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From Pareto inter-contact times to residuals
Chiara Boldrini, Marco Conti, Member, IEEE and Andrea Passarella

Abstract—Interactions between mobile users are the building
blocks of a variety of emerging communication paradigms,
among which opportunistic networking is one of the most
promising. In opportunistic networks, the information propagates
through pair-wise contacts between users, and hence the inter-
contact time, i.e., the time between two consecutive interactions
between a pair of users, plays a key role in the latency of
information propagation. Given that new message availability
and actual communication are typically asynchronous, analytical
models often rely on the concept of residual inter-contact time, i.e,
the time left before the next communication opportunity, starting
from a random point in time. The statistical properties of the
inter-contact times determine those of the associated residual
inter-contact time. Of particular interest is the case of inter-
contact times featuring a Pareto distribution, due to the great
attention this case has received in the literature. In this letter we
discuss how to compute the residual inter-contact time when the
inter-contact process between a pair of nodes features a Pareto
distribution and we show that our exact solution can significantly
improve the results commonly used in the literature.

Index Terms—inter-contact times, residuals, renewal process,
opportunistic networks, delay tolerant networks

I. INTRODUCTION

INTERACTIONS between mobile users have become a
key aspect of future Internet communications. Direct en-

counters between user devices (which follow the movements
of their human owners) are exploited in opportunistic net-
works [1] in order to deliver messages across multi-hop
paths where the user devices themselves act as relays. In
this scenario, a model of user interactions is essential in
order to characterize the information delivery process, in
terms of, e.g., the message delay. Using the term contact to
generically denote the relevant kind of interaction with respect
to the networking scenario considered, the starting point of
an interaction model are inter-contact times, defined as the
time between two consecutive interactions between the same
pair of nodes. However, given that new message availability
is an asynchronous process with respect to the contact process
between any pair of nodes, and that any forwarding action is
asynchronous with respect to the contact process of all pairs
but the one involved in that particular action, we have always
to wait for the next interaction for communications to take
place. Thus, we are generally interested in the residual inter-
contact time rather than in the inter-contact time itself. Given
a random time tr and a pair i, j of nodes, the residual inter-
contact time is defined as the time interval, starting from tr,
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before the next interaction between node i and node j takes
place.

In the case of opportunistic networks, the interaction model
should mimic the encounter process between users. In the
recent years, numerous efforts to describe the statistical prop-
erties of the human encounter process have been made. Among
these, Chaintreau et al. [2] have shown that the Pareto1 distri-
bution can be considered a good approximation for modelling
the contact process between users, and that the presence of a
heavy tail might seriously affect the performance of routing
protocols in terms of expected delay experienced by messages.
Due to the impact such Pareto hypothesis has had in the
literature on opportunistic networks, in this letter we discuss
how to derive the residual inter-contact times for an interaction
model based on Pareto distributed inter-contact times.

II. PARETO DISTRIBUTIONS

There are two popular versions of the Pareto distribution [3].
The first one, commonly referred to as European Pareto, is
described by the following CCDF:

Fe(t) =

(
b

t

)α

, t > b (1)

where b > 0 is the lower bound of the Pareto distribution
and α > 0 is the shape. The American Pareto cumulative
distribution function is instead given by:

Fa(t) =

(
b

b+ t

)α

, t > 0. (2)

Basically, being X a random variable following a European
power law with lower bound b and shape α, then Y = X−b is
an American power law random variable. The main difference
between the two versions is that the American Pareto allows
for t values arbitrarily close to zero, while the European Pareto
constrains t to be above a threshold b.

III. COMPUTING THE RESIDUAL

Assuming that inter-contact times are described by the
random variable M , in [4] a general formula for the derivation
of residual inter-contact time is provided, which we recall in
Equation 3.

FR(t) =
1

E[M ]

∫ +∞

t

FM (u)du (3)

While everything works smoothly when considering the Amer-
ican Pareto distribution, when inter-contact times feature a
European Pareto the application of this formula may be tricky.

1In the following we will use the terms ”power law” and ”Pareto”
interchangeably.
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Fig. 1. An Example Realization of the Renewal Process
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Fig. 2. The Reward Process

Given the widespread use of the European Pareto [5] [2], in
the following we show how to deal with this case.

Theorem 1: When inter-contact time M features a Euro-
pean Pareto distribution with shape α and lower bound b
(FM (t) =

(
b
t

)α
, t > b), the residual inter-contact time R

is distributed as follows:

FR(t) =


t−αt
αb + 1 t > 0 ∧ t ≤ b

1
α

(
b
t

)α−1
t > b

0 otherwise

(4)

Proof: We model the contact process as a renewal pro-
cess [6]. In our case, inter-arrival times X1, X2, . . . follow
a European Pareto with shape α and lower bound b. Under
this model, the residual inter-contact time corresponds to the
residual lifetime before the next renewal event. The residual
lifetime is a random function of time, i.e., a stochastic process,
and we denote it as {R(t), t > 0}. A realization of the renewal
contact process and its associated residual lifetime process is
given in Figure 1, where tn denotes the arrival time of the
n-th event, i.e., the time at which the n-th contact between
two nodes takes places. In order to derive the distribution of
R(t), we focus on its CDF P (R(t) < r), for any r greater than
zero. As can be seen in Figure 1, the residual lifetime R(t) is
smaller than r when R(t) lies below threshold r. Thus, let us
define a reward function Y (t) that takes value 1 when R(t) is
below threshold r, and 0 otherwise (Figure 2). P (R(t) < r)
can be interpreted as the fraction of time the process is gaining
a reward (i.e., Y (t) = 1) with respect to the whole process
lifetime. The time interval in which the process is gaining
a reward is simply the area below curve Y (t), because by
definition we gain a reward every time unit R(t) lies below
threshold r. For obtaining P (R(t) < r), we need to divide this

area by the duration t of the process lifetime. Thus, Equation
5 holds.

P (R (t) < r) = lim
t→∞

1

t

∫ t

0

Y (u)du (5)

Quantity
∫ t

0
Y (u)du, which we hereafter denote as G(t), gives

the accumulated reward up to time t. G(t) can be expressed
in terms of the reward Gn accumulated during each single
renewal interval Xn, thus obtaining G(t) =

∑N(t)
n=1 Gn, where

N(t) gives the number of events up to time t. It is a well
known result from theory on renewal-reward processes that
G(t) (the total accumulated reward at time t), E[Gn] (the
expectation of the reward Gn accumulated in a generic inter-
renewal interval Xn), and E[Xn] (the expected duration of an
inter-renewal interval Xn) relate to each other according to
limt→∞

G(t)
t = E[Gn]

E[Xn]
[6]. Thus, the following relation holds

true:
P (R < r) =

E[Gn]

E[Xn]
. (6)

If we focus on the reward Gn accumulated in a generic
inter-arrival interval Xn, we have that, by definition, Gn =
min(r,Xn), as highlighted in Figure 2. The expectation of
Gn can be computed as

E[Gn] =

∫ ∞

0

P (min(Xn, r) > x)dx, (7)

after noting that min(r,Xn) is by definition a random variable
that can only take non-negative values. Please also recall that
in a renewal process an inter-renewal interval Xn follows the
same distribution for all values of n. In addition, min(r,Xn)
is defined only in the interval [0, r] (i.e., P (min(r,Xn) > x |
x > r) = 0). In such [0, r] interval, the reward that can be
accumulated is, by definition, at most equal to the length of
the inter-renewal interval Xn, and thus P (min(r,Xn) > x |
x ≤ r) = P (Xn > x | x ≤ r). We can then rewrite E[Gn]
as

∫ r

0
P (Xn > x)dx. However, when Xn follows a European

Pareto distribution there can be no inter-renewal interval (or,
equivalently, inter-contact time) smaller than b, which means
that the accumulated reward increases linearly as long as r
is smaller than b. Thus, we have that, if r ≤ b, E[Gn] =∫ r

0
P (Xn > x)dx =

∫ r

0
1dx, while, for r > b, E[Gn] =∫ b

0
1dx+

∫ r

b

(
b
x

)α
dx. After integration, we obtain Equation 8.

E[Gn] =

{
r r > 0 ∧ r ≤ b
r−α(αbrα−bαr)

α−1 r > b
(8)

Equation 4 follows directly after substituting Equation 8
into Equation 6 and recalling that i) E[Xn] is equal to the
expectation αb

α−1 of the European Pareto distribution and ii)
FR(t) = 1− P (R < t).

Remark 1: Note that the result in Equation 4 differs from
that in [4].

In Figures 3 and 4 we plot the CCDF predicted by The-
orem 1 and the CCDF provided by [4], and we compare
them against the CCDF of the residual inter-contact time
obtained from simulations2. More specifically, for the latter

2To this aim, we have used the statistical software R [7] and the routines
for Pareto distributions provided by [5].
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we simulated the arrival of a random observer for a renewal
process with inter-arrival times that feature a European Pareto
distribution with α = 2 and b = 1. A random observer is
one that arrives at a random point in time with respect to
the evolution of the underlying renewal process. Then, we
measured the residual inter-contact time as the amount of time
this observer has to wait until the next renewal (i.e., contact)
event. As shown in Figures 3-4, Theorem 1 characterizes
exactly the residual inter-contact time distribution both in the
head (Figure 3) and in the tail (Figure 4).
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Fig. 3. Residual Inter-contact Time - Lin-Log Scale
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Fig. 4. Residual Inter-contact Time - Log-Log Scale

IV. A SIMPLE CASE STUDY

In this section we provide a practical example in which
knowing the exact distribution of the residual inter-contact
time drastically improves the knowledge on how the delivery
process behaves. More specifically, we discuss the simple case
of an opportunistic network in which the Direct Transmis-
sion [8] routing protocol is in use. According to the Direct
Transmission protocol, the source of a message can only hand
over the message directly to the destination, if ever encoun-
tered. In this case, the probability distribution of the message
delay follows exactly that of the residual inter-contact time
between the source node and the destination node, because the
time it takes for the source to meet the destination, starting
from the random point in time at which the message was
generated, is the time it takes for the message to be delivered.
We assume that inter-contact times feature a European Pareto
distribution with shape α = 2 and lower bound b = 1, which

is the same configuration we used for plotting the figures in
Section III. Given that the delay and the residual inter-contact
time feature the same distribution, Figures 3 and 4 also provide
the CCDF of the delay experienced by messages delivered
according to the Direct Transmission policy. Let us focus on
P (R > 1), i.e., the probability that messages have to wait
more than 1 second to be delivered. Using the result in [4],
we obtain that P (R > 1) = 1, while P (R > 1) = 0.5
if we apply Theorem 1. This example shows that, relying
on the formula commonly used in the literature, we could
seriously underestimate the presence of small delay values,
and thus inaccurately characterize the delivery process, even
in the simplest scenarios.

V. CONCLUSION

In this letter we have discussed how to compute the residual
inter-contact time starting from Pareto distributed inter-contact
times, referring to opportunistic networks as the most imme-
diate field of application. However, the applicability of our
results goes well beyond opportunistic networking. In fact,
inter-contact times, and thus their residuals, emerge naturally
as one the most important metrics when considering models
of interactions between users. Be it the exchange of messages
via direct encounters in an opportunistic network, or Web 2.0
communications through virtual contacts in an Online Social
Network (such as Facebook and Twitter), an information deliv-
ery model cannot leave aside an appropriate interaction model,
and the omnipresence of the Pareto distribution [9] [10] [11]
[12] makes it essential to be able to accurately characterize
analytically also the case of power law distributions. Even
if the power law predominance is being questioned by many
(e.g., [5]), surely the Pareto distribution is to be confronted
with when studying networks of users and their interactions.
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