIC. In addition,
it introduces significant modifications in the BitTorrent protocol,
although Green BitTorrent clients are compatible with legacy cli-
ents. Instead, our proposal does not require any special hardware
and introduces only small modifications in the BitTorrent protocol.

The solution proposed in this paper was originally presented in
[22]. In this paper we have measured in greater detail the time re-
quired to download files at the proxy, considering also maximum
transfer times (instead of average values only) in case of parallel
downloads. In addition, we have refined the architectural specifica-
tion of the BitTorrent proxy and we have evaluated its performance
gains in terms of energy consumption for different power con-
sumptions of the involved computers. Finally, we have signifi-
cantly extended the discussion on the related work.

3. Energy-efficient BitTorrent architecture

Before describing the Energy-efficient BitTorrent proposal, we
provide below a brief overview of the standard BitTorrent architec-
ture. More details can be found in [23,24].

3.1. Standard BitTorrent

BitTorrent implements an unstructured overlay network cus-
tomized for file sharing [24]. In the BitTorrent terminology nodes

G. Anastasi et al. / Computer Communications 33 (2010) 794–802 795

Author's personal copy

of the overlay are called peers and the collection of peers involved
in the distribution of a given file is called a torrent or swarm. The
basic idea of BitTorrent is that peers both download and upload
(equal-size) chunks of the shared files.1 This results in the fact that
each peer downloads a given file from a multitude of other peers,
instead of downloading it from a single server as in a conventional
client-server model. The resulting capacity of such cooperative
downloading process is higher than that of the traditional client-
server architectures [25].

As shown in Fig. 1, a tagged peer wishing to download a file
from scratch needs to get a corresponding torrent file – hereafter
referred to as torrent – from the system. Torrents are very small
files, typically hosted by conventional Web servers (torrent serv-
ers), and can be found through standard Internet search engines.
A torrent contains the name of the file’s tracker. This is a node that
constantly tracks which peers have chunks of the file (i.e., belong to
the swarm). When a peer joins a swarm it registers with the track-
er and, then, periodically informs the tracker that it is still in the
swarm.

Once obtained the tracker’s address, the tagged peer opens a
TCP/IP connection to the tracker and receives a random list of peers
to be contacted for starting the download process. At any given
time the tagged peer will be in touch with a set of peers, called
neighbors, with which it exchanges parts of the file. The neighbour
set changes dynamically since, as time elapses, some peers may
leave the swarm and others may join. In addition, each peer pref-
erentially selects, for downloading chunks, those peers from which
it can achieve the highest download rate (see below). Furthermore,
every 30 s neighbors are selected completely at random, as a way
to discover new neighbors and allow new peers in a swarm to
start-up.

At a certain point in time, each peer in the swarm will have a
different subset of chunks from the file. To figure out where miss-
ing chunks can be downloaded from, periodically the tagged peer

asks each of its neighbors for the list of chunks they have. To decide
which chunks to request first the tagged node uses the Rarest First
policy i.e., it gives priority to those chunks that are less spread. Fi-
nally, to decide which requests from other peers to respond to, the
tagged node uses the Tit-for-Tat (TAT) policy, i.e., it gives priority to
peers from which it is downloading data at the highest rate. Specif-
ically, for each of its neighbors the tagged node measures the
downloading rate and, then, selects the four peers that are provid-
ing to it the highest bit rate.

3.2. Energy efficient BitTorrent

The legacy BitTorrent architecture is not energy efficient. Bit-
Torrent peers have to stay connected to the overlay network during
the whole download process of requested files, which, typically,
may take several hours. Periodically turning off peers without
modifying the BitTorrent architecture is not a viable solution for
several reasons. First of all, if a peer is downloading content, pow-
ering it off does not save any energy (related to the current down-
load), as the download itself stops when the peer turns off. Also,
powering off peers that are not downloading anything (but are
sharing content) is also not an efficient solution in general, as this
can result in decreasing the overall download performance of the
swarms they participate to. Thinking at coordinated ways of pow-
ering those peers is also not appropriate, as it would require cen-
tral control, and is thus at odds with the BitTorrent P2P design
paradigm.

In this paper we propose a proxy-based Energy Efficient BitTor-
rent (EE-BT) architecture to overcome these drawbacks. The basic
idea of our architecture is illustrated in Fig. 2. We assume a stan-
dard LAN environment where a certain number of users run BitTor-
rent peers on their PCs. One computer in the LAN behaves as a
proxy between the peers and the rest of the BitTorrent network.
The proxy can either be a dedicated computer, or a machine that
has to be continuously powered on for providing other network
services (e.g., DHCP, Web proxy, etc.). Clearly, the latter case is
preferable from an energy saving standpoint.

Fig. 1. File distribution process. The figure gives a snapshot of the system at the time when the tagged peer starts the download process.

1 The typical size of chunks is 256 Kbytes.

796 G. Anastasi et al. / Computer Communications 33 (2010) 794–802

Author's personal copy

Peers ‘‘behind” the BitTorrent proxy ask the proxy itself to
download the requested content on behalf of them. The proxy par-
ticipates to the conventional BitTorrent overlay, and takes care of
all the downloads of the peers behind it. While downloads are in
progress, the peers behind the proxy can be switched off without
stopping the requested downloads. Finally, the requested files are
transferred from the proxy to the peers upon completion. This
architectural design is clearly suitable to save energy, and also
keeps the underlying P2P principles of the original BitTorrent
architecture. The overall BitTorrent network is not modified, as
the proxy acts exactly as a standard BitTorrent peer. Modifications
are just required at the proxy and at the user PCs behind the proxy,
and are thus confined within a single LAN. Note that different prox-
ies ‘‘masking” peers on different LANs are completely independent
of each other. Therefore, this architecture is also scalable, as it does
not require modifications of the BitTorrent global architecture, nor
global coordination between (sets of) BitTorrent peers. Finally,
note that this architecture is also suitable to support mobile clients
accessing the Internet, e.g., through WiFi Access Points connected
to the LAN where the proxy is running, and, more in general, is a
solution to enable asynchronous BitTorrent downloads, which is
something not supported by the conventional BitTorrent
architecture.

3.3. Architecture and protocols

The proposed architecture falls in the family of traditional split
architectures, e.g. [26]. The architectural components between a
peer and the proxy are shown in Fig. 3.

BT Peer at the proxy is a standard BitTorrent peer. This peer is in
charge of downloading the contents requested by all users behind
the proxy. In the ‘‘internal” part of the architecture (i.e., between
the BitTorrent proxy and the user’s PC), we adopt a simple client-
server scheme, implemented by the EE-BT Client module at the
user’s PC acting as the client, and the EE-BT Server module at the
proxy acting as the server. The EE-BT Server continuously monitors
incoming requests for new downloads coming from one of the var-
ious EE-BT Clients behind it, and hands them over to the EE-BT Dae-
mon. Then, the EE-BT Daemon translates these requests in
download requests issued by the BT Peer running on the BitTorrent
overlay network. In addition to requests for downloading new files,
a BT Client can also issue commands for knowing the status of pre-
viously requested files, as well as commands to fetch the requested
files from the proxy, once they have been completely downloaded.

Between any successive requests, the user’s PC can be turned off
(or put in stand-by mode).

BitTorrent users can also upload content to the BitTorrent proxy
that has to be shared on the BitTorrent overlay. This is an addi-
tional and important advantage of our architecture. The BT Peer
at the proxy can share all the files that would be shared by individ-
ual peers running on the users’ PCs. Therefore the BT Peer at the
proxy is likely to receive more download bandwidth than any indi-
vidual peer (in case no proxy is used). Thus, our proxy-based archi-
tecture is expected to achieve lower download times for all users
(besides providing significant energy savings). We provide some
results showing this feature in Section 5.

The proposed architecture requires very simple networking
protocols. Fig. 4 shows the actions performed by the various actors
during the different phases of a file download. When a user wishes
to download a new file, the EE-BT Client running on the user’s PC
retrieves the .torrent file from a torrent server in the Internet, as
in the conventional BitTorrent architecture (steps 1–2 in Fig. 4).
Then, it uploads the .torrent file to the EE-BT Server on the BitTor-
rent proxy requesting the download of the desired file (step 3). The
EE-BT Server acknowledges the received request (step 4) and
hands over the .torrent file to its BT Peer – through the EE-BT Dae-
mon – to start the download operations according to the standard
BitTorrent protocol (steps 6-7). Upon receiving an acknowledge-
ment from the EE-BT Server, notifying that the download has
started, the EE-BT Client informs the user that the download re-
quest has been correctly issued and that the download process is
in progress. The user can thus switch off her/his PC (step 5). As
soon as the EE-BT Client on the user’s PC is re-started (step 8), it
checks the status of all file downloads previously requested to
the EE-BT Server. For each of them, the EE-BT Client asks the EE-
BT Server for a status update (steps 9–10). If the download is over,
the EE-BT Client fetches the corresponding file from the proxy
(steps 11–12). This transfer occurs among two computers con-
nected through a LAN, and thus takes much less time than a typical
BitTorrent download.

4. Energy efficiency analysis

To analyze the energy efficiency of our proxy-based EE-BT
architecture we considered the Absolute Energy Saving ðDEÞ and
the Relative Energy Saving (S), defined as the absolute and relative
energy savings achieved by our proxy-based architecture with re-
spect to the legacy architecture, i.e.,

Fig. 2. High-level representation of the energy-efficient BitTorrent architecture.

G. Anastasi et al. / Computer Communications 33 (2010) 794–802 797

Author's personal copy

DE ¼ EL � EP ð1Þ

S ¼ 1� EP

EL
ð2Þ

where EL and EP denote the energy consumed by the user’s PC to
download the same file in the legacy and our proxy-based architec-
ture, respectively.

Clearly, the energy consumed by the user’s PC in both architec-
tures is given by the total time it remains powered on, multiplied
by its power consumption PPC . Let us denote by tL and tP , the total
time the user’s PC must be powered on to completely download a
given file, in the legacy and proxy-based architecture, respectively.
As shown in Fig. 5, in the legacy architecture this time correspond
to the time required by the user’s PC to download the file, i.e.,
tL ¼ dL. In the proxy-based architecture, in addition to the time
dP required by the proxy to download the file, we need to consider
also the times taken by the user’s PC for (i) delegating the file
download to the proxy ðt1Þ and fetching the same file from the
proxy, once it has been downloaded ðt2Þ. Hence, assuming that
the proxy runs on a machine that must be continuously powered
on for other reasons (e.g., a multi-server machine) so that its

energy consumption can be neglected, Eqs. (1) and (2) can be writ-
ten as follows:

S0 ¼ 1� tP � PPC

tL � PPC
¼ 1� t1 þ t2

tL
ð3Þ

DE0 ¼ ðdL � t1 � t2Þ � PPC ð4Þ

Instead, when the proxy runs on a dedicated machine, we need to
consider explicitly its energy consumption. For the sake of clarity,
throughout we will denote with S00 and DE00 the relative and absolute
energy saving when the proxy’s energy consumption cannot be
neglected.

S00 ¼ 1� t1 þ dP þ t2

dL
� � t1 þ t2

dL
ð5Þ

DE00 ¼ ½dL � ðt1 þ t2Þ� � PPC � dP � PP � �ðt1 þ t2Þ � PPC ð6Þ

In Eq. (6), PP denotes the power consumed by the proxy. The last
passage in both (5) and (6) follows from the assumption that the
BitTorrent proxy is executed on a PC similar to the user’s PC and,
hence, dL � dP and PP ¼ PPC . Note that assuming dL � dP is actually
a pessimistic assumption, because, as we will show in later sections,

Fig. 3. Energy-efficient BitTorrent architecture.

Torrent Server User's PC BitTorrent Proxy BitTorrent Overlay

(1) GET .torrent file

(2) PUT .torrent file
(3) DOWNLOAD filename

(4) ACK(5) Switch off

(6) file download request

(7) DATA

(7) DATA

(8) Switch on (9) CHECK filename

(10) STATUS filename

(11) GET filename

(12) PUT filename

Fig. 4. Protocol actions.

798 G. Anastasi et al. / Computer Communications 33 (2010) 794–802

Author's personal copy

in general the download time when the proxy-based architecture is
used is lower than when it is not. Eqs. (5) and (6) clearly show that,
with a single PC, the energy consumption of the proxy-based archi-
tecture is higher than that of the legacy architecture. This is quite
obvious as in the proxy-based architecture we need to consider
the additional proxy’s energy consumption. However, we can ex-
pect energy savings if more PCs utilize, at the same time, the BitTor-
rent proxy for downloading several files in parallel. Let us
generalize the energy saving indices S and DE to the case when n
different users download a file in parallel using BitTorrent on their
own PC. By denoting with SðnÞ the Relative Energy Saving when the
number of PCs downloading file in parallel is n, Eqs. (3) and (5) can
be generalized as follows:

S0ðnÞ ¼ 1�
Pn

i¼1tPðiÞPn
i¼1tLðiÞ

¼ 1�
Pn

i¼1t1ðiÞ þ t2ðiÞPn
i¼1dLðiÞ

ð7Þ

S00ðnÞ ¼ 1�
Pn

i¼1tPðiÞPn
i¼1tLðiÞ

¼ 1�
Pn

i¼1dPðiÞ þ
Pn

i¼1t1ðiÞ þ t2ðiÞPn
i¼1dLðiÞ

ð8Þ

In Eq. (8),
Pn

i¼1dPðiÞ denotes the total time the proxy must remain
powered on for completing the download of all n files. Since the n
downloads are carried out in parallel the total time corresponds
to the maximum time needed to download any file, i.e.,Pn

i¼1dPðiÞ ¼ dmax
P . Hence, Eq. (8) can be re-written as

S00ðnÞ ¼ 1� dmax
P þ

Pn
i¼1t1ðiÞ þ t2ðiÞPn
i¼1dLðiÞ

ð9Þ

Finally, following the same approach, we can also derive the Abso-
lute Energy Saving DEðnÞ as a function of the number n of parallel
file downloads, when the energy consumed by the BitTorrent proxy
can, or cannot, be neglected, i.e.,

DE0ðnÞ ¼
Xn

i¼1

dLðiÞ �
Xn

i¼1

½t1ðiÞ þ t2ðiÞ�
 !

� PPC ð10Þ

DE00ðnÞ ¼
Xn

i¼1

dLðiÞ �
Xn

i¼1

½t1ðiÞ þ t2ðiÞ�
 !

� PPC �
Xn

i¼1

dPðiÞ � PP ð11Þ

Since
Pn

i¼1dPðiÞ ¼ dmax
P , and assuming PP ¼ PPC , Eq. (11) can be

re-written as

DE00ðnÞ ¼
Xn

i¼1

dLðiÞ �
Xn

i¼1

½t1ðiÞ þ t2ðiÞ� � dmax
P

 !
� PPC ð12Þ

5. Experimental evaluation

To evaluate the energy efficiency indices introduced in the pre-
vious section we need to derive the various times during which the
user’s PC(s) and proxy must remain powered on, in a real case. To

this end we set up an experimental testbed and measured the de-
lay components required for calculating both S and DE through the
expression derived in the previous section. Below, after a brief
description of the experimental testbed, we will discuss the ob-
tained results.

5.1. Testbed description

The experimental setup was based on a set of PCs intercon-
nected by a Gigabit Ethernet LAN which was, in turn, connected
to the Internet via a high-speed 100 Mbps link. By exploiting the
set of PCs we implemented two systems: a legacy BitTorrent sys-
tem and one based on the BitTorrent proxy we have developed.
All PCs use Linux Ubuntu 8.04 (Hardy Heron). The BitTorrent client
(i.e., the software implementing a BitTorrent peer) is a simple com-
mand-line client provided with Rasterbar libtorrent.

By exploiting the two developed systems, we performed a large
set of experiments and, specifically, measured the download time
(and its components) required to download the same set of files
in the legacy and proxy-based architecture. More precisely, for
each experiment we identified a given number, n, of files to down-
load and we assigned one download operation to each PC. To in-
crease the accuracy of the measurements, the same experiment
was repeated several times, using always the same number n of
files but changing every time the set of files. To achieve comparable
statistics we selected files that are approximately of the same size
and have similar popularity. Specifically, we considered file sizes in
the range [3.95 GB, 4.71 GB]. For each file the initial number of
seeds (i.e., peers that already have the whole file) was in the range
[200, 800]. To have similar experimental conditions, the experi-
ments (with and without proxy) were interleaved, so that com-
pared results are obtained with similar congestion conditions of
the Internet, and a similar number of peers.2

5.2. Experimental results

5.2.1. Energy savings
We start our analysis by investigating the energy savings pro-

vided by our proxy-based architecture, with respect to the legacy
one.

Table 1 shows the average values of delay components experi-
enced by each single PC and the BitTorrent proxy with different
number of PCs (i.e., parallel file downloads), while Fig. 6 shows
the Relative Energy Savings provided by our proxy-based solution,

Fig. 5. File download process in the legacy (top) and proxy-based (bottom) architecture.

2 Both the Internet conditions and the number of peers interested to a file are not
under our control. By interleaving the experiments with and without the proxy we
have been able to limit the variability of these parameters between successive
experiments.

G. Anastasi et al. / Computer Communications 33 (2010) 794–802 799

Author's personal copy

with respect to the legacy architecture. If the BitTorrent proxy is
running on a multi-server machine that must remain powered on
for other purposes (and, hence, the energy consumed by the proxy
can be neglected), the Relative Energy Savings S0ðnÞ do not depend
on the number n of PCs and are approximately equal to 95% for
each PC. Instead, when the proxy is running on a dedicated ma-
chine, so that its energy consumption must be taken into account,
the Relative Energy Savings S00ðnÞ increase with the number of PCs
simultaneously involved in a file download – as the proxy cost is
subdivided between an increasing number of files.

These results can be easily explained by looking at Eqs. (7) and
(9) . Assuming that (i) all files have approximately the same down-
load time (i.e., dLðiÞ ¼ dL;8iÞ, (ii) all clients experience approxi-
mately the same delay for uploading the request to the
BitTorrent proxy and downloading the file from the proxy itself
(i.e., t1ðiÞ ¼ t1; t2ðiÞ ¼ t2; 8iÞ, and (iii) the interference among cli-
ents is negligible due to the extremely large bandwidth of the
LAN, Eq. (7) can be written as

S0ðnÞ ¼ 1� n � ðt1 þ t2Þ
n � dL

¼ 1� t1 þ t2

dL
¼ S0ð1Þ ð13Þ

This means that, if the proxy runs on a multi-server machine, the
Relative Energy Saving achieved by each single PC does not depend
on the number of files to download in parallel. This also suggests
that the Absolute Energy Saving is (approximately) linearly increas-
ing with the number of PCs. We show this in more detail in the fol-
lowing. First, we compute DE0ðnÞ and DE00ðnÞ by introducing the
delay components measured in our experiments into Eqs. (10)
and (12), respectively. As far as the power consumption of PCs
and BitTorrent proxy, we need to emphasize that it strongly de-
pends on the computer type (e.g., desktop or laptop). In addition,
for the same machine, it varies over time depending on the opera-
tional mode. In [19] it is shown that typical power consumption val-
ues for a PC in normal idle state are in the range 70–100 W for
desktop machines and 15–30 W for laptops. Therefore, in calculat-

ing the absolute energy savings provided by our proxy-based archi-
tecture we considered two different values of power consumption,
i.e., 30 and 100 W. The obtained results are plotted in Fig. 7. They
clearly show that, in both cases, the Absolute Energy Savings in-
crease almost linearly with the number of PCs (i.e., number of par-
allel file downloads). For both values of power consumption taken
into consideration, the difference between the two corresponding
curves is only due to the proxy’s energy consumption.

Again, it is possible to provide an analytical explanation for the
behaviors observed in Fig. 7. By following the same arguments
used above, it is easy to show that DE0ðnÞ increases almost linearly
with the number of files:

DE0ðnÞ � n � ½dL � ðt1 þ t2Þ� � PPC ¼ n � DE0ð1Þ ð14Þ

On the other hand, when we include the energy consumed by the
proxy in the total energy consumption, we obtain (from Eq. (12))

DE00ðnÞ � n � ½dL � ðt1 þ t2Þ� � dmax
P

� �
� PPC ð15Þ

Assuming that dL � dmax
P Eq. (15) can be approximated as:

DE00ðnÞ � ½ðn� 1Þ � dL � n � ðt1 þ t2Þ� � PPC!
n

DE0ðnÞ ð16Þ

Furthermore, by following the same line of reasoning we have:

S00ðnÞ � 1� n � ðt1 þ t2Þ þ dmax
P

n � dL

� 1� ðt1 þ t2Þ
dL

� 1
n
!n 1� ðt1 þ t2Þ

dL
¼ S0ðnÞ ð17Þ

Eqs. (16) and (17) show that, for large n values, the BitTorrent
proxy’s energy consumption can be neglected. This trend does not
emerges very clearly from Figs. 6 and 7 because the considered
number of parallel file downloads (i.e., nÞ is not so large for practical
reasons. In addition, even replicating each single experiment several
times, the obtained results are characterized by a high variability
due to a number of reasons. First, the network conditions change
over time. In addition, the considered file have not exactly the same
size. Finally, the time to completely download a file is largely
dependent on the number and positions of peers having that file.

5.2.2. File download time
The results presented above clearly show the effectiveness of

the proxy-based architecture from the energy efficiency stand-
point. We will now investigate the impact of the BitTorrent proxy
on the Quality of Service (QoS) perceived by the user, i.e., on the file
download time. We will show that the proxy-based architecture
does not introduce any QoS degradation. Instead, with respect to
the legacy approach, it reduces significantly the average file down-
load time.

Table 1
Average delays experienced by each single user’s PC and BitTorrent proxy for an
increasing number of parallel file downloads.

Number of PCs dL ðsÞ t1 ðsÞ t2 ðsÞ dP ðsÞ dmax
P ðsÞ

1 8022.67 0.16 378.41 9288.53 9288.53
2 8927.82 0.32 756.82 5240.03 7596.92
3 6168.82 0.48 1135.23 4130.78 6084.92
4 7719.75 0.42 1246.50 3756.99 7612.89
5 9261.90 0.80 1892.05 6419.13 15012.28
6 10967.55 0.96 2270.45 8725.34 15104.89

-20

0

20

40

60

80

100

1 2 3 4 5 6

Dedicated Machine
Multi-server Machine

En
er

gy
 S

av
in

gs
 (%

)

Number of PCs

Fig. 6. Percentage energy savings vs. number of PCs.

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6

Dedicated Machine, 100 W
Multi-server Machine,100 W
Dedicated Machine, 30 W
Multi-server Machine, 30 W

Ab
so

lu
te

 E
ne

rg
y

Sa
vi

ng
s

(k
W

h)

Number of PCs

Fig. 7. Absolute energy savings vs. number of PCs.

800 G. Anastasi et al. / Computer Communications 33 (2010) 794–802

Author's personal copy

In the previous analysis we have assumed that the time to
download a file is not significantly affected by the proxy’s pres-
ence. To analyze this aspect we performed a set of experiments
and measured the time needed to download n files in parallel, with
the legacy and proxy-based architectures, respectively. The results
of this analysis are summarized in Fig. 8, where we plot the aver-
age download time of a single file, for an increasing number of par-
allel file downloads (each column in Fig. 8 is the average calculated
on all replicas). The results shown in Fig. 8 clearly indicate that the
BitTorrent proxy does not introduce any degradation in the QoS
experienced by user. Instead, on average, the time for downloading
a file reduces when using the proxy-based architecture. This can be
explained by considering that the peer running on the BitTorrent
proxy shares more files on the overlay with respect to any single
peer in the legacy architecture, and thus gets higher download
bandwidth. To quantify the average gain we can achieve when
using our proxy-based architecture, we computed the average time
to download a file in all the experiments we performed. The aver-
age download times were 6541s with the BitTorrent proxy and
8439s with legacy BitTorrent. Thus, the BitTorrent proxy reduces
the average download time by approximately 22%.

We wish to conclude our analysis on the file download time by
emphasizing an interesting aspect that is tightly coupled with the
BitTorrent behavior. Specifically, we analyze how the availability
on the proxy of a single (popular) file to upload can highly reduce
the download time of all files the proxy is downloading. This effect
is well exemplified by the results in Fig. 9 where we show how the
average delay experienced by the BitTorrent proxy to download
the same file is affected by the presence of a popular file on the
proxy itself. We performed two set of experiments where the
proxy is downloading, in parallel, 3 and 4 different files, respec-
tively. For each set we considered the cases when a popular file
is or is not available on the proxy. As it clearly appears from the re-
sults in Fig. 9, a single popular file can further reduce – with re-
spect to the gain already achieved with the proxy – the
download time of all the other files by 25–30%. In addition to en-
ergy efficiency, this provides a strong motivation for exploiting
our proxy-based architecture: a single popular file shared on the
proxy provides a high benefit to everyone. This suggests to adopt
policies consisting in selecting popular files available on client to
be uploaded on and shared by the proxy, as a way to optimize
the overall download performance of the system.

6. Conclusions

In this paper we have proposed a BitTorrent Proxy for energy-
efficient P2P file sharing over the Internet. It is a mechanism for

saving energy in an environment where users leave their PCs pow-
ered on for sharing file through BitTorrent. The problem is due to
permanent connectivity requirements which make the use of tra-
ditional power management techniques unsuitable. To overcome
this problem we have proposed a proxy-based BitTorrent architec-
ture where file downloads are delegated to a proxy. Our goal was
saving energy at the user’s PCs without introducing any significant
degradation of the QoS, in particular without increasing the file
download time.

We have evaluated our solution in a realistic testbed, measuring
the file download time with the legacy and proxy-based architec-
tures, respectively. Our experimental results have shown that the
proxy-based architecture can save up to 95% of the energy con-
sumed by each PC when using the legacy solution. This shows
the effectiveness of our approach from the energy efficiency stand-
point. In addition, our results have shown that using the BitTorrent
Proxy does not introduce any degradation of the QoS. Rather, the
average time to download a file reduces by approximately 22%
when using the proxy-based architecture since the number of files
shared with the overlay network by the proxy is greater then the
number of files shared by any single peer. Finally, we have also ob-
served that the presence on the proxy of a very popular file to up-
load – while the proxy is downloading files for its clients – further
reduces the average download time by 25–30%, showing additional
benefits of using our proxy-based architecture.

References

[1] K. Christensen, A.D. George, Increasing the Energy Efficiency of the Internet
with a Focus on Edge Devices, The Energy Efficient Internet Project, University
of South Florida and University of Florida, Florida, 2005–2008.

[2] S. Ruth, Green IT – more than a three percent solution, IEEE Internet
Computing Magazine 13 (4) (2009). July–August.

[3] G. Goth, The net’s going green, IEEE Computer (1) (2008) 7–9.
[4] C. Gunaratne, K. Christensen, S. Suen, B. Nordman, Reducing the energy

consumption of ethernet with an adaptive link rate, IEEE Transactions on
Computers 57 (4) (2008). April.

[5] National Energy Foundation (NEF), S. Karayi, The PC energy report, 1E,
London, 2007, <http://www.1e.com/energycampaign/downloads/1E_report
FINAL.pdf>.

[6] H. Schulze, K. Mochalski, The impact of peer-to-peer file sharing, voice over IP,
Skype, Joost, instant messaging, one-click hosting and media streaming such as
YouTube on the Internet, IPOQUE – Internet Study 2007, Leipzig, Germany,
September 2007.

[7] J. Buford, H. Yu, E.K. Lua, P2P Networking and Applications, Morgan Kaufmann
Publishers Inc., 2009.

[8] G. Anastasi, M. Conti, A. Passarella, Power management in mobile and
pervasive computing systems, in: Azzedine Boukerche (Ed.), Chapter 24 in
Algorithms and Protocols for Wireless and Mobile 12 Networks, CRC Computer
and Information Science Publisher, 2005. October.

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7

Legacy
Proxy-based

Av
er

ag
e

D
ow

nl
oa

d
Ti

m
es

 (s
)

Number of PCs

Fig. 8. Average download time experienced by each single file in the legacy and
proxy-based architecture.

0

1000

2000

3000

4000

5000

6000

7000

8000

3 4

No Popular File
One Popular File

Av
er

ag
e

D
ow

lo
ad

 T
im

e
(s

)

Number of PCs

4131

3298

7171

4977

Fig. 9. Impact on the proxy’s download time of a popular file distributed in parallel
to 3 (a) and 4 (b) peers.

G. Anastasi et al. / Computer Communications 33 (2010) 794–802 801

Author's personal copy

[9] C. Gunaratne, K. Christensen, Ethernet adaptive link rate: system design and
performance evaluation, in: Proceedings IEEE Conference on Local Computer
Networks, November 2006, pp. 28–35.

[10] K. Christensen, F. Blanquicet, An initial performance evaluation of rapid PHY
selection (RPS) for energy efficient Ethernet, in: Proceedings IEEE Conference
on Local Computer Networks, October 2007, pp. 223–225.

[11] M. Gupta, S. Grover, S. Singh, A feasibility study for power management in LAN
switches, IEEE ICNP 2004, Berlin, Germany, October 2004.

[12] S. Singh, M. Gupta, Using low-power modes for energy conservation in
Ethernet LANs, in: INFOCOM 2007 26th IEEE International Conference on
Computer Communications IEEE, Portland State University, Portland, May
2007.

[13] G. Anastasi, M. Conti, E. Gregori, A. Passarella, Performance comparison of
power saving strategies for mobile Web access, Performance Evaluation 53 (3–
4) (2003) 273–294. August.

[14] E. Pitoura, G. Samaras, Data Management for Mobile Computing, Kluwer
Academic Publishers, 1998.

[15] K. Christensen, F. Gulledge, Enabling power management for network-
attached computers, International Journal of Network Management 8 (2)
(1998) 1099–1190).

[16] C. Gunaratne, K. Christensen, B. Nordman, Managing energy consumption
costs in desktop PCs and LAN switches with proxying, split TCP, connections,
and scaling of link speed, International Journal of Network Management 15 (5)
(2005) 297–310. September/October.

[17] K. Christensen, B. Nordman, Improving the Energy Efficiency of Ethernet –
Connected Devices: A Proposal for Proxying, Ethernet Alliance White Paper,
September 2007, <http://efficientnetworks.lbl.gov/enet-pubs.html>.

[18] M. Jimeno, K. Christensen, B. Nordman, A network connection proxy to enable
hosts to sleep and save energy, in: IEEE International Performance Computing
and Communications Conference, December 2008, pp. 101–110.

[19] Y. Agarwal, S. Hodges, J. Scott, R. Chandra, P. Bahl, R. Gupta, Somniloquy:
augmenting network interfaces to reduce PC energy usage, in: Proceedings
USENIX Symposium on Networked System Design and Implementation (NSDI,
2009), Boston, MA, USA, April 2009.

[20] S. Nedevschi, J. Chandrashekar, B. Nordman, S. Ratnasamy, N. Taft, Skilled in
the art of being idle: reducing energy waste in networked systems, in:
Proceedings USENIX Symposium on Networked System Design and
Implementation (NSDI, 2009), Boston, MA, USA, April 22–24, 2009.

[21] J. Blackburn, K. Christensen, A simulation study of a new Green BitTorrent, in:
Proceedings First International Workshop on Green Communications
(GreenComm 2009), Dresden, Germany, June 2009.

[22] G. Anastasi, M. Conti, I. Giannetti, A. Passarella, Design and evaluation
of a BitTorrent proxy for energy saving, in: Proceedings IEEE
Symposium on Computers and Communications (ISCC 2009), Sousse,
Tunisia, July 2009.

[23] A.R. Bharambe, C. Herley, V.N. Padmanabhan, Analyzing and Improving
BitTorrent Performance, Technical Report MSR-TR-2005-03, February 2005.

[24] J. Kurose, K. Ross, Peer-to-peer Applications, Computer Networking. A Top-
Down Approach, fourth ed., Addison Wesley, 2007.

[25] D. Towsley, The Internet is flat: a brief history of networking over the next ten
years, ACM PODC 2008, 2008.

[26] G. Anastasi, M. Conti, W. Lapenna, A power saving network architecture for
accessing the Internet from mobile computers: design, implementation and
measurements, The Computer Journal 46 (1) (2003). January.

802 G. Anastasi et al. / Computer Communications 33 (2010) 794–802

