
c© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh000

Design and Performance Evaluation
of a Transport Protocol for Ad hoc

Networks (TPA)

Giuseppe Anastasi1, Emilio Ancillotti2†∗, Marco Conti2,
Andrea Passarella2

Pervasive Computing and Networking Laboratory (PerLab)

1Dept. of Information Engineering, University of Pisa, Italy
2CNR-IIT National Research Council, Italy

†Corresponding Author: Emilio Ancillotti, National Research Council (CNR), Institute for
Informatics and Telematics (IIT), Via G. Moruzzi 1, 56124 Pisa, voice: +39 050 315 2437 -

Italy

Email: emilio.ancillotti@iit.cnr.it

Providing efficient transport services over multi-hop ad hoc networks is a
fundamental building block for this wireless technology. The typical approach
is modifying TCP to fix one (or a few of) its inefficiency while preserving
compatibility with the original protocol. However, a complete solution should
include a significant number of modifications, such that the original TCP design
is deeply modified. In this paper we explore a different approach. We include the
desired modifications to TCP in the design of a new transport protocol (TPA). In
this way we are able to blend together these features in a unique design framework,
and better control interactions among the different (modified) components. We
then compare TCP and TPA through field tests, in terms of throughput and total
number of transmitted segments. We consider several possible configurations
of the protocols parameters, different routing protocols, and various networking
scenarios. In all the cases taken into consideration TPA significantly outperforms
TCP. To achieve a more thorough understanding of the TPA behavior, we compare
TPA and TCP also in terms of fairness and scalability (both in static and mobile
configurations) over a wide range of representative topologies. To this end, we
adopt a simulation approach, which is more suitable to this kind of analysis.
Simulation results confirm field tests, and show that TPA is able to outperform

TCP with respect to all analysed performance figures.

Keywords: Ad hoc networks, TCP, Transport Layer, Performance Evaluation, Experimental
Analysis, Routing protocols

Received 00 Month 2004; revised 00 Month 2004

1. INTRODUCTION

Research on efficient transport protocols for ad hoc
networks is one of the most active topics in the MANET
community. Such a great interest is basically motivated
by numerous observations showing that, in general,
TCP is not able to efficiently deal with the unstable
and very dynamic environment provided by multi-hop
ad hoc networks. This is because some assumptions
in its design are clearly inspired by the characteristics

∗This work has been partly carried out while Emilio Ancillotti
was with the Dept. of Information Engineering of the University
of Pisa

of wired networks dominant at the time when it was
conceived. More specifically, TCP implicitly assumes
that segment loss is almost always due to congestion
phenomena causing buffer overflows at intermediate
routers. Furthermore, it also assumes that nodes are
static (i.e., they do not change their position over
time). Unfortunately, these assumptions do not hold
in MANETs since in this kind of networks packet losses
due to interference and link-layer contentions are largely
predominant, and nodes may be mobile.

To address TCP inefficiencies over ad hoc networks,
a number of proposals have been presented, which are

The Computer Journal Vol. 00 No. 0, 2005

2 Anastasi et al.

overviewed in Section 2. The vast majority of these
proposals are TCP modifications that address some
particular inefficiency. The main design requirement
is indeed to keep the improved transport protocol
backward compatible with the legacy TCP, so that
“improved” and “legacy” users may be able to
communicate with each other.

While we acknowledge the importance of TCP
compatibility, in this paper we advocate a different
design approach. The TCP inefficiencies over ad hoc
networks are so many that a single modification is
in general not sufficient to address them all. Thus,
TCP would need a large number of modifications to
work in a real environment. The practical integration
and interoperability between such patches is a critical
point, which is still to be addressed. In this paper we
propose to turn this methodology upside down. Firstly,
we review the main inefficiencies of TCP over ad hoc
networks, and the desired protocol’s features to address
them. These features are blended together in a unique
design framework, which results in a new transport
protocol (Transport Protocol for Ad hoc Networks –
TPA). Finally, we discuss how TPA and TCP can
coexist.

The resulting TPA is a lightweight transport protocol
that provides a connection-oriented, reliable type of
service. It differs from TCP in a number of ways.
Specifically, the data transfer and the congestion control
algorithms have been re-designed. Furthermore, TPA
explicitly detects and deals with both route failures
and route changes. TPA can leverage cross-layer
interactions with the routing protocol, when available.
For example, it is able to intercept and interpret route
failure and route re-establishment messages. However,
TPA works also with routing protocols that do not
provide this type of information. The complete
description of TPA is provided in Section 3, and a brief
discussion about TPA/TCP interoperability is provided
in Section 6.

The second contribution of this work is a detailed
comparison between TCP and TPA. We adopt a mixed
evaluation methodology, made up of tests over a real
multi-hop ad hoc network, and simulations. Actually,
most of the research on ad hoc networks has been
carried out by adopting simulation and analytical
approaches only. We acknowledge that simulation
and analysis are great tools to manage large scales,
and understanding the sensitiveness of a protocol to
particular parameters. At the same time, we argue
that, in the field of ad hoc networking, they should
be complemented with real experiments. Indeed, the
behaviour of wireless links is so difficult to model,
that sometimes results from real experiments and from
simulation/analysis are quite different (e.g., [1, 2, 3, 4, 5,
6]). Therefore, a careful check of simulation/analytical
results against experiment outcomes is highly advisable.
On the other hand, it is also clear that experiments
alone are not able to provide the necessary flexibility

and control of the environment to study systems
behavior in general cases, and at large scales, while
simulation is more suitable for this. In this paper we
thus adopt a mixed evaluation methodology, based both
on real experiments and on simulation.

We exploit a TPA prototype (briefly described in
Appendix A) to set up a multi-hop network testbed
to compare TPA with TCP along the lines discussed in
Section 4. We configure the testbed to replicate relevant
scenarios for small-scale ad hoc networks. Besides
allowing us to control the testbed setup, focusing on
small-scale networks is aligned with the well-known
definition of the ”ad hoc horizon” [7], which, based
on both theoretical and experimental results, states
that the reasonable ”horizon” for practical multi-
hop ad hoc networks is between 10 and 20 nodes,
with connections spanning 2 to 3 hops. Firstly, we
focus on a string network (throughout referred to
also as chain topology) with variable number of hops
(Section 4.3). We use this setup to investigate the
sensitiveness of TPA to its main parameters and its
behaviour over different routing protocols (i.e., OLSR
and AODV). The experimental results show that TPA
is able to improve TCP performance both in terms
of increased throughput (between +4% and +20%),
and reduced number of (re)transmissions (between -
60% and -98%). This is an important result, as it
states that TPA delivers greater throughput, while
reducing energy consumption and network congestion
at the same time. We then consider different topologies
(i.e., a cross topology, Section 4.4), and mobile scenarios
(Section 4.5). Also in these cases TPA outperforms
TCP with respect to both performance figures.

We then present simulation results targeted at
comparing TPA and TCP in terms of i) large networks,
and ii) fairness (Section 5). Simulation is clearly a
better choice than experiments when considering large
networks, as controlling large testbeds is very hard.
Simulation is also more suitable to investigate fairness
among concurrent connections, as it permits to replicate
the exact external environment (e.g., interference level)
on different connections, which is clearly not possible
in reality. Therefore, simulations highlight the real
properties of the protocols in terms of fairness.

The trends of throughput and re-transmission
performance highlighted by experiments are confirmed
also at larger scales. As far as fairness, TPA is generally
fairer than TCP, and this is not paid with throughput
degradation. However, the fairness level of TPA is not
satisfactory. Therefore, we also evaluate the protocols’
performance when the adaptive pacing mechanism
(proposed in [8]) is used. TPA with adaptive pacing
achieves a drastic improvements in terms of fairness.
TCP with adaptive pacing is even a bit fairer, but
this is paid with a drastic reduction of the throughput.
We briefly show how to slightly modify the adaptive
pacing mechanisms so as to make TPA fairer than
TCP, without compromising its advantages in terms of

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 3

throughput. In summary, also the simulation results
confirm that TPA is able to significantly outperform
TCP over all the investigated performance figures,
including fairness.

2. RELATED WORK

This section presents various proposals available in
literature to improve TCP performance over MANETs.
To classify them we use an approach similar to that
proposed in [9]. Specifically, we grouped the proposals
in five categories: i) distinguishing between route
failures and congestion; ii) reducing the effect of
route failures; iii) reducing wireless channel contention;
iv) improving TCP fairness; and v) designing new
transport protocols. A separate subsection is devoted
to each approach.

As described in Section 3, one of the main TPA
objectives is blending together the main modifications
proposed for TCP improvement in a single design
framework (specifically, TPA deals with issues discussed
in Sections 2.1, 2.3, and 2.4). This is the main difference
with respect to the approaches presented hereafter,
which focus on single TCP inefficiencies. We separately
discuss the differences between TPA and the other new
protocols for ad hoc networks in Section 2.5.

2.1. Distinguishing between losses due to
route failures and congestion

Node movements may cause route failures and route
changes which result in packet losses and late ACKs
at the sender side. TCP misinterprets these events
as a sign of congestion and activates the congestion
control mechanism. This may lead to unnecessary
retransmissions and throughput degradation [10, 11, 12,
13, 14, 15]. Several TCP modifications thus aim to
discriminate between packet losses due to route failures
and packet loss due to congestion.

Works in [14], [10], and [16] propose similar
mechanisms based on a feedback to the TCP sender
(called TCP-F, ELFN, and TCP-BuS, respectively).
Explicit information is provided to the TCP sender
upon route breakage. The sender waits for an explicit
message of route re-establishment (in TCP-F and TCP-
BuS), or periodically probes for a new route (in ELFN).
Liu et al. [17] propose to leave the TCP implementation
unchanged, and insert a thin layer (ATCP) between
IP and standard TCP to improve the TCP behaviour.
ATCP deals with problems related to high Bit Error
Rate, node mobility, and classic network congestion. To
discover the network state and to react consequently,
ATCP exploits ECN (Explicit Congestion Notification)
[18] and ICMP “Destination Unreachable” messages.

Works in [12], [19], and [20] infer route loss and
re-establishment based on measures taken directly
at the transport layer (without relying on support
from the routing layer). Dyer et al. [12] detect
route loss after two consecutive timeout expirations,

and blocks the TCP Retransmission TimeOut (RTO)
exponential increase. TCP-Door [19] interprets out-of-
order segments (at the receiver) as an indication of a
route failure, which is piggybacked to the TCP sender
in the next ACK. The sender disables congestion control
upon receiving this information. Finally, ADTCP [20]
exploits joint end-to-end metrics to distinguish between
different network states like congestion, channel error,
route change, and disconnection.

2.2. Reducing the effect of route failures

The proposals in [21] and [22] predict route failures
likely to occur in the near future to reduce the route
reconstruction latency. They basically differ in the
way route failures are predicted. Klemm et al. [22]
also include mechanisms at the MAC level to manage
routes during link breakages. Split TCP [23] splits
long TCP connections into shorter localized segments
to reduce the number of route failure in connections
that have a large number of hops. This also improves
the fairness between multiple flows. He et al. [24]
propose a scheme to use a narrow-bandwidth, out-of-
band busy tone channel to reserve the data channel for
broadcast transmissions, and exploits the busy channel
also to perform link error detection. Lim et al. [25]
use multipath routing protocols, which may result in
inaccuracy in average RTT measurement and out-of-
order packet delivery. Thus, they introduce backup
path routing, which uses only one path at a time but
maintains backup paths so as to be able to rapidly
switch to an alternative path if needed. Finally, with
the strategy proposed by Chung et al. [26], after a link
failure occurs, the old route will continue to be used
until a new one can be established through a route-
discovery procedure.

2.3. Reducing wireless channel contention

Many papers [27, 28, 29, 30, 31, 32, 33] have shown that
TCP performs poorly even in static MANETs, due to
erroneous interactions between the original TCP and
the MAC level. The problem is essentially a by-product
of the exposed-node configuration, and manifests itself
as soon as nodes in the path are not within the same
carrier sensing range. TCP typically grows its average
congestion window size much larger with respect to the
optimal size (identified in [30]), and earlier nodes in
the path block later nodes. To address this issue, in
[28, 30] authors propose to explicitly bound the TCP
congestion window to a fixed size to reduce channel
contention. Chen et al. [31] define an algorithm to
dynamically adjust the maximum congestion window
size according to the round-trip hop-count of the
connection. Papanastasiou et al. [32] and Nahm et al.
[33] propose Slow Congestion Avoidance Scheme (SCA)
and Fractional Window increment (FeW), which do not
limit the congestion window, but increase the sending
rate more slowly than in the original TCP protocol.

The Computer Journal Vol. 00 No. 0, 2005

4 Anastasi et al.

Another direction explored to reduce the effects of
channel contention is modifying the way in which ACK
segments are sent. Authors of [28, 34, 35] tune the
delayed ACK mechanism to reduce the number of ACK
segment in transit. Cordeiro et al. [36] instead propose
COPAS (COntention-based PAth Selection), which uses
disjoint forward (for TCP data) and reverse (for TCP
ACK) paths to reduce the conflicts between TCP
segments travelling in opposite directions. In addition,
COPAS continuously monitors network contention and
selects routes with minimum contention.

A further approach to reduce contention issues is
proposed in [30]. Link Random Early Detection (Link-
RED) monitors the average number of retransmissions
at the link layer. When this number becomes greater
than a given threshold (i.e., too high contention
is occurring), the probability of dropping/marking
packets is computed in a similar way to the RED
algorithm [37]. As a side effect this slows down the TCP
sender. Furthermore, they force nodes to add an extra
backoff interval (at the MAC level) after a successful
transmission, to mitigate the effects of the well-known
MAC-level unfairness problems.

2.4. Improving TCP fairness

Transport-level fairness problems have been reported
in several papers [29, 38, 39, 40], both in wireless and
in mixed wired/wireless environments. A number of
approaches have been therefore proposed to cope with
these issues.

Yang et al. [41] propose a “non work-conserving
scheduling” mechanism. The link layer queue sets a
timer whenever it sends a data packet to the MAC. The
queue outputs another packet to the MAC only when
the timer expires. The duration of the timer is updated
according to the queue output rate value. Xu et al. [39]
show that legacy RED does not completely solve TCP’s
unfairness in MANETs due to lack of coordination
among nodes, and propose a Neighbourhood RED
(NRED) scheme. With respect to legacy-RED, NRED
manages all the the queues of a set of neighbours at
once, both as far as monitoring the queues’ level, and
as far as deciding drop actions. Jiang et al. [42]
propose and evaluate the use of a distributed max-
min air-time allocation algorithm to approximate the
proportional fairness objective. Finally, Huang et al.
[42] propose a distributed algorithm that allows each
node to locally determine its max-min per-link fair
share without knowledge of the global network topology.

With respect to transport-level fairness, we specif-
ically mention the work in [8], where authors pro-
pose a modified version of the adaptive pacing mech-
anism available for the Internet (named TCP-AP).
TCP-AP spreads the segments transmission according
to a dynamically computed transmission rate. More-
over it incorporates a mechanism to identify incipient
congestion and to consequently adjust the transmission

rate. The detailed presentation of this mechanism is
reported in Section 5, as TPA exploits the adaptive pac-
ing mechanism too.

2.5. Designing new transport protocols

The main proposals which design a new transport
protocol instead of modifying a particular TCP aspect
are ATP [43] and TPA.

ATP exploits cross-layer interactions, and includes
rate-based transmissions, network-supported conges-
tion detection and control, no retransmission timeout,
decoupled congestion control and reliability. Each node
in the ATP path piggybacks its available rate in data
segments. This information is collected and consoli-
dated by the ATP receiver, and is then periodically
sent back to the ATP sender, which computes the trans-
mission rate accordingly. Another ATP feature is that
it doesn’t use retransmission timeouts for reliability.
Instead, it uses selective ACKs to periodically report
back to the sender any new hole observed by the receiver
in the data stream. A drawback of ATP is that it
requires assistance from all intermediate nodes along
the connection path. This may make it unsuitable for
those environments where the network layer protocol
does not provide such a support. Opposite to ATP, even
if novel in many respects, TPA conserves some TCP
characteristics that are actually suitable for the ad hoc
environment. For example, TPA uses a window-based
transmission scheme and preserves the TCP end-to-end
semantic. In addition, TPA works properly also with-
out any assistance from the underlying protocol (e.g.,
when ELFN messages are not provided by the network
layer protocol), and does not require assistance from all
nodes along the path.

This paper complements our previous work on TPA
[44], [45], and [46]. In [44] we provided an early
description of the TPA design features. In [45] we
discussed a preliminary simulation analysis of TPA
in comparison with TCP. In [46] we extended the
TPA evaluation through an experimental analysis on a
chain topology, evaluating the effect of different routing
protocols. In this paper we extend the experimental
analysis to different topologies, and we also consider
mobile scenarios. We also present a detailed simulation
analysis to evaluate the TPA performance in large
topologies (both static and mobile), and to analyse
issues related to fairness.

3. TPA DESCRIPTION

The TPA protocol provides a reliable, connection-
oriented type of service. The main TPA design goals
are defined by observing the TCP limitations when used
over multi-hop ad hoc networks, and can be summarized
as follows:
• The data transfer policy should be resilient to

late and out-of-order segments, and smoothly

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 5

work with multi-path routing. In TCP all these
circumstances typically trigger timeout or useless
re-transmissions at the sender, both reducing the
throughput, and wasting energy and bandwidth.

• Several papers (e.g., [30]) have shown that the
optimal transmit window size of a TCP connection
over multi-hop ad hoc networks is limited to a
few segments. The flow and congestion control
algorithms should take this into consideration,
and can thus be greatly simplified with respect
to TCP. Furthermore, when congestion is over,
the transport protocol should try to exploit the
available bandwidth more promptly than the TCP
additive increase policy does.

• Congestion and route failures are different phenom-
ena in ad hoc networks. However, TCP basically
has no notion of route failure, and manages this
phenomenon through congestion control. Instead,
congestions and route failures should be managed
via different algorithms, to accommodate distinct
and more refined policies.

• Route changes in ad hoc networks can be frequent
events, and new paths can provide significantly
different performance in terms of delay, congestion
level, etc. The transport protocol should adapt
quickly to new paths’ features, and discard
statistics about old paths. This is not the
case in TCP, where, for example, the algorithm
used to estimate Round Trip Times and set the
Retransmission Timer privileges old statistics with
respect to new samples. While this prevents
statistics’ flapping, sometimes this might not be
the best way to manage route changes in ad hoc
networks.

• Previous papers have shown that Delayed ACK
techniques can be helpful to reduce the network
congestion, and ultimately increase the transport-
protocol efficiency. We thus include this
mechanism in the TPA design.

In the rest of this section we present the TPA aspects
that permit to meet the above goals. A description of
the TPA implementation is presented in Appendix A.

3.1. TPA segment structure

The TPA segment consists of a header field and a data
field. The data field contains a chunk of application
data. The MSS (Maximum Segment Size) limits the
maximum size of a segment’s data field. The smallest
TPA header is composed of 16 bytes. Figure 1 shows
the structure of the TPA segment. Since TPA is full-
duplex, the TPA header contains the fields of both data
and ACK segments. Specifically, the header includes
the following fields (note that the precise use of some
of these will be explained in detail in the following
sections):
• SourcePortNumber and DestinationPort-

Number fields: are the usual port numbers.

FIGURE 1. TPA header.

• BlockSeqNumber: identifies the block to which
the data segment belongs (see Section 3.2).

• BitmapData: consists of 12 bits and identifies the
position of the data segment within the block (see
Section 3.2).

• AckBlockSeqNumber: identifies the block to
which the acknowledged segment belong. This field
is valid only if the ACK flag is set.

• BitmapAck: consists of 12 bits and describes all
the segments belonging to the current transmis-
sion block correctly received by the destination. A
bit set in the BitmapAck indicates that the cor-
responding segment within the block AckBlockSe-
qNumber has been correctly received by the desti-
nation. The receiver can acknowledge more than
one segment by setting the corresponding bits in
the BitmapAck. This field implements a SACK-
like functionality, and is valid only if the ACK flag
is set.

• Flag field: contains 4 bits: The ACK bit indi-
cates that the value carried in the AckBlockSe-
qNumber, BitmapAck, and AckTxSeqNumber fields
are valid. The RST bit resets the connection. The
SYN and FIN bits are used for connection setup
and teardown.

• WinSize: is the receiver advertised window.
• txStat: is used by the TPA sender to announce its

status (congested or not congested) to the receiver
(see Section 3.6).

• Checksum: usual checksum, calculated by the
sender over the header and the data fields.

• TxSeqNumber: This field is used by the sender
to identify the data segment sent. Each time
TPA sends a data segment, it increments the
TxSeqNumber field by one. When TPA changes
the transmission block, it resets the TxSeqNumber
field.

• AckTxSeqNumber: used by the sender to
identify the segment which the ACK corresponds
to. For example, if the ACK was generated by a
data segment with the TxSeqNumber field set to
i, then the receiver sets the AckTxSeqNumber field
to i. This field is needed since the BitmapAck field
does not identify the segment that generates the
ACK. The AckTxSeqNumber field is valid only if
the ACK flag is set.

The Computer Journal Vol. 00 No. 0, 2005

6 Anastasi et al.

FIGURE 2. ACK reception (a), and timeout expirations
(b).

• unused: this field is reserved for future use.

3.2. Data transfer

TPA is based on a sliding-window scheme where the
window size varies dynamically according to the flow
control and congestion control algorithms. The flow
control mechanism is similar to the corresponding TCP
mechanism [47] while the congestion control mechanism
is described in Section 3.5.

TPA tries to minimize the number of
(re)transmissions in order to save energy. To this
end, data to be transmitted are managed in blocks,
with a block consisting of K segments, whose size is
bounded by the Maximum Segment Size (MSS)2. The
source TPA grabs a number of bytes - corresponding
to K TPA segments. - from the transmit buffer, encap-
sulates these bytes into TPA segments, and transmits
them reliably to the destination. Only when all seg-
ments belonging to a block have been acknowledged,
TPA takes care to manage the next block.

Possibly, using large values of K might introduce
additional delays to early segments in the block, due
to the time required to fill the block with K segments.
TPA has no control on this time, as it depends on
the data generation pattern of the application. To
overcome this problem, TPA defines a timeout for filling
the buffer, and transmits a block consisting of less then
K segments if the timeout expires. We have run some
preliminary experiments to understand the impact of
the K parameter on the performance of ftp-like traffic
(not shown here due to lack of space). They have shown
just a minor dependence of the considered performance
figures on this parameter.

Segment transmissions are handled as follows.
Whenever sending a segment, the source TPA sets a
timer and waits for the related ACK (i.e. a segment
with the corresponding bit in the ACK bitmap set)

2All segments but - possibly - the last one are long MSS bytes.

FIGURE 3. Retransmission Stream.

from the destination. Upon receiving an ACK for
an outstanding segment the source TPA performs
the following steps: i) derives the new window size
according to the congestion and flow control algorithms
(see below); ii) computes how many segments can be
sent according to the new window size; and iii) sends
next segments in the block (see Figure 2a). On the
other hand, whenever a timeout related to a segment
in the current window expires, the source TPA marks
the segment as “timed out” and executes steps i)-
iii) as above, just as in the case the segment was
acknowledged (see Figure 2b). In other words, for each
block TPA first performs a transmission round during
which it sends all segments within the block, without
retransmitting timed-out segments. Then, the sender
performs a second round for retransmitting timed-out
segments, which are said to form a “retransmission
stream” (see Figure 3). In the second round the sender
performs steps i)-iii) described above with reference
to the retransmission stream instead of the original
block. This procedure is repeated until all segments
within the original block have been acknowledged by
the destination. If an ACK is received for a segment
belonging to the retransmission stream, that segment is
immediately dropped from the stream.

The proposed scheme has several advantages with
respect to the retransmission scheme used in TCP.
First, the probability of useless transmissions is reduced
since segments for which the ACK is not received
before the timeout expiration are not retransmitted
immediately (as in the TCP protocol) but in the next
transmission round. Second, TPA is resilient against
ACK losses because a single ACK is sufficient to notify
the sender about all missed segments in the current
block. Third, the sender does not suffer from the
duplicated ACKs generated in TCP by the receiver
upon receiving out-of-order segments. This implies that
TPA can operate efficiently also in multi-hop ad hoc
networks using multi-path forwarding [48].

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 7

3.3. Route failure management

Like many other solutions [14, 10, 17, 49], TPA
can exploit, if available, the Explicit Link Failure
Notification (ELFN) service provided by the network-
layer for detecting route failures.

Upon receiving an ELFN, the source TPA enters
a freeze state where the transmission window size
is limited to one segment. In general, we assume
that the network layer does not provide route re-
establishment notifications. Thus, at the expiration
of each retransmission timeout (see Section 3.4), TPA
sends segments in the main or retransmission streams
(as per the Data Transfer algorithm), probing the
network for a new route. To limit the number of
segments sent when there is no available route, while
in the freeze state, the value of the retransmission
timer doubles after each timer expiration. Therefore,
TPA realizes that the route has been re-established
as soon as it receives an ACK for the latest segment
sent. Upon reception of such an ACK, TPA i) leaves
the freeze state; ii) sets the congestion window to the
maximum value cwndmax; and iii) starts sending new
segments. On the other hand, if route re-establishment
messages are available, the TPA behaviour can be
further optimized. Specifically, in the freeze state TPA
can refrain from transmitting any segment, waiting for
a route re-establishment message.

Even if the underlying layer does not provide the
ELFN service, the sender TPA is still able to detect
route failures as it experiences a number of consecutive
timeouts. Specifically, the sender TPA assumes that a
route failure has occurred whenever it detects thROUTE

consecutive timeouts. In this case it enters the freeze
state, and behaves as described above.

3.4. Route change management

We argue that a transport protocol for multi-hop ad hoc
networks should react more quickly to route changes
than TCP does. To understand why, let us briefly
explain how TCP and TPA evaluate the Retransmission
Timeout (RTO).

Similarly to TCP, TPA estimates the connection
RTT, and uses this estimate to set the Retransmission
Timeout (RTO). Both parameters are derived in the
same way as in the TCP protocol, i.e.:

ERTTrtt(n) = g × RTT (n) + (1 − g) × ERTTrtt(n − 1)

DEVrtt(n) = h× |RTT (n)− ERTTrtt(n)| +

(1-h)× DEVrtt(n-1)

RTO(n) = ERTTrtt(n) + 4×DEVrtt(n)

where: i) ERTTrtt(n) and DEVrtt(n) are the average
value and standard deviation of the RTT estimated at
the n-th step, respectively; ii) RTT(n) denotes the n-th
RTT sample; iii) RTO(n) is the retransmission timeout
computed at the n-th step; and iv) g and h (0 < g,
h < 1) are real values [47].

Multi-hop ad hoc networks are far more dynamic that
wired networks, and route changes can be fairly frequent
even in static configurations. Whenever a route
changes, the new path may differ from the previous
one in number of hops. Or, new links in the path may
have different properties e.g. in terms of interference.
This means that, after a route change, segments may
experience a significant variation in the RTT and the re-
transmission timeout might be no longer appropriate for
the new path. However, the standard TCP essentially
uses a low-pass filter to estimate RTT, and thus
RTO may converge to a value appropriate to the new
path after long time possibly resulting in excessive re-
transmissions. To avoid this, the TPA protocol must
detect route changes as soon as they occur, and modify
the RTT estimation method to quickly achieve a reliable
estimate for the new RTT. In practice, TPA detects that
a route change has occurred either i) when a new route
becomes available after a route failure; or ii) when thRC

consecutive samples of the RTT are found to be external
to the interval [ERTTrtt−DEVrtt, ERTTrtt +DEVrtt]
(thRC consecutive late segments or thRC consecutive
early segments). Upon detecting a route change, TPA
replaces the g and h values in the ERTT and DEV
estimators with greater values (g1 and h1), so that the
new RTT estimates are heavily influenced by the new
RTT samples. This allows to achieve a reliable estimate
of the new RTT immediately after the route change
has been detected. Finally, after nRC updates of the
estimated RTT, the parameter values are restored to
the normal g and h values.

3.5. Congestion control mechanism

Also congestion phenomena are quite different in multi-
hop ad hoc networks with respect to wired networks.
The work in [30] shows that congestions in multi-
hop ad hoc networks mainly occur because of link-
layer contention and not because of buffer overflow at
intermediate nodes, as in the case of wired networks.
Congestions due to link-layer contentions manifest
themselves at the transport layer in two different ways.
An intermediate node may fail in relaying data segments
to its neighbouring nodes and, thus, it sends an ELFN
back to the sender node (provided that this service is
supported by the network layer). This case, throughout
referred to as data inhibition, cannot be distinguished
by the sender TPA from a real route failure. On the
other hand, an intermediate node may fail in relaying
ACK segments. In this case, throughout referred to as
ACK inhibition, the ELFN (if available) is received by
the destination node (i.e., the node that sent the ACK),
while the source node (i.e., the node sending data
segments) only experiences one or more (consecutive)
timeouts. Whenever the sender TPA detects thCONG

(with thCONG >= 1) consecutive timeout expirations,
it assumes that an ACK inhibition has occurred, and
enters the congested state. The source TPA leaves the

The Computer Journal Vol. 00 No. 0, 2005

8 Anastasi et al.

congested state as soon as it receives thACK consecutive
ACKs from the destination.

If the network layer does not support the ELFN
service, the only way to detect both data and
ACK inhibitions is by monitoring timeouts at the
sender. Congestions and route failures are no longer
distinguishable. Hence, thCONG and thROUTE collapse
in the same parameter, and the freeze and the congested
states collapse in the same state.

Several papers (e.g., [30, 31]) have shown that for
TCP connections spanning a small number of hops
(below 20) a congestion window of 2 or 3 segments is
the optimal choice. As, based on the ad hoc horizon
definition [7], these connections are the most likely
to occur in real ad hoc network settings, in TPA
the congestion control mechanism is window-based as
in TCP, but we just considered 2 or 3 as candidate
values for the maximum congestion window (the
value achieving the best performance depends on the
network configuration, as shown by the experimental
and simulation results). As a consequence, in TPA
the maximum and minimum values of the congestion
window are very close, and the TPA congestion control
algorithm is thus very simple. In normal operating
conditions, i.e., when TPA is not in the congested state,
the congestion window is set to the maximum value,
cwndmax. When TPA enters the congested state, the
congestion window is reduced to 1 to allow congestion
to disappear.

3.6. ACK management

Based on the results in [34, 35, 28], showing the benefit
of delayed ACK mechanisms to reduce contention, we
firstly included in TPA a delayed ACK mechanisms
similar to the one proposed in RFC 1122. Specifically,
when the sender is not in congested state, the TPA
receiver sends back one acknowledgement every other
segment received, or upon timer expiration. Otherwise,
if the sender is in congested state, the receiver sends
back one ACK for each segment received (as in this case
the sender window size is stuck to one, see Section 3.5).
Recall that the sender uses the txStat flag of the TPA
segment header (see Section 3.1) to announce its status
(congested or not congested) to the receiver.

We then considered an alternative version of the
Delayed ACKs scheme. Specifically, to minimize
the number of ACKs in transit in the network, we
modified the receiver to send a single ACK every
cwndmax segments, when the sender is not congested.
Suppressing more ACKs makes no sense, as the sender
would not be able to transmit anything more until a
timeout expires at the receiver (and an ACK is thus
forcibly sent). Throughout the paper we will refer
to TPA with modified version of the Delayed ACK
technique as TPA*.

In both TPA variants, the interval that triggers the
ACK transmission is set to a constant value (typically,
100 ms).

4. EXPERIMENTAL ANALYSIS

In this section we present results of experiments aimed
to compare TPA and TCP in realistic small-scale ad
hoc networks. Specifically, we first consider a chain
topology with varying number of hops (see Section 4.3),
then we consider a cross topology (see Section 4.4), and,
finally, we evaluate the impact of nodes’ mobility (see
Section 4.5). Before presenting the results, we discuss
the setting of our testbed, and the adopted performance
measures.

4.1. Testbed description

Our testbed consisted of IBM R-50 laptops equipped
with integrated Intel Pro-Wireless 2200 wireless cards.
All laptops were running the Linux Kernel 2.6.12 with
the latest available version of the ipw2200 driver (1.1.2).
Wireless cards followed the IEEE 802.11b specifications
with maximum default bit rate set to 2 Mbps (which is
the setting used in the vast majority of related works).
For completeness, we also replicated the experiments
at 5.5 and 11 Mbps. The RTS/CTS mechanism was
enabled and RTS/CTS threshold was set to 100 bytes so
that RTS/CTS handshake was active for data segments
and disabled for ACKs. This setting protected long
data segments from collisions, while avoiding RTS/CTS
overhead for short ACK segments, which are less likely
to collide. In all configurations, neighbour nodes were
placed at the limit of their transmission range.

We compared TPA and TCP performance by
considering two different routing protocols, i.e., AODV
and OLSR. AODV (Ad hoc On-demand Distance
Vector) is a well-known reactive protocol [50]. It
is worth recalling here that AODV can use two
different mechanisms for neighbour discovery and local
connectivity maintenance, i.e., link layer information
provided by the underlying MAC protocol, or HELLO
messages periodically broadcast by each node to
announce its presence in the one-hop neighbourhood.
In our testbed we used the AODV implementation
for Linux by the Uppsala University [51], version
0.9.1. To maintain local connectivity we set AODV to
use HELLO messages since our ipw2200 driver didn’t
provide link-layer failure notifications. All the AODV
parameters were set to their default values. OLSR
(Optimized Link State Routing, [52]) is an optimization
for mobile ad hoc networks of the classical link state
algorithm (it is thus a proactive protocol). Similarly
to AODV, OLSR uses a neighbour discovery procedure
based on HELLO messages. In our testbed we used the
OLSR UniK implementation for Linux, version 0.4.10
[53]. We set all the parameters to their default values,
and disabled the OLSR hysteresis mechanism, because

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 9

TABLE 1. TPA Operational
Parameters.

Parameter Value

thRC (TPA) 3 segments
nRC (TPA) 3

g 0.125
h 0.25
g1 0.25
h1 0.5

thROUTE (TPA) 1 segment
thACK (TPA) 1 segment

Block Size (TPA) 12 segments

it was shown to significantly degrade the transport-level
throughput [54].

Table 1 shows the operational parameters for the
TPA protocol. As far as TCP, we configured it to
obtain a NewReno behaviour with Delayed-ACKs. We
compared TCP and TPA in different configurations.
Specifically, we clamped the maximum TCP congestion
window to 2 and 3 segments (referred to as TCP-2
and TCP-3), and we also considered – as reference –
TCP with unclamped congestion window (referred to
as TCP-uc). As far as TPA, we clamped the maximum
congestion window to 2 and 3 segments as well (referred
to as TPA-2 and TPA-3), and we also considered
the modified delayed ACK mechanism discussed in
Section 3.6 (referred to as TPA*-3).

In all the experiments we used ftp-like traffic,
i.e., the sender node(s) had always data ready to
send. Indeed, file-sharing applications are expected
to generate similar type of traffic. The MSS in all
the experiments was set to 1460 bytes. It is worth
mentioning that (as described in detail in Appendix A),
the TPA implementation guarantees that the header
overhead in TPA and TCP is exactly the same. To
capture the TCP traffic we used tcpdump, while to
analyse the experiments results we used tcpstat and
tcptrace (enhanced by our shell scripts). Since TPA
was implemented in the user-space (see Appendix A),
to capture the TPA traffic we used our TPA code.

4.2. Performance measures

In our analysis we consider the following two
performance measures:
• Throughput, i.e., the average number of bytes

successfully received by the final destination per
unit time.

• Retransmission index, i.e., the percentage of
segments re-transmitted by the TPA/TCP sender.

The throughput was measured at the application layer
as the number of bytes successfully received by the
destination process in a given time interval, divided by
the duration of the time interval. The re-transmission
index (rtx) measures the average number of times a

segment had to be retransmitted to be successfully
received by the destination. Thus, it is defined as:

rtx =
pktRtxSrc

pktRcvDest

where pktRtxSrc is the number of segments retransmit-
ted by the source, and pktRcvDest is the number of non-
duplicated segments successfully received by the desti-
nation.

The re-transmission index allows us to evaluate
the ability of TPA/TCP to handle transmissions in
an efficient way. It is worthwhile to emphasize
that re-transmitted segments consume energy and
generate congestion both at the sender and intermediate
nodes. As nodes in a multi-hop ad hoc network may
have limited power budget, and wireless bandwidth
is a scarce resource, it is important to manage
(re)transmissions efficiently. Therefore, a small value
for the re-transmission index is highly desirable.

To achieve statistical accuracy, we replicated each
experiment a number of times (at least five) so that
the semi-confidence interval (computed with a 90%
confidence level) of the throughput was within 10% of
the average value. Due to fairness issues discussed in
the following, we were not able to achieve this target
only in the cross topology experiments, when using
TCP on top of OLSR. As far as the retransmission
index, it generally shows a higher variability than
the throughput. However, in most cases either
the retransmission index is so low that it can be
approximated with 0, or the difference between TCP
and TPA is large enough, so that the fact that
TPA outperforms TCP holds true even if the results
variability is not very small. The only exception is the
experiment using AODV in the roaming-node scenario.
In this case no conclusive results can be drawn due to
the high variability of results. However, the average
values of the retransmission index suggest that TPA
outperforms TCP also in this case.

As will be clear in the following, depending on
the network setup, TPA and TCP achieve their best
performance with different settings (e.g., in terms of
maximum congestion window size). Unless otherwise
stated, we compare performance figures achieved by
TCP and TPA in the respective best configurations.
Note that for the same protocol, the best configuration
may be different depending on the performance index
considered.

4.3. Chain topology

We considered a chain topology with hop count
ranging from 1 to 4. In addition, we also ran
experiments over a 3-hop chain topology in the presence
of interfering traffic. Figure 4 shows the indoor
environment where the experiments were carried out.
The testbed was deployed in a real working environment
with possibly interfering electrical appliances, people

The Computer Journal Vol. 00 No. 0, 2005

10 Anastasi et al.

FIGURE 4. Chain Topology network.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 1hop

FIGURE 5. Throughput vs. window size in the 1-hop
scenario.

roaming around, etc., so as to have a scenario
representative of the expected indoor environments
where ad hoc networks will operate in. The experiments
consisted in a file transfer of about 180s. In all
the experiments node N1 was the sender, while the
receiver (and the number of active nodes) depended on
the specific chain length. For example, in the 3-hop
scenario, node N4 was the receiver (node N5 was not
active). We set the transmission power of wireless cards
and the distance between nodes in such a way that only
adjacent nodes were within the transmission range of
each other. However, since the transmission range of
nodes is not a perfect circle and may vary from time to
time [1], we used the iptables firewall to filter MAC
packets and enforce the desired topology.

4.3.1. Analysis with the AODV routing protocol
Figure 5 through Figure 9 show the throughput and
retransmission index of both TCP and TPA in all the
scenarios we considered.

Figure 5 shows that in the 1-hop scenario there
are not significant differences between TCP and TPA
performance. This was expected since in this simple
scenario problems related to link-layer contention are
managed efficiently by the 802.11 MAC protocol. All
nodes are within the transmission range of each other

 580

 600

 620

 640

 660

 680

 700

 720

 740

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 2hop

 0

 0.5

 1

 1.5

 2

 2.5

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2
Pe

rc
en

ta
ge

 o
f

re
tr

an
sm

is
si

on
s

(%
)

Maximum window size (# of segments)

AODV, 2hop

FIGURE 6. Throughput (up) and percentage of retrans-
mitted segments (down) vs. window size in the 2-hop
scenario.

and can thus coordinate efficiently their transmissions.
This results in a retransmission index equal to zero
for all values of the maximum cwnd size parameter.
TCP and TPA perform almost the same, with a slight
advantage for TCP in the best configurations (TCP-uc
and TPA*-3, respectively).

Note that TPA is implemented in the user space
(see Appendix A) and, thus it experiences a greater
overhead due to a higher number of interactions
between the user and the kernel spaces. This possibly
explains the performance difference in the one-hop
configuration. However, note that in this case TPA
and TCP are basically equivalent, and the difference
their throughput is below 2%. This is indeed not a
multi-hop configuration, where TPA is expected - by
design - to outperform TCP. Even assuming that TCP
outperformed TPA by 2% in this configuration would
be good enough by looking at the overall performance
differences in the multi-hop experiments.

Figure 6 shows that in the 2-hop scenario TPA
outperforms TCP both in terms of throughput (+7.5%
in the best configurations), and retransmission index
(-83%). Note also that in a 2-hop scenario the best
TCP configuration is TCP-uc. This happens because
in this scenario all nodes are in the same carrier sensing
range (the carrier sensing range is about twice as large
as the transmission range at 2 Mbps [1]), and thus
the 802.11 MAC protocol and TCP does not wrongly

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 11

 360

 380

 400

 420

 440

 460

 480

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 3hop

 0

 1

 2

 3

 4

 5

 6

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

AODV, 3hop

FIGURE 7. Throughput (up) and percentage of retrans-
mitted segments (down) vs. window size in the 3-hop
scenario.

interfere, as discussed in Section 2. Also note that
the TPA best configuration is TPA*-3 in terms of
throughput, and TPA-2 in terms of retransmissions.
We have observed the same qualitative trend also in the
other configurations presented hereafter. In general, the
difference between the two configurations is usually not
huge. While the difference in terms of retransmission
index is very limited, sometimes TPA*-3 achieves a
significantly higher throughput. Therefore this TPA
configuration often represents a very good tradeoff
between the two performance indices.

By inspecting traffic traces, the main reason for the
difference between TCP and TPA performance when
all nodes are in the carrier sensing of each other resides
in the mechanism of HELLO messages used by AODV
to maintain local connectivity [55]. AODV assumes
a link failure as soon as two consecutive HELLOs are
lost. This is quite frequent, as HELLOs are broadcast
packets, and results in frequent route failures. As
expected, TPA is much more efficient than TCP in
managing these events.

The 3-hop scenario is the first case where problems
related to link layer contentions become evident [56], as
nodes are not all within the same carrier sensing range
anymore. Indeed, the best TCP configuration is TCP-3
(both as far as throughput and retransmission index).
Also in this case, TPA outperforms TCP in terms of
throughput (+6.5%) and retransmission index (-71%).

 280

 300

 320

 340

 360

 380

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 4hop

 0

 1

 2

 3

 4

 5

 6

 7

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

AODV, 4hop

FIGURE 8. Throughput (up) and percentage of retrans-
mitted segments (down) vs. window size in the 4-hop
scenario.

 200

 220

 240

 260

 280

 300

 320

 340

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

AODV, 3hop-UDP

 0

 1

 2

 3

 4

 5

 6

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

AODV, 3hop-UDP

FIGURE 9. Throughput (up) and percentage of retrans-
mitted segments (down) vs. window size in the 3-hop-UDP
scenario.

The Computer Journal Vol. 00 No. 0, 2005

12 Anastasi et al.

Note that previous simulation analyses [31, 30] in this
configuration reported that the best TCP configuration
for TCP should be TCP-2. By inspecting traces,
we found that this discrepancy resides in a different
behaviour between the TCP implementation in the
Linux kernel, and the TCP implementation available
in the ns-2 simulator [57]. When the maximum cwnd
size is set to 2 segments, the simulated TCP receiver
sends back one ACK every other segment, while the
real (i.e. Linux) TCP receiver sends back one ACK
every segment, as if the delayed ACK mechanism were
disabled (see [55] for the details).

In the 4-hop scenario, the link layer contention
increases and then the difference in performance
between the two protocols becomes more evident.
TCP-2 is now the best TCP configuration (with respect
to both performance indices), and significantly improves
TCP-uc (most notably, -70% retransmissions). How-
ever, TPA is always better than TCP-2 (+12% in terms
of throughput and -60% in terms of retransmissions in
the best configurations).

Finally, we also evaluate the performance of TCP and
TPA in the presence of interfering traffic. To this end
we considered the 3-hop network topology described
above and added a CBR (Continuous Bit Rate) session,
between node N3 (source) and node N2 (receiver). The
CBR sending rate was 192 kbps, which corresponds
to the bit rate of a typical MP3 stream. The results
obtained, summarized in Figure 9, show that in this
scenario there is no great qualitative difference with the
results obtained in the 3-hop scenario. One important
observation is that the performance improvement of
TPA is much more evident because the probability of
link layer contentions is now greater: the throughput
increase is now about +20%, and the retransmission
reduction is about -90%.

4.3.2. Analysis with the OLSR routing protocol
Table 2 and Table 3 summarize the throughput and
the retransmission index, respectively, achieved with
OLSR. We can see that the results obtained with
OLSR are not dissimilar to those obtained with AODV.
As soon as problems related to link-layer contention
become evident, TPA outperforms TCP both in terms
of throughput and retransmission index. Specifically,
in the best configurations, the throughput increases
range between +5.5% and +11%, while the reduction
of retransmissions is between -93% and -98%.

Table 2 and Table 3 also show that TCP with a
clamped congestion window is the best configuration
for TCP in terms of throughput only in the presence of
background traffic. This phenomenon can be explained
considering the low percentage of retransmission
achieved by TCP-uc when OLSR is used. For example,
in the 4-hop scenario, TCP-uc over OLSR retransmits
about 65% less segments that over AODV. The most
likely reason for this difference in retransmission index

TABLE 2. Throughput (in kbps) vs. maximum cwnd size
with OLSR.

1hop 2hop 3hop 4hop
3hop
UDP

TCP-2
1369
±25

619
±14

354
±19

231
±18

300
±13

TPA-2
1464
±5

711
±23

412
±15

259
±17

340
±14

TCP-3
1456
±16

672
±14

357
±18

235
±15

320
±13

TPA-3
1461
±19

680
±14

396
±14

263
±11

322
±13

TCP-uc
1524
±5

691
±13

371
±26

253
±15

315
±16

TPA*-3
1495
±3

730
±24

411
±11

267
±13

347
±13

TABLE 3. Retransmission index vs. maximum cwnd size
with OLSR.

1hop 2hop 3hop 4hop
3hop
UDP

TCP-2
0
±0

0.02
±0.01

0.4
±0.15

1.3
±0.2

0.67
±0.24

TPA-2
0
±0

0
±0

0.01
±0.006

0.09
±0.04

0.02
±0.02

TCP-3
0
±0

0.02
±0.01

0.54
±0.18

1.38
±0.24

0.5
±0.19

TPA-3
0
±0

0
±0

0.04
±0.016

0.15
±0.05

0.07
±0.01

TCP-uc
0
±0

0
±0

0.77
±0.24

2
±0.3

0.96
±0.4

TPA*-3
0
±0

0
±0

0.08
±0.04

0.16
±0.05

0.03
±0.001

is the different parameter values used by AODV and
OLSR to manage HELLO messages. Specifically,
by considering the default parameter values for both
AODV and OLSR, OLSR assumes that a link is broken
if it fails to receive three consecutive HELLO messages
from its neighbour, while AODV assumes a link
failure when if fails to receive two consecutive HELLO
messages. This makes OLSR more robust to false link
failures [55]. Finally, Table 2 and Table 3 also show
that TPA*-3 always provides the best throughput for
TPA. The only exception is in the 3-hop scenario, where
TPA-2 and TPA*-3 achieve the same throughput.

4.3.3. Analysis with different transmission rates
To show that TPA improvements do not depend on
the transmission rate, we replicated the experiments
at 5.5 and 11 Mbps. For the sake of space, only
the OLSR results in a 4-hop chain are shown here
(Figures 10 and 11, respectively). At 5.5 Mbps, TPA
outperforms TCP with optimal window size both in
terms of throughput and retransmission index with all
congestion window sizes. In the best configurations,
the throughput increase is about +10%, and the
retransmission reduction about -80%. At 11 Mbps, the
difference in throughput between TCP and TPA is less
evident (+4%). However, the reduction in terms of
retransmission index is still about -80%.

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

OLSR, 4hop-5.5M

FIGURE 10. Throughput (up) and percentage of retrans-
mitted segments (down) vs. window size in the 4-hop at 5.5
Mbps

 700

 750

 800

 850

 900

 950

 1000

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum window size (# of segments)

OLSR, 4hop-11Mbps

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

TPA*-3TPA-3TPA-2TCP-ucTCP-3TCP-2

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

Maximum window size (# of segments)

OLSR, 4hop-11Mbps

FIGURE 11. Throughput (up) and percentage of retrans-
mitted segments (down) vs. window size in the 4-hop at 11
Mbps

FIGURE 12. Cross Topology network.

4.3.4. Summary of the main results
Before proceeding on with the analysis for more
complex scenarios, it is worth summarizing the main
results obtained so far in chain topologies. Specifically
we have shown that:
• the throughput of TPA (in its best configuration)

is always higher than the throughput of TCP (in
its best configuration), unless in the 1-hop case.
Specifically, the TPA throughput is between 4%
and 20% higher than the TCP throughput. We
can reasonably expect the difference between TPA
and TCP in the one-hop case to disappear if also
TPA were implemented in the kernel.

• TPA (in its best configuration) retransmits
between 60% and 98% less segments than TCP (in
its best configuration) does. This results in lower
energy consumption and lower congestion in the
network.

• As noted in Section 6, TPA*-3 is generally the best
configuration for TPA. This is because it reduces
the number of ACK in transit in the network.

• The best configuration for TCP varies with
network topology and routing protocols. However,
as soon as contention problems appears, TCP-3
tends to be the best choice.

Based on the above remarks, in the following we only
present results achieved by TCP-3 and TPA*-3.

4.4. Cross topology

In this section we consider a cross topology, which is one
of the reference topologies used in the literature [8, 30].
Figure 12 shows the nodes position in our testbed. In
this scenario there are two connections, the first one
(referred to as connection 1) from node N1 (sender)
to node N4 (receiver) and the second one (referred
to as connection 2) from node N8 (sender) to node
N5 (receiver). Precisely controlling the interference
patterns between nodes of the different chain is not
trivial in such a real testbed. We carefully checked
that end points of different chains (i.e., node N1 and

The Computer Journal Vol. 00 No. 0, 2005

14 Anastasi et al.

 0

 50

 100

 150

 200

 250

 300

 350

TPA*-3TCP-3

T
hr

ou
gh

pu
t (

K
bp

s)
OLSR, crossTopology

ftp 1
ftp 2

mean throughput

 0

 0.5

 1

 1.5

 2

 2.5

TPA*-3TCP-3

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

OLSR, crossTopology

ftp 1
ftp 2

mean rtx

FIGURE 13. Throughput (up) and percentage of retrans-
mitted segments (down) in the cross topology with OLSR.

node N8, and node N4 and node N5) were outside
their respective transmission ranges. Furthermore, as in
the single-chain case, we positioned nodes of each chain
so that adjacent nodes of a chain were at the limit of
the transmission range of each other, and enforced this
configuration via iptables.

To generate the traffic we used two ftp-like
connections also in this case. We started both
connections at the same time and we made them
last for 240 seconds. Hereafter, in addition to the
per-connection throughput and retransmission indices
defined in Section 4.2, we also show the mean
throughput, i.e., the mean between the throughput
of the two connections, and the mean retransmission
index, i.e., the mean between the retransmission indices
of the two connections.

Figure 13 shows the performance indices achieved
over OLSR. Also in the cross topology TPA significantly
outperforms TCP both in terms of throughput and
retransmission index. Specifically, TPA*-3 increases
the mean throughput of about 18% with respect to
TCP-3 and reduces the mean retransmission index of
about 73%.

As far as the TCP results, note that, while the semi-
confidence interval of the mean throughput is below
10% of the average value, the per-flow throughput of
the separate connections shows a higher variability.
This is a by-product of TCP unfairness issues we
discuss in detail in the following. Specifically, TCP

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

TPA*-3TCP-3

T
hr

ou
gh

pu
t (

K
bp

s)

AODV, crossTopology

ftp 1
ftp 2

mean throughput

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

TPA*-3TCP-3

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

AODV, crossTopology

ftp 1
ftp 2

mean rtx

FIGURE 14. Throughput (up) and percentage of retrans-
mitted segments (down) in the cross topology with AODV.

turned out to suffer so much from unfairness issues in
this configuration, than often one of the connections
completely starved while the other proceeded. This
resulted in very high variability across different replicas,
and, in the end, in the large confidence intervals.

When AODV is used (Figure 14), the TPA
performance improvement is less evident. However,
TPA*-3 still increases the mean throughput of about
5% with respect to TCP-3, and reduces the mean
retransmission index of about 60%.

We can observe that both TCP and TPA suffer
a severe unfairness between the two connections.
This result motivated us to investigate unfairness
issues more precisely via simulation, as described in
Section 5. However, it is worth pointing out that both
connections achieve on average higher throughput and
lower retransmission indices when TPA is used, even
though connection 1 benefits more than connection 2.

4.5. Mobility: the roaming-node scenario

To complete our experimental evaluation of TPA
we considered the impact of nodes mobility on the
performance of both TPA and TCP. To this end, we
replicated the roaming-node scenario defined in [3].

The roaming-node scenario (Figure 15) consists of
four nodes. Three of them are stationary (N1, N2,
and N3) and one is mobile (N4). Nodes N1, N2 and
N3 form a static two hop chain network. The mobility

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 15

FIGURE 15. Roaming Node Scenario.

pattern followed by node N4 is as follows. At time 0
node N4 is in position P1. After 40 seconds it starts
to move toward positions P2, where it pauses for 40
seconds. Then it moves towards position P3, where it
pauses for 40 seconds. Finally, it goes back to positions
P2 and P1, pausing for 40 seconds in each one. The time
needed to move from a position to the next position
is about 20 seconds. Thus, the experiments lasted for
about 280 seconds. A single ftp-like connection spanned
between nodes N1 and N4 for the whole experiments
duration. The length of the path between nodes N1
and N4 varied during the experiment. Specifically, in
positions P1, P2 and P3, node N4 could reach node N1
in 1 hop, 2 hops and 3 hops, respectively. It should be
noted that in this set of experiments, to allow routes
to be dynamically recomputed we did not enforced
paths through iptables. The roaming-node scenario
represents typical human mobility patterns, in which no
abrupt differences between path lengths are expected.

Figure 16 shows the throughput and retransmission
index of TCP and TPA over both OLSR and AODV.
Also in this scenario TPA significantly outperforms
TCP both in terms of throughput (+12% both with
OLSR and AODV) and retransmission index (-73%
with OLSR and -26% with AODV). We can observe
that in the case of AODV we do not obtain conclusive
results in terms of retransmission index due to the high
variability of the experimental results. However, the
average values strongly suggest than TPA outperforms
TCP also in this case.

Figure 16 also shows that both TCP and TPA
work remarkably better over OLSR than over AODV.
Specifically, the throughput in the AODV case
decreases of about 25% with respect to the OLSR case.
This may appear strange, since OLSR suffers from a
non negligible re-route time [58], due the rules OLSR
uses to generate and disseminate the information about
network topology (Topology Control messages, see [52]
for more details). Despite this drawback, OLSR is
able to provide a more stable networking environment
in our experiments. This is because AODV assumes
that a link exists as soon as a node receives a HELLO

 400

 500

 600

 700

 800

 900

TPA*-3TCP-3

T
hr

ou
gh

pu
t (

K
bp

s)

roamingNode

olsr
aodv

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

TPA*-3TCP-3

Pe
rc

en
ta

ge
 o

f
re

tr
an

sm
is

si
on

s
(%

)

roamingNode

olsr
aodv

FIGURE 16. Throughput (left) and percentage of
retransmitted segments (right) in the roaming node
scenario.

FIGURE 17. Ideal path length during our experiments.

or RREQ message from a neighbour. Therefore, it
tends to use links that may be unidirectional in the
wrong direction [59]. This is quite likely in a mobile
configuration like the one we are considering. On the
other hand, OLSR just uses links that have proved to
be bidirectional. Specifically, in OLSR a link is deemed
valid only if both endpoints announce each other in
their respective neighbour list [52]. It is easy to show
that this is a stronger check on the links’ validity, which
grants more stable routes.

Based on these remarks, we further investigate
the behaviour of TCP and TPA just in the OLSR
case. Figure 17 shows the ideal path length between
the sender (N4) and the receiver (N1) that the
routing protocol is expected to compute during our
experiments. Figure 18 shows the real path length
(upper plot) and the throughput (lower plot) achieved
by TCP (over OLSR) during a particular replica of our

The Computer Journal Vol. 00 No. 0, 2005

16 Anastasi et al.

FIGURE 18. Path length and instantaneous throughput
of TCP over OLSR in the Roaming Node Scenario.

experiment (other replicas show a similar behaviour). A
number of hops equal to zero means that node N4 has no
entries for node N1 in its routing table, and is thus not
able to communicate with it. Figure 19 shows the same
performance figures in the case of TPA. First of all,
note that the path calculated by OLSR is comparable in
both cases (small differences are due to the unavoidable
differences in the external environment conditions
experienced by different experiments). Actually, the
evolution of the computed path is slightly better in the
TCP case, as shown by the additional drop after 150s
in Figure 19 (upper plot). As far as the throughput,
TCP performs close to TPA only when the sender
and the receiver are 1-hop away, i.e., before 50s and
after 250s. When they are 2-hops away, TCP is able
to transfer some segments, as shown by the plateaux
around 100s and between 200s and 250s. However, in
these time frames TPA is able to achieve a quite more
stable throughput. Finally, when the sender and the
receiver are 3-hops away, TCP is completely unable to
carry on any transfer, while TPA still achieves a stable
behaviour in terms of throughput. Therefore, TPA is
able to reconfigure after route changes, and carry on
data transfer more efficiently than TCP.

5. SIMULATION ANALYSIS

In the previous section, we reported the experimental
results of TPA analysis over simple network topologies.
As mentioned in Section 1, this allows us to give
significant results in configurations similar to those
expected in real ad hoc networks [7]. To complete the
analysis, we considered a further set of experiments in
a simulation environment using ns-2 [57]. The higher
control over the environment parameters allows us to
better investigate i) the scalability properties of TPA
and ii) unfairness issues. As far as the latter aspect, we
considered both the original TCP and TPA protocols,
as well as their variants that include the adaptive pacing
algorithm [8] described in Section 5.2 (these variants

FIGURE 19. Path length and instantaneous throughput
of TPA over OLSR in the Roaming Node Scenario.

are called TCP-AP and TPA-AP respectively). This
allows us to highlight the better performance of TPA
also when adaptive pacing is not used, and to show,
at the same time, the improvements brought about by
adaptive pacing.

5.1. Simulation scenarios and performance
measures

We focused on five scenarios. The first two are the
standard cross and parallel topologies defined in [8].
This allows us to compare TCP-AP and TPA-AP in the
same configurations used in [8]. The next two are a grid
topology and a static random topology. The final one is
a mobile scenario in which 50 nodes move according to
the random waypoint (RWP) model. These scenarios
allows us to jointly investigate scalability and fairness
properties of TPA. We used AODV-UU [51] as the
routing protocol implementation.

As far as TCP and TPA settings, we used the same
configurations used in Section 4. For TCP-AP we
only used an unclamped congestion window size, as
suggested in [8].

As in all scenarios we have more connections running
concurrently, we slightly modified the performance
figures defined in Section 4.2. Specifically we
considered:
• Aggregate Throughput, i.e., the sum of the

throughputs achieved by each connection.
• Mean Re-transmission index, i.e., the percentage

of segments re-transmitted by all the TCP/TPA
senders, computed as

rtx =
∑n

i=1 rtxi · pktRcvDsti∑n
i=1 pktRcvDesti

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 17

where rtxi is the retransmission index of the i-
th connection, pktRcvDesti is the number of non-
duplicated segments successfully received in the i-
th connection, and n is the number of connections
active in the network.

• Jain’s fairness index [60], defined as:

F (x) =
[
∑n

i=1 xi]
2

n×
∑n

i=1 x2
i

,

where xi is the throughput achieved by the i-th
connection. In addition, we also considered the
instantaneous fairness index, i.e., the value of the
Jain’s fairness index sampled every two seconds,
and then averaged over the whole experiment.
While the fairness index provides an indication of
the long-term fairness, the instantaneous fairness
tells how fair is a protocol over short-time scales.
In both cases, the higher the index, the fairer the
protocol.

Unless otherwise stated, we replicated each experi-
ments 10 times. This allowed us to reach – in general –
a semi-confidence interval of performance figures within
10% of the average value. As in the case of experimental
measurements, the retransmission index was more vari-
able than the other performance figures, and we thus
achieved larger confidence intervals. However, the same
remarks already pointed out in Section 4.2 apply also in
this case. Finally, also a few semi-confidence intervals of
the TCP fairness index (in the parallel and grid topolo-
gies) were larger than 10% (but always below 16%).
However, also in those few cases the difference between
TCP and TPA is large enough to allow us to fairly com-
pare them despite the slightly larger variability.

Before presenting the results, it is worth recalling
how the adaptive pacing algorithm works (the reader
is referred to [8] for the complete description).

5.2. Adaptive pacing

Several papers have analysed the TCP unfairness prob-
lem over MANETs (see, for example, [8, 39]). Chan-
nel capture, hidden and exposed terminal conditions,
and the binary exponential backoff of the IEEE 802.11
MAC are the main causes of TCP unfairness. Moreover,
TCP’s congestion control mechanism exacerbates the
problem. Specifically, as noted in [8], TCP’s window-
based congestion control mechanism leads to segments’
burst on ACK reception. This produces an increased
channel contention and reduces the chance of neighbour
nodes to access the channel. In [8], ElRakabawy et al.
thus proposed a modified version of the adaptive pacing
(AP) mechanism available for the Internet, and applied
it to TCP. They show that TCP-AP can significantly
mitigate the unfairness problem encountered by TCP.

To mitigate the segments’ burst problem, AP spreads
the segments transmission according to a rate that is
dynamically computed. It incorporates a mechanism to

identify incipient congestion and to adjust consequently
the transmission rate. In more detail, AP calculates
the segments transmission rate taking into account
the spatial reuse constraint of IEEE 802.11 multi-hop
network. The authors of [30] showed that, in a chain
topology, only nodes 4 hops away from each other can
transmit simultaneously. Based on this result, the
authors of [8] use the 4-hop propagation delay (FHD),
i.e. the time needed for a segment produced by the i-th
node in the path to reach ”node i+4”, to calculate the
segment transmission rate. In AP the sender calculates
the FHD using the RTT estimation and the number of
hops of the connection. The second ingredient used by
AP is an estimate of the link-layer contention, computed
as the coefficient of variation of recently measured RTT
(covRTT):

covRTT =

√
1

N−1 ×
∑N

i=1

(
RTTi −RTT

)2

RTT
. (1)

In Equation (1) N is the number of RTT samples, RTT
is the mean of the samples, and RTTi is the value of
the i-th sample of RTT. AP evaluates the transmission
rate R as follows:

R =
1

FHD × (1 + 2covRTT)
, (2)

where FHD is the standard exponentially weighted
moving average3 of FHD and (1 + 2covRTT) is the
factor that takes into account the contention degree
of the network. The transmission rate depends on the
FHD index, and on the link-layer contention. Thus, the
connection slows down when the contention increases.

5.3. Cross and parallel topologies

The cross and parallel topologies (Figure 20) are two
reference topologies considered in [8]. In both scenarios,
the distance between adjacent nodes is 200 meters,
so as to make each connection 4-hops long. In the
parallel topology the distance between the two chains
is 400 meters. This way, nodes of connection 1
(connection 2) are out of the transmission range of
nodes of connection 2 (connection 1), but inside the
carrier sensing range of connection 2 (connection 1).
In both topologies we considered two ftp flows, each
starting at time 20 and lasting for 500 seconds.

Table 4 shows the results of the experiments in the
Cross Topology scenario. TPA outperforms TCP in
terms of throughput (+6%) and instantaneous fairness
(+4%), while it’s essentially equivalent in terms of
fairness, and slightly worse in terms of retransmissions
(+2%). Table 5 shows the results of the experiments
in the Cross Topology scenario when the adaptive

3In the simulative analysis, we set alpha to 0.7 to compute
FHD.

The Computer Journal Vol. 00 No. 0, 2005

18 Anastasi et al.

FIGURE 20. Cross and Parallel topology.

TABLE 4. Cross Topology

Agg.
Thr

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean
Rtx
(%)

TCP-2
292
±1.4

94.6
±3

63.6
±1.7

5.13
±0.49

TPA-2
301.7
±1.3

98.9
±0.7

69.6
±1.3

5.23
±0.24

TCP-3
282.5
±2

95
±4

69.9
±1.9

8.3
±0.6

TPA-3
297
±1.6

99.7
±0.2

72.4
±1.25

7.35
±0.26

TCP-uc
280.7
±1.7

99.3
±0.4

70.8
±1.13

11.4
±0.43

TPAst
309.5
±1.3

99.3
±0.36

73.3
±1.24

7.22
±0.3

TABLE 5. Cross Topology with adaptive pacing enabled

Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair
(%)

Mean
Rtx
(%)

TCP-AP
153
±2.5

99.7
±0.14

92.3
±0.1

6.34
±0.36

TPA-AP-2
254.7
±2.3

99.3
±0.7

87.3
±2.2

2.46
±0.14

TPA-AP-3
250.6
±2.7

99.1
±0.8

86.8
±1.9

3.3
±0.16

TPA*-AP-3
250
±1.4

98.2
±0.98

88.4
±1.5

5.8
±0.28

pacing mechanism is used. Adaptive pacing improves
the instantaneous fairness of both protocols (+30%
for TCP, +21% for TPA). This is due to sender
rate limitation, which is paid by TCP with a drastic
reduction of the aggregate throughput (-48%), and an
increase of the retransmission index (+24%). This is
clearly not the case for TPA: the throughput reduction
is only -17%, and the retransmission index is reduced
by 53%. The direct comparison between TCP-AP
and TPA-AP tells that TPA-AP achieves significantly
greater throughput (+66%) and lower retransmission
index (-61%), at the cost of an acceptable reduction
of fairness (less than 1%) and instantaneous fairness (-
4%).

There is actually a trade-off between the perfor-
mance in terms of throughput and the instantaneous
fairness, which is controlled by the RTT estimate in

TABLE 6. Cross Topology. Impact of the K parameter on
TPA.

K = 1 K = 2 K = 3

Agg. Thr.
(kbps)

254.7
±2.3

208.7
±3.8

171.2
±1.1

Mean Rtx
(%)

2.46
±0.14

1.83
±0.14

1.05
±0.11

Fair.
(%)

99.3
±0.7

99.7
±0.18

99.8
±0.08

Ist. Fair.
(%)

87.3
±2.2

93.7
±1.09

96.2
±0.3

TABLE 7. Parallel Topology

Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair
(%)

Mean
Rtx
(%)

TCP-2
292.2
±1.5

83.1
±11

54.9
±1.5

2.9
±0.5

TPA-2
298.9
±2.1

97
±2

58.1
±1.03

2.4
±0.15

TCP-3
283.3
±1.6

95.7
±3

57.9
±1.44

4.5
±0.5

TPA-3
294.7
±2.1

98.1
±1.6

60
±1

3.4
±0.19

TCP-uc
279.5
±2.5

82.3
±13

56
±2.4

6.4
±0.7

TPAst
308.2
±1.9

97.7
±1

58.8
±0.62

3.14
±0.16

Equation (1). It can be shown that TCP tends to
greatly overestimate RTT, thus drastically reducing the
sender’s transmission rate. Clearly, this improves the
fairness, but dramatically impacts on the throughput.
A TPA sender is more aggressive because the RTT is
more accurate (this has been noted by inspecting the
simulation traces). It thus achieves greater through-
put, at the cost of a limited reduction of the instanta-
neous fairness. By slightly modifying Equation (1) as
in Equation (3) (i.e., scaling RTT by an integer num-
ber K), it is possible to tune the adaptive pacing so as
to slightly reduce the TPA throughput, and achieve the
same fairness of TCP.

covRTT =

√
1

N−1 ×
∑N

i=1

(
K×RTTi −RTT

)2

RTT
, (3)

As an example, Table 6 shows the performance of
TPA for K equal to 1, 2 and 3. For simplicity,
only the results obtained with a cwnd equal to 2 are
reported (the other TPA-AP configurations achieve
similar results). When K is equal to 2, TPA-AP
improves the instantaneous fairness of TCP-AP of
about 1.5%, maintaining the throughput 36% higher,
and retransmitting 71% less segments.

Table 7 shows the results obtained over the parallel
topology when the adaptive pacing mechanism is not
used. In this scenario TPA outperforms TCP in terms
of throughput (+6%), retransmissions (-17%), fairness
(+2.5%) and instantaneous fairness (+3.6%).

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 19

TABLE 8. Parallel Topology with adaptive pacing enabled

Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair
(%)

Mean
Rtx
(%)

TCP-AP
155.5
±4.2

99.8
±0.1

90.8
±0.6

7.3
±0.4

TPA-AP-2
215.3
±0.9

99.5
±0.35

87.8
±1.2

1.7
±0.16

TPA-AP-3
208.3
±2.5

99.6
±0.5

87.7
±1.6

2
±0.2

TPA*-AP-3
193.2
±3.7

97.5
±1.5

88.4
±2.2

2.5
±0.12

FIGURE 21. Grid topology.

Table 8 shows the results when the adaptive pacing
mechanism is used. Again, the instantaneous fairness
of both protocols increases (+56% for TCP, +47% for
TPA), and TPA-AP outperforms TCP-AP in terms of
throughput (+39%) and retransmissions (-77%), with a
small reduction of the instantaneous fairness (-3%).

In general, the above results show that i) even
without adaptive pacing, TPA outperforms TCP also in
terms of fairness; ii) the adaptive pacing mechanism is
required by both protocol to achieve higher fairness, and
iii) TPA-AP greatly outperforms TCP-AP in terms of
throughput, with a small reduction of the instantaneous
fairness. These outcomes are confirmed also in the more
complex topologies that we consider in the final part of
the paper.

5.4. Grid topology

This section reports the results of the simulation
analysis of TPA over the grid topology depicted in
Figure 21. It is made up of 25 nodes in a 5 x 5
grid, where the distance between horizontal and vertical
adjacent nodes is 200 meters. Over this topology, we set
up 6 ftp flows, each of wich is 4-hops long. Each ftp flow
starts at time 20 and lasts for 500 seconds.

Tables 9 and 10 show the performance of TCP and
TPA with and without adaptive pacing. When adaptive
pacing mechanism is not enabled, TPA outperforms
TCP - as in the other configurations - in terms of
aggregate throughput (+5%), fairness (+35%) and

TABLE 9. Grid Topology

Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-2
270.1
±3

62.6
±5

35.4
±2

12.3
±1

TPA-2
280
±2.9

89.2
±1.8

47.5
±0.4

15
±0.34

TCP-3
263.9
±4.2

66.5
±8.6

35.9
±2

13.7
±0.8

TPA-3
278
±2

89.8
±1.73

48.1
±0.6

18.9
±0.2

TCP-uc
268
±2.7

65.3
±8

34.4
±2.6

15.9
±1.3

TPAst
283
±2

88.2
±2

47.5
±0.6

16.4
±0.4

TABLE 10. Grid Topology with adaptive pacing enabled

Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-AP
202.8
±2.6

98.6
±0.9

86.1
±1.5

28.6
±1

TPA-AP-2
239
±2.3

96.1
±0.9

85.8
±1

7.5
±0.4

TPA-AP-3
241
±1.1

96.5
±1.7

84.9
±1.3

8.4
±0.26

TPA*-AP-3
233.7
±1.8

95.3
±1.4

85.5
±1.6

7.2
±0.4

instantaneous fairness (+34%). However, this is paid
with an increment of the retransmission index (+22%).

When adaptive pacing is enabled (Table 10) we see
the usual pattern highlighted before. The instantaneous
fairness of both protocols is increased (+140% for TCP,
+78% for TPA). TPA-AP outperforms TCP-AP with
respect to the throughput (+19%) and retransmission
index (-75%), with a slight reduction of the fairness (-
2%).

5.5. Static Random Topology

In order to test TPA performance in a less rigid
scenario, we considered a random topology of 50
nodes randomly distributed in an area A=1000m x
1000m. We considered a variable number of connections
simultaneously active in the network (3, 5, and 10).
Each connection starts at time 20s, and lasts for
500s. For each number of concurrent connections,
we generated 10 random nodes’ placements, and
simulations with each placement were replicated 10
times.

The communication end points of each connection
were fixed for all nodes’ placements (i.e. we chose
randomly the source-destination pairs, and we used
the same choice for all the considered scenario).
Performance figures of experiments run over different
placements are not identically distributed, and therefore
it is not meaningful to compute confidence intervals.
We, however, averaged the performance indices over

The Computer Journal Vol. 00 No. 0, 2005

20 Anastasi et al.

TABLE 11. Static Random Topology

Number of connections
3 5 10

TCP-uc
A. Thr.
I. Fair.

885.1
46.8

1126
40.3

1303
28.9

TPA*-3
A. Thr.
I. Fair.

827.2
56.7

1108
46.5

1195
34

TCP-2
A. Thr.
I. Fair.

831.3
52.98

1121
42.6

1226
31.3

TPA-2
A. Thr.
I. Fair.

801
58.3

1080
46.9

1173
34.6

TABLE 12. Static Random Topology with the adaptive
pacing enabled

Number of connections
3 5 10

TCP-AP
A. Thr.
I. Fair.
M. Rtx

415.9
71.4
7.4

546.7
66.7
9.5

558.8
59

13.4

TPA-AP-2
A. Thr.
I. Fair.
M. Rtx

476.6
75.3
1.7

621.8
68.9
2.2

641.4
57.9
3.5

the 10 replicas for each placement, and over the 10
placements.

This methodology does not allow us to quantitatively
compare performance figures with a sufficient statistical
confidence. However, the results generally confirm the
different behaviour of TPA and TCP highlighted in the
previous sections, with special regard to the different
effects of activating the Adaptive Pacing mechanism.
The general indication is that, when Adaptive Pacing
is used (Table 12) both protocols achieve a lower
throughput and a higher instantaneous fairness with
respect to the case when Adaptive Pacing is not used
(Table 11, which only reports the results for the best
configuration of both TCP and TPA i.e. TCP-uc and
TPA*-3 as far as the throughput, TCP-2 and TPA-2 as
far as the fairness). However, the throughput decrease
is lower for TPA, which also achieves performance
comparable to that of TCP in terms of instantaneous
fairness. In other words, the indication is that also
in this case Adaptive Pacing applied to TPA results,
in comparison with TCP, in equivalent performance
in terms of fairness, with lower reduction in terms of
throughput.

Another general indication we can draw is that in this
case the instantaneous fairness with adaptive pacing
is quite lower than in previous configurations for both
protocols. This is due to the fact that in the previous
topologies the connections spanned the same number
of hops, and were thus homogenous. When connections
span a different number of hops, even if adaptive pacing
is used, shorter connections get a higher throughput
with respect to longer ones.

5.6. Mobile Scenario

The considered mobile network consisted of 50 nodes
moving over a 1000m x 1000m field. We utilized

TABLE 13. Mobile Scenario

Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-uc 864.8 75 38.2 5.8
TCP-2 837.4 77 43.9 4.8
TPA*-3 871.7 78.5 45.3 3.6

TABLE 14. Mobile Scenario with the adaptive pacing
enabled

Agg.
Thr.

(kbps)

Fair.
(%)

Ist.
Fair.
(%)

Mean.
Rtx.
(%)

TCP-AP 433.2 94 69.8 16
TPA-AP*-3 536.2 91.2 67.1 3.9
TPA-AP-2 523.7 92.8 68.4 3.4

50 different mobility patterns based on the random
waypoint model, each one being generated according
to the perfect simulation paradigm [61, 62]. To mimic
high node mobility, nodes’ speed was uniformly sampled
in the interval between 1 to 9 m/s, and the pause time
was 20s. After a 20s warm-up period, 5 TCP/TPA
connections were established, and a ftp-like transfer was
launched on each of them. File transfers stopped after
500s. We calculated our performance metrics as the
mean over the 50 considered patterns.

As in the case of the Static Random Topology
discussed in Section 5.5, we chose randomly the
source-destination pairs for each connection, and we
used the same pairs for all the considered mobility
patterns. Also in this case, experiments run over
different patterns are not identically distributed, and
it is thus not meaningful to compute confidence
intervals.Nevertheless, we hereafter present the average
performance figures over the different mobility patterns,
which are able to provide trends about the TPA and
TCP behaviour also in this setup (see Tables 13 and 14).
Once again, using the Adaptive Pacing mechanisms
reduces the throughput and increases the instantaneous
fairness. However, in TPA the throughput degradation
is lower than in TCP, while the instantaneous fairness
is equivalent.

Note that also in this case (as in the static random
topology), the instantaneous fairness provided by
adaptive pacing is lower than in configurations in which
the path length of the connections is homogeneous.

6. SUMMARY AND CONCLUSIONS

In this paper we have presented and evaluated TPA,
which is a new transport protocol designed to cope with
the main inefficiencies of TCP over multi-hop ad hoc
networks. TPA includes by design a number of features
that have shown to be required to adapt TCP to ad hoc
networks. The original approach of TPA is blending
together these features since the design stage, rather
than proposing and evaluating single modifications to
the original TCP in isolation.

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 21

In this work we have provided a thorough evaluation
and comparison of TCP and TPA in a real ad hoc
network testbed. We have investigated the impact of
different protocol parameters on the throughput and the
number of segments used to sustain the throughput. We
have run experiments on different topologies, different
routing protocols, and also in mobile scenarios. In all
the cases we have investigated TPA is able to improve
the performance of TCP. Specifically, TPA delivers
greater throughput with respect to TCP (up to 20%
increase), while reducing at the same time the number
of transmissions (up to 98% reduction). To complement
results from the testbed, we have also presented a
detailed simulation analysis to investigate the TPA
performance in terms of fairness, and its scalability
properties. We have considered different topologies,
both in static and mobile configurations. We have found
that, when the adaptive pacing algorithm is included
both in TPA and in TCP, TPA achieves the same TCP
fairness, while providing a drastic improvement in terms
of average throughput (up to +66%), and a drastic
reduction in terms of retransmissions (up to -77%).

The results presented in this paper are tailored to
multi-hop ad hoc networks in which groups of users
set up a stand-alone network and exchange data in a
p2p fashion. The results we have obtained motivate
us to further investigate the TPA performance also in
different setups. A first interesting area for further
studies is a thorough analysis of TPA and TCP
interoperability and integration. First of all, it will
be interesting to highlight the performance of TCP
and TPA connections running concurrently over the
same network. Secondly, ways should be identified to
make TPA-enabled nodes work with legacy TCP nodes.
From this standpoint, a straightforward solution could
exploit the fact that all major operating systems come
with a complete TCP implementation. Therefore the
choice between TCP and TPA could be done while
opening a connection. Specifically, a TPA node opening
a connection (via the tpa_connect() function, see
Appendix A) can send a TCP SYN segment announcing
TPA availability (e.g., by using a reserved bit in
the TCP header). If the other endpoint does not
implement TPA, the sender will revert to a standard
TCP connection. More refined strategies trying to
use TPA features even when just a single endpoint
implements TPA are under investigation. Another area
of future studies is understanding how TPA works in
mixed wireless/wired scenarios. In these cases two
options could be compared, namely rely on slight TPA
modifications to make it work with unmodified TCP
endpoints, or using an Indirect-TCP approach, and thus
envisioning a first TPA trunk between the wireless node
and the gateway to the wired network, and a standard
TCP trunk in the wired network. This naturally leads
to investigate the viability of TPA in mesh network
environments.

REFERENCES

[1] Anastasi, G., Borgia, E., Conti, M., Gregori, E., and
Passarella, A. (2005) Understanding the Real Behavior
of Mote and 802.11 Ad hoc Networks: an Experimental
Approach. Pervasive and Mobile Computing, 1, 237–
256. Special Issue on Performance Evaluation of
Wireless Networks.

[2] Kotz, D., nad R. Gray nad J. Liu, C. N., Yuan,
Y., and Elliot, C. (2004) Experimental Evaluation
of Wireless Simulation Assumptions. Proceedings of
the ACM/IEEE International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile
System, Venice (Italy), October 4–6, pp. 221–231. ACM
Press.

[3] Lundgren, H., Nordstrom, E., and Tschudin, C. (2002)
Coping with communication gray zones in ieee 802.11b
based ad hoc networks. WOWMOM ’02: Proceedings
of the 5th ACM international workshop on Wireless
mobile multimedia, New York, NY, USA, pp. 49–55.
ACM Press.

[4] Kurkowski, S., Camp, T., and Colagrosso, M. (2005)
MANET Simulation Studies: The Incredibles. ACM
Mobile Computing and Communication Review, New
York, NY, USA, October, pp. 49–55. ACM Press.

[5] Conti, M. and Giordano, S. (2005) Multihop Ad Hoc
Networking: The Theory. IEEE Communications
Magazine, 45, 78–86.

[6] Conti, M. and Giordano, S. (2005) Multihop Ad Hoc
Networking: The Reality. IEEE Communications
Magazine, 45, 88–95.

[7] Gunningberg, P., Lundgren, H., Nordstroem, E.,
and Tschudin, C. (2005) Lessons from Experimental
MANET Research. Ad Hoc Networks Journal, 3, 221–
233.

[8] ElRakabawy, S. M., Klemm, A., and Lindemann, C.
(2005) Tcp with adaptive pacing for multihop wireless
networks. MobiHoc ’05: Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking
and computing, New York, NY, USA, May, pp. 288–299.
ACM Press.

[9] Hanbali, A. A., Altman, E., and Nain, P. (2005) A
survey of tcp over ad hoc networks. Communications
Surveys & Tutorials, IEEE, 7, 22–36.

[10] Holland, G. and Vaidya, N. (2002) Analysis of tcp
performance over mobile ad hoc networks. Wireless
Networks, 8, 275–288.

[11] Anantharaman, V., Park, S.-J., Sundaresan, K.,
and Sivakumar, R. (2004) TCP Performance over
Mobile Ad-hoc Networks: A Quantitative Study.
Wireless Communications and Mobile Computing
Journal (WCMC), 4, 203–222. Special Issue on
Performance Evaluation of Wireless Networks.

[12] Dyer, T. D. and Boppana, R. V. (2001) A comparison of
tcp performance over three routing protocols for mobile
ad hoc networks. MobiHoc ’01: Proceedings of the
2nd ACM international symposium on Mobile ad hoc
networking & computing, New York, NY, USA, pp. 56–
66. ACM Press.

[13] Ahuja, A., Agarwal, S., Sing, J., and Shorey, R. (2000)
Performance of TCP over Different Routing Protocols
in Mobile Ad Hoc Networks. Proceedings of the IEEE
Vehicular Technology Conference (VTC 2000), Tokyo,

The Computer Journal Vol. 00 No. 0, 2005

22 Anastasi et al.

Japan, May, pp. 2315–2319. IEEE Computer Society
Press.

[14] Chandran, K., Raghunathan, S., Venkatesan, S., and
Prakash, R. (2001) A Feedback Based Scheme for
Improving TCP Performance in Ad Hoc Wireless
Networks. IEEE Personal Communication Magazine,
8, 34–39. Special Issue on Ad Hoc Networks.

[15] Fu, Z., Meng, X., and Lu, S. (2002) How Bad TCP Can
Perform in Mobile Ad Hoc Networks. Proceedings of the
IEEE Symposium on Computers and Communications
(ISCC 2002), Taormina-Giardini Naxos (Italy), July,
pp. 298–303. IEEE Computer Society Press.

[16] Kim, D., Toh, C., and Choi, Y. (June 2001) TCP-
BuS: Improving TCP Performance in Wireless Ad Hoc
Networks. J. Commun. and Net., 3, 175–186.

[17] Liu, J. and Singh, S. (2001) ATCP: TCP for Mobile
Ad Hoc Networks. IEEE Journal on Selected Areas in
Communications, 19, 1300–1315.

[18] Ramakrishnan, K., Floyd, S., and Black, D. (2001).
The Addition of Explicit Congestion Notification
(ECN) to IP. RFC 3168.

[19] Wang, F. and Zhang, Y. (2002) Improving tcp
performance over mobile ad-hoc networks with out-
of-order detection and response. MobiHoc ’02:
Proceedings of the 3rd ACM international symposium
on Mobile ad hoc networking & computing, New York,
NY, USA, June, pp. 217–225. ACM Press.

[20] Fu, Z., Greenstein, B., Meng, X., and Lu, S.
(2002) Design and implementation of a tcp-friendly
transport protocol for ad hoc wireless networks. ICNP
’02: Proceedings of the 10th IEEE International
Conference on Network Protocols, Washington, DC,
USA, November, pp. 216–225. IEEE Computer Society.

[21] Goff, T., Abu-Ghazaleh, N., Phatak, D., and
Kahvecioglu, R. (2003) Preemptive routing in ad hoc
networks. J. Parallel Distrib. Comput., 63, 123–140.

[22] Klemm, F., Ye, Z., Krishnamurthy, S. V., and Tripathi,
S. K. (2005) Improving tcp performance in ad hoc
networks using signal strength based link management.
Ad Hoc Networks, 3, 175–191.

[23] Kopparty, S., Krishnamurthy, S. V., Faloutsos, M.,
and Tripathi, S. K. (2002) Split tcp for mobile ad
hoc networks. Global Telecommunications Conference,
2002. GLOBECOM ’02., Taipei, Taiwan, November,
pp. 138–142 vol.1. IEEE Press.

[24] He, Q., Cai, L., Shen, X. S., and Ho, P.
(2006) Improving tcp performance over wireless
ad hoc networks with busy tone assisted scheme.
EURASIP Journal on Wireless Communications and
Networking, 2006, Article ID 51610, 11 pages.
doi:10.1155/WCN/2006/51610.

[25] Lim, H., Xu, K., and Gerla, M. (2003) TCP
Performance over Multipath Routing in Mobile Ad hoc
Networks. in Proceedings of the IEEE International
Conference on Communications (ICC’03), May 11–15,
pp. 1064–1068. IEEE Press.

[26] Ng, P. C. and Liew, S. C. (2005) Re-routing Instability
in IEEE 802.11 Multi-hop Ad-hoc Networks. Ad Hoc
and Sensor Wireless Networks, 1, 01–25.

[27] Xu, S. and Saadawi, T. (2002) Revealing the problems
with 802.11 medium access control protocol in multi-
hop wireless ad hoc networks. Computer Networks, 38,
531–548.

[28] Xu, S. and Saadawi, T. (2001) Performance evaluation
of tcp algorithms in multi-hop wireless packet networks.
Wireless Communications and Mobile Computing, 2,
85–100.

[29] Xu, S. and Saadawi, T. (2001) Does the ieee 802.11
mac protocol work well in multihop wireless ad hoc
networks? Communications Magazine, IEEE, 39, 130–
137.

[30] Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., and Gerla,
M. (2003) The Impact of Multi-hop Wireless Channel
on TCP Throughput and Loss. Proceedings of IEEE
INFOCOM 2003, San Francisco (California), March
30–April 3, pp. 1744–1753. IEEE Computer Society
Press.

[31] Chen, K., Xue, Y., Shah, S., and Nahrstedt, K. (2004)
Understanding Bandwidth-Delay Product in Mobile
Ad Hoc Networks. Computer Communications, 27,
923–934. Special Issue on Performance Evaluation of
Wireless Networks.

[32] Papanastasiou, S. and Ould-Khaoua, M. (2004) TCP
Congestion Window Evolution and Spatial Reuse in
MANETs. Journal of Wireless Communications and
Mobile Computing, 4, 669–682.

[33] Nahm, K., Helmy, A., and Kuo, C.-C. (2005) TCP over
Multi-hop 802.11 Networks: issues and Performance
Enhancement. Proceedings of ACM MobiHoc, Urbana-
Champaign, IL, USA, June, pp. 277–287. ACM Press.

[34] Altman, E. and Jimenez, T. (2003) Novel Delayed ACK
Techniques for improving TCP Performance in Multi-
hop Wireless Networks. Proceedings of the IFIP Inter-
national Conference on Personal Wireless Communica-
tions (PWC 2003), Venice, Italy, September 23–25, pp.
237–250. LNCS.

[35] de Oliveira, R. and Braun, T. (2005) A Dynamic
Adaptive Acknowledgment Strategy for TCP over
Multi-hop Wireless Networks. Proceedings of IEEE
Infocom 2005, Miami, USA, March, pp. 1863–1874.
IEEE Computer Society Press.

[36] Cordeiro, C. D. A., Das, S. R., and Agrawal,
D. P. (2002) Copas: dynamic contention-balancing to
enhance the performance of tcp over multi-hop wireless
networks. Computer Communications and Networks,
2002. In Proceedings of IC3N’02, Miami, FL, USA, Oct.
14–16, pp. 382–387.

[37] Floyd, S. and Jacobson, V. (1993) Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Trans. Netw., 1, 397–413.

[38] Tang, K. and Gerla, M. (1999) Fair Sharing of MAC
under TCP in Wireless Ad hoc Networks. Proceedings
of IEEE MMT’99, Venice, Italy, Oct.

[39] Xu, K. and Gerla, M. (2005) TCP Unfairness in Ad Hoc
Wireless Networks and a Neighborhood RED Solution.
Wireless Networks, 11, 383–399.

[40] Xu, K., Bae, S., Lee, S., and Gerla, M. (2002) TCP
behavior across multihop wireless networks and the
wired internet. WoWMoM ’02: Proceedings of the
5th ACM international workshop on Wireless mobile
multimedia, New York, NY, USA, pp. 41–48. ACM
Press.

[41] Yang, L., Seah, W. K., and Yin, Q. (2003) Improving
fairness among tcp flows crossing wireless ad hoc and
wired networks. MobiHoc ’03: Proceedings of the

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 23

4th ACM international symposium on Mobile ad hoc
networking & computing, New York, NY, USA, pp. 57–
63. ACM Press.

[42] Jiang, L. B. and Liew, S. C. (2005) Proportional
fairness in wireless LANs and ad hoc networks.
Wireless Communications and Networking Conference,
2005 IEEE, Long Beach, CA, USA, 13-17 March, pp.
1551–1556. IEEE Computer Society Press.

[43] Sundaresan, K., Hsieh, V. A. H., and Sivakumar, R.
(2005) ATP: A Reliable Transport Protocol for Ad Hoc
Networks. IEEE transactions on mobile computing, 4,
588–603.

[44] Anastasi, G. and Passarella, A. (2003) Towards a Novel
Transport Protocol for Ad Hoc Networks. Proc. IFIP
Int. Conference on Personal Wireless Communications
(PWC 2003), Venice, Italy, September 23–25, pp. 805–
810. LNCS.

[45] Anastasi, G., Conti, M., Ancillotti, E., and Passarella,
A. (2005) TPA: A Transport Protocol for Ad Hoc
Networks. ISCC ’05: Proceedings of the 10th
IEEE Symposium on Computers and Communications
(ISCC’05), Murcia, Cartagena,Spain, June 27–30, pp.
51–56. IEEE Computer Society.

[46] Anastasi, G., Ancillotti, E., Conti, M., and Passarella,
A. (2006) Experimental analysis of a transport protocol
for ad hoc networks (TPA). PE-WASUN ’06:
Proceedings of the 3rd ACM international workshop on
Performance evaluation of wireless ad hoc, sensor and
ubiquitous networks, New York, NY, USA, september,
pp. 9–16. ACM Press.

[47] Stevens, W. (1994) TCP/IP Illustrated. Addison
Wesley.

[48] Park, V. D. and Corson, M. S. (1997) A highly
adaptive distributed routing algorithm for mobile
wireless networks. INFOCOM ’97: Proceedings of the
INFOCOM ’97. Sixteenth Annual Joint Conference of
the IEEE Computer and Communications Societies.
Driving the Information Revolution, Kobe (Japan),
April 09–11 1405. IEEE Computer Society.

[49] Sun, D. and Man, H. (2001) ENIC - An Improved
Reliable Transport Scheme for Mobile Ad Hoc
Networks. IEEE Globecom Conference, San Antonio,
TX, November, pp. 2852–2856. IEEE Computer Society
Press.

[50] Perkins, C., Belding-Royer, E., and Das, S. (2003).
Ad hoc On-Demand Distance Vector (AODV) Routing.
RFC 3561.

[51] AODV-UU, AODV Linux Implementation, University
of Uppsala.

[52] Clausen, T. and Jaquet, P. (2003). Optimized Link
State Routing Protocol (OLSR). RFC 3626.

[53] Tønnesen, A. (2004). Implementation of the OLSR
specification (OLSR UniK). Version 0.4.8.

[54] Ancillotti, E., Bruno, R., Conti, M., Gregori, E.,
and Pinizzotto, A. (2006) A Layer-2 Architecture for
Interconnecting Multi-hop Hybrid Ad Hoc Networks
to the Internet. in Proceedings of WONS 2006, Les
Menuires, France, January, 18–20, pp. 87–96.

[55] Ancillotti, E., Anastasi, G., Conti, M., and Passarella,
A. Experimental Analysis of TCP Performance in
Static Multi-hop Ad Hoc Networks. M. Conti, J.
Crowcroft, and A. Passarella. Chapter 6 in Mobile Ad

Hoc Networks: from Theory to Reality, Nova Science
Publisher.

[56] Xu, K., Gerla, M., and Bae, S. (2003) Effectiveness of
RTS/CTS Handshake in IEEE 802.11 Based Ad Hoc
Networks. Ad Hoc Networks Journal, 1, 107–123.

[57] The Network Simulator - ns-2 (version 2.30).

[58] Papanastasiou, S., Mackenzie, L. M., Ould-Khaoua,
M., and Charissis, V. (2006) On the interaction of
TCP and Routing Protocols in MANETs. AICT-ICIW
’06: Proceedings of the Advanced Int’l Conference on
Telecommunications and Int’l Conference on Internet
and Web Applications and Services, uadeloupe, French
Caribbean, February 19–22, pp. 62–69. IEEE Computer
Society.

[59] Borgia, E. and Delmastro, F. (2007) Effects of
unstable links on aodv performance in real testbeds.
EURASIP Journal on Wireless Communications and
Networking, 2007, Article ID 19375, 14 pages.
doi:10.1155/2007/19375.

[60] Jain, R., Chiu, D., and Hawe, W. (1984). A
Quantitative Measure of Fairness and Discrimination
for Resource Allocation in Shared Systems. DEC
Technical Report DEC-TR-301.

[61] S. PalChaudhuri, R. U. ns-2 Code for Random Trip
Mobility Model.

[62] PalChaudhuri, S., Boudec, J.-Y. L., and Vojnovic, M.
(2005) Perfect simulations for random trip mobility
models. ANSS ’05: Proceedings of the 38th annual
Symposium on Simulation, Washington, DC, USA,
April 04–06, pp. 72–79. IEEE Computer Society.

[63] Ancillotti, E., Anastasi, G., Conti, M., and Passarella,
A. Design, Implementation and Measurements of a
Transport Protocol for Ad Hoc Networks. M. Conti.
Chapter in MobileMAN. Springer. To appear.

[64] Thekkath, C., Nguyen, T., Moy, E., and Lazowska, E.
(1993) Implementing network protocols at user level.
IEEE/ACM Transactions on Networking, 1, 554–565.

[65] Stevens, W. (1999) UNIX Network Programming
Volume 2, Interprocess Communications, 2nd edition
edition. Prentice Hall PTR.

APPENDIX A: TPA IMPLEMENTATION

In this appendix we provide a brief description of the
TPA implementation in our testbed. A more detailed
description can be found in [63]. Network protocols
are usually implemented in the kernel space and can be
accessed by applications through an interface consisting
of a set of system calls (e.g., the socket-based interface).
Security and performance are the main motivations
behind this approach. However, there are several
factors that can motivate an implementation of network
protocols out of the kernel space [64]. The most obvious
of these factors is ease of prototyping, debugging and
maintenance. Another factor may be an improved
system stability. When developing protocols in a user-
level environment, an unstable stack affects only the
application using it and does not cause a system crash.

Therefore, we decided to prototype TPA by a user-
level implementation. Since TPA only requires a
datagram service it was implemented on top of the

The Computer Journal Vol. 00 No. 0, 2005

24 Anastasi et al.

TABLE 15. Functions provided by the TPA library.

Function name Meaning
tpa socket() Creates a TPA socket

tpa connect()
Connects the socket to the

specified address

tpa bind()
Gives to the socket the

local address

tpa listen()

Specifies a willingness to
accept incoming

connections and a queue
limit for incoming

connections

tpa accept()
Listen for

TPA connections requests

tpa close()
Closes the TPA

connection

tpa send()
Sends data over a TPA

connection

tpa recv()
Receives data over TPA

connection

UDP/IP protocols that are accessed through the socket-
based mechanism. Therefore, the implemented TPA
header does not include the ports and the checksum
fields (see Section 3.1) that are already included in the
UDP header. As the (implemented) TPA header is 12
bytes long, the overheads of TCP and TPA-over-UDP
are exactly the same.

To allow a simple re-use of legacy application written
for TCP, we implemented for TPA a socket application
programming interface (API) similar to that provided
by TCP. TCP. Table 15 shows the list of functions
provided by the user-level library implementing the
TPA protocol.

TPA was implemented with distinct execution
flows that interact according to the client/server and
producer/consumer models. Specifically, we structured
the TPA software module by means of three processes: a
data-processing process, a sender process, and a receiver
process (see Figure 22). The data-processing process
collects data passed by the application process in a
buffer to form blocks. Data blocks are then passed
to the sender process that manages their transmission
according to the TPA specification. Finally the receiver
process is in charge of processing data coming from
the network and sending ACKs back to the sender.
In this model processes resident on the same machine
communicate with each other by using FIFOs [65] and
the signal mechanism, while the sender and the receiver
process use a UDP socket to transmit data and ACK
segments.

FIGURE 22. Inter-Process Communications.

FIGURE 23. Impact of an ACK inhibition.

APPENDIX B: EXAMPLE OF A TRACE
ANALYSIS

The aim of this appendix is to show the different
behaviour of TPA and TCP in the presence of an ACK
inhibition, i.e., when the route between receiver and
sender is broken, while the route between sender and
receiver is still available. This gives a tangible example
of why TPA mechanisms results in higher performance
with respect to TCP. To this end we refer to a portion of
the TPA trace file obtained in one replica of the 3-hop
OLSR experiment.

Figure 23-left shows the behaviour of TPA after
about 39.557s from the start of the experiment.
Numbers on the left-hand side should be read as <
position in the block : block number >. At this time
the TPA sender is transmitting segments belonging to
the block 131. The route between node N4 (TPA
receiver) and node N1 (TPA sender) is broken while the
route between node N1 and N4 is active. This implies
that TPA data segments can reach node N4 while ACKs
are dropped by the routing protocol and never reach
node N1. Upon timers expiration for segment 0, TPA

The Computer Journal Vol. 00 No. 0, 2005

TPA protocol 25

enters the congested state and starts sending segments
with a cwndmax parameter set to one (segments 3 to 9
are sent at each timer expiration). Those segments are
successfully received by the destination that continues
to send ACKs to the sender node. However, ACKs are
discarded by the routing protocol. At time 50.92s, the
routing protocol recovers the route to node N1. At this
point the TPA receiver, on reception of segments 9,
sends back an ACK that reaches the TPA sender and
notifies it that all segments belonging to block 131 have
been successfully received by the destination. Upon
reception of the above ACK, TPA leaves the congested
state and sends segments 10 and 11. Then, upon
reception of the ACK for segment 11, TPA transmits
segments belonging to a new block.

Figure 23-right shows the behaviour that TCP would
have had in the same conditions. In this case,
numbers on the left-hand side should be read as
< segment sequence number >. For the sake of
simplicity we will refer to TCP sequence number in
terms of segments instead of bytes. As we can see
from the sequence shown in Figure 23-right, upon timer
expiration for segment 200 the TCP sender retransmits
the same segment and continues to do so upon recursive
timeouts.

In such cases, in which data segment reach the
destination, but ACK segments do not reach the sender,
TPA is not stuck at retransmitting the same segment, as
legacy TCP is. Therefore, the destination continues to
receive new data segments. In other words, during ACK
inhibitions, TPA is able to exploit the unidirectional
route available between the sender and the destination,
while legacy TCP is not. This results in a performance
improvement of TPA, compared with TCP behaviour.

The Computer Journal Vol. 00 No. 0, 2005

