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In this paper we present and evaluate ContentPlace, a data dissemination system for oppor-
tunistic networks, i.e., mobile networks in which stable simultaneous multi-hop paths
between communication endpoints cannot be provided. We consider a scenario in which
users both produce and consume data objects. ContentPlace takes care of moving and rep-
licating data objects in the network such that interested users receive them despite possi-
ble long disconnections, partitions, etc. Thanks to ContentPlace, data producers and
consumers are completely decoupled, and might be never connected to the network at
the same point in time. The key feature of ContentPlace is learning and exploiting informa-
tion about the social behaviour of the users to drive the data dissemination process. This
allows ContentPlace to be more efficient both in terms of data delivery and in terms of
resource usage with respect to reference alternative solutions. The performance of Con-
tentPlace is thoroughly investigated both through simulation and analytical models.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

This paper is focused on the problem of data dissemina-
tion in opportunistic networks. Opportunistic networks
[18] are a recent mobile networking paradigm stemming
from the research on conventional Mobile Ad Hoc NET-
works (MANET). In this paradigm nodes are assumed to
be mobile, and forwarding of messages occurs based on
the store-carry-and forward concept [9]. Specifically, no
simultaneous end-to-end multi-hop path is required to en-
able communication between any two nodes, unlike con-
ventional MANET. Instead, each node carrying a message
for an intended destination evaluates the suitability of
any other node it makes contact with as the next hop. Mes-
sages are thus opportunistically forwarded by exploiting
nodes encounters, until they reach the intended destina-
tion. This paradigm enables end-to-end communication
despite possible long disconnections of the communication
. All rights reserved.
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endpoints and severe network partitions, which is usually
cumbersome in traditional MANET architectures.

A significant share of research on opportunistic net-
works has focused on routing issues (see [18] for a survey).
Instead, in this paper, we consider the problem of data dis-
semination. This is a key research problem, particularly in
opportunistic networks. In this environment, according to
the user-generated content wave, users are expected to
generate large amounts of content by exploiting capabil-
ity-rich mobile devices (such as PDAs, smartphones, etc.),
and to share them with people around them or people they
have social relationships with. In the following, we refer to
any piece of content (e.g., a picture or an mp3 file) as a data
object. The problem of efficiently disseminating data ob-
jects in opportunistic networks is thus very relevant, and
not widely explored in the literature yet, as discussed in
Section 2.

Data dissemination in opportunistic networks is a diffi-
cult problem. As the topology is very unstable, and users
appear in and disappear from the network dynamically,
content providers and content consumers might be com-
pletely unaware of each other, and never connected at
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the same time to the same part of the network. Therefore,
data objects should be moved and replicated in the net-
work in order to carry them to interested users despite dis-
connections and partitions. On the other hand, data
dissemination systems should take care of both network
and device resource constraints. For example, a trivial solu-
tion would be to flood the whole network with any gener-
ated data object, but this would clearly saturate both
network resources (in terms of available bandwidth) and
device resources (e.g., in terms of energy, storage, etc.).

In this paper, we propose and evaluate ContentPlace,
which is a data dissemination system for opportunistic
networks that exploits social information about users
behaviour in order to drive the dissemination process.
Exploiting social information is a very promising research
direction for opportunistic networks. In this environment
the nodes are mobile devices users carry with them all
the time. Therefore, the users social behaviour, being a
key driver for their movement patterns, is also a key piece
of context information to predict nodes’ co-location and fu-
ture encounters. ContentPlace assumes that users belong
to social communities, and autonomically learns the time
spent by them in each community, which types of data ob-
jects users of each community are interested in, and how
spread in the communities the data objects are. This infor-
mation is used to evaluate the utility of each encountered
data object. Specifically, each node, upon making contact
with another peer, evaluates the utility of the data objects
the peer is carrying. Assuming that the buffer space de-
voted to the dissemination process is limited, the node se-
lects which data objects to fetch from the peer, in order to
maximise the total utility of the data objects in its own
buffer. Therefore, the data dissemination process is driven
by the interests and social behaviour of the users, and just
requires local interactions between nodes that happen to
come in contact.

We assume that users’ mobility is driven by the social
relationships among users, i.e., that users spend their time
with their friends. This assumption may not be always sat-
isfied. This is the case, e.g., of friends living in different part
of the world or of virtual friends (e.g., Facebook or chatroom
friends). However, also these relationships can be exploited
to disseminate messages. For example, in the case of long
distance friendship, the distance can be overcome by going
through the traditional infrastructure and then switching
again to the ad hoc mode when this distance has been cov-
ered. The inclusion of such hybrid communications into our
data dissemination system is currently under study.

After presenting ContentPlace in Sections 3 and 4, we
provide a detailed simulation analysis in Section 5. Specifi-
cally, we compare different data dissemination policies that
could be plugged in the general ContentPlace design, either
considering or not considering social information. We show
that social-aware policies outperform naïve ones in which
social information is not taken into account. Among the so-
cial-aware policies, we identify the one performing best
(named Future), and highlight the reasons why it is the
most efficient one. Finally, in order to shed additional light
on the performance of the Future policy, in Section 6 we
provide an analytical model describing its behaviour.
2. Related work

Content dissemination systems have been proposed
with regard to legacy Internet networks [1], and also with
respect to conventional MANETs [22]. In general, these sys-
tems assume that network paths are rather stable, and in
some cases generate a significant amount of traffic to
maintain knowledge of other nodes’ caches. Therefore,
they are not suitable to opportunistic networks.

The idea behind ContentPlace is to exploit social infor-
mation on the environment the nodes operate in, in order
to enable the communication. In the framework of opportu-
nistic networks, this approach has already been successfully
applied to message forwarding (e.g., [6,12]). The idea is to
move messages closer and closer to their destinations fol-
lowing a path based on the social interactions between
nodes (as in the famous ‘‘six degrees of separation” experi-
ment [17]). In the case of forwarding protocols, however,
messages have a specific destination node, while in Content-
Place, following the User Generated Content approach, con-
tent generators might be unaware of the nodes interested in
their data, and so might be the content consumers about the
nodes that generate the content they are interested in. In
addition, even if pursuing a similar goal, ContentPlace does
not rely on any underlying forwarding protocols and auton-
omously takes care of the data delivery process.

In principle, ContentPlace shares similarities with pub/
sub systems proposed for mobile networks (e.g., [8,23]).
Among them, just the pub/sub system designed within the
Haggle project [23] explicitly considers the social behaviour
of users in the system’s design. Furthermore, in pub/sub sys-
tems, support for intermittent connectivity is seldom pro-
vided. The work in [23] identifies social communities, and
‘‘hubs” within communities (i.e., nodes with the highest
number of social links inside the community). An overlay
network is then built between hubs, that act as the brokers
of a standard pub/sub topic-based system. ContentPlace as-
sumes the same community detection mechanisms of [23].
However, ContentPlace does not provide any standard pub/
sub system, and does not need any overlay infrastructure,
which might be costly to maintain and rather unstable in
opportunistic networks. With respect to SocialCast [8], Con-
tentPlace uses a more complete utility function to drive the
dissemination process. Specifically, ContentPlace takes into
account the estimated utility for all social communities any
given user is in touch with, and, within each community,
considers the interest for, and availability of, the data ob-
jects. Furthermore, the SocialCast dissemination mecha-
nism is more oriented towards traditional forwarding than
to actual dissemination with respect to ContentPlace. A fall-
back of this is that SocialCast works well when all members
of each community are interested in the same type of con-
tent, but it is not clear how it works in the more general set-
tings considered in this paper.

To the best of our knowledge, the only other works
looking at pure content dissemination for opportunistic
networks are the PodNet project [16], and the social-
aware pub/sub system designed in [23]. As described in
detail in Section 5, we use an application and evaluation
scenario similar to that defined for PodNet. In PodNet,



C. Boldrini et al. / Computer Networks 54 (2010) 589–604 591
users subscribe to channels they are interested in. Upon
pair-wise contacts, users exchange their interests and se-
lect which data objects to exchange. Different policies
have been compared in [2]. With respect to PodNet, Con-
tentPlace takes into consideration social relationships be-
tween users to select the data object to exchange, and
provides a more general utility based framework for
designing content dissemination policies. We actually
compare ContentPlace with the best heuristics identified
in [16], showing the advantage of the social-aware
dimension.

This work is an extended version of our previous pa-
per in [4]. This work provides an extensive analytical
model that deals with the average behaviour of the best
dissemination policy, the Future policy. Furthermore, we
perform an analysis of the impact of inaccurate social
information on the performance of the best social-aware
policy. This work is also related to [5], where a prelimin-
ary design and evaluation of ContentPlace has been
presented.
1 Hereafter, we use the term cache to denote a memory buffer that a
node contributes to the ContentPlace system.
3. ContentPlace general design

This section provides necessary background informa-
tion required to present the main contribution of this pa-
per by recalling the target application scenario and the
main design features of the ContentPlace system.

3.1. Application scenario

The application scenario we target is similar to the one
used in PodNet [16], named ‘‘podcasting for ad hoc net-
works”. As in the typical opportunistic networking para-
digm, we consider a number of mobile users whose
devices cannot be encompassed by a conventional MANET.
Instead, communication is achieved by opportunistically
exploiting pair-wise contacts between users to exchange
data objects, and bringing them towards eventual destina-
tions. Sporadic contacts of users with point of access to the
Internet (e.g., WiFi hotspots) are possible although not nec-
essary. In podcasting applications, data objects (e.g., MP3
files, advertisements, software updates, . . .) are organised
in different channels to which users can subscribe. We as-
sume that the channel(s) of a data object is decided by
the source of the object at the generation time. Data ob-
jects might be generated from within the Internet, and
‘‘enter” the opportunistic network upon sporadic contacts
of users with Internet Access Points. Or, data objects may
be generated dynamically by the users of the opportunistic
network according to the Web 2.0 model (e.g., users may
wish to share pictures taken with their mobile phones).
ContentPlace is responsible for the two main tasks of con-
tent dissemination, i.e.: (i) managing subscriptions to
channels and (ii) bringing data objects to subscribed users
(content distribution).

3.2. ContentPlace framework

Since stable network structures cannot be assumed,
ContentPlace only exploits direct interactions between
nodes (contacts) to gather information about the users’
subscriptions and current data objects availability. Each
node uses this knowledge to decide which data objects
‘‘seen” on other nodes should be locally replicated, accord-
ing to a replication policy. The main challenge of Content-
Place is to define a local replication policy (i.e., a policy
that does not require precise information about the global
state of the network) that achieves a global performance
target (such as, for example, maximising the hit rate or
the per-user fairness).

More in detail, ContentPlace subscription management
works as follows. Nodes just advertise the set of channels
the local user is subscribed to upon encountering another
node. As will be clear in the following, no per-node state
is necessary, and thus unsubscription data objects are not
required. As far as content distribution is concerned, the
core of ContentPlace is the definition of the replication pol-
icy, which can be summarised as follows. ContentPlace de-
fines a utility function by means of which each node can
associate a utility value to any data object. When a node
encounters a peer, it computes the utility values of all
the data objects stored in the local and in the peer’s cache.1

Then, it selects the set of data objects that maximises the lo-
cal utility of its cache, without violating the considered
resource constraints (e.g., max cache size, available band-
width, available energy, . . .). The node fetches the selected
objects that are in the peer’s cache, and discards the locally
stored objects that are not in the selected set anymore. Fi-
nally, a user receives a data object it is subscribed to when
it is found in an encountered node’s cache. As discussed in
more detail in [5], the set of objects to store in the local
cache upon each contact can be found by solving the follow-
ing multi-constrained 0–1 knapsack problem:

max
P

k
Ukxk;

s:t:
P

k
cjkxk 6 1 j ¼ 1; . . . ;m;

xk 2 f0;1g 8k;

8>>><
>>>:

ð1Þ

where k denotes the kth object that the node can select, Uk

its utility, cjk the percentage consumption of resource j
related to fetching and storing object k,m the number of
considered resources, and xk the problem’s variables.
When the number of managed resource (m) is not big
(which is quite reasonable), solving such problems is very
fast from a computational standpoint [15]. Such a solution
is therefore suitable to be implemented in resource con-
strained mobile devices.

It is clear that the core of the content distribution mech-
anism is the definition of the utility function. In the follow-
ing sections, we discuss how information about the social
behaviour of users can be leveraged to this end.

3.2.1. Utility function
To have a suitable representation of the users’ social

behaviour, we take inspiration from the caveman model
proposed by Watts [21], which is a reference point in the
field of social behaviour modelling. We assume that users
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can be grouped in communities. Users belonging to the
same community have strong social relationships with
each other. In general, users can belong to more than one
community (a working community, a family community,
etc.), each of which is a ‘‘home” community for that user.
Users can also have relationships outside their home com-
munities (‘‘acquainted” communities). We assume that
people movements are governed by their social relation-
ships, and by the fact that communities are also bound to
particular places (i.e., the community of office colleagues
is bound to the office location). Therefore, users will spend
their time in the places their home communities are bound
to, and will also visit places of acquainted communities.

Different communities will have, in general, different
interests. Therefore, the utility of the same data object will
be different for different communities. Based on this re-
mark, the utility of a data object computed by a node is
made up of one component for each community its user
has relationships with, be it either a home or an acquainted
community. Formally, the utility function is defined as
follows2:

U ¼ xlul þ
X
i–l

xiui ¼
X

i

xiui; ð2Þ

where ui is the ith component and xi measures the social
strength of the relationship between the user and the ith
community. Finally, in Eq. (2) we stretch a bit the concept
of community, and represent the local user just as another
community the user is in touch with (i.e., the utility for the
local user is represented by ul). Note that the definition of
the weights xi defines the social-oriented behaviour of
ContentPlace. As the main focus of this paper is on this as-
pect, we now briefly describe the definition of the utility
components, and discuss in detail the definition of weights
in Section 4.

3.2.2. Utility components
ContentPlace uses the same definition for all utility

components. In this paper we consider a simplified version
of the general function defined by ContentPlace, and we
also assume that (i) the cache space is the only considered
resource and (ii) data objects never expire. See [5] and the
associated report for the discussion of more general cases.
Inspired by the Web-caching literature [1], the utility of a
data object for a community is the product of the object’s
access probability from the community members ðpacÞ by
its cost c, divided by the object’s size. The cost is measured
as a monotonically decreasing function of the object’s
availability in the community (denoted as pav), as the more
the object is spread, the less it is costly to find it, the less
the utility of further replicating it. Dividing by the object’s
size is also common in the Web-caching literature, as it
also allows very simple approximations of the multi-con-
strained knapsack problem defined by Eq. (1). Specifically,
we use the following definition:

u ¼ pac � fcðpavÞ
s

¼ pac � e�kpav

s
: ð3Þ
2 For ease of reading, with respect to Eq. (1) we drop here the k index, as
this does not impact the clarity of the discussion.
In Eq. (3) we use an exponential function as cost function,
which achieves a fairer behaviour with respect to a (more
intuitive) linear decay, as shown in [5].

3.3. Architecture overview

In this section we give an overview of the communica-
tion architecture of ContentPlace. Following the opportu-
nistic networking paradigm, ContentPlace does not
assume any specific technology (e.g., 802.11, Bluetooth)
implementing the single hop wireless communication on
which it is based. It only relies on the existence of an
underlying abstraction level that manages the available
interfaces and provides the correct mapping between them
[19]. ContentPlace does not rely on any routing protocols
either, as it autonomously uses application layer informa-
tion (in this case, information on the sociality of nodes)
to disseminate objects across the network.

The dissemination of messages in ContentPlace ex-
ploits pair-wise contacts between nodes, during which
an association is established (Fig. 1). At the beginning
of a contact, a new association is established if the two
nodes are both free, i.e., not already engaged in an ongo-
ing association. Otherwise, the association request is
queued until the busy node becomes free again. During
an association, each node acts as both the content
uploader and the content downloader, for itself or on be-
half of the other nodes of its communities. An association
is completed when both peers have finished downloading
data objects deemed useful (for themselves or for the
nodes of their communities, according to Eq. (2). An asso-
ciation can terminate unexpectedly before the download-
ing is completed, e.g., because the two nodes have moved
out of range or because one of them has run out of bat-
tery. In this case, the association is closed, data objects
that were successfully transferred are stored in the buf-
fer, the others are discarded.

When a new association is established, the two nodes
exchange the state of their respective buffers, i.e., they tell
each other what data objects they are currently storing.
The algorithm described in Eq. (1) is then run on the joint
set of the locally stored objects and the objects advertised
by the peer, and, if some of the peer’s object are selected to
be retrieved, a request is issued to the peer. When the peer
has provided the requested objects, the requesting node
stores the new objects in its buffer and closes the hand-
shake on its side. The communication exchange is sketched
in Fig. 2.

Besides the data object exchange process, in Content-
Place nodes have also to keep up-to-date the estimates of
the utility component’s parameters (Eq. (3)). To this aim,
nodes periodically broadcast a summary message contain-
ing the necessary information to compute these estimates.
More details on this will be given in Section 4.2.
Fig. 1. ContentPlace architecture – setting up an association.
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4. Contentplace social design

The use of the social weights in Eq. (2) permits full flex-
ibility in the ContentPlace design. Specifically, it allows us
to define and compare different social-oriented policies, as
well as, in the limiting case, non-social policies such as a
greedy behaviour. Although clearly not exhaustive, the
set of social-oriented policies we compare covers a fairly
large spectrum of possible (reasonable) definitions. Over-
all, the global goal we wish to achieve is to optimise the
hit rate for all users in all communities. Different policies
clearly give different importance to the utility components.
The comparison we carry out shows which are the compo-
nents that provide the best behaviour with respect to the
desired global target.

4.1. Policies definition

We consider the following policies:

Most Frequently Visited (MFV): Each community is given
a weight proportional to the time spent by the user in
that community. Specifically, if ti is the time spent by
the user in the ith community since the system start-
up, then wi is equal to ti=

P
iti. With this policy, dissem-

ination decisions of a user favour the communities the
user is more likely to get in touch with.
Most Likely Next (MLN): The weight of the ith commu-
nity is equal to the probability of visiting the ith com-
munity, conditioned by the fact that the user is in the
current community. Hereafter, this probability is
referred to as PðcijCCÞ, where C denotes the current
community. The weight of the current community is
set to 0. With this strategy, users favour the communi-
ties they will be visiting next, but do not contribute to
data dissemination within their current community.
Future (F): As in MLN, the weight of the current commu-
nity is set to 0. However, the weight of all other com-
munities is set as in MFV, i.e., is proportional to the
average time spent by the node in that community.
With respect to MLN, with F we consider not only the
most likely community for the next visit, but all the
communities the user is in touch with.
Present (P): The weight of the current community is set
to 1, and the weights of all other communities are set to
0. With this strategy, users always behave as members
of the community they are currently in, and do not
favour any other community.
Uniform Social (US): All the communities the user gets in
touch with are given equal weight. Therefore, wi is
equal to 1 for the home and the acquainted
communities.

Clearly, it would be possible to consider a number of
additional strategies, by modifying the definition of the
weights. The strategies we have selected are representative
of several reference behaviours. In the US policy all commu-
nities a user is in touch with are given the same impor-
tance. In MFV the importance of a community is
proportional to the time spent by the user in the commu-
nity. P and MLN can be seen as opposite extreme customi-
sations of MFV. In P only the current community is given
importance. This is a MFV customisation which looks
exclusively at the current ‘‘role” of the user, as a member
of the current community, without any ‘‘look-ahead”
behaviour. In MLN the current community is not given
any importance, and only future communities are consid-
ered. MLN is thus a customisation of MFV with an extreme
‘‘look-akead” behaviour. Finally, F is an intermediate policy
between MFV and MLN. It keeps the ‘‘look-ahead” behav-
iour of MLN, because it does not consider the current com-
munity. However, as in MLN, it considers all the other
communities the user is in touch with, and not only the
most likely one for the next visit.

Finally, for comparison purposes, we consider two non-
social policies as well, and specifically a Greedy and a Uni-
form policy. In the Greedy policy all weights but the one of
the local user are set to 0. In the Uniform policy all the
weights are equal. As a minor, but important, remark, note
that in this case a lot of data objects ends up having the
same utility. In this case, a node breaks ties by choosing
data objects according to a uniform distribution.
4.2. Social parameter estimation

The ContentPlace social-oriented policies require on-
line, dynamic estimation of the utility components’ param-
eters, as well as an estimation of the parameters required
to compute the components’ weights. In this section we
describe how this can be achieved by avoiding any form
of (controlled) flooding, such as that implemented by Epi-
demic Routing [20], which easily saturates networking re-
sources [14]. Clearly, this choice calls for a trade-off
between estimation accuracy and network overhead.

A necessary pre-requisite to estimate the parameters is
to detect the communities in the network, and to enable
nodes to understand in which community they are cur-
rently roaming. Fortunately, there are promising results
about autonomic community detection in opportunistic
networks ContentPlace can rely on, such as [11,13]. These
mechanisms allow nodes of an opportunistic network to
(i) be aware of the communities they belong to and have
acquaintance with and (ii) be aware of the community in
which they are currently in at any given point in time.
We assume that one of these mechanisms is in operation.
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4.2.1. Estimation of the social weights
The communities’ weights defined in Section 4 can be

easily computed thanks to the community detection fea-
tures and, in some cases, by measuring the time spent by
nodes in the different communities and monitoring transi-
tions between communities. Specifically, the strategies P,
US and MLN just require community detection. This trivi-
ally holds true for P and US. MLN requires an estimate of
the conditional probability of moving to future communi-
ties, starting from a given current community, i.e.,
PðcijCCÞ, where CC is the current community. This is equiv-
alent to estimating the transition probabilities of a Markov
process whose states are the different communities the
user can visit. These probabilities can be estimated online,
by monitoring the transitions between communities dur-
ing the user’s movements. Finally, MFV and F can be imple-
mented by measuring the time spent by the user in each
community. In MFV, the weight xi is equal to ti=

P
iti,

where ti is the time spent by the user in community i. In
F, the weights are defined as in MFV, except for the weight
of the current community, which is set to 0.
4.2.2. Estimation of the utility parameters
Gathering context information to compute utility com-

ponents requires some more steps. According to Eqs. (2)
and (3) computing utility components for a given data ob-
ject a node requires the size of the object (s), and estimates
of the access probability ðpacÞ and the availability of that
object ðpavÞ in all the individual communities. Theoreti-
cally, to achieve the maximum precision of parameter esti-
mation, nodes should advertise all information for all data
objects they become aware of, and for all communities
they happen to visit. Clearly, this would result in a very de-
tailed computation of utility values, but in a huge network-
ing overhead. Instead, we choose to exploit nodes’
movements to save on network overhead, which is one of
the basic principles of opportunistic networks. Basically,
when two nodes meet they exchange a summary of data
objects in their caches. From these snapshots, each node
is able to compute, for each object, a fresh sample of the lo-
cal availability p̂av;l, as the fraction of time during which the
object has been seen on neighbours caches. This newly
computed value is then used to update pav;l according to
a standard smoothed average pav;l  apav;l þ ð1� aÞp̂av;l.
For what concerns pac;l, we assume that pac;l is equal to 1
for those objects the user is interested in, and equal to 0
for the others.3

The estimation of the utility parameters for a generic
community i, different from the local one, stems from the
fact that,in ContentPlace, together with the summary vec-
tor describing its cache, each node also advertises the set of
data objects its local user is interested in, and an estimate of
the availability of the object for its local user, i.e., pav;l. Then,
every time period T, each node computes a fresh sample for
pac;i and pav;i as the arithmetic mean of the values adver-
3 A more precise estimation of the access probability of the local user to a
data object would require a refined model of the user behaviour as far as
data access is concerned. However, this is an orthogonal problem with
respect to the ContentPlace algorithms, and therefore we choose this
simplified representation of users’ access pattern.
tised by the neighbours during T. Then these values are
used to update pac;i and pav;i, using the standard smoothed
average as seen above. For a more detailed explanation see
[5].

Finally, note that the size s of a data object (for which a
utility value is required) is easily derived from the sum-
mary vectors advertised by the neighbours.
5. Performance evaluation

In this section, we evaluate the performance of the so-
cial-oriented policies described in Section 4. To this aim,
we developed a custom simulator that is extended from
the one in [6] and uses the same assumptions for lower
communication layers. As we discuss in the following,
the simulation scenario we consider has been chosen
because it is able to highlight general features of the
social-oriented policies. Note that in [5] we have already
presented results showing the impact of system parame-
ters such as the cache size and the number of nodes, which
are not evaluated here. The main focus of this analysis is to
understand the impact of the different social-oriented pol-
icies. We also include in the comparison the two non-social
policies, i.e., the Greedy and the Uniform policies. Uniform
has been identified as the best heuristic (from a number of
standpoints) in [16]. Furthermore, Greedy and Uniform
have been shown to achieve boundary performance result
in [5]. Specifically, Uniform is the best possible policy in
terms of fairness, while Greedy the best in terms of hit rate,
in a scenario with a single homogeneous community.

We hereafter describe the default scenario for our sim-
ulations. The default scenario is composed of 45 nodes, di-
vided into three communities, moving according to the
HCMM model [3] in a 4 � 4 grid (1000 m wide). HCMM
is a mobility model inspired by the Watt’s caveman model,
that has shown to reproduce statistical figures of real user
movement patterns, such as inter-contact times and con-
tact duration [3]. In HCMM, each group represents a social
community, and nodes within the same group have social
relationships among themselves. Also nodes belonging to
different communities can have social relations: according
to the rewiring probability ðprÞ, each link towards a friend
is rewired to a node belonging to a different community.
Social links in HCMM are used to drive movements: each
node moves towards a given community with a probability
proportional to the number of links he has towards the
community. Thus, the rewiring parameter allows us to
control the degree of interactions between nodes of differ-
ent communities. In our simulations, each group is initially
assigned to a cell (its home-cell) avoiding that two groups
are physically adjacent (no edge contacts between groups)
or in the same cell. This allows us to eliminate physical
shortcuts between groups, which would bias the evalua-
tion of the ability of policies to bring data objects from
one community to the others. Therefore, nodes can ex-
change data only due to social mobility of nodes and not
due to random colocation. The rest of HCMM parameters
are set acconrding to Table 1. We consider as many chan-
nels as the number of groups ðngrÞ. Each group is the source
for 1=ngr of the objects belonging to each channel, i.e., 1=ngr
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of the objects of each channel are generated (at the begin-
ning of the simulation) in each group. Note that a data ob-
ject is always available from the node that generated it. To
not interfere with the data dissemination performance fig-
ures, nodes generating data objects make them available
through a separate buffer with respect to the cache. There-
fore, for any node, the only way to obtain objects not gen-
erated in the local group is to get in touch directly (i.e., the
node itself moves in a different group) or indirectly (i.e.,
one of the nodes of the local community goes out and then
comes back, with the desired data object in its cache) with
an external community. To have an integer number of ob-
jects generated in each group, we consider 99 data objects
per channel. Each node can subscribe just to one channel.
When not otherwise stated, nodes’ interests are distributed
according to a Zipf’s law (with parameter 1) within each
group. Unless otherwise stated, we consider three chan-
nels. The popularity of channels is rotated in each group,
such that each channel is the most popular in one group,
the second-most popular in another group, and the least
popular in the last group. Cache space on a node can
accommodate exactly all data objects belonging to an indi-
vidual channel. An analysis with varying cache sizes has
been presented in [5]. The cache size we choose is a good
trade off between seeing the impact of dissemination pol-
icies, and avoiding data object disappearance due to low
utility on too many caches.

Nodes’ requests for data objects follow a Poisson pro-
cess with parameter k ¼ 200 (on average three requests
every 10 min for each node). Nodes can request data only
for the channel they subscribe. Within the channel, the
data object they request is select according to a uniform
distribution. Requests are valid until the simulation ends.
As we show in the following, the delay distribution high-
lights that our simulation length is long enough to reason-
ably approximate an infinite request validity timeout. As
requests are buffered at issuing nodes only, and do not oc-
cupy cache space, having infinite validity does not impact
the system’s performance. Instead, it allows us to derive
a complete analysis of the system’s performance for
increasing validity timeouts.

All policies are evaluated in terms of the quality of ser-
vice (QoS) perceived by the users and the resource con-
sumption. The QoS is measured in terms of the hit rate
experienced by each channel (the evaluation of other QoS
metrics can be found in [7]). The hit rate is given by the
number of successful requests divided by the number of
overall requests. Note that, unless otherwise stated, we
show the hit rate with infinite timeout values. As not all
policies reach 100% hit rate even in this case, this index al-
lows us to show the fraction of requests that cannot be
served by the policies. We then separately investigate the
Table 1
Configuration parameters.

Node speed Uniform in ½1;1:86�m=s

Transmission range 20 m
Sampling period 5 s
Cost function parameter ðkÞ 15
Smoothed average parameter ðaÞ 0.9
hit rate index as a function of the validity timeout. The la-
tency in satisfying the requests has been computed as the
difference between the time at which the request is satis-
fied and the time at which the request was generated. Re-
source consumption has been measured in terms of the
traffic generated in the network, i.e., the average number
of data transmitted by all nodes during the simulations.
This includes data exchanged for context creation, buffer
state data objects, request data objects and data objects
themselves. Simulations run for 50,000 s. Exchanges of
data objects upon nodes’ contacts start after an initial tran-
sitory required by parameter estimators to reach the stea-
dy state. Results shown in the following section have a 95%
confidence interval, obtained through standard indepen-
dent replication techniques.

5.1. Analysis with uniform rewiring

Our first experiment is based on a configuration in
which the rewiring probability is the same for all nodes,
and equal to 5%. This means that the average number of so-
cial links across communities is the same for all the three
communities. Although the probability of rewiring is not
particularly high, it is already sufficient to mix communi-
ties enough to let data objects circulate across all commu-
nities, independently of the data dissemination policy.
Indeed results in Fig. 3a and b show that all policies (Future
and MLN are overlapped, just as MFV, Present and Uniform
Social) achieve 100% hit rate with an infinite timeout. Fur-
thermore, results do not change depending on the channel
to which the travellers are subscribed.

If we reduce the timeout of the request, we realize that
the QoS provided by different policies may vary with the
specific configuration. In fact, Fig. 3a and b shows that data
objects are delivered faster by the Greedy policy, and more
slowly by the Uniform and MFV policies. Thus, when
reducing their timeout, many requests will not be fulfilled
under these policy, resulting in a decrease in the hit rate.
We refer to Section 5.3 for a more detailed explanation of
the behaviour of each policy.

Table 2 shows that policies are not equivalent, even
when they provide the same hit rate. In fact, with respect
to the bandwidth overhead, the Uniform policy uses triple
the bandwidth that MFV, Present and Uniform Social need,
and around 20 times more than Future and MLN. The most
significant difference is between Greedy and Uniform,
where the increase in the data transmitted is around
3500%. In the next section we will see in more details the
reason for this behaviour. Here we only anticipate the fact
that when not exploiting context information, the band-
width consumption may become huge. Another implica-
tion of Table 2 is that a selfish policy (Greedy) can pay
when the contacts between nodes are numerous and uni-
formly distributed. In fact, when nodes can freely move
from one community to another and meet many other
nodes, the likelihood of finding another node with the
same interests is high, and therefore the data objects can
easily be found by their interested nodes.

Summarizing, when nodes are highly mixed, data ob-
jects spread naturally across the network, regardless of
the policy used. However, policies differ in their resource
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consumption and in the speed of the resulting dissemina-
tion process. In a setting with high node mobility, the
Greedy policy guarantees the lowest bandwidth overhead
and the quickest delivery.
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5.2. Analysis in the default scenario

Based on the results in Section 5.1, here we consider a
less mixed mobility pattern, as follows. Each pair of com-
munities is connected through just one node. Specifically
Community 1 (C1) has two nodes (‘‘travellers”) with rela-
tionships outside C1, one with Community 2 (C2), the
other with Community 3 (C3). Hereafter, we show the per-
formance figures related to nodes in C1. The same remarks
can be made for nodes in the other communities, as well.
Note that, from Eq. (2), it is clear that the channel the trav-
eller nodes are subscribed to (which affects the ul compo-
nent) impacts the data dissemination process. For this
reason, we replicate the experiments by varying the chan-
nel the travellers are subscribed to.

Fig. 4 shows the hit rate for C1, when travellers are sub-
scribed to channel 1. Specifically, the group of boxes re-
lated to channel i shows the hit rate achieved by nodes
whose home community is C1 and are subscribed to chan-
nel i. Experiments with travellers subscribed to the other
channels provide similar results for all policies but the
Table 2
Resource consumption – rewiring 0.05 – travellers subscribed to channel 1.

Bandwidth overhead [MB]

Greedy 175.45 ± 1.77 MFV 21583.80 ± 1112.72
Future 2589.45 ± 533.18 UnifSoc 21124.10 ± 1106.01
MLN 3412.71 ± 352.65 Unif 62306.43 ± 3828.69
Present 22796.61 ± 1447.52
Greedy, that achieves 100% hit rate only for the channel
the travellers are subscribed to. Recall that these plots
are related to an infinite validity timeout. When shorter
timeouts are used, the misbehaviours of Present, MFV
and Uniform Social we discuss below become more seri-
ous. Also, the performance difference between MLN and
Future (which already in this case appear as the best poli-
cies) and the other policies increases. We will analyse
these aspects in detail in Section 5.3. As a preliminary re-
mark note that, since data objects are always available at
generating nodes, a hit rate of 33.33% is always guaranteed.
We can identify four different behaviours. With the Greedy
policy, travellers store only data objects in which they are
directly interested. This results in a 100% hit rate on the
subscribed channel and a 33.33% hit rate on the other
channels (there is hit only on the 1/3 of data generated lo-
cally). As expected, the Greedy policy is able to improve
the hit rate of the nodes interested in the same objects
the travellers are interested, and is not able to disseminate
other objects. With the Uniform policy, the hit rate of all
channels improves and reaches about 80%. The set of social
policies MFV, Present and Uniform Social all show a similar
behaviour: they tend to be slightly unfavourable towards
the most popular channel. This is due to the fact that nodes
within the same group tend to synchronise their behaviour:
when nodes realise that certain objects are poorly avail-
able, they all fetch them as soon as they become available.
This results in the objects becoming highly available, and
being dropped simultaneously by all nodes. A detailed
analysis of the logs confirms this behaviour. In [4] we have
also shown that the effect of this synchronisation get
worse the more channels are popular. Finally, MLN and Fu-
ture policies have a very good hit rate in all cases. The key
of these policies is that nodes do not consider the commu-
nity in which they currently roam, but just future commu-
nities. It is easy to see that this results in static nodes (i.e.,
nodes without social relationships outside their home
community) behaving greedily, and in travellers working
to help communities they will visit in the future. This
clearly avoids the problems related to the synchronisation
effect of the other policies. The results for the other com-
munities (not shown here) highlight that these policies
guarantee the same hit rates shown in Fig. 4. This is quite
important. For example it shows that nodes subscribed to
channel 3 in C2 are able to get not only the locally gener-
ated objects, and not only the objects carried generated
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in C1 (directly carried by the traveller of C1 visiting C2),
but even those objects generated in C3 that are firstly
brought in C1 by the traveller of C1 visiting C3. The identi-
fication of these ‘‘social” paths is something that is peculiar
to the ContentPlace MLN and Future policies. We can antic-
ipate that this type of ‘‘collective” social behaviour, in
which just travellers adopt a social-oriented strategy turns
out to be the best solution. More plots confirming the
above remarks can be found in [4].

Table 3 shows the bandwidth overhead for each proto-
col. The Uniform policy, although closely approximating
MLN and Future in terms of hit rate and fairness, signifi-
cantly overuses network resources. This because nodes
continuously exchange data objects as a consequence of
the tie breaking policy (see Section 4.1). It is easy to show
that this is the only way for Uniform to make objects circu-
late. Furthermore, MFV, Present and Uniform Social pay for
their synchronisation problem also with regard to the
bandwidth overhead. Instead, MLN and Future have a very
good performance also with respect to network overhead,
while the excellent performance of the Greedy policy in
terms of overhead is paid from hit rate standpoint.

Finally, Fig. 5 shows the CCDF of the delay for satisfied
requests on channel 1, when the travellers are subscribed
to channel 1. For the sake of readability, we only show
the Greedy, Uniform, Future and MFV policies. The Present
and Uniform Social policies are basically equivalent to
MFV, while Future and MLN are overlapped. We show this
plot only, as plots for the other cases are qualitatively sim-
ilar. Clearly, Greedy achieves the best performance in this
case. The social-oriented policies other than MLN and Fu-
ture suffer quite high delay. This is a side effect of the un-
wanted synchronisation issue that we have discussed
above. Requests for data objects that have disappeared
need a long time to be satisfied. MFV and Future clearly
outperform Uniform also from this standpoint. Note that
the maximum delay is in the order of 20,000 s. This con-
firms that simulation runs of 50,000 s are reasonably long
to consider the request timeouts as infinite.

In this section we have presented the policies’ behav-
iours with respect to all performance figures. In the follow-
ing, we concentrate on the hit rate index only to highlight
the policies’ different behaviour in different scenarios. The
comparison with respect to the other performance figures
is qualitatively similar to the one presented in this section.

5.3. Reduced requests’ validity timeouts

In this section we analyse the hit rate index as a func-
tion of the requests’ timeout. Fig. 6 shows the hit rate with
increasing requests’ timeout for requests on channel 3, the
least popular channel. Again, we only present results re-
lated to the Greedy, MFV, Uniform and Future policies.
Table 3
Resource consumption – travellers subscribed to channel 1.

Bandwidth overhead [MB]

Greedy 68.89 ± 0.28 MFV 16497.79 ± 660.57
Future 508.32 ± 21.84 UnifSoc 16749.46 ± 430.16
MLN 509.05 ± 21.61 Unif 71974.40 ± 1316.68
Present 15500.51 ± 881.80
The plot is related to the case when travellers are sub-
scribed to channel 1. Note that the hit rate in the Greedy
policy do not change with the validity timeout. Recall that
requests start after an initial transient in which the policies
reach stability. Thus, the Greedy policy has already moved
all the data objects it is able to move across communities.
Uniform and the social policies increase the hit rate when
the validity timeout increases. The dynamic is slower with
respect to the Greedy policy, but they are definitely able to
provide higher performance to channels travellers are not
subscribed to (see Fig. 6). In that case, as expected, the
Greedy policy is not able to bring any new data objects
in addition to those already generated in the community.
Finally, again the MLN and Future policies are confirmed
to be the best policies among the one investigated, for all
the validity timeouts.
5.4. Increased number of nodes

In [4] we have shown that an increased number of trav-
ellers improves the dissemination of data objects because
it results in a more mixed scenario. In this section we want
to evaluate the impact of an increased number of nodes
that are not travellers. While the travellers have an active
role by making possible the spreading of objects from
one community to another, the nodes that always roam
within the same community are just content generators/
consumers, and their contribution to the dissemination
process is very limited. In this section we double the num-
ber of nodes in each community, going from 15 nodes to 30
nodes per community, and again we assign nodes’ interests
according to a Zipf’s law with parameter a ¼ 1.
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Fig. 6. Hit rate with varying timeouts – requests on channel 3 – travellers
subscribed to channel 1.



Table 4
Resource consumption with 90 nodes – travellers subscribed to channel 1.

Bandwidth overhead [MB]

Greedy 181.86 ± 0.88 MFV 36758.21 ± 2937.98
Future 1114.23 ± 46.15 UnifSoc 36574.81 ± 3322.24
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In terms of the hit rate, Fig. 7 shows that the behaviour
of the Greedy, Uniform, Future and MLN policy is approxi-
mately the same as in the case of 45 nodes (Fig. 4). With
many nodes, however, the performance of the social poli-
cies that suffer from synchronisation problems worsens.
The reason is that, with more nodes per community, the
synchronisation effect is stronger than before, and this re-
sults in a decrease in the hit rate. Varying the request time-
out, we have found that the hit rate shows the same trend
as in Fig. 6. Also, the delay CCDF has the same pattern as in
Fig. 5. Please refer to [7] for more details. Therefore, from
the QoS standpoint, increasing the number of nodes that
are not travellers has only the effect of boosting the syn-
chronisation problems of the MFV, Present and Uniform
Social policies.

In order to complete the analysis, in Table 4 we also give
the results for the resource consumption. The most inter-
esting finding here is that under the Uniform policy the
bandwidth overhead with 90 nodes is about four times
the overhead in the case of 45 nodes (Table 3). This means
that the Uniform policy does not scale well with the num-
ber of nodes in the network, and this can be a problem in
all cases in which resource usage is a concern. Instead,
for all other policies there is a roughly linear dependence
between the increase in the number of nodes and the re-
source consumption, thus implying a more judicious use
of the network resources.

Considering both the QoS and the resource consump-
tion, also in the case of an increased number of nodes per
community, the best trade-off is provided by the Future
and MLN social policies.

5.5. Multi-hop social paths

The results presented so far show that in the considered
scenarios MLN and Future are the best policies, and per-
form almost the same. However, there are cases in which
they behave differently. Specifically, both MLN and Future
fetch data objects by estimating social paths of travellers.
Within any community, MLN just takes into consideration
the next hop only, i.e., the next community it will visit. Fu-
ture takes into consideration all the communities it is
likely to visit in the near future, weighted by the probabil-
ity of visiting each. Therefore, MLN might miss exploiting
‘‘multi-hop” social paths across multiple communities. To
investigate this effect, we consider a scenario with one
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Fig. 7. Hit rate with 90 nodes – travellers subscribed to channel 1.
traveller only, belonging to C1, subscribed to channel 1. It
can visit either C2 or C3 with equal probability when in
C1, while it always gets back to C1 after having been in
C2 or C3. Furthermore, all nodes of C1 (C2, C3) are sub-
scribed to channel 1 (2, 3). In this case, it is expected that
MLN is not able to completely serve communities C2 and
C3. While in C2 or C3, it will consider only the interests
of users in C1, and thus it will only bring back data objects
of channel 1. It will bring to C2 (C3) only data objects orig-
inated in C1 for channel 2 (3). On the other hand, Future is
expected to provide 100% hit rate to all communities. This
behaviour is totally confirmed by the simulation results in
Figs. 8 and 9, that show the hit rate as a function of the re-
quest validity timeout. As expected, both policies are fast
in achieving the maximum hit rate. However, MLN can
only serve 66.66% of the requests for users in C3, as it
can only move the data objects of channel 3 generated in
C1. Results similar to those in Fig. 9 hold for community
C2, as well.

6. Average analysis of the Future policy

In this Section we perform an average analysis of the
dissemination behaviour of the Future policy, that we have
shown to be the best in Section 5. The scenario we consider
is that of two communities A and B, having N nodes each
that roam locally in the community, with a traveller node
commuting between A and B. We consider the following
situation: (i) an initial set of data has been already spread
among the nodes of the two communities and its dissemi-
nation process has ended, leaving the system in a station-
ary state and (ii) at time t ¼ 0 a new data object is
generated for a generic channel chnew within community
B (given the symmetry of the topology, the choice of the
generating community does not affect the analysis). The
focus of our investigation is the time it takes for the travel-
ler to deliver this new object to the interested nodes in
community A (the underlying assumption is that there is
at least one node in community A interested in the new
MLN 1132.90 ± 65.11 Unif 321973.33 ± 4324.55
Present 31836.81 ± 2457.00
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data). We have chosen to restrict the analysis to the case of
two communities, because this configuration represents
the building block of every more complex scenario. In fact,
the traveller’s movements between multiple communities
are nothing but a composition of its movement patterns
between pairs of communities.

In this analysis, we assume that nodes’ interest in the
available channels follows a Zipf’s distribution and that
the ranking of the popularity of channels is the same in
all communities. Then the probability that a generic node
is interested in channel j (ranked jth according to its pop-

ularity) is given by PopðjÞ ¼ 1=jaPC

i¼1
1=ia

, where a is the param-

eter of Zipf’s distribution and C is the number of available
channels. In this paper we consider a ¼ 1, thus we have

PopðjÞ ¼ 1
jHC

; ð4Þ

where HC is Cth harmonic number. In addition, each node
can be interested in just one channel and this interest im-
plies that the node wants to receive a copy of each new data
object of that channel as soon as possible, without the user
issuing a specific request. For this reason, the terms ‘‘inter-
ested nodes” and ‘‘destinations” will hereafter be used
interchangeably. In order to avoid the superposition of dif-
ferent effects, we assume that the traveller has no direct
interest in any available data. We also assume that data ob-
jects never disappear. Given that, according to the Future
policy, all nodes except for the traveller are greedy, it is rea-
sonable to consider this condition verified when the nodes’
buffers are not too small with respect to the number of data
objects for their interested channel. We assume that the
dissemination process stops when a given percentage of
interested nodes in the same community has been reached
by the data object. This percentage is referred to as replica-
tion factor. For data objects belonging to channel c, the rep-
lication factor f ðcÞ might range from 1=Nc and 1. In our
analysis we consider f ðcÞ ¼ 1

Nc
, i.e., each object is stored by

one node only. This is the worst case for the time required
by traveller to get in touch with a copy of the data object.

Throughout this section we consider a simplified ver-
sion of the utility function defined in Section 3.2.2. Instead
of including in the availability the notion of redundancy
(e.g., the availability for a data object with two copies in
a community is higher than that for a data object with
one copy), the availability used hereafter only reflects the
presence or not of a data object. Therefore the availability
is equal to 1 for data objects seen by the node, 0 otherwise.
For what concerns the mobility of nodes, we assume
that inter-contact times between nodes roaming in the
same community are exponentially distributed with rate
k. This assumption is backed up by the fact that, in HCMM,
nodes, when roaming within a community, move according
to the Random Waypoint mobility model, whose inter-con-
tact times have been shown to follow an exponential distri-
bution [10]. This consideration holds true also for the
traveller because it roams in either community A or B.

The dissemination process for our social-aware policies
is heavily influenced by the accuracy of the statistics (ac-
cess probability and availability) used by the travellers to
make retrieval decisions. For example, in Section 5 the dis-
semination of data objects starts after a transitory during
which the traveller has constructed the statistics for the
access probability and availability. This is the best case
for our social-aware policies, which are as good as the sta-
tistics that the traveller nodes are able to collect. Therefore,
our analysis is split into two cases. We first consider the
case in which the statistics used by the travellers are con-
gruent with the state of the system. The second part of our
analysis focuses on the functioning of the system when the
social information is not yet available or is not precise. We
refer to the latter part as transient analysis, because we tar-
get the transitory phase of collecting statistics, while the
former is denoted as stationary analysis.
6.1. Stationary regime of context information

At time t ¼ 0, when the available data objects have al-
ready been disseminated to the interested nodes and the
context information on the traveller is up-to-date, the sys-
tem is in a situation where each data object has utility
equal to zero. In fact, the data objects being available in
both communities, their availability (as seen by the travel-
ler) is at the maximum level. If at time t ¼ 0 a new data ob-
ject is generated, this data object will be the only one with
utility different from 0. This means that when the traveller
gets in touch with the data object, it will surely get a copy
of it, this data object being the one with the highest utility.
Therefore, when the context information on the traveller is
correct, the delay for the new data object to reach its des-
tinations depends only on the physical time for the travel-
ler to get in touch with the data object and to get back to
community B: i.e., the delay is only a function of the mobil-
ity characteristics of the system.

We define E½D� as the expected delay from the genera-
tion of the new data object in community B to its delivery
to its destinations in community A. E½D� can be separated in
its different components as follows:

E½D� ¼ E½Dfetch� þ E½Dlocal�: ð5Þ

E½Dfetch� is the average time required for the data object to
enter the community A for the first time. E½Dlocal� is the ex-
pected time for the interested nodes in community A to be
reached by a copy of the data object. As we have assumed
that a data object is not further disseminated when its rep-
lication level is reached, with f ðcÞ ¼ 1

Nc
the spreading in the

local community stops after the first interested node is
reached. Therefore, in this case, E½Dlocal� is equal to the ex-
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pected time for the traveller to deliver a copy of the data
object to the first interested node in community A.

When the new data object appears in community B at
time t ¼ 0, the travel can be either in community A or in
community B, and its location impacts E½Dfetch�. Applying
the law of total probability we can write E½Dfetch� as

E½Dfetch� ¼ E½DfetchjST ¼ CA� � PðST ¼ CAÞ
þ E½DfetchjST ¼ CB� � PðST ¼ CBÞ; ð6Þ

where ST is the community in which the traveller T is
roaming when the data object is generated. The probability
of finding the traveller in either community depends on
the mobility model in use and is equal to the stationary
distribution (if any) of the location of nodes. For the HCMM
mobility model used in Section 5, these probabilities can
easily be found [3]. Intuitively, the fact that the traveller
commutes between the two communities suggests that
the overall expected delay is a composition of multiples
of the expected roaming time in these communities, and
that it depends on how many round trips are required on
average to retrieve and deliver the data object. The fact
that the traveller can be in either community when the
new data object is generated impacts the delay for the first
round trip. We define the duration of a normal round trip
ðTcycleÞ as the time it takes for a traveller to come back to
community A, given that it has just entered that commu-
nity. Tcycle is the sum of the expected roaming time in
two communities plus the expected time to travel from
one community to the other.

Tcycle ¼ E½TA� þ 2E½Ttr� þ E½TB�: ð7Þ

When the data object is generated, the traveller can have
been in either A or B for an unspecified amount of time
and not having just entered that community. Therefore,
for the first round trip we have to take into consideration
the expected remaining roaming time in the community
in which the traveller is roaming at t ¼ 0, instead of the ex-
pected roaming time itself. However, if we assume that the
roaming periods follow an exponential distribution, then
the expected remaining roaming times are equal to the
expected roaming periods, according to the PASTA princi-
ple. Thus, we have that E½TAjST ¼ A� ¼ E½TA� and E½TBj
ST ¼ B� ¼ E½TB�. The only difference between the traveller
starting from community A or community B is that, when
the traveller starts from community B, it has a chance of
getting in touch with the new data object immediately,
without having to wait for the next round trip. This implies
that in this case the contribution to the expected delay is
shorter than when the traveller is roaming in A at t ¼ 0. Fi-
nally, in both cases, once the traveller enters community A
with the data object, the expected delay to reach the first
destination is given by E½Dlocal�. After putting all these con-
siderations together, we obtain for the first round trip:

T 0cycle ¼ E½TA� þ 2E½Ttr� þ E½TB�; ð8Þ
T 0cycle-short ¼ E½Ttr � þ E½TB�: ð9Þ

Tcycle; T
0
cycle and T 0cycle-short only depend on the mobility of the

traveller. Again applying the law of total expectation to Eq.
(6), we have:
E½DfetchjST ¼ CA� ¼ T 0cycle þ
X1
i¼1

Tcycleði� 1Þ � PðY ¼ iÞ; ð10Þ

E½DfetchjST ¼ CB� ¼ T 0cycle-short þ
X1
i¼1

Tcycleði� 1Þ � PðY ¼ iÞ; ð11Þ

where Y is a random variable representing the probability
that the traveller fetches the data object at the ith round
(i.e., that the travel meets one of the nodes currently hav-
ing a copy of the data object in community B).

If the number of nodes currently having a copy of the
data object in community B is j, then the distribution of
the delay until the first one is reached is the minimum over
a set of j exponentially distributed random variables, all
having the same rate k. The minimum of these variables
follows an exponential distribution with rate equal to jk:

Uj � expðjkÞ: ð12Þ

Then, the probability that the traveller sees the data object
during a generic round i is equal to the probability of meet-
ing one of the nodes currently having a copy of the data ob-
ject before moving back to community A, i.e., within the
roaming period TB. As in our analysis there is just one node
in B having a copy of the new data object, the probability
that the traveller gets in touch with that node within a
roaming period with distribution TB is PðU1 < TBÞ. While
we know from Eq. (12) that U1 follows an exponential dis-
tribution with rate k, the distribution of TB depends on the
mobility model in use. If, for the sake of tractability, we as-
sume that TB follows an exponential distribution with rate

1
E½TB �

, using standard probability theory we obtain that
PðU1 < TBÞ ¼ kE½TB �

kE½TB �þ1. Each roaming period in community B
can be seen as a Bernoulli trial with success probability
pB ¼ PðU1 < TBÞ ¼ kE½TB �

kE½TB �þ1. Thus, the probability that the
traveller gets the data object at exactly the ith roaming
period follows a geometric distribution:

PðY ¼ iÞ ¼ 1
kE½TB� þ 1

� �i�1 kE½TB�
kE½TB� þ 1

: ð13Þ

If we rewrite Eq. (10) using Eq. (13), after routine manipu-
lation we obtain:

E½DfetchjST ¼ CA� ¼ Tcycle
1
pB
; ð14Þ

where the last equality follows from the exponential
assumption for the roaming times. Following the same line
of reasoning, we also have:

E½DfetchjST ¼ CB� ¼ T 0cycle-short þ Tcycle
1� pB

pB
: ð15Þ

Now we move to computing E½Dlocal�. Once the traveller has
fetched the data object, the delay of the delivery to the first
destination met depends on how long the traveller roams
in community A. If during this roaming interval no destina-
tion is met, then we have to wait an entire cycle for the
traveller to be back in that community again, and so on.
If the data object is delivered at the ith round, then
E½Dlocal� is given by the delay up to the ði� 1Þth round, plus
the time required to reach the destination during the ith
round. Therefore, E½Dlocal� can be written as E½Dlocal� ¼
E½UNchnew

� þ
P1

i¼1ði� 1ÞTcycle � ð1� pAÞ
i�1pA, where pA is the
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probability of meeting one of the interested nodes during
the roaming period. Assuming that the number of nodes
of community A interested in channel chnew is Nchnew ; pA ¼
PðUNchnew

< TAÞ. From Eq. (12) we know that

UNchnew
� ExpðNchnew kÞ. Thus, E½UNchnew

� is equal to 1
Nchnew k and

pA ¼ PðUNchnew
< TAÞ is equal to Nchnew kE½TA �

Nchnew kE½TA �þ1. Assuming inde-

pendent and identically distributed node encounters, the
average number of nodes interested in channel chnew is gi-
ven by Nn

j ¼ PopðjÞ � Nn. After standard manipulation we
get:

E½Dlocal� ¼
Tcycle þ E½TA�

E½TA�NPopðchnewÞ
: ð16Þ

Now that we have the expressions for E½Dfetch� and
E½Dlocal�, the formula for E½D� follows from simple substitu-
tions in Eq. (5).

In the remainder of this section, we give a brief over-
view of the dependency of the delay on the characteristics
of the mobility and on the popularity of the channel. Fig. 10
shows E½D� against the popularity of the channel to which
the new data object belongs. The channel for the new data
object is selected among 100 channels. Small, medium and
large values of k correspond, respectively, to 0.0001, 0.001
and 0.01. These settings will be used throughout Section 6.
In Fig. 10 the delay experienced by the new data object de-
creases linearly with increasing popularity. The intuitive
reason behind this behaviour is that the less popular a data
object is, the more difficult is for the traveller to find an
interested node to which deliver the object. The second re-
sult from Fig. 10 is that this trend worsens when the fre-
quency of contacts is smaller. Figs. 11 and 12 show the
separated contributions to the overall delay with an inter-
mediate value of k and varying average roaming periods. In
Fig. 11, E½TA� is 10 times smaller than E½TB� and E½Ttr �, while
the opposite is true for Fig. 12. When the roaming time in
community B is long, it is very easy for the traveller to get
the data object, and the overall delay is strictly dependent
on E½Dlocal�. This effect is mitigated in Fig. 12.
6.2. Transient regime of context information

The case in which at the time the new data object is
generated, the traveller has not yet statistics on the popu-
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larity and availability of the data is the worst case for our
social-aware dissemination policies. In fact, during the
transitory period when the traveller builds these statistics
from scratch, the precision of the collected social informa-
tion might be unreliable and this may lead to wrong retrie-
val decisions by the traveller, resulting in an increased
delay experienced by the data objects. To characterize
the delay in the transient phase, during which the traveller
collects the information, we focus separately on two as-
pects: (i) how the traveller gets in touch with the other
nodes and (ii) how the traveller discovers the data objects.

6.2.1. Meetings between the traveller and the other nodes
The statistics on the interests and on the distribution of

data objects for the nodes of a community are collected by
the traveller while it roams in that community. If the ex-
pected roaming time in a community A is E½TA� and the in-
ter-contact time between the traveller and each other node
is exponentially distributed with rate k, the expected num-
ber of nodes met after the first roaming period ðN1Þ is equal
to Nð1� e�kE½TA �Þ, being ð1� e�kE½TA �Þ the probability of
seeing a node during the roaming period. In general, after
the nth round, the number of nodes met is Nn ¼
Nð1� e�knE½TA �Þ. Usually the traveller does not meet all
nodes in the first roaming period, but multiple rounds
are required. Fig. 13 shows the time required to meet all
nodes4 under different mobility conditions. When the nodes
get in touch rarely (small k), it takes some time for the trav-
eller to meet all the nodes of a community, while, when the
frequency of meetings is higher, the time required is much
lower. It is also interesting to note that this time does not
depend significantly on the number of nodes in the
community.

Among the Nn nodes met after the nth round, the aver-
age number of nodes interested in channel j is
Nn

j ¼ PopðjÞ � Nn, assuming independent and identically
distributed node encounters. As the access probability pac

to channel j for a generic community is equal to the pro-
portion of nodes of that community interested in channel
j, the access probability for channel j as seen by the travel-
ler after round n is
4 Given that the exponential function has an asymptote towards infinity,
we consider the process completed when N � � nodes are reached, with �
very small.



0 20 40 60 80 100
0

1

2

3

4

5

6

7

Popularity ranking of the new message

D
el

ay
10

3
s E D_local

E D_fetch

E D

Fig. 12. Expected delay with E½TB� ¼ E½Ttr � ¼ 10E½TA�.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

Λ

D
el

ay
s

N 1000
N 100
N 5

Fig. 13. Time required to meet all nodes.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

round

p
av

λ large
λ medium
λ small

Fig. 14. Availability statistics as a function of the time.

602 C. Boldrini et al. / Computer Networks 54 (2010) 589–604
pn
acj
¼ Nn

j =Nn ¼ PopðjÞ: ð17Þ

Thus, on average, the statistics on the access probability
give a precise estimate of the interests of the nodes. This is
because, being all nodes equally likely to meet, the distri-
bution of the interests on the subset of encountered nodes
is equal to the distribution of interests themselves.

As explained in Section 6, we consider a simplified ver-
sion of the availability of a data object. This availability can
be either 0, if the data object has been seen by the traveller,
or 1 otherwise. In our scenario, all data objects are avail-
able in both communities A and B, except for the new data
object. Therefore, the availability of these data objects
should be 1. However, during each roaming period the
traveller meets only a subset of the nodes of the commu-
nity. This implies that the statistics that the traveller col-
lects are not exact until all nodes have been met. We
want to compute the error on the estimation of the avail-
ability of the data objects available in the system before
t ¼ 0. Given a replication factor f ðjÞ ¼ 1

Nj
for channel j, when

the traveller meets Nn
j nodes having data objects for chan-

nel j, the probability that a given data object is seen is
equal to f ðjÞNn

j . The complementary of this quantity gives
the probability of not having seen an object yet, i.e., of hav-
ing a wrong statistic for that data object. After trivial sub-
stitutions, we found the following expression for the error
on the availability after round nth:

en
avj
¼ e�knE½TA �: ð18Þ
Here the independence from the particular channel consid-
ered results from the fact that each data object is replicated
on just one node (and therefore all data objects have the
same probability of being found). In Fig. 14, the availability
estimated by the traveller is plotted as a function of time
(discretized in rounds) for different mobility configura-
tions. When the frequency of meetings between nodes is
high, the statistics converge fast. The opposite holds true
for small values of k, when it takes some rounds for the
availability to become up-to-date.
6.2.2. Data object discovery by the traveller
Now that we have studied the evolution of the access

probability and availability statistics, we can focus on
how a given community is served by the traveller when
it is outside. In particular, we need to find how data objects
are discovered by the traveller, and then fetched. When the
traveller roams in community B, it discovers all the data
objects carried by the nodes that it meets. As we are inter-
ested in the average behaviour of the traveller, we simplify
the dissemination process in community B assuming that
the traveller selects the data objects to be put in its buffer
only once per roaming period, and that this selection is
performed on all the data objects discovered on average
during that period. If the average roaming period lasts for
E½TB�, during this time the traveller meets on average
Nð1� e�kE½TB �Þ nodes, of which a fraction PopðjÞ having data
objects for channel j. By denoting with Q the number of
data objects carried by each local nodes, as all these objects
belong to the channel in which the node is interested, the
average number of data objects seen during a roaming per-
iod for each channel j is

Mj ¼
QNð1� e�kE½TB �Þ

jHC
; ð19Þ

where we have used Eq. (4) for PopðjÞ.
Out of these Mj data objects, on average, Wn

j ¼ en
avj

Mj are
the data objects for which the traveller has wrong statis-
tics. As the traveller has not seen these data objects yet,
their availability is zero, although they are actually spread
in the community. These data objects with wrong statistics
are the ones that can slow down the retrieval of the new
data object, because the traveller can erroneously think
that some of these data objects are more important than



0 20 40 60 80 100
0

100

200

300

400

500

600

Popularity ranking of the new message

D
el

ay
10

3
s

λ large
λ medium
λ small

Fig. 15. Expected delay during the transient regime.

C. Boldrini et al. / Computer Networks 54 (2010) 589–604 603
the new one. This is actually the case when the old data ob-
jects with wrong statistics belong to channels that are
more popular than the channel to which the new data ob-
ject belongs. In fact, in the average case, the new data ob-
ject is fetched by the traveller as soon as the number of
data objects with wrong statistics discovered during a
round and more popular than the new data object is less
than the total size K of the traveller’s buffer. We assume
that the new data object is considered less important than
the already existing data objects for the same channel.5 The
number of rounds nchnew

first for the traveller to fetch the new
data object in the average case is thus:

nchnew
first ¼ min

n

Xchnew�1

i¼1

en
avi

Mi < K

( )
: ð20Þ

Note that the inequality in Eq. (20) has always a solution.
In fact, en

avj
is always decreasing with n, as it represents

the probability of not seeing each particular data object,
and Mj does not vary with n. Therefore

Pchnew
i¼1 en

avi
Mi is

decreasing, and it goes to 0 for n!1. This implies that
we can find n by solving equation

Pchnew
i¼1 en

avi
Mi ¼ K for n,

whose solution is:

nchnew
first ¼

ln eE½TB �kðeE½TB �k�1ÞNðBÞHchnew
HC

� �
E½TA�k

: ð21Þ

The time up to round nchnew
first gives the expected delay for

retrieving an object when the context information is not in
its steady state. For computing this delay, we have to con-
sider both the case of the traveller starting from commu-
nity A and that of the traveller starting from community
B. Following the same line of reasoning of Section 6.1 for
the computation of E½D�, we obtain:

E½DfetchjST ¼ CA� ¼ T 0cycle þ nchnew
first � 1

� �
Tcycle; ð22Þ

E½DfetchjST ¼ CB� ¼ T 0cycle�short þ nchnew
first Tcycle: ð23Þ

Once the traveller has a copy of the data object, it will not
drop it until the destination in community A has received
the data object. As the expressions for PðST ¼ CAÞ;
5 For the case in which the new data object is considered more important
than the already existing data objects for the same channel, just substitute
chnew � 1 with chnew in the summation in Eq. (20).
PðST ¼ CBÞ, and E½Dlocal� are the same as in Section 6.1, we
can easily compute E½D�.

We conclude our analysis discussing a plot for the delay
experienced on average by the new data object during the
transient regime. Fig. 15 shows E½D� varying the popularity
of the channel to which the new data object belongs. When
the channel is very popular the delay is small because the
data object is retrieved in the first few rounds or even in
the first one (when k is big). On the other end, when the
data object belongs to an unpopular channel, the expected
delay increases. The notable thing is, however, that the
number of rounds required to get the new data object is fi-
nite for all channels. This is the main advantage of the Fu-
ture policy with respect to the Greedy. In fact, the Greedy
policy can result in lower delays for certain channels but
in infinite delays for others, as shown in Section 5.2. With
the Future policy the service is guaranteed to all channels,
but the quality of that service in term of, in this case, the
expected delay depends on the popularity of the channel.
Note also the difference in the delays shown in Figs. 10
and 15: the inaccuracy of context information worsens
the performance of the Future policy.
7. Conclusions

In this paper we have focused on data dissemination is-
sues for opportunistic networks. Specifically, we have pre-
sented and evaluated ContentPlace, which is a data
dissemination system exploiting information about the so-
cial behaviour of the users in order to drive the dissemina-
tion process. We have provided extensive simulation
results showing the advantage of social-aware policies
over naïve policies that do not take social information into
account. In general, social-aware policies turn out to pro-
vide higher hit rate, to be more fair, and to be quicker to
disseminate data objects with respect to the other policies.
Among the social-aware policies, we have identified Future
as the best one. Broadly speaking, Future takes into consid-
eration the set of users (communities) each particular user
will be in touch with in the near future, and carries data
objects of interest to them. This simple behaviour allows
Future to serve all users in an efficient and fair way. The
behaviour of Future has been investigated both through
simulation and analytical models.
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