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In Mobile Ad Hoc Networks (MANETs), the mobility of the network users can heavily affect the perfor-
mance of networking protocols because it causes sudden connectivity changes and topological variations.
This is even more important in recent promising paradigms proposed in this field, such as opportunistic
and delay tolerant networks. For this reason, it is important to understand the characteristics of the user
movements in order to properly handle mobility when designing networking protocols for mobile ad hoc
networks. In addition, it is highly desirable to have a mobility model that accurately reproduces the user
mobility, thus enabling researchers to evaluate, either analytically or by means of simulations, their pro-
tocols under realistic mobility conditions. Recently, there have been many studies aimed to uncover the
nature of human movements. In this paper, based on recent literature, we identify three main properties
that are fundamental to characterize human mobility. Then, we propose a mobility model (HCMM) that
integrates all these three features. To the best of our knowledge, the model proposed is the first one that
combines notions about the sociality of users with spatial properties observed in real users movement
patterns, i.e., their preference to spend time in a limited number of popular locations and to preferentially
select short distances over longer ones. We study the HCMM both through simulation and analysis. Based
on this study, we highlight some of its important temporal and spatial features, and we show that they
are correctly reproduced in terms of key indicators such as jump size and inter-contact time distribution.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

With the transition from static to mobile networks, the problem
of understanding and modelling the mobility of nodes has become
a key issue in the networking research area. In the last years, a very
popular research topic has been that of human mobile ad hoc net-
works. In the conventional mobile ad hoc networking (MANET)
paradigm, an Internet-like routing layer is running on the mobile
nodes, and communication among two end points occurs only if
there is a simultaneous multi-hop path connecting the communi-
cating end points. Emulating a fixed-Internet routing abstraction
in MANET generates too much overhead and may easily make
the network collapse even in case of moderate mobility [1]. There-
fore, recently the new paradigm of opportunistic networks is being
explored [2]. In opportunistic networks no simultaneous multi-hop
path is assumed between communicating endpoints. Disconnec-
tions and partitions are not masked by a routing protocol, but
are exposed throughout the protocol stack. Thus, messages ‘‘hop”
from one node to the next one only when a suitable opportunity
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arises to progress towards the final destination. In such an environ-
ment, knowing the main features of human mobility is clearly fun-
damental to design networking solutions. In this case, we come
across mobility twice. First, the better the knowledge on human
mobility, the more smartly its properties can be exploited in order
to design efficient networking solutions. Second, once a network-
ing protocol has been designed, a preliminary evaluation of such
model must be performed before moving to the real implementa-
tion. Therefore, understanding mobility is not enough: a mobility
model is needed in order to evaluate networking protocols either
through analysis or simulations under realistic mobility conditions.

Recently, the problem of understanding human mobility has
drawn the attention of researchers working on complex systems
and mobile ad hoc networks. Different experiments have been con-
ducted, relying on a variety of measurement technologies (surveys
[3], banknote tracking [4], mobile phone traces [5], GPS equipped
portable devices [6], WLAN associations [7], Bluetooth connections
[8], etc.). Summarizing the most important results of all these re-
search studies, three key properties can be identified. First, user
movements are conditioned by their social relationships [3]. Spe-
cifically, the larger the social network, the higher the mobility
[9], and vice versa. This implies that nodes will move more fre-
quently and will visit more locations if they have many ‘‘friends”
spatial and temporal properties of human mobility driven by users’ social
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scattered all over the network. Second, users tend to visit just a few
locations, where they spend the majority of their time [10]. For
example, if we consider a metropolitan area, not all places show
the same user densities: there will be concentration points, such
as malls, universities, or highways, where a lot of people roam fre-
quently and where users periodically come back after a period of
absence. Third, users prefer shorter paths to longer ones [5], i.e.,
users usually travel over short distances and sometimes they move
farther away. For example, short distances can be associated with
commuting to and from work, while the sporadic long jumps might
be due to a trip on a day off. These three properties have thus
emerged as key building blocks of real user movement patterns.
Surprisingly enough, as discussed hereafter, current mobility mod-
els do not fully incorporate all of them. In this paper we thus pres-
ent the Home-cell Community-based Mobility Model (HCMM) in
order to fill this gap.

Current proposals for human mobility modelling can be classi-
fied into two main categories. In social-based models node move-
ments are steered using the social relationships between users
[11–13]. On the opposite, location-based solutions use only the no-
tion of preferred locations to set up the commuting schedule of
nodes [10,14]. However, none of these approaches allows to satisfy
all three characteristics of human mobility at the same time. The
social dimension is completely absent from location-based models.
Preferential locations might be present in social-based models, be-
cause nodes belonging to the same community tend to roam in the
same area. However, as there is no explicit bound between social
communities and physical locations, preferential locations may
only appear as an ‘‘accident”, and it is very difficult, often impossi-
ble, to control the associations between social communities and
geographical areas. In Section 4.1 we provide an example of such
issues, together with a mathematical model that shows how poorly
movements in the physical space can be controlled if we only con-
sider social relationships among users. For what concerns the pref-
erential selection of short distances, very few models, only
belonging to the location-based class, have accounted for it so
far, and never including the effect of nodes’ sociality.

Starting from these considerations, in this paper we propose
HCMM, a mobility model that joins social and location attractions,
but above all incorporates all the three driving forces of human
movements that we have identified above. HCMM was born as
an evolution of an existing social-based mobility model, called
CMM [12], of which it inherits the social graph structure. Differ-
ently from CMM, HCMM integrates the social nature of mobility
with its spatial dimension. For HCMM we provide analytical and
simulation evidence of its controllability. Furthermore, we show
ability to reproduce the main temporal and spatial features of real
human mobility. With respect to the latter point, we consider the
standard indices used to analyse the statistical properties of hu-
man mobility traces, which highlight the three key features we
have discussed. Temporal properties of mobility include the con-
tact time, i.e., the distribution of the duration of a contact between
two nodes, and the inter-contact time (ICT), i.e., the distribution of
the time between two consecutive contacts between nodes. Given
that messages are exchanged only when nodes are in radio range of
each other, the longer the contact, the more the messages that can
be exchanged. In addition, given that new messages can be injected
in the network at any time, a single sporadic contact cannot be en-
ough for delivering messages. Thus, the distribution of the inter-
contact times between nodes is very important: the more fre-
quently nodes get in touch, the more the opportunities for
exchanging messages. Among those two indices, inter-contact
times are considered to be the most important one. For example,
because they fundamentally impact on the behaviour of network-
ing protocols [8]. Many experiments have been conducted in order
to uncover the nature of inter-contact times (see Section 2) and
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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there is now a general agreement on the fact that inter-contact
times are distributed according to a power law with a final expo-
nential cut-off. Spatial properties of human mobility include the
distribution of the size of human jumps (or flights), defined as
the path between two consecutive waypoints (i.e., points where
the node stops for a while between two consecutive movements).
Also in this case many experiments have been conducted (see Sec-
tion 2) and, again, the jump size has been found to be reasonably
approximated by a truncated power law. This has a huge impact
on the way messages are spread across the network. Nodes that
travel over longer distances become bridges between far away
communities, and this can be decisive, e.g., for the spread of a virus
[15]. In this work we focus on inter-contact time and jump size as
the metrics that summarise the most relevant temporal and spatial
properties of human movements, and we evaluate against them
the realism of the mobility models that we consider. Specifically,
for HCMM we provide analytical and simulation evidence of its
ability to reproduce the distribution of inter-contact time and
jump size found in real mobility traces.

The paper is structured as follows. In Section 2 we survey the
existing studies on human mobility, while in Section 3 we describe
existing approaches to mobility modelling. In Section 4 we intro-
duce the CMM model, with an emphasis on one of its shortcomings
that we have named ‘‘gregarious behaviour”. We show analytically
the emergence of this behaviour in the vast majority of settings
and we explain why this is – in general – an undesired feature.
Then, we introduce and analyse one at a time the additional fea-
tures needed in HCMM to incorporate all the three key aspects of
human mobility we have discussed. First of all, in Section 5 we
show how to include bounds between social communities and
physical locations in the mobility model. In Section 6 we focus
on the spatial properties of the resulting mobility and we provide
an analytical model that describes the jump size distribution. This
model is then used to prove that additional extensions are required
to reproduce realistic jump size distributions. Thus, in Section 7 we
complete the definition of the HCMM model to include them. Final-
ly, by means of simulations, we evaluate the new model and we
check that the jump size and ICTs that it produces have the same
features of those extracted from real mobility traces.
2. Brief history of measurement studies on human mobility

Given their impact on the delay experienced by messages, ICTs
were the first property of human mobility that was extensively
studied by researchers. The first available traces tracked users’
associations with WLANs and were collected to study the users’
usage patterns of wireless networks rather than users’ mobility
patterns [16,7]. For this reason, some assumptions were needed
in order to extract information about inter-contact times from
these traces. The strongest of these assumptions is that two users
under the same AP coverage are able to communicate directly,
which is in general not true. An additional problem with these
traces is that they miss all contacts between nodes that do not oc-
cur within an AP radio range. Similar problems characterize the
data set in [17], which tracks associations with GSM towers. The
analysis of these traces yielded the first evidence for power law
distributed inter-contact times. In order to fix the problems with
infrastructure-based traces, targeted experiments were designed
to directly collect pair-wise contacts between nodes (mostly using
Bluetooth associations) in a campus [17], conference environment
[18], and research lab [8]. The analysis of these traces confirmed
the power law nature of ICTs [8]. Analysing these same traces,
authors of [19] highlighted an exponential cut-off in the tail of
the distribution of ICTs. The exponential component in pair-wise
inter-contact times is also confirmed by the analysis in [20].
spatial and temporal properties of human mobility driven by users’ social
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More recently, alongside ICTs, which relate to the temporal
properties of mobility, spatial characteristics of user movements
have drawn a lot of attention because of the impact that they
can have on the way, e.g., viruses or messages spread across the
network. Assessing the properties of human travelling patterns
has not been a simple matter. At the beginning, only indirect mea-
sures were available. In [4] this indirect measure was the path
travelled by a banknote, considered as an alias for the path trav-
elled by the human that carried such banknote. The banknote
experiment concluded that humans travel according to a Lévy
flight. Criticism to this work was based on the consideration that
if the convolutions of movements of different persons (because
this was what the banknote displacements actually reproduced)
are Lévy fights, it does not imply that the movements of individ-
uals are Lévy flights. This criticism was overcome in [5], where
the truncated power law distribution of jump size was confirmed
using a large dataset comprising traces of mobile phone users.
This same result has been obtained in [6], using GPS traces re-
lated to different settings (college campus, city, theme park, state
fair). This work also highlights the fact that the power law in the
movement patterns does not emerge as a result of external con-
straints, e.g., obstacles along the movement trajectory, but instead
it seems to be generated by human intentions, as already sug-
gested in [21].
3. State of the art on models for human mobility

Due to the importance of mobility in wireless networks,
researchers have tried to come up with mobility models being both
easy to handle (from a mathematical standpoint) and able to repro-
duce key features (from the network performance standpoint) of
real traces. The first solutions proposed were based on extremely
tractable mathematical models but failed to confront with realistic
aspects of mobility. These models are often called random mobility
models, because waypoints of consecutive movements are chosen
uniformly at random. Popular examples of such models are the
Random Waypoint and Random Direction mobility models [22].
Random mobility models were found to be not very realistic as
soon as traces of actual human mobility became available, thus
new mobility models have been proposed that try to reproduce
the most important properties of real human mobility. These pro-
posals can be categorized based on which of the three driving
forces of human mobility are included in the model (social rela-
tionships as a driving force of movements, preference for particular
locations as movement waypoints, preference for travelling over
short than over long distances).

The organization of human society into communities [23] leads
to spatial dependency among the users in the network. In fact, if
two nodes A and B belong to the same community, they tend to
spend more time together than nodes in different communities.
This correlation is captured by mobility models that use social rela-
tionships among users as the drivers of nodes’ movements. To the
best of our knowledge, the first example of this class of models was
presented in [11]. Users are organized in groups, then each group is
associated to a physical location. The movements of users follow a
predefined schedule across the locations associated with their
group. This work, however, lacks a rigorous mathematical defini-
tion of the relationships among users. A more flexible social-based
mobility model, called CMM, was presented in [12]. This model is
the starting point of our work on mobility models and it will be de-
scribed in detail in Section 4, together with its strengths and weak-
nesses. Here we anticipate that the CMM model does not respect
the second and the third properties of human mobility. As we will
show analytically in Section 4.1, users’ positions under the CMM
model are not predictable. Specifically, in the majority of configu-
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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rations all users collapse into a single location, thus practically
overthrowing the initial setting of the system. Recently, in [13]
the SIMPS model has been proposed. In the SIMPS model, nodes
move according to two behavioural rules: the socialize behaviour
corresponds to a node moving towards acquaintances, the isolate
rules implies instead a node escaping from strangers. These two
behaviours alternate according to a feedback decision-making pro-
cess which balance the volume of current social interactions
against the volume of interactions needed by the node. While both
being social-based mobility models, the social considerations on
which SIMPS is built upon are quite different from those at the ba-
sis of CMM.

So called location-based models cope with the second aspect of
mobility. Usually, they define a set of ‘‘preferred” locations for each
user and describe the algorithm according to which users move
across these locations. One of the most flexible models among
the ones in this class is the Time-Variant Community model
(TVC) [10]. In TVC, each user can be either in a normal movement
period or in a concentration period. In each period a node is as-
signed to a (different) community, that represents the frequently
visited location for that node. Then, each node moves within its
community or across the whole network according to a two-state
Markov chain, having different transition probabilities depending
on the period (normal movement or concentration) in which the
node is located. Basically, what authors of [10] do is to model dif-
ferent locations (here, communities) that realistically can have dif-
ferent popularity, e.g., at different time of the day (normal
movements or concentration period). While being analytically
tractable, the TVC model fails to explicitly include correlations
across nodes’ movements, typical of a social environment where
friends, relatives or colleagues spend their time together.

To the best of our knowledge, there exists only two mobility
models that take the third property of mobility, i.e., the preferential
selection of short distances, into account. The first model, called
SLAW [24], explicitly includes truncated power law jump sizes
by considering waypoints separated by a power law distributed
distance, and selecting the waypoint for the next movement by
minimizing the distance from the current location (least action
principle). The model also results in the emergence of locations
that are more popular than others, thus satisfying also the second
property of mobility. While being very complete, this model ap-
pears to be very complex to control and misses to consider the so-
cial properties of mobility. The second model accounting for long
tailed distances is the SWIM model, proposed in [25]. Similarly
to our model, SWIM relies on the concept of home location: nodes
select the destination points of their movement based on their
popularity among all nodes and their distance from the home
point. This model has been shown to match realistic inter-contact
times of real traces very accurately, but again the role of nodes’
sociality has not been explored.

The work presented in this paper is an extended version of our
previous contributions in [26,27]. With respect to [26], in this pa-
per we extend HCMM to account for realistic jump size distribu-
tions. With respect to [27], we complement the model for the
jump size distribution of HCMM with a generic and much more de-
tailed analytical model for computing the distribution of jump
sizes. Note that this model can be used as a starting point for com-
puting the distribution of distances under any mobility model in
which node movements occur on a grid. In addition, we also pres-
ent a simplified and more tractable model built on normal distribu-
tions. Being this distribution extremely convenient from a
mathematical standpoint, having such approximation opens up a
variety of options for further analytical investigations. In this work
we also include the evaluation of the temporal properties, in terms
of inter-contact times, of the traces generated by the HCMM
model.
spatial and temporal properties of human mobility driven by users’ social
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Table 1
Notation for CMM parameters.

N Number of nodes
C Number of communities
n Number of nodes per community
lx � ly x � y size of the reference area
gx � gy Number of cells
pr Rewiring probability
wij Weight of the social link between node i and node j
SAci Social attraction of cell ci

CAci Attractivity of cell ci

½vmin;vmax � Minimum and maximum speed
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4. Pure social-based mobility model: CMM

In this section we introduce the Community-based mobility
model (CMM), a social-based mobility model which is the starting
point of our work. In CMM nodes (i.e., users) share social relation-
ships with each other, and these relationships are represented
through a weighted social graph. Two nodes connected by a link in
the social graph are called friends, otherwise they are called non-
friends. The weight of the link expresses the strength of the social
relationship. From an operational standpoint, CMM starts by divid-
ing nodes in disjoint communities. At the system start-up the social
sub-graph related to each community is complete, and all nodes
belonging to the same community are friends. According to the
rewiring probability parameter (pr), links are uniformly rewired to-
wards randomly selected nodes in different communities. This is
the method for creating external relationships, i.e., relationships
between nodes belonging to different communities. This process
follows the Watts-Strogatz (or Caveman) model described in [28].

The social layout of the network is then mapped onto the spatial
structure of the scenario considered. In CMM nodes move in a
lx � ly area divided into gx � gy cells. Each community is initially
placed uniformly at random in one of the cells of the grid.1 The
friendship between nodes is used to trigger nodes’ movements.
The endpoint of a movement is called goal. The selection of the goal
for the next movement consist of three phases: (i) the selection of
the next goal cell, (ii) the selection of a random point inside that cell,
(iii) the selection of the speed uniformly at random over ½vmin;vmax�.
Let us consider C communities, each having assigned n nodes, and let
us focus on a generic node x. The probability that a cell is selected by
node x as the goal cell for the next movement is proportional to the
social attraction of the cell. The social attraction (SAci

) exerted by a
generic cell ci on node x is computed as the sum of the weights
wxy of the social links between node x and all its friends that either
are roaming in or moving to cell ci, divided by the number of nodes
that are currently in ci (denoted as jcij in Eq. (1)).

SAci
¼
P

y in or moving to ci
wxy

jcij
ð1Þ

A generic cell ci is then selected as next goal cell by node x with
a probability CAci

equal to

CAci
¼ SAci

XC

j¼1

,
SAcj

; ð2Þ

where j ranges from 1 to C because we only consider cells occupied
by a community.

Notation for CMM parameters is summarized in Table 1.
By definition, CMM incorporates the sociality of nodes into the

design of human mobility, thus the first driving force of human
1 CMM also includes a periodical re-assignment of communities to cells, called
reconfiguration, whose effect is however orthogonal to what we focus on in this
paper. The interested reader is referred to [12].
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movements is explicitly embedded into the model. This is not
the case for the second mobility property (preferential locations).
As we show below, in CMM it is very difficult to predict and control
nodes’ movements (e.g., in terms of the areas where nodes are ex-
pected to roam). In particular, we have detected the emergence in
CMM of what we have called gregarious behaviour of nodes: all the
nodes of a community follow the first node that has decided to exit
the community. As this can happen for all communities, it is very
likely that the network ends up in a state where all the nodes roam
in exactly the same cell, thus nullifying every notion of community,
social structure, and preferred locations. In the following we pro-
vide an analytical model for CMM that defines the probability for
the gregarious behaviour to happen. In addition, we also perform
a quantitative analysis that shows that the conditions under which
the gregarious behaviour occurs represents the vast majority of the
operating conditions of the mobility model.

4.1. Gregarious behaviour in HCMM

In order to provide a comprehensive study of the impact of the
gregarious behaviour on the CMM model, in this section we design
a mathematical model of the phenomenon, and then we discuss
the conditions under which it occurs. The key step to model the
gregarious behaviour is to find the probability that a node remains
in its starting cell despite the fact that another node has moved
out. To this aim, we will study how a tagged node k that goes
out of its starting cell influences the movements of the other nodes
of its community. Without loss of generality, we consider a simple
scenario with two communities only, placed in two distinct cells.
At the system start-up, n nodes are placed in node k’s cell, and
f � n nodes in the other cell (hereafter, node k’s cell is denoted as
starting cell, and the other cell as destination cell), f being a param-
eter greater than 0. All nodes but node k have only social links
within their community, while node k has also links with nodes
in the other community. It is clear that this is the least favourable
scenario for the gregarious behaviour to occur because all nodes
but k are very tightly connected to each other. It is trivial to show
that the probability of node k moving outside its starting cell at
least once over n movements is 1� ðCAstartÞn, which approaches 1
for n sufficiently high. This means that node k moves outside its
starting cell at some point in time with high probability. To inves-
tigate the gregarious behaviour, we compute the remaining proba-
bility (Prem), defined as the probability of no other member of node
k’s community to move towards the destination cell after k has
moved. When Prem approaches 0, at least one node in the starting
cell follows node k with high probability. As will be clear from
the following analysis, this may generate an avalanche effect such
that all nodes in node k’s community follow node k in the destina-
tion cell, thus revealing the gregarious behaviour.

We choose to study the case of a single node (k) having links
outside its community, because, as we will show analytically, it
represents the weaker condition for the gregarious behaviour to
take place. Therefore, the Prem formula computed in the following
section is actually an upper bound of the remaining probability
achieved in the general case.

Notation used throughout this section is stated in Table 2.

4.1.1. Analytical model
In this section we derive a closed form equation for the remain-

ing probability (Prem) and then we explore the parameter space of
CMM, showing that in the vast majority of (and in the more realis-
tic) configurations, nodes in CMM behave according to the gregar-
ious behaviour.

Before computing Prem, we first compute the probability that a
single node goes out of its starting cell after node k has left. For
the sake of simplicity, we hereafter assume that the degree of
spatial and temporal properties of human mobility driven by users’ social
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Table 2
Notation used in Section 4.1.

f � n Fraction of nodes in the destination cell
k Tag of the reference node
Prem Probability that no member of node k0 community follows node k
Ci Community to which node i belongs
wk Weight of all the social relationships between node k and

every other node
�w Average weight
s Expected minimum number of times that the selection algorithm is

performed
l Ratio between the length of the simulation area edge

and the length of the single cell edge
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friendship between node k and each other node of the same com-
munity is the same, i.e., wi;k ¼ wj;k,wk;8i; jjCi ¼ Cj. Remember that
no node other than k has links outside its community.

Lemma 1. The probability Pout that a generic node i chooses to exit its
current community and to follow node k is equal to

Pout ¼
wk=ðfnþ 1Þ

wk=ðfnþ 1Þ þ �w
; ð3Þ

where �w denotes the average social weight.

Proof. Applying Eq. (1), after node k starts moving outside the
starting cell, each node i of its community (i.e Ck ¼ Ci) is attracted
by the destination cell with a social attractions equal to

SAðiÞðdestÞ ¼ wi;k=ðfnþ 1Þ ð4Þ

and by the starting cell with a social attraction equal to

SAðiÞðstartÞ ¼
X

j2cstart

wi;j=ðn� 1Þ: ð5Þ

Note that, based on this definition in Eq. (1), a node is associated
with the destination cell as soon as it selects that cell as its next
goal.

Eqs. (4) and (5) already show two interesting features. First, the
attraction of node k on the other nodes in the same community
depends not only on the strength of the social relationships within
the community (wi;k), but also on the number of nodes associated
with the destination cell (fn+1). The more the nodes associated
with the destination cell, the less the attraction that k exerts on the
other nodes. Second, it can already be shown that we are
considering a worst-case scenario for the gregarious behaviour to
occur. If several nodes had social relationships outside their
community, there would be more nodes going outside the starting
cell. The attraction exerted by the destination cell (or the joint
attraction exerted by destination cells, more in general) on each
remaining node will be greater than SAðiÞðdestÞ in Eq. (4), thus
increasing the probability of at least one such node to go out of
the starting cell.

Going back to our reference scenario, the probability that a
generic node i in node k’s community goes out of the starting cell is
equal to

Pouti
¼ wi;k=ðfnþ 1Þ

wi;k=ðfnþ 1Þ þ
P

j2cstart
wi;j=ðn� 1Þ ð6Þ

and thus 1� Pouti
represents the probability that node i remains in the

starting cell at the next step. We approximate �w ’
P

jwi;j=ðn� 1Þ,
where �w denotes the average of the distribution of weights between
nodes of the same community. Under the assumption wi;k ¼ wj;k ¼
wk;8i; jjCi ¼ Cj, Eq. (6) thus becomes Eq. (3).

Note that a special case is represented by n = 2. In this case,
SAðiÞðstartÞ is clearly 0 (just one node is in the starting cell after node k
leaves), and therefore Pout is equal to 1. h
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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Eq. (3) shows the probability of a node getting out of the start-
ing cell at the beginning of each user movement while node k is
associated with the destination cell. To compute the remaining
probability we must thus consider how many times (on average)
such generic node has the opportunity of following’ node k (Lemma
2). The longer node k is associated with the destination cell, the
longer other nodes have the opportunity of following it. In the
worst-case scenario (from the gregarious behaviour standpoint)
node k comes back to the starting cell right after reaching the goal
in the destination cell (this corresponds to the minimum possible
time during which node k is associated with the destination cell).

Lemma 2. The expected minimum number �s of times that each node
performs the goal selection algorithm while k is associated with the
destination cell is equal to the ratio l between the length of the
simulation area edge and the length of the single cell edge.

�s ¼ l ð7Þ

Proof. Considering an average case analysis, the number of times a
node i (in the same community as node k) runs the next goal selec-
tion algorithm while node k is associated with the destination cell
is equal to the ratio between the average time it takes for node k to
reach the goal in the destination cell (T ðoutÞ) and the average time it
takes for node i to complete a random movement inside the start-
ing cell (TðinÞ). Under the assumption of square cells, the average
length of a random movement inside the grid (d) can be assumed
to be proportional to the average length of a random movement
inside a single cell (dint), with proportionality constant l (equal to
the ratio between the edge of the grid and the edge of the cell).
If we define V as the average speed at which nodes move, then
TðoutÞ

TðinÞ
¼ d

V
� V

dint
¼ d

dint
¼ l holds true. h

It is now possible to compute the closed form expression of the
remaining probability.

Theorem 1. The probability that no node follows node k once it has
left its community is given by

Prem ¼ 1� wk=ðfnþ 1Þ
wk=ðfnþ 1Þ þ �w

� �l
" #n�1

: ð8Þ

Proof. The probability that a generic node chooses a local goal
for the next movement is equal to 1� Pout . On average, the prob-
ability that a local movement is chosen every time the node per-
forms the goal selection algorithm is equal to ð1� PoutÞ

�s. As there
are n� 1 nodes in the starting cell (after node k’s departure), the
probability that all of them choose only local movements is
equal to ð1� PoutÞ

�sðn�1Þ. After simple substitutions, we obtain
Eq. (8). h
4.1.2. Occurrence of the gregarious behaviour in CMM
In this section we explore the domain of the mobility model

parameters under which the remaining probability derived in Eq.
(8) triggers the gregarious behaviour. When not otherwise speci-
fied, parameters are set according to Table 3. Note that in the fol-
lowing we consider two alternatives for assigning relationships
between nodes (weights) before rewiring. In the first one, weights
are uniformly distributed between 0 (not included) and 1. In the
second one, weights between friends are uniformly distributed be-
tween 1 � threshold and 1, with threshold being a configurable
parameter ranging from 0 to 1. These two methods are equivalent
when threshold is equal to 1. The second alternative is the one actu-
ally implemented in CMM because it allows to control the average
social weight within a community. Without the threshold, the
average social weight between friend nodes ( �w) is stuck at 0.5,
spatial and temporal properties of human mobility driven by users’ social
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Fig. 4. Prem as a function of wk and �w.

Table 3
Default values for the model parameters.

Parameter Value

n 10
l 5
�w 0.5
wk 0.5
f 1
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while, with the threshold-based approach, �w is equal to 1 � thresh-
old/2, and it thus ranges between 0.5 and 1.

Fig. 1 illustrates the Prem dependence on n (the number of the
nodes of k’s community), and l (the ratio between the movements
duration outside and inside a cell). Figs. 2 and 3 compare selected
curves from the plot in Fig. 1 (thus derived through the model)
with simulation results (confidence intervals have 90% confidence
level).2 This comparison shows that the analytical model is accu-
rate, particularly starting from medium values of n and l.

For small values of l, the grid has few cells and the duration of
k’s movement outside the starting cell is not so different from
the duration of nodes’ random movement inside a cell. Thus, a gen-
eric node i has not many opportunities of going outside the starting
cell, because node k is associated with the destination cell only for
a relatively small amount of time. The trend highlighted in Fig. 1
generally holds true when considering the impact of l, irrespec-
tively of the other parameters’ configurations. Therefore, we will
not analyse the impact of l further on.

To better understand the behaviour with respect to n, let us re-
write Eq. (8), approximating wk with its average value �w. It is easy
to show that Eq. (8) becomes Prem ¼ ½ð1� ð1=nþ 2ÞÞl�n�1. The
remaining probability of a single node on a single movement (1-
(1/n+2)) increases with n, because a large n corresponds to a
‘‘heavy” community, that exerts a strong attraction on its mem-
bers. However, as the number of nodes increases, it is more and
more difficult that all nodes remain in starting cell. The joint effect
(shown in Fig. 1) is that Prem is significantly greater than 0 only for
small values of n.

In Figs. 4–6 we analyse how the strength of social relationships
(modelled through the parameters wk and �w) impact on the
remaining probability. Specifically, in order to have a complete
view across the whole parameter space, in Fig. 4 we explore the
whole range of possible values for the parameters, irrespective of
the particular distribution used to actually assign weights. Note
that, when wk is small, i.e. when node k exerts a weak attraction
on the nodes of the starting cell, the main contribution to Prem is
due to �w (i.e., the attraction between nodes in the starting cell):
2 Similar curves have been derived also with respect to other parameters analysed
in the following (not reported here due to space reasons).
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if �w is high, nodes are more likely to remain in their current cell.
However, as soon as wk increases beyond 0.5, Prem drops approxi-
mately to 0, regardless of the weights between nodes of the same
cell. This is an important results, because it highlights that the gre-
garious behaviour occurs in the CMM model for a large range of
ðwk; �wÞ values. Remaining probabilities significantly greater than
0 are achieved only in the region (zone A in Fig. 4) with high attrac-
tion to the starting cell (high �w), and low attraction of node k (low
wk). However, in the following we show that these operating con-
ditions cannot be achieved with the uniform weight assignment
used by CMM, not even by controlling the average value through
spatial and temporal properties of human mobility driven by users’ social
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the threshold parameters. To this aim, recalling that social weights
are sampled from a uniform distribution in the interval [1 � thresh-
old, 1], we plotted the remaining probability for lowest, intermedi-
ate, and highest wk value (namely 1 � threshold, 1 � threshold/2,
and 1), as the threshold value varies (Fig. 5). Non negligible remain-
ing probabilities are exclusively achieved when threshold is high
(greater than 0.8) and wk happens to be low (=1 � threshold). For
the operating zone A to be reached, we need also �w to be high.
However, as can be seen in Fig. 6, when the threshold value is great-
er than 0.8, �w is below 0.6, making configurations of ðwk; �wÞ in zone
A practically not feasible. Thus, the region with maximum remain-
ing probability in the ðwk; �wÞ space where CMM can actually oper-
ate is zone B in Fig. 4, where, however, the remaining probability is
still quite low.

In this first set of plots we considered f equal to 1 (i.e., the same
number of nodes in the starting and destination cells). This choice
is coherent with the original implementation of the CMM model, in
which the number of nodes in each cell at the system start-up is
almost the same. In real social networks, however, non-homoge-
neous communities are quite common. In the following we thus
investigate the gregarious behaviour with non-homogeneously
populated communities. Eq. (4) highlights how f impacts on the so-
cial attraction of the destination cell. When the destination cell is
more populated than the starting cell (f > 1), node k’s attraction
is smoothed out, while, when it is less populated (f<1), the attrac-
tion is amplified.

Figs. 7 and 8 basically confirm the behaviour highlighted be-
fore. Even when the destination cell is more populated (f>1),
non-negligible remaining probabilities are achieved when the
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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attraction of node k is rather weak (low wk values). Clearly, the
greater the destination cell’s population, the lower the attraction
it exerts on the members of node k’s community, the greater the
remaining probability. Specifically, we have found that the
remaining probability is always greater than 0.5 as f increases be-
yond 10. However, note that such high values for f are not that
sensible, as f = 10 means that the destination community has 10
times more members than the starting community. Finally,
Fig. 8 shows that, for more sensible ranges of f, the only chance
of having high remaining probability is a very high threshold
(which implies, on average, low attraction of node k, because
wk � Uð1� threshold;1Þ) and a densely populated destination cell
(f > 1). Note that when the threshold approaches 1, the attraction
of node k becomes negligible.

The results shown in this section clearly highlight that the gre-
garious behaviour is a characteristic feature of the original CMM
model that occurs in the vast majority of its configurations. The
gregarious behaviour is both often undesired and hardly control-
lable. Often undesired because only for very few and very specific
applications (e.g., war scenarios) this behaviour can be considered
realistic. Hardly controllable because the area in which all nodes
converge is not predictable but depends on the evolution of the
system. In order to avoid the gregarious behaviour, and more in
general to include the preferred locations property of realistic
mobility, in the next section we propose the HCMM model,
which, starting from the social structure defined in CMM, intro-
duces the concept of attractions exerted by the physical places
in which the social relationships between users usually take place
(e.g., the working place). These locations become the preferred
locations for the nodes of each community, thus satisfying the
second property of human mobility that we have discussed in
Section 1.
5. Adding spatial attraction: HCMM

In this section we extend the CMM model to include attractions
exerted by the physical places in which social relations usually
take place. The resulting version of the Home Cell Mobility Model,
initially defined in [26], merges two fundamental aspects of human
mobility: social and location attraction. The main idea behind this
model is that users move towards places where the people they
share social relationships with are likely to be because that is their
typical ‘‘home” location (at that point in time). Social and topolog-
ical structures in HCMM are the same as in CMM, but the way they
are mapped onto each other is different. As in CMM, nodes are or-
ganized into social communities, and each community is initially
assigned to one of the cells of the grid. Differently from CMM,
HCMM, as the name suggests, uses the concept of home cell. Each
spatial and temporal properties of human mobility driven by users’ social
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user is assumed to belong to a main social community (at any gi-
ven point in time). The user’s home cell is defined as the cell within
which the members of the user’s main social community preferen-
tially move. As in CMM, in HCMM when a node is located in its home
cell, it selects its cell or another cell according to the social attrac-
tion exerted on it. Unlike in CMM, in HCMM the social attraction
(SAci

) exerted by a generic cell ci is computed as the sum of the
weights of the social links between node x and all nodes that have
ci as their home cell, irrespective of their current location:

SAci
¼
P

y2ci
wxy

jcij
ð9Þ

(where the notation y 2 ci means that ci is the home cell of node y).
This maps the idea of the home cells being a ‘‘proxy” for the friend
nodes of the same community. A generic cell ci is then selected as
next goal cell of node x with a probability CAci

defined as in Eq. (2).
On the other hand, when x is located in a cell other than the

home, the selection of the next goal in HCMM is performed as fol-
lows. With a probability pe, node x remains in the external cell for
the next movement, while it goes back to the home cell with prob-
ability 1� pe. Once the next goal cell is selected, one point inside
that cell is chosen uniformly at random as in CMM, and the node
starts to move towards the goal. The whole process is summarised
in Fig. 9 using a Markov Chain, where Hi denotes the home cell of
node i.

Fig. 10 shows the distribution of the inter-contact times gener-
ated by HCMM in one representative configuration we have tsted
(specifically, when 30 nodes, evenly grouped into 3 communities,
move in a square of size 1250 m � 1250 m, divided in a 5� 5
grid). The rewiring parameter is set alternately to 0.03, 0.1, and
0.5. The trend that emerges is that of a heavy-tailed behaviour
up to a certain point, after which there is a sudden exponential de-
crease. This result matches the distribution of ICTs extracted from
real movement traces, thus confirming the ability of HCMM to
reproduce realistic temporal properties of human movements.
HiCAci

CAc1

CAcC−1

c1 pe1− pe

...

cC−1

1− pe

pe

HiCAci

CAc1

CAcC−1

c1 pe1− pe

...

cC−1

1− pe

pe

Fig. 9. Markov chain for standard HCMM.
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In the next section we show how complementing sociality with
spatial attraction removes the emergence of the gregarious behav-
iour, thus drastically improving the controllability of the model in
terms of the time spent in the various physical locations.

5.1. Predictability of users’ movements

In this section we analytically investigate the ability of CMM
and HCMM to produce a predictable outcome in terms of the ex-
pected time spent by nodes inside (E½Tin�) and outside (E½Tout �) their
home cell. These characteristic times are particularly relevant be-
cause nodes, when moving outside the starting community, meet
new nodes and therefore increase their transmission opportunities.
On the contrary, when nodes roam for a long time (or for good, in
the extreme case) within their starting community, they have to
leverage the mobility of other more social nodes (if any), to deliver
messages to nodes of the other communities. Being able to control
E½Tin� and E½Tout� is therefore an important property of mobility
models for opportunistic networks.

For ease of presentation, we still assume to have just two cells,
the starting cells and the destination cell. The destination cell can
jointly represent all cells other than the starting cell. We assume
that all links can be rewired at the system start-up (with probabil-
ity pr). Therefore, we do not assume any difference between a
tagged node (node k) and the other nodes any more. We also do
not focus any more on the event of a particular node exiting the
starting cell. Notation used in this section is stated in Table 4.

With respect to internal and external movements, CMM and
HCMM can be modelled with a two-state discrete Markov chain
(Fig. 11), where the ‘‘IN” state corresponds to a node roaming with-
in its starting cell and the ‘‘OUT” state corresponds to a node being
outside the starting cell. For both CMM and HCMM the following
proposition holds, which follows directly from the definition of
the two models (Eq. (2)).

Proposition 1. The transition probabilities pin and pout for both CMM
and HCMM are given by

pin ¼
SAðoutÞ

start

SAðoutÞ
dest þ SAðoutÞ

start

pout ¼
SAðinÞdest

SAðinÞdest þ SAðinÞstart

;

ð10Þ

where SAðinÞstart and SAðinÞdest (SAðoutÞ
start and SAðoutÞ

dest ) represent the social attrac-
tions, namely, of the starting and destination cells when the node is in
the IN (OUT) state.

CMM and HCMM differ in how the attractions of the starting
cell and of the external cell are computed. Let us start with the case
of CMM. Note that, with respect to the analysis in Section 4, here
spatial and temporal properties of human mobility driven by users’ social

http://dx.doi.org/10.1016/j.comcom.2010.01.013


Table 4
Notation used in Section 5.1.

pe Probability of remaining in an external
cell for the next movement

E½Tin� Expected time spent inside the home cell
E½Tout � Expected time spent outside the home cell
q Number of nodes belonging to the starting cell

that are currently outside
q0 Number of nodes belonging to the destination

cell that are currently outside

SAðinÞstart , SAðinÞdest
Social attraction of the starting and destination
cell in the IN state

SAðoutÞ
start , SAðoutÞ

dest
Social attraction of the starting and destination
cell in the OUT state
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out1−p pout

p in in1−p
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Fig. 11. Node’s status in HCMM and CMM.

C. Boldrini, A. Passarella / Computer Communications xxx (2010) xxx–xxx 9

ARTICLE IN PRESS
we consider the more general case of an arbitrary number of nodes
roaming in the starting and destination communities, as well as
the case of an arbitrary number of nodes having social relation-
ships outside their home cell. The following theorem holds.

Theorem 2. (Social attractions for CMM). The attractivity of the
starting cell and of the destination cell under the CMM model is as
follows:

SAðC;inÞstart ¼
ðn�1�qÞð1�prÞþ

ðn�1Þpr
fn q0

n�qþq0 � �w

SAðC;inÞdest ¼
qð1�prÞþ

ðn�1Þpr
fn ðfn�q0Þ

fn�q0þq � �w

SAðC;outÞ
start ¼

ðn�qÞð1�prÞþ
ðn�1Þpr

fn q0
n�qþq0 � �w

SAðC;outÞ
dest ¼ ðq�1Þð1�prÞþ

ðn�1Þpr
fn ðfn�q0Þ

fn�q0þq � �w

;

8>>>>>>>>><
>>>>>>>>>:

ð11Þ

where q (q0) are the number of nodes of the starting (destination) cell
that are currently roaming in the destination (starting) cell.

Proof. In the case of CMM, the attraction to a cell dynamically
depends on the number of nodes actually being in that cell. For
the sake of simplicity, we carry on the analysis under the hypoth-
esis that q nodes of the starting cell are roaming in the destination
cell, and q0 nodes of the destination cell are roaming in the starting
cell. In addition, we assume that the initial number of nodes in
each cell is, respectively, n and f n. Therefore, in the starting cell
there are n � q nodes initially assigned to the community in the
starting cell that are still in that cell, and q0 nodes belonging to
the community in the destination cell and that have moved to
the starting cell. Analogously, there are fn� q0 nodes initially
assigned to the destination community that still are in the destina-
tion cell, while q nodes in the destination cell come from the com-
munity in the starting cell. In order to compute the social
attractions, we need to compute the expected fraction of nodes
that are friends of a tagged node k belonging to the community
assigned to the starting cell. Let us consider the case of this node
being in the IN state. Being the rewiring process uniform, the
expected number of social links still pointing towards nodes ini-
tially assigned to the same community is ðn� 1� qÞð1� prÞ for
those nodes that are still in the starting cell, and ð1� prÞq for those
that are currently in the destination cell. Of the initial n � 1 ‘‘inter-
nal” links of node k (remember that initially communities are fully
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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connected), prðn� 1Þ have been rewired towards nodes belonging
to the destination community. Of these prðn� 1Þ links, on average
the number of links rewired towards a node of the destination cell
that is currently still there is ðn� 1Þpr

fn�q0

fn , while the average num-
ber of links rewired to nodes of the destination cell that have
moved to the starting cell is ðn� 1Þpr

q0

fn. When we consider the case
of node k having moved to the destination cell (thus being cur-
rently in the OUT state), the computation is very similar to what
explained above, except for the presence of node k that now must
be accounted for in the counter for nodes in the destination cell. As
an example, let us consider the social attraction exerted by the des-
tination cell on node k when it is in the IN state. This attraction is
determined by the qð1� prÞ friends belonging to the starting com-
munity that have moved to the destination cell and by the
ðn� 1Þpr

fn�q0

fn friends belonging to the destination community and
that are still in the destination cell. According to Eq. (1), we can

write SAðC;inÞdest as
Pqð1�pr Þ

j¼1
wkjþ
Pðn�1Þpr

fn�q0
fn

j¼1
wkj

fn�q0þq . For the sake of simplicity,

we approximate
Pz

j¼1wkj with z �w, i.e., we substitute the sum of z
continuous random variables (wij) with z times their expected
value. After applying this simplification, we get the expression

for SAðC;inÞdest in Eq. (11). Based on the above line of reasoning, it is pos-

sible to derive also SAðC;inÞstart , SAðC;outÞ
start , and SAðC;outÞ

dest . �

Computing the attractions under the HCMM model is much
simpler.

Theorem 3. (Social attractions for HCMM). The attractivity of the
starting cell and of the destination cell under the HCMM model is given
by the following:

SAðINÞstart ¼ �w

SAðINÞdest ¼
prðn�1Þ �w

fn

SAðOUTÞ
start ¼ 1� pe

SAðOUTÞ
dest ¼ pe

8>>>>><
>>>>>:

: ð12Þ

Proof. For HCMM we are interested only in the IN state, because
here is when social attractions play a role. When the system is in
the IN state, the attraction to the starting cell depends only on
the nodes having the starting cell as home cell (Eq. (9)). In addition
to node k, the number of nodes that share the starting cell as home
cell is n� 1 (the reference node itself must not be considered),

therefore SAðINÞstart ¼
Pðn�1Þð1�pr Þ

j¼1
wkj

n . The social attraction of the destina-
tion cell can be computed according to Eq. (9). The expected num-
ber of social links rewired to the destination community is
prðn� 1Þ. Therefore the social attraction of the destination cell is

given by SAðINÞdest ¼
Ppr ðn�1Þ

j¼1
wkj

fn . By applying the approximationPz
j¼1wkj ’ z �w, we obtain SAðINÞstart and SAðINÞdest as in Eq. (12). The formula

for SAðOUTÞ
start and SAðOUTÞ

dest follow directly from the definition of the
HCMM model. h

By substituting Eqs. (11) and (12) in Eq. (10), we obtain the fol-
lowing corollary.

Corollary 1. The transition probabilities for CMM and HCMM are
given by:

pcmm
in ¼ fnþq�q0ð Þ fnðn�qÞ �1þprð Þ�ð�1þnÞpr q0ð Þ

pr ð�1þf Þnþ2q�2q0ð Þ fnðn�qÞ�ð�1þnÞq0ð Þþfn �ðn�qÞð�1þfnþ2qÞþð1þn�2qÞq0ð Þ

pcmm
out ¼�

n�qþq0ð Þ fnqþpr fnð�1þn�qÞ�ð�1þnÞq0ð Þð Þ
pr ð�1þf Þnþ2q�2q0ð Þ fnð�1þn�qÞ�ð�1þnÞq0ð Þþfn qþ2qð�nþqÞþfnð1�nþqÞþð�1þn�2qÞq0ð Þ

8<
: :

ð13Þ
phcmm

in ¼1�pe

phcmm
out ¼

ð�1þnÞpr
fnþð�1þnÞpr

(
: ð14Þ
spatial and temporal properties of human mobility driven by users’ social
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Finally, the expected time spent in each state of the Markov
chain in Fig. 11 can be computed as follows.

Theorem 4. (Sojourn time). The expected time spent in the IN and
OUT state by a node moving according to the two-state Markov chain
in Fig. 11 is given by the following:

E½Tin� ¼ pinð1�poutÞ
pinþpout

� T ðlocalÞ

E½Tout� ¼ pout ð1�pinÞ
pinþpout

� TðlocalÞ þ pinpout
pinþpout

� 2T ðtransÞ

8<
: ð15Þ

Proof. The limiting probabilities pin ¼ pin=ðpin þ poutÞ, and
pout ¼ pout=ðpin þ poutÞ for the reference Markov chain follows from
the application of standard Markov theory [29]. The expected time
spent in the IN (or OUT) state can be computed by conditioning on
the fact that the node has just entered the IN (or OUT) state accord-
ing to the following:

E½Tin� ¼ P½EIN� � E½TinjEIN � ¼ poutpin � E½TinjEIN �
E½Tout� ¼ P½EOUT � � E½ToutjEOUT � ¼ pinpout � E½ToutjEOUT �

�
ð16Þ

where EIN and EOUT denote the events ‘‘the node enters the IN state”
and ‘‘the node enters the OUT state”, respectively, while poutpin and
pinpout are the probabilities of these events. In fact, e.g., the proba-
bility of entering state IN is equal to the probability of not being
in state IN joined with the probability of selecting state IN for the
next step. E½TinjEIN� and E½ToutjEOUT � corresponds to the expected time
spent in the IN and OUT states given that the node has just entered
that state. The number of consecutive roaming steps in the same
state are distributed according to a geometric law with success
probability equal to pout for the IN case and pin for the OUT case.
Therefore their expected value is equal to 1�pout

pout
and 1�pin

pin
, respec-

tively. The duration of each step both in the IN and OUT state can
be approximated with TðlocalÞ, while the duration of the transitions
between the states can be approximated with TðtransÞ. If we assume
that the duration of the transition from the IN to the OUT state
(and vice versa) contributes to the expected time spent outside
the IN state, then the following equalities hold:

E TinjEIN½ � ¼ 1�pout
pout
� TðlocalÞ

E ToutjEOUT½ � ¼ 1�pin
pin
� TðlocalÞ þ 2TðtransÞ

8<
: ð17Þ

In both CMM and HCMM local movements within the same cell are
equivalent to Random Waypoint epochs. Therefore, the expected
Tlocal can be computed as in [30]. Ttrans is equal to Ltrans=V , i.e, Ttrans

is equal to the ratio of two independent random variables, the tran-
sition length (with probability density fL) and the velocity of nodes
(with probability density fV ). The formula for the probability density
function of the ratio Z of two independent continuous random vari-
ables X and Y is well-known [31]. Unfortunately, there is no closed
form for the probability density of Ltrans (see Section 6.1, where
Ltrans ¼ Pcicj

ðdÞ). Therefore, for the sake of convenience, we use the
approximation proposed in the proof of Lemma 2. Finally Eq. (15)
follows after substituting Eq. (17) into Eq. (16). h

Theorem 4 is very important because it highlights the impact of
Corollary 1 on the controllability of CMM and HCMM. In CMM the
closed form expression of E½Tin� and E½Tout � depend on the dynamic
evolution of the users’ movements, because pcmm

in and pcmm
out depend,

according to Corollary 1, on q and q’, which are not model param-
eter, but change based on the actual nodes’ positions. Therefore, in
CMM it is very hard to set model parameters to achieve a desired
nodes’ behaviour as far as nodes’ physical positions are concerned.
On the other hand, in HCMM E½Tin� and E½Tout� do not depend on the
dynamic evolution of the system, but depend only on f, n, pr , and pe,
i.e., on the configuration parameters of the model. This means that
HCMM, while retaining the social theoretical approach of CMM,
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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also provides simple knobs to control the time spent by nodes in
the preferred physical locations. These remarks are highlighted in
Fig. 12, which plots E½Tin� and E½Tout� for CMM and HCMM as func-
tions of q (time is normalised with respect to TðlocalÞ and f, n, pr , and
pe are the same for both CMM and HCMM).

6. Analytical model for jump size distribution

So far, we have analysed the HCMM model in terms of its tem-
poral properties, of which we have highlighted the controllability
and predictability. In the remaining of the paper we study the spa-
tial properties of HCMM. We prove that the model defined in Sec-
tion 5 is not able to reproduce realistic spatial properties of
mobility and we improve it accordingly. To this aim, we first intro-
duce an analytical model that describes the distribution of jump
size under a generic grid-based mobility model, and then we spe-
cialize this model to the HCMM case.

The intuition of what we formally prove in the rest of the sec-
tion is as follows. Analysing HCMM from the point of view of
jump sizes, we identify two main kinds of movements: move-
ments within the same cell (or internal) and movements from
one cell to another (or external). External movements are gener-
ally longer than internal movements, because they are not con-
fined to a single cell. External movements are determined by
the number of external links: the more the social links towards
nodes belonging to different communities, the higher the number
of external movements, because nodes tend to be more attracted
outside the home cell. The number of external links is determined
by the rewiring process. This process is uniform across different
communities, because the node towards which a link is rewired
is selected uniformly at random. In addition, when communities
have the same number of members, all the nodes start with the
same number of links, and these links have the same probability
of being rewired. These two considerations imply that, on aver-
age, all the communities, and therefore the cells associated with
them, have the same probability of being selected as goals for
external movements. Therefore, in HCMM, there is no preferential
selection of short paths (closer cells) over long paths (distant
cells), and this is in contrast with the spatial characteristics of
real human mobility. In the following, this argument is formal-
ized using a mathematical model, in which we denote the jump
size distribution as PðdÞ. Specifically, in Section 6.1 we provide
a framework for computing PðdÞ that is common to all grid-based
mobility models, then (Section 6.2) we specialize this framework
for HCMM. Notation used throughout this section is stated in
Table 5.
spatial and temporal properties of human mobility driven by users’ social
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Fig. 14. Points on different segments.

Table 5
Notation used in Section 6.

P(d) Jump size distribution
Pci cj ðdÞ Jump size distribution for paths between cell ci and cell cj

PintðdÞ Jump size distribution for paths inside the same cell
a Cell width and height
Px1 ; Px2 Points in a one-dimensional space
P1; P2 Points in a bidimensional space
pij Probability of having a movement between cell ci and cell cj

pint Probability of having a movement inside a cell
ne Average number of links rewired towards nodes belonging to a

different home cell for each node

ncj
e Average number of links rewired towards nodes having as home cell

a generic cell cj

PðciÞ Steady state probability of being in cell ci

Pðcj jciÞ Probability of a transition from ci to cj
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6.1. Distances between random points in different cells

In this section we focus on the general framework for P(d). As
described before, under the assumption that nodes can move
either between two random points within the same cell or be-
tween two random points in different cells, the set of the pairs of
cells available for movements is the same for all nodes. Then,
according to the rules of each mobility model, only a subset of
these pairs can be selected by each node that is taking mobility
decisions. Thus, we first study the distribution of jump size for
movements between any pair of cells, and later we restrict the pos-
sible movements to the subset of cells that can actually be selected
under the HCMM model. Without loss of generality, we focus on
two tagged cells on the grid, ci and cj, for which we compute the
jump size distribution Pcicj

ðdÞ. In order to completely characterize
this framework, we also need to compute the jump size distribu-
tion for internal movements, denoted as PintðdÞ. As all cells have
the same size, PintðdÞ is the same for all cells. In this work we use
the closed form formula for Pint provided in [30] for the distribution
of the distance between two random points in a rectangle, and we
focus on the analytical description of Pcicj

ðdÞ, using the same ap-
proach as in [32].

For the sake of convenience, in this section we drop the sub-
script cicj of Pcicj

ðdÞ and we assume that cells are a� a wide (square
cells). We refer our coordinate system to either of the two cells,
and we express the relative position of the two cells using k1 and
k2 as in Fig. 13. In our analysis, first we consider the unidimen-
sional case (random points associated with different segments)
and then we use the obtained results to solve the bidimensional
case.
Fig. 13. Squares over a grid.
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6.1.1. Random points in different segments
We consider the case of two points Px1 and Px2 , uniformly dis-

tributed on two unidimensional segments: [0,a] for Px1 , ½ka;
ðkþ 1Þa� for Px2 (Fig. 14).

The probability density functions defining the positions of the
two points are:

fPx1
ðx1Þ ¼

1
a if 0 6 x1 6 a

0 otherwise

(
ð18Þ

fPx2
ðx2Þ ¼

1
a if ka 6 x2 6 ðkþ 1Þa
0 otherwise

(
ð19Þ
Theorem 5. (Distance distribution in one dimension). The proba-
bility density function PðdÞ of the distance d between Px1 and Px2 is
given by

PðdÞ ¼
a�jd�akj

a2 if ðk� 1Þa 6 d 6 ðkþ 1Þa
0 otherwise

(
ð20Þ

Proof. First we compute the joint probability distribution of Px1

and Px2 which is given by:

fPx1 Px2
ðx1; x2Þ ¼

1
a2 if 0 6 x1 6 a

and ka 6 x2 6 ðkþ 1Þa
0 otherwise

8><
>: ð21Þ

We are interested in the distribution of the distance between
Px1 and Px2 , defined as D ¼ jx2 � x1j. Its cumulative distribution
function PðD 6 dÞ can be obtained by integrating the joint proba-
bility in Eq. (21) over the domain D ¼ jx2 � x1j 6 d. This implies
solving Eq. (22).

PðD 6 dÞ ¼

0 if d < 0
1
a2

R a
ka�d

R x1þd
ka dx2dx1 ðk� 1Þa 6 d 6 ka

1
a2 ð
R ðkþ1Þa�d

0

R x1þd
ka dx2dx1þ

þ
R a
ðkþ1Þa�d

R ðkþ1Þa
ka dx2dx1Þ ka < d 6 ðkþ 1Þa

1 d > ðkþ 1Þa

8>>>>>>><
>>>>>>>:

ð22Þ

The result is given in Eq. (23):

PðD 6 dÞ ¼

0 if d < 0
ða�akþdÞ2

2a2 ðk� 1Þa 6 d 6 ka

� a2ð�1þkð2þkÞÞ�2að1þkÞdþd2

2a2 ka < d 6 ðkþ 1Þa
1 d > ðkþ 1Þa

8>>>><
>>>>:

ð23Þ

Differentiating Eq. (23) with respect to d, we get the probability
density function for D in the unidimensional case h
6.1.2. Random points in different cells
In this section we consider the bidimensional case shown in

Fig. 13. We are interested in the distance between two points
P1 ¼ ðx1; y1Þ and P2 ¼ ðx2; y2Þ, that is given by:

D ¼ kP2 � P1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy2 � y1j þ jx2 � x1j

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
ð24Þ

From Section 6.1.1 we know that the distribution of Dx and Dy is
given by Eq. (20). Thus, we can compute the joint distribution
spatial and temporal properties of human mobility driven by users’ social
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fDxDy ðdx;dyÞ ¼ fDx ðdxÞfDy ðdyÞ ¼

¼

ða�jdx�ak1 jÞða�jdy�ak2 jÞ
a4 að�1þ k1Þ 6 dx 6 að1þ k1Þ

að�1þ k1Þ 6 dy 6 að1þ k2Þ
0 else

8><
>: ð25Þ

In order to compute PðD 6 dÞ we integrate Eq. (25) over the do-

main
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
6 d, which is equivalent to D2

x þ D2
y 6 d2. The do-

main corresponds to the area within a circumference centered in
the origin of the axes and having radius equal to d. Unfortunately
we could not obtain a general, closed form expression for
PðD 6 dÞ. The only exact solution available is numerical, and it is
the one that we use in Section 6.2. In the next section we propose
an approximation for PðD 6 dÞ that could possibly be used as a sub-
stitute closed form approximated expression of PðD 6 dÞ.

6.1.3. Model approximation
Again considering square cells, we call Xd the random variable

associated with the jump size when a node is moving between
two cells having the distance between their centers equal to d.
We have numerically checked that, for any value of d except for
d ¼ 0,3 Xd has a bell-shaped curve. As an example, the dotted line
in Fig. 15 shows the PDF of Xd for d ¼ 100

ffiffiffi
2
p

.
The bell shape suggests the possible fitting with a normal distri-

bution. In order to find an estimate of the parameters l and r of
the normal distribution, we apply the Maximum Likelihood Esti-
mation (MLE) method. The PDF of the random variable Nd, distrib-
uted according to Ndðl;rÞ with d ¼ 100

ffiffiffi
2
p

, is shown in Fig. 15.
By using the normal distribution to approximate the exact dis-

tribution of the jump size, we introduce two types of errors. On the
tail, some values that were not present in the exact distribution can
now appear, due to the infinite tails of the normal distribution
against the finiteness of those of the exact distribution. On the
body, the likelihood of certain values to appear can be slightly dif-
ferent from the case of the exact distribution. These errors can be
quantified in order to estimate how good our approximation is.
The error on the tail of the distribution corresponds to the proba-
bility of drawing values outside the domain of Xd from Nd, and this
can be easily quantified as

etail ¼ PðNd < bleftÞ þ PðNd > brightÞ; ð26Þ

where bleft and bright are the left and right boundaries on the values
of Xd. In the case shown in Fig. 15, etail ¼ 0:0005. The error intro-
duced in ½bleft ; bright� can be estimated by computing the root mean
squared error (RMSE) over the reference interval. In this case, using
a sampling interval equal to 0.001, we obtain a RMS value of
0.00025.

6.2. Jump size distribution for HCMM

In this section we propose a way for computing the jump size
distribution under the HCMM model. We assume that the initial
placement of communities on the grid is given, and that the same
home cell can be associated with only one community. We con-
sider a gx � gy grid scenario with C communities, each having as-
signed n nodes. Again, the rewiring probability is denoted with pr

and the probability of having two consecutive trips within an
external cell with pe.

In HCMM, for all external trips the home cell is either the source
or the destination of the movement. Therefore, the possible dis-
tances travelled by each node depend on the distance between
its home cell and the other cells of the scenario. In addition to that,
3 The case d ¼ 0 corresponds to local movements, i.e., consecutive waypoints
chosen within the same cell. As already discussed, in the case of local movements we
already have a closed form expression for the distance between random points.
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all nodes belonging to the same home cell are statistically equiva-
lent, as they all have the same probability of being rewired to any
other cell. From these considerations follows the proposition
below.

Proposition 2. (Jump size distribution). The distribution of jump
sizes in HCMM is the result of the separate contributions PiðdÞ of the
different home cells. With C communities, each having a different
home cell, PiðdÞ can be written as follows:

PðdÞ ¼ 1
C

XC

i¼1

PiðdÞ ð27Þ

Let us denote with ci the home cell of community i. All the for-
mulas that we give hereafter refer to a tagged home cell ci and are
valid for all its nodes, because all the nodes of the same home cell
are statistically equivalent. For the sake of convenience, we implic-
itly discard empty cells from the model, because, in HCMM, nodes
cannot move towards empty cells and therefore their contribution
to PðdÞ is zero.

In HCMM nodes travel from one random point in a cell to an-
other random point in another cell. The distance between a ran-
dom point associated with ci and a random point within another
cell cj follows a distribution Pcicj

ðdÞ that can either be computed ex-
actly but not in a closed form (Section 6.1), or be approximated
using, e.g., a normal distribution (Section 6.1.3). In the following
we use the exact numerical solutions for Pcicj

ðdÞ. For what concerns
internal movements, we use for PintðdÞ the formula provided in
[30]. The distributions of external and internal movements taken
together can describe exhaustively all the possible paths that a
node can travel.

Proposition 3. (Contribution of internal and external movements).

PiðdÞ ¼
XC

j¼1
j–i

pij � Pcicj
ðdÞ þ pint � PintðdÞ; ð28Þ

where pij is the probability of having a movement from cell i to cell j,
Pcicj
ðdÞ is the probability density function of the length of such move-

ment, pint is the probability of having a movement within the same cell,
and PintðdÞ is the probability density function of the length of an inter-
nal movement.

Proof. Proposition 3 directly follows from the application of the
law of total probability to PiðdÞ. In fact, we can express the distri-
bution of movements of nodes belonging to community ci as the
composition of the distributions Pcicj

ðdÞ of external movements
(for any j–i) and the distribution PintðdÞ of the movement within
the same cell. In HCMM, however, not all paths are allowed: only
spatial and temporal properties of human mobility driven by users’ social
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cells friend nodes belong to can be selected as the goal of a move-
ment. Therefore we have to weight Pcicj

ðdÞ and PintðdÞ with the
probabilities pij and pint of actually having that component accord-
ing to HCMM rules. Eq. (28) shows the final formula for PiðdÞ. h

pij and pint express the probability of moving outside and inside
the home cell, and in HCMM they depend on the social attractivity
of the home cell and of the other cells. We compute this social attr-
activity in Lemma 3.

Lemma 3. (Cell attraction). The attraction of cell cj on a generic node
having ci as home cell is given by

CAcj
¼ prðn� 1Þ

nðC � 1Þ ; ð29Þ

and the attraction of the home cell ci can be expressed as

CAci
¼ n� prðn� 1Þ

n
: ð30Þ

In Eqs. (29) and (30), ne corresponds to the average number of external
links for each node, while nc

e gives the average fraction of those external
links that are rewired to each community.

Proof. Let us assume an unweighted social graph: if a link
between two nodes exists, then its weight is 1, otherwise it is 0.
Recall that the social attraction SAcj

exerted by a cell cj on a generic
node x is given by the sum of the weights of the social links
between node x and the nodes having cj as their home cell. These
social links are the result of the rewiring process. The rewiring pro-
cess follows a Binomial distribution with probability of success
equal to pr over a sequence of n� 1 experiments, corresponding
to the n� 1 links that a node initially has with the nodes in the
same community. The number of rewired links for a node x is thus
a realization of the Binomial distribution Bðn� 1; prÞ. Using directly
this distribution would further complicate the analysis. Therefore,
for the sake of tractability, in this paper we focus on the average
case. This choice introduces some approximations into the
obtained results. In particular, the smaller n, the greater the error.
The average number of external links of each node in community ci

is therefore

ne ¼ ðn� 1Þ � pr ð31Þ

Conversely, on average each node will have n� ne links with other
nodes of the same community. As the rewiring process is uniformly
distributed among all communities, the number of links between
each node in ci and a generic community cj is given by

n
cj
e ¼ nc

e ¼
ðn� 1Þ � pr

C � 1
; ð32Þ

where we dropped the index j because the formula does not depend
on the community j chosen. If all weights are either 0 or 1, using the
average number of external links ne and nc

e, we can compute the so-
cial attraction SAcj

for every generic cell cj of the grid, according to
Eq. (9). In order to complete the proof, we need to compute the cell
attraction CAcj

of cell cj, which is defined as SAcj
=
PC

z¼1SAcz (Eq. (2)).
After substituting SAcj

in this formula, we obtain Eqs. (29) and
(30). h

Now that we know the formulas for CAci
and CAcj

, we proceed to
computing pij and pint of Eq. (28). For pij the following lemma holds.

Lemma 4. (pij). The probability pij of a movement from the home cell
ci to another cell cj or vice versa is equal to

pij ¼
2ðn� 1Þð1� peÞpr

C � 1ðnð1� peÞ þ ðn� 1ÞprÞ
ð33Þ

Proof. The probability pij can be expressed in terms of the transi-
tion probabilities of the Markov chain corresponding to HCMM. In
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particular, we are interested in the probability PðcjjciÞ of selecting
cj as the next goal cell given that the node is currently in its home
cell ci, and to the probability PðcijcjÞ of returning to the home cell ci

given that the node is currently in cj. These probabilities must be
multiplied by the probability PðciÞ that a node is currently in its
home cell and the probability PðcjÞ that a node is currently in cell
cj, respectively:

pij ¼ PðcjjciÞ � PðciÞ þ PðcijcjÞ � PðcjÞ ð34Þ

In HCMM PðcijcjÞ ¼ 1� pe, while PðciÞ and PðcjÞ correspond to the
steady state probabilities of the Markov chain representing the
HCMM evolution, i.e.,

PðciÞ ¼
1� pe

ð1� peÞ þ ð1� PðcijciÞÞ
ð35Þ

PðcjÞ ¼
PðcjjciÞ

ð1� peÞ þ ð1� PðcijciÞÞ
ð36Þ

In HCMM PðcijciÞ ¼ CAci
. If we substitute Eq. (30) into this formula,

we can rewrite Eqs. (35) and (36) as

PðciÞ ¼
1� pe

ð1� peÞ þ ðn�1Þpr
n

ð37Þ

PðcjÞ ¼
PðcjjciÞ

ð1� peÞ þ ðn�1Þpr
n

ð38Þ

Now the only component missing is PðcjjciÞ. In HCMM PðcjjciÞ is
equal to the cell attraction of cj. By simply plugging Eq. (29), we
obtain

PðcjjciÞ ¼
prðn� 1Þ
nðC � 1Þ ð39Þ

By simple substitutions into Eq. (34) we get the probability of hav-
ing a movement between ci and cj: h

Corollary 2. pij does not depend on the distance d travelled by nodes.

Corollary 2 points out that, in the average case, movements to-
wards near cells are as likely as movements towards distant cells in
HCMM. This is in contrast with what has been shown about human
mobility in [33] regarding preferential selection of short distances,
and it calls for an extension of HCMM in this direction.

Going back to Eq. (28), now that we have computed pij, only pint

is left.

Lemma 5. (pint). The probability pint of having a movement inside a
cell is equal to

pint ¼ �1þ 2pe þ
2n 1� peð Þ2

nð1� peÞ þ ðn� 1Þpr
: ð40Þ

Proof. The procedure is similar to what we have described in the
previous proof. The probability pint of having a movement inside
a cell is equal to the probability that the next movement will be
within the home cell ci given that the node is currently in ci, plus
the probability that the next movement will be within cj given that
the node is currently in cj (Eq. (41)).

pint ¼ PðcijciÞ � PðciÞ þ
XC�1

i¼1

PðcjjcjÞ � PðcjÞ ð41Þ

PðciÞ and PðcjÞ are given by Eqs. (37) and (38). PðcijciÞ and PðcjjcjÞ are
equal to PðcijciÞ ¼ CAi � n�pr ðn�1Þ

n and PðcjjcjÞ ¼ pe. After some substi-
tutions we get

pint ¼
n� prðn� 1Þ

n
� 1� pe

ð1� peÞ þ ðn�1Þpr
n

þ
XC�1

i¼1

pe �
PðcjjciÞ

ð1� peÞ þ ðn�1Þpr
n

ð42Þ
spatial and temporal properties of human mobility driven by users’ social
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Fig. 16. Reference scenario.
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By substituting the expression for PðcjjciÞ (Eq. (39)), we can rewrite
pint as in Eq. (40). h

Finally, using Lemmas 3–5 and Eqs. (27) and (28), we can com-
pute the expression for PðdÞ.

Theorem 6. (Jump size distribution). The distribution of jump sizes
in HCMM is given by

PðdÞ ¼ 1
C

XC

i¼1

XC

j¼1
j–i

2ðn� 1Þð1� peÞpr

ðC � 1Þðnð1� peÞ þ ðn� 1ÞprÞ
� Pcicj

ðdÞ

þ �1þ 2pe þ
2nð1� peÞ

2

n
ð1� peÞ þ ðn� 1Þpr

 !
� PintðdÞ

ð43Þ

Proof. Eq. (27) follows from simple substitutions. h

PintðdÞ corresponds to the distribution of the jump size when a
node is performing a movement within the same cell. These move-
ments are analogous to Random Waypoint [34] movements, and
therefore we can use for PintðdÞ the equation derived in [30] for
the RWP model. This equation, valid for a rectangle of size a� b,
is given below for the convenience of the reader.

PintðdÞ¼
4l

a2b2 �

p
2 ab�ad�bdþ 1

2 d2 for 06d6 b

abarcsin b
dþa�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�b2

p
þ

�1
2b2�al for b6 d6 a

abarcsinb
dþa�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�b2

p
þ

�1
2b2�abarccos a

dþ

þb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�a2

p
� 1

2a2� 1
2d2 for a6d6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

p
0 otherwise:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð44Þ

With regard to Pcicj
ðdÞ, there is no closed form for generic ci and

cj, as discussed in Section 6.1.2. This implies that also for PiðdÞ only
numerical solutions are available. As an alternative, one could re-
sort to approximate solutions of PiðdÞ using the approximation pro-
posed in Section 6.1.3.

6.2.1. Model validation
In this Section we compare the distribution given in Theorem 6

with the empirical distributions obtained through simulations. We
consider a 10� 10 grid on which 4 communities are placed, each
having 50 nodes assigned. We set the rewiring probability to 0.1,
vmin and vmax to 9 and 10, respectively, and we let the simulation
run for 500,000 s to ensure stationarity. As the model requires as
input the initial positions of communities, let us consider the sce-
nario in which communities are placed, respectively, in positions
(10, 1), (7, 4), (3, 4) and (1, 10) on a 10� 10 grid (Fig. 16).

Analytical and simulative results are shown in Fig. 17, where
the empirical probability distribution is obtained using the Kernel
density estimation method [31]. The two densities, analytical and
simulative, are very close to each other, thus showing that the ana-
lytical model is accurate. Note also that the first bell-shaped curve
is associated with the shortest path that a node can travel, i.e., to
local movements within a cell. In this case, local movements are
statistically predominant across all movements of a node. The
other bell curves are due to external movements. As only cells
where friend communities are placed can be visited by a given
node, not all possible distances on a gx � gy grid are represented
in the plot, but just those at which a friend community is placed.
Note also that all bell-shaped curves, apart from the bigger one,
are at about the same height. Again, this confirms the fact that
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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the standard HCMM has no mechanism for prioritizing the choice
of the distances.

7. Accounting for spatial properties in HCMM

Corollary 2 in Section 6.2 showed, from a mathematical stand-
point, that in HCMM there is no preferential selection of short dis-
tances, and the reason is that the rewiring process is uniformly
distributed between communities. Simulations also confirmed this
behaviour (Section 6.2.1). Given the important role of the jump size
distribution on network performance [15], it would be highly
desirable for HCMM to be able to include this third property of hu-
man mobility into the model. Therefore, in this section we com-
plete the definition of HCMM in order to include such a feature.

The idea is the following. Being the uniform selection of the
next goal cell the source of the non-preferential selection, we
decided to remove it by explicitly including the preference for
short distances over longer ones. In more details, when a node with
home cell ci has to select the target cell for an external trip, the
attraction exerted on that node by a generic cell cj is considered
to be inversely proportional to the power of the average distance
dcicj

between the home cell of the node and the cell cj itself. The
longer the distance, the weaker the attraction. Note that, as in star-
dard HCMM, only cells for which the social attractivity is greater
than zero are selected. Recalling that CAci

denotes the probability
of selecting the home cell for the next movement (starting from
spatial and temporal properties of human mobility driven by users’ social
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within the home cell itself), the probability of selecting cell cj for
the next movement is now:

CAdist
cj
¼

ð1� CAci
Þ

d�a
cicjPC�1

z¼1
d�a

ci cz

if SAj > 0

0 otherwise
;

8<
: j – i ð45Þ

The rest of the transition probabilities remains as explained in
Section 5, and thus the complete HCMM model can be described
according to the Markov chain in Fig. 18. Note that social attraction
here has the role of driving movements within or outside the home
cell, while the distance among cells is the key driver for selecting
the particular cell towards which an ‘‘external” movement is direc-
ted. Still, ‘‘external” cells can be selected only if some social rela-
tionships exist with nodes whose home cell is that particular cell.

7.1. Jump size distribution for the complete HCMM

In the following we complement the analysis in Section 6 by
computing the jump size distribution under the complete HCMM
model. Specifically, Propositions 2 and 3 still hold true also for
the complete HCMM. Lemma 4 must be replaced with Lemma 6.

Lemma 6. (pij for complete HCMM). The probability pij of a
movement from the home cell ci to another cell cj or vice versa is
equal to

pij ¼
2ðn� 1Þn 1� peð Þprw

a
cicj

nð1� peÞ þ ðn� 1Þpr
; ð46Þ

where, for the sake of readability, wa
cicj

substitutes
d�a

ci cjPC�1

z¼1
d�a

cicz

Proof. The proof is analogous to the proof for Lemma 4, but for
PðcjjciÞ. In fact, in the case of the complete HCMM, PðcjjciÞ depends
on the average distance between cj and the home cell ci according
to the following equation:

PðcjjciÞ ¼ ð1� CAiÞ
d�a

cicjPC�1
z¼1 d�a

cicz

¼ ne

d�a
cicjPC�1

z¼1 d�a
cicz

: ð47Þ

For the sake of readability, let us refer to
d�a

ci cjPC�1

z¼1
d�a

cicz

as wa
cicj

. CAi is com-

puted according to Lemma 3. Then, by simple substitutions, we ob-
tain Eq. (46). Note here that pij depends on the distance through
wa

cicj
. h

Lemma 5 is substituted by the following lemma.

Lemma 7. (pint for complete HCMM). The probability pint of having a
movement inside a cell is equal to

pint ¼
ð1� peÞð�nþ ðn� 1ÞprÞ
nð1þ peÞ þ ð�1þ nÞpr

þ
XC�1

i¼1

ðn� 1Þpeprw
a
cicj

1� pe þ ðn�1Þpr
n

: ð48Þ
Hi

CAci

CAmod
c1

CAmod
cC−1

c1

pe

1− pe

cC−1

1− pe

pe

Fig. 18. Markov chain for modified HCMM.
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Proof. The proof follows the same lines of the proof for Lemma 5.
Here we only have to use the expression for PðcjjciÞ under the com-
plete HCMM model (Eq. (47)). Then, after simple substitutions, we
obtain Eq. (48). h

Finally, we provide the expression for the jump size distribution
under the complete HCMM mobility model.

Theorem 7. (Jump size distribution for complete HCMM). The
distribution of jump sizes in the complete HCMM is given by

PðdÞ ¼ 1
C

XC

i¼1

XC

j¼1
j–i

2ðn�1Þnð1�peÞprw
a
cicj

nð1�peÞþ ðn�1Þpr
�Pcicj

ðdÞ

þ ð1�peÞð�nþðn�1ÞprÞ
nð1þpeÞþ ð�1þnÞpr

þ
XC�1

i¼1

ðn�1Þpeprw
a
cicj

1�peþ ðn�1Þpr
n

 !
�PintðdÞ:

ð49Þ

Proof. Eq. (49) follows from Lemmas 6 and 7 after simple substi-
tutions in Eq. (3). h

We have validated the proposed model for the HCMM using the
same settings as in Section 6.2.1. Fig. 19 shows that, by adding the
spatial dimension to HCMM, the two curves overlap almost per-
fectly. When comparing this plot with Fig. 17, the preference for
short distances can be clearly noticed.

8. Statistical properties of HCMM traces

In this Section we evaluate the complete HCMM model by
means of simulations in order to verify the temporal and spatial
characteristics of the traces that are generated . In particular, we
are interested in evaluating if prioritizing the distances chosen
by the nodes is enough for obtaining a truncated power law distri-
bution of the jump size. Let us first highlight a general property of
HCMM (as well as any other models over finite physical spaces). In
HCMM external movements are bounded by the size of the sce-
nario, while local movements are bounded by the size of the cells.
In addition, in HCMM nodes are bounded to move where their
friend nodes are (or are suppose to be). This implies that not all
cells, but only the ones where friend nodes are, can be selected.
This choice is actually a sort of subsampling: not all the distances
can be chosen, on the contrary, their set heavily depends on the so-
cial configuration of the mobility model. In the remaining of the
Section we show how a power law behaviour emerges, or not,
depending on the configuration of the mobility model. In
summary, we show that there is a power law behaviour when
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the density of the scenario, both in terms of communities and
external social links, is sufficient to explore ‘‘enough” distances.

Our reference scenario is a 1000 m � 1000 m, divided into a
10� 10 grid. The number of groups, the number of nodes, and
the rewiring probability are varied in each set of simulations. The
exponent a that we use for Eq. (45) is 3. The same results hold true
for different values of a. We analyse the probability density func-
tion (PDF) and the complementary cumulative distribution func-
tion (CCDF) for the distances measured when the mobility model
is in its steady state, and aggregated over all nodes.
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Fig. 22. Kernerl density estimate of jump size with rewiring 0.1.
8.1. Jump size distribution

We start with a dense scenario, where all cells have a commu-
nity assigned to them. These 100 communities have 10 nodes each.
In addition each node is friend of all communities (we force the
rewiring process to guarantee such condition). In this case, there
is no subsampling effects on the characteristics distances: (i) all
cell combinations are possible (i.e., every characteristic distance
is represented); (ii) each node has a non-zero probability of visiting
all the cells of the grid. In Fig. 20, the continuous black line shows
the empirical CCDF of the jump size obtained, while the other
curves are the Maximum Likelihood Estimation fitting for the
exponential, power law and power law with exponential cut-off
case. The first part of the CCDF is very accurately fitted with
the power law (with or without cut-off) distribution. On the tail,
the CDF decreases very rapidly and it is delimited by the tail
of the power law with cut-off and the exponential distribution.
We can conjecture that, in its final part, the jump size distribution
has an exponential decay. Analogously to what found in [35], this
behaviour can be due to the bounded domain over which the sim-
ulation is performed. No distance can be present that goes beyond
the boundaries of the scenario (here 1000

ffiffiffi
2
p

) and this is a good
explanation for the rapid decay of the tail. This results are also con-
sistent with [33], where a power law with an exponential decay
was suggested as a very good approximation of human travelling
patterns.

Now we evaluate the effect of removing some groups from the
grid. Specifically, we consider the case in which 3, 10, 50, and 100
groups are present. In this case, some distances related to unoccu-
pied cells are not selected. Therefore, the power law selection of
the complete HCMM model will consider only a subset of all the
possible distances, thus creating what we have called subsampling
effect. This effect is evident in the probability density function in
Fig. 21, where, for ease of reading, the contribution of the local
movements has been removed. While with many groups, there is
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
relationships, Comput. Commun. (2010), doi:10.1016/j.comcom.2010.01.013
a constantly decreasing curve that is the result of the mixture in
Eq. (27), with fewer groups we can clearly distinguish the single
bell-shaped curves corresponding to the available distances. The
existence of such bell-shaped components typically results in less
clear power law distributions.

In the previous set of simulations, each node had as many
friends as the number of available groups. By reducing the number
of occupied cells, we have reduced the set of possible distances a
node can travel. In the next set of simulations we reduce the aver-
age number of external friends that a node can have by setting the
rewiring probability to 0.1. In this case, there is a further subsam-
pling on the possible set of distances travelled by the users: not all
the cells in which there is a group can be selected, but only those in
which the node has at least one friend. Having a look at the PDF of
jump sizes in Fig. 22, we can see that, with rewiring 0.1, even in the
case of 100 communities the single bells are clearly visible. Specif-
ically, each bell corresponds to the curve associated with a charac-
teristic distance for which there is at least one friend. We can
conclude that, when the rewiring is low, i.e., when the number of
external links is low and there are only few external cells towards
which a node can move, the bounded domain predominates over
the power law behaviour.

A reduction in the set of characteristic distances can be obtained
also by fixing the number of groups and varying the rewiring
parameter. When the number of groups is equal to the number
of cells, variations in the value of the rewiring parameter directly
spatial and temporal properties of human mobility driven by users’ social
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control the subsampling that is performed. This is shown in Fig. 23,
where we go from a non-power-law behaviour with low rewiring
(high subsampling) to clear preference for short distances with
rewiring 0.9.

We have seen that the distribution of jump sizes heavily de-
pends on the number of external friends of nodes. While the rewir-
ing parameter constitutes an fundamental knob to control such a
number, it is not the only factor. In fact, the rewiring probability
says that x percent of the existing links will be rewired. In the pres-
Please cite this article in press as: C. Boldrini, A. Passarella, HCMM: Modelling
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ence of low density groups (few members per group), the number
of available links between the nodes of the same community are
low, and so will be the number of links rewired . The more the
nodes, the less the subsampling, the clearer the power law behav-
iour: this effect is clearly shown in Fig. 24.

Concluding, in this Section we have shown that plugging a pref-
erential selection of distances in the mobility models is a good
method for obtaining jump sizes that follows a truncated power
law. However, this is true only when the scenario is dense enough,
in terms of both external links and number of communities. Other-
wise, the subsampling effect due to the bounded domain distorts
the power law shape giving way to bumpy curves that are no more
power laws.
8.2. Inter-contact times distribution

In this paper we have previously discussed the importance of
inter-contact times in mobility models, and in Section 2 we have
surveyed the effort spent so far in order to uncover the nature of
inter-contact times in real human mobility. In this section we give
a plot for each scenarios studied in Section 8.1 and we describe the
effect of such configuration on ICTs.

Let’s start with the case where all nodes have friends in all com-
munities and we vary the number of groups. Fig. 25 shows that a
clear power law behaviour is present with few groups on the sce-
nario and that a power law with exponential cut-off better de-
scribes the scenarios with more groups.
spatial and temporal properties of human mobility driven by users’ social
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If we reduce the rewiring probability, the power law behaviour
is still present (Fig. 26). In fact, the lower the rewiring probability,
the fewer the external friends of nodes: some nodes will not have
external friends at all, some other will have external friends, but
very few (on average � 1 external friend per node). Thus the
attraction of the home cell is predominant and the inter-contact
times with external friends are long. Even worse, the closer (in a
topological sense) friends will be preferred over the more distant
ones, thus increasing the duration of inter-contact times with this
latter class of friends.

When we fix the number of groups to 100 and we vary the
rewiring probability (Fig. 27) or the number of groups (Fig. 28),
the results are the same. We have a clear power law behaviour
when the number of external friends is low (low rewiring or small
number of nodes) that changes to a power law with exponential
cut-off as the number of external friends increases.

In all the configurations, the inter-contact times generated by
HCMM model follows either a power law or a power law with
exponential cut-off distribution. This result is consistent with the
feature of realistic ICTs highlighted in [8,19]. Thus, the HCMM
model is able to reproduce realistic temporal properties of human
mobility.
9. Conclusions

In this paper we have identified three main properties of hu-
man mobility, namely, social attraction, location attraction, and
preference for short distances. The mobility model that we have
proposed (HCMM) is the first model, to the best of our knowl-
edge, that accounts for all of them at the same time. HCMM
has been described starting from a pure social-based model
through incremental steps, where, at each stage, we have mathe-
matically justified the need for extending the model features.
Specifically, we have provided a mathematical model for the gre-
garious behaviour of CMM, for the controllability of HCMM, and
for the distribution of distances under both the standard and
complete HCMM. Finally we have checked that HCMM is able
to reproduce the main features of human mobility in terms on
ICTs and jump size. For what concerns the jump size, we have
also highlighted the impact of the subsampling effect on grid-
based models. As future work, we plan to exploit the analytical
framework that we have provided for the HCMM model in order
to study from a mathematical standpoint some general properties
of grid-based mobility model and the performance of networking
protocols for mobile ad hoc networks.
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