
Service Composition in Opportunistic Networks

Sagar A. Tamhane, Mohan Kumar
Computer Science and Engineering Department,

University of Texas at Arlington, U.S.A
Email: {sagar.tamhane@mavs.,mkumar@}uta.edu

Andrea Passarella, Marco Conti
Institute for Informatics and Telematics

National Research Council, Italy
Email: {a.passarella, m.conti}@iit.cnr.it

Abstract—An opportunistic contact between two mobile
devices takes place when they are within communication
range of each other. Typically, cyber-physical environments
comprise a number of mobile devices that are likely to
make opportunistic contacts in time and space. In the
recent past, researchers have exploited opportunistic links
mostly for routing and content sharing. However, less
attention has been devoted to the more general concept
of opportunistic computing, which consists of utilizing
any resource available in a pervasive environment by ex-
ploiting opportunistic contacts. In cyber-physical pervasive
environments, opportunistic computing will be used to
elaborate data coming both from the physical and the cyber
worlds, according to the users’ needs, and exploiting all
available resources. In this paper, we develop a modular
middleware architecture for service composition in oppor-
tunistic networks. In particular, we demonstrate the utility
of the middleware for fault tolerant service composition
in such environments. Simulation results demonstrate the
effectiveness of the middleware and associated service
composition scheme in pervasive environments with un-
derlying opportunistic networks.

Keywords-Service Composition, Opportunistic Net-
works, Middleware, Fault Tolerance.

I. Introduction

Opportunistic networks (OppNets) are created when
pairs of devices communicate through many oppor-
tunistic contacts [1]. Devices such as cell phones, PDAs
and laptops host services that are useful to applica-
tions executing on other devices in the network [2].
Examples of such services include: data compression
/ decompression, data encoding / decoding, audio /
image / video processing, and others. Such services
may be available within the opportunistic network,
but not within direct communication range of the
requesting device. An end-to-end path between a re-
questing device and the required service may never
exist, while using infrastructure-based solutions may
prove infeasible. Hence, it is necessary to make services
accessible and available anywhere in the environment,
perhaps with some delay. This is one of the research
challenges [2] that will be one of the driving elements
of future cyber-physical systems (CPS). In CPS, data
will be generated both in the cyber and in physical

worlds, and will undulate across the two, influencing
the user behavior in both [3]. Opportunistic computing
will allow CPS to enhance raw data, through filtering,
adaptation and processing, by exploiting all resources
available in a pervasive environment. This will make
CPS a resource rich environment, where mobile users
enjoy much richer resources compared to those avail-
able on their individual devices only.

In this paper1, we propose a generic framework that
exploits pair-wise contacts to enhance availability of
all resources, abstracted as services. Pair-wise meet-
ing of devices can be opportunistically exploited to
reach services running on other parts of the network,
which would not be possible in traditional network-
ing schemes. Service results will be provided to the
requesting application either directly during contact, or
through an opportunistic path found in the network.

When an application needs to perform a service,
it generates a service execution request. To facilitate
service execution, each device maintains an index of
services discovered. When a requested service is not
available in the network, the middleware explores con-
catenation of multiple (available) services to compose
the required service. This concept can be exploited in
multiple application scenarios relevant to CPS. Con-
sider the following e-health application. Suppose a
user desires to correlate locally sensed personal data
about her health conditions (blood pressure, heart rate,
etc.) with publicly available data such as pollution
levels. In a typical CPS application, this corresponds
to correlating light and accelerometer samples from the
user’s device with acoustic and air samples collected in
the environment. In these examples, raw data sampled
locally at the user device and remotely need to be
filtered, analyzed and fused together.

1The research work presented in this paper was carried out with
support from the US National Foundations Grants ECCS-0824120
and CSR 0834493 and was partially funded by the European Com-
mission under the SCAMPI (FP7-FIRE 258414), RECOGNITION (FP7
FET-AWARENESS 257756), and EINS (FP7-FIRE 288021) projects.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Novel contributions of this paper include:
1) A middleware architecture that facilitates appli-

cation requirements and performs resource man-
agement in opportunistic networks.

2) Fault tolerant service composition in opportunis-
tic networks, and

3) An extensive simulation study with synthetic and
real traces to investigate the effectiveness of the
service composition approach.

II. RelatedWork

Many challenging problems such as routing, mod-
eling of social interaction and distributed mutual ex-
clusion have been addressed for OppNets. Ott and
Kutscher [4] propose protocols for implementing HTTP
over delay tolerant networks. There is an extensive
literature related to routing in opportunistic networks
[1]. For example, Hui et al. [5] use the concepts of
community and degree centrality to forward data.
Boldrini et al. [6] use a context-aware algorithm, that
learns users’ behavior and social relations, to forward
data in OppNets. Passarella et al. [7], [8] develop an
analytical model to study the behaviors of service seek-
ing (seekers) and service providing nodes (providers)
that spawn and execute service requests, respectively.
The model considers the case in which seekers can
spawn parallel executions on multiple providers for
any given request, and determines: (i) the delays at
different stages of service provisioning; and (ii) the
optimal number of parallel executions to minimize the
expected execution time. In [9], Sadiq et al. propose
a novel algorithm that derives efficiency and effec-
tiveness by taking into account the service load and
location of devices providing the services, as well as
intermittent connectivity, to select a particular service
set. Though many past research works have proposed
middlewares for particular problems in opportunistic
networks, the concept of service composition is rela-
tively new and no generic middleware support exists.

Service composition has previously been inves-
tigated for well-connected MANET environments.
Kalasapur et al. [10] propose a service composition
protocol for pervasive environments with underlying
MANETs. Due to lack of hierarchy, as imposed by the
protocol described in [10], such service composition
scheme is not suitable for opportunistic networks.
Chakraborty et al. [11] propose a middleware for
service composition in semi-structured MANETs. This
scheme is unsuitable for OppNets as it fails in the
absence of continuous connectivity.

III. ProposedMiddleware

Figure 1 illustrates components of the proposed mid-
dleware. It is be noted that the figure is a projection of a

PI CI SI RI

Applications

Processing Tier
Security and Privacy

Context Manager

Social Interaction
 Modeler

Event Detector

Resource
Predictor

Cache Manager

Network
Handler Logger

Local
Resource
Monitor

 Distributed
Mutual Exclusion

DI

Location / GPS
module

Routing Heuristics

Human-Computer
Interaction Profiler

Service Locator
& Composer

Figure 1. Middleware Architecture

comprehensive middleware architecture. Devices may
have only a subset of the modules shown in the fig-
ure, depending on application and available resources.
The proposed middleware is modular, the processing
unit may vary from basic sensing and communication
abilities in a sensor to a full set of software suite. For
example, a mote sensor might have only an ID and
sensory data (e.g., temperature).

The network handler module performs the actual
transmission and reception of messages using one
or more types of wireless communication capabilities
such as Bluetooth, 802.11. This layer also supports such
specifications as Wi-Fi Alliance’s Miracast [12]. The
logger module is a utility module that can be used by
other modules to record events. The resource monitor
module periodically checks and records resource levels
of the device. Information such as residual battery,
CPU utilization, memory utilization are useful to the
modules in the processing and application tiers. The
event detector module performs sensing of environ-
ment, for example, change in light intensity, motion
sensing. The event detector receives context rules from
the context manager module. Whenever a specified
context rule is satisfied, the event detector module
informs the context manager module. The location
module incorporates facilities such as location predic-
tion using GPS, received signal strength, etc.

The processing tier is responsible for processing var-
ious kinds of information received from the device, the
applications running on the device and the devices that
come in contact opportunistically. The processing tier
is composed of multiple modules as shown in Figure
1. The cache manager enables information caching and
can be used by other modules. The resource predictor
module implements algorithms to predict the resource
levels at a future time instant. Such predictions are

useful for knowing whether a device will successfully
complete a given service. This module also provides
the expected life of the device, under device’s current
usage pattern and resource levels. The social interac-
tion modeler defines rules about social standing of the
device (or the owner of the device). It defines metrics
such as popularity of a device, contributions made
by the device to other devices in the network and
communities that a device is part of. Social interaction
modeler uses the event detector module to know the
ongoing events. For example, BubbleRap [5] uses such
social interaction data to perform informed routing
in delay tolerant networks. The Human-Computer In-
teraction (HCI) module is used to record interactions
between a user and his device. The routing module
implements various algorithms for routing of messages
in the OppNet. This module utilizes knowledge gained
by the context modeler, social interaction modeler
and event detector. The routing module consists of
routing algorithms, for example, Hibop [6]. Users or
devices may need exclusive access to shared resources
in the OppNet. Hence the middleware needs to pro-
vide mechanisms for enabling mutual exclusion. The
distributed mutual exclusion module implements al-
gorithms such as MEOP [13] for providing mutual
exclusion. Security and privacy module can be used
to implement security and privacy mechanisms. The
social interaction modeler allows a user to set infor-
mation access control based on privacy settings.

Each device has a set of optional index buffers.
The personal information index (PI) contains basic
user and device information such as the ID of the
device, and name, address, work, home information
of the user. The content index (CI) indicates the set
of information objects the device is willing to share
with other users/applications. The service index (SI)
contains information about services discovered by the
service locator and composer module. This module
also adds the most frequently used service composi-
tions to the service index. The Device Index (DI) is
used to store information about the communication
cost and inter contact times between the devices. The
process of creating and updating DI is explained in
detail in Section IV. The reputation index (RI) contains
information about reputation and trust values of de-
vices in the network. The Index buffers are optional,
varying from a simple source of sensory information to
complex graph based indices for service composition.

A. Middleware Operations

When two devices come within communication
range, they can exchange information during the con-
tact. This exchange is divided into two phases. The
first phase consists of a handshake, during which

the two devices exchange basic information such as
the identity of the device/user and device information
(e.g., Nokia 3362 cell phone, 2 MB memory, cam-
era equipped, Bluetooth capable) contained in the PI
buffer. The information exchanged during handshake
is subjected to privacy settings. When a user comes
within communication range of friends, family or other
trusted people, more information is made visible to
the devices. The second phase starts after the end
of handshake. During this phase, the processing tier
within the user’s device makes a decision on whether
it needs to request more detailed information such
as the content index (CI), service index (SI) from the
other device. Due to limited cache and index space,
the user’s device might remove information that was
least recently used or was received long time back. If
the user’s device had previously met the other device
and has all the previously received information, only
updates to the stored information are exchanged.

As an example of usage of middleware modules,
we consider the process of service composition. The
service composer module can interact with the secu-
rity and privacy module to gain information about
trustability of the devices involved in each of the
service composition path. Paths that have untrustwor-
thy devices may not be considered. Interaction with
the social interaction module enables scenarios where
services hosted on devices within a social group are
considered as preferable. The routing module provides
the intercontact time details and the expected delay
and route for transmission of data from one device
to another. The cache manager provides information
such as previously used compositions. If a generated
composite service contains services that are available
locally, the service composition module interacts with
the HCI profiler and the resource predictor modules
to know the probability that the specified service will
execute successfully.

IV. Building the Network Graph

DI contains information that allows nodes to es-
timate when other nodes will be encountered, and
thus the time to access service components. Consider a
graph representation of the network where each device
is denoted by a node and the contact between two
devices (or nodes) is represented by a link or edge
between the two nodes. The edge weight represents
the expected time of contact between the two nodes.
The edge weight can also represent other parameters
such as the total contact duration, commonality (e.g:
belong to same school), privacy level, or a combination
of parameters. Without loss of generality, we use the
expected intercontact time as edge weight in the rest of
this paper. We represent the pairwise contact between

two nodes na and nb by na ⇔ nb, and the expected time
of contact by Ea,b(T).

(a) Ga: paths via
na

(b) Gb: paths via
nb

(c) combined graph

Figure 2. Sample graphs at nodes na and nb created during pairwise
contacts

Consider node na, where a ∈ (1, 2, ...,M) and M is
the total number of nodes in the environment. In this
paper, we use the terms device and nodes interchange-
ably. Suppose a device na is expected to connect to
only a subset of the devices in the network. This set of
devices is called as a connectivity set Ma of device na.
Hence for each device in Ma, the corresponding node
has an edge to na. The connectivity set Ma indicates the
set of nodes that can reach each other by using na as the
intermediate node. Each node stores a network graph
in its DI. The network graph initially indicates the
connectivity set of the corresponding device. A sample
network graph Ga for na is shown in Figure 2(a). In
Figure 2(a), na and np meet with expected time Ea,p(T)
and na and nr meet with expected time Ea,r(T), therefore
the expected time for an application on nr to access a
resource on np is given by [Ea,p(T)+Ea,r(T)]. A sample of
a similar graph Gb for node nb is shown in Figure 2(b).
When two nodes na and nb meet, they can exchange
each others graphs stored in the Device Index (DI).
As shown in Figure 2(c), the network graphs on both
the devices are updated, by merging the corresponding
edges of Ga and Gb. The updated graph shows all the
paths from ni to n j, that use na and nb as intermediate
nodes. This combined graph is stored into the DI of
both devices. After the network graph is updated, na
and nb exchange the updated graph with other devices.

V. Service Composition

Each device hosts certain services and maintains a
service graph of the locally hosted services. This ser-
vice graph is stored in the service index (SI). When two
devices meet opportunistically, they exchange their

service graphs and create a composite service graph
which has information about locally as well as re-
motely available services. Let Gx(s) and Tx(s) represent
the graph of available services and graph of services
requested at node nx. When na and nb meet, they
exchange their respective services and an aggregated
graph G(s) is created at each node. While the two nodes
are in contact, collaborative services are composed and
executed using the basic services represented in G(s).

A B C

D E

C

D

CA B

B D

F F

E

SAB BC

DE

CF

BD

AB

S
DE S

S S S S

SS

BC
S

CF

BD

a

n

G G G

a

(S) b(S) (S)

n n nab b

Figure 3. Service Composition

In the example of Figure 3, we consider a task model
similar to that used in [10]. There are 26 types of
input/output formats, A,B,C, ...,Z. Service SAB converts
input of format A to output of format B. na is required
to compose a service to meet the task request Ta(s) :
A → F. Using the aggregated graph G(s), na identifies
the path from A to F by using services SAB, and SBC on
itself and SCF on nb. In order to execute the composed
service, the output parameter C of service SBC is passed
on as input parameter to service SCF, on nb. The output
parameter F of SCF is passed from nb to na. Likewise,
suppose nb desires to complete a task Tb(s) : B → E.
The graph G(s) is available at both na and nb. Since
Tb(s) is generated on nb, nb performs service compo-
sition and concatenates SBD with SDE. nb then locally
executes SBD. Since SDE is available on na, nb sends the
intermediate result of type D to na and invokes SDE on
na. After completion of SDE, na sends the final result
of type E to nb. Thus results are passed on from one
service to another across opportunistic connections.
While performing service composition there might be
multiple sequences of services (and the mapping of
services to devices). Metrics such as minimum delay
or minimum number of services involved or minimum
number of devices involved can be used to select the
best sequence.

In general, the selected option will depend on a
number of parameters, including trustworthiness, so-
cial relationships, etc. The middleware can obtain such
information from the dedicated modules presented be-

fore. It is out of the scope of this paper to analyze these
possibilities in detail, as we prefer to focus on simpler
composition mechanisms. In particular, if there are
multiple possible paths from the input to the required
output, the path that has minimum number of services
linked together can be chosen. This selection of path
(path with minimum number of services) is henceforth
referred to as Minimum Length Composition (MLC).
Alternatively, to make the path selection sensitive to
delay, we may compute the sum of execution times
and intercontact times between consecutive services in
the compositions. The path with the lowest sum is then
chosen. This approach of selecting a composition with
the lowest sum of expected delays, is henceforth called
as Minimized Delay Composition (MDC).

VI. Fault Tolerance
Devices in OppNets are resource constrained, per-

sonal and mobile. Execution of services on remote
devices may suffer from device and communication
failures. Hence it is important that the middleware
provides fault tolerant service composition. Let Ps(n j)
be the success probability of the jth device in the com-
posite service, that is, the jth device in the composition
completes its corresponding service and transfers the
result to the next device in the composite service. The
entire composition succeeds when all of the involved
devices succeed. Hence success probability of compos-
ite service Ci is given by:

Ps(Ci) =

k∏
j=1

Ps(n j) (1)

where k is the number of devices in the composition.
The service composer sorts all possible compositions in
descending order of the preference and selects the best
path. Since success probability of the best path might
be less than 1, the service composer executes more
composition paths in parallel. Let r be the number of
independent composition paths executed. The proba-
bility Ps(C) that at least one composition will succeed
is given by:

Ps(C) = 1 −
r∏

i=1

1 − Ps(Ci) (2)

The middleware selects best r paths such that Ps(C)
is sufficiently high and the r paths do not have any
device in common. Thus fault tolerance is achieved by
replicating service executions.

We now consider the case where the r paths are not
distinct, that is, a device is used in more than one
composition. Suppose there is a request for composing
service A → D. Let Sa

AB denote that service SAB is
hosted on device na, Sb

BC denote that SBC is hosted on nb

and service Sc
CD and Sd

CD denote that SCD is hosted on
two devices: nc and nd. Assume that Sa

AB → Sb
BC → Sc

CD
and Sa

AB → Sb
BC → Sd

CD are the only two possible
compositions for the request A → D. Since only SCD
is replicated on two devices, a failure of na or nb will
result in failure of both the paths. The replicated com-
posite service fails if either na fails during execution of
SAB or nb fails during execution of SBC (provided na has
succeeded) or both nc and nd fail (provided na and nb
have succeeded). Success probability of the replicated
composite service is given by:

Ps(C) = Ps(Sa
AB).Ps(Sb

BC).{1 −
(
1 − Ps(Sc

CD)
) (

1 − Ps(Sd
CD)

)
}

Hence to know the probability that at least one
service composition will succeed, first we create a
combined graph of the set of compositions. If there
are any parallel execution sequences in the graph, the
probability of success over those parallel portions is
computed using (2). The parallel portions can then be
replaced by a single dummy service whose success
probability is equal to that computed for the parallel
portion. The graph is thus reduced to a single chain
(without any parallelism) of service executions. For this
single chain, (1) is used.

VII. Simulation Studies
To study service composition in OppNets, we use

the Imote/Cambridge/Haggle [14] real world trace.
This dataset includes Bluetooth sightings made by 12
students carrying iMotes for six days. In addition, to
further validate our approach, we also use Random
Waypoint (RWP) mobility model. Modifications pro-
posed in [15] are used to ensure that the simulations
are in steady state. The simulation consists of variable
number of nodes moving in an area of 300m x 300m.
We consider RWP to vary the number of nodes and
study the effect of changes in cardinality on service
completion. Details of number of nodes is provided
along with each simulation. The average speed is
10m per minute and average communication range
of devices is 10m. Each node comes in contact with
at most one other node at any point in time. Time
required to execute a service on a node is exponentially
distributed and has average value of 30 seconds. Note
that, although RWP is not representative of all kinds
of opportunistic networks, it is typically used to repro-
duce social mobility patterns where users belong to the
same social community [16]. Confidence intervals have
been computed with 95% confidence level. In several
plots, the confidence intervals are extremely small and
hence are not visible.

We consider the task model similar to that used
in [10]. There are 26 types of input/output formats,
A,B,C, ...,Z. Hence there can be a maximum of 650

services. Each device hosts a randomly chosen set of
services. For example, to host an average of 5 services
per device with 10 devices, the following steps are
performed: (1) To ensure that there are on average
5 services per device, a God program generates 10
numbers such that the average is 5. Each device gets
exactly one of these numbers. (2) Each device will host
exactly the number, say H j, of services as provided by
the God program. (3) For each device the following
steps are repeated till the device selects H j services:
For each service: a random number between 0 and
1 (inclusive) is generated. If this random value is
less than (H j/650), the corresponding device hosts the
service. There might be multiple service providers for
a particular service. When two nodes opportunistically
come in contact and remain in contact of sufficiently
long time, the exchange of service graphs is performed
successfully. The nodes then update their correspond-
ing composite service graphs. Each node periodically
generates random service requests. The average time
interval between generation of two service requests on
any particular device was 1 minute. When a client node
wishes to convert data from one format to another, it
first checks if such a conversion is possible locally. If
not, the service graph is traversed to find a path from
input format to output format.

A. Success Probability

We compare MLC approach to a Direct-Match (DM)
approach where a single service that provides the
required conversion is used. In DM, services are not
linked into a composition. Hence if there are few
services available in the network, a data format trans-
formation request might not succeed.

Figure 4 shows the probability of finding a transfor-
mation between the requested formats. The number of
devices M in the network is chosen from {2, 5, 10, 15}.
The simulation for RWP is divided into two phases. In
the first phase, devices spread their composite service
graphs to other devices in the network. The first phase
is executed till each device receives complete knowl-
edge of all services in the network. Hence the first
phase requires variable amount of time to complete.
The second phase is started only after completion of
the first phase. In the second phase, devices generate
service execution requests. If a service is not available
anywhere in the network, the device on which the
request was generated performs service composition.
The second phase is executed for 40000 seconds after
the end of first phase. In MLC, as the number of ser-
vices provided by each node increases, the probability
of finding a composite service increases exponentially,
whereas that in DM increases linearly. The probability
of successfully finding a composite service converges

(a) M = 2

(b) M = 5, 10, 15

Figure 4. Probability of successfully finding a transformation
between the requested formats (RWP)

to 1 faster as the number of devices in the system
is increased. For DM, the probability of finding the
required service also increases with the number of
devices in the system.

B. Length of Composition
Figure 5 shows the probabilities that the service

composition will be of a particular length. Since DM
always uses 1 service, the trend for DM is not shown.
Each device hosted an average of 10 services.

Figure 5. Probability of length of composition (RWP)

The number of devices M in the network is chosen
from {2, 5, 10, 15}. We can see that as the number of
devices increases, the probability of finding shorter
length composition increases. For all the trends, the
summation of probabilities of each length gives the
success probability, whose value is same as that in
corresponding subfigures of Figure 4.

MLC selects compositions that have the minimum
number of services and does not consider the intercon-

tact times between nodes. Hence, in an opportunistic
network, MLC might not provide minimum delay
in executing the composite service. As the number
of services per device increases, initially the success
probability is less than 1. During this, the length of
composition shows an increasing trend. When success
probability reaches 1, length of composition starts de-
creasing with higher number of services per device.

C. Time and number of devices required to complete service
execution

Figure 6. Average delay in completing the composite service (RWP)

(a) 1 to 12 number of services per
device

(b) 25 to 29 number of services
per device

Figure 7. Average number of devices in composition (RWP)

For Figures 6 and 7, M = 10. Each reading is an
average of 50 requests, shown with 95% confidence
interval. Only those cases where either composite
services or direct match were found are considered.
Figure 6 shows the average delay per request. Since
MLC selects paths that have minimum composition
length, it has a higher average delay. Figure 7 shows
the number of devices used in order to satisfy the
request. MLC and MDC perform composition whereas
DM does not. Thus DM always uses at most one device
to execute the service, whereas MLC and MDC might
require multiple devices. Hence the trend for DM is not
shown. Figure 7 shows a non-intuitive result that even
though MDC reduces the average delay per request,
the number of devices used in the composite service

is almost same as that in MLC. When the number of
services per device increases, MDC tends to reduce
the delay due to intercontact time by selecting more
services on a device. Though this increases the number
of services in the composite service, the number of
devices selected by MDC tends to be almost same as
than that selected by MLC.

Figure 8. Average delay in completing the composite service (using
Haggle dataset)

Figure 9. Average number of devices in composition (using Haggle)

Figure 8 shows the average delay in executing a
composite service. Figure 9 shows the average number
of devices involved in each composition. The devices
use the Haggle [14] real world trace to simulate the mo-
bility. This dataset includes Bluetooth sightings made
by 12 students carrying iMotes for six days. Since
the trace includes timestamps of Bluetooth sightings,
establishing connections between devices at the cor-
responding times ensures that the mobility pattern is
followed correctly. From Figures 6 and 8 we see that
MDC has lower average delay overhead than MLC.
From Figures 7 and 9, we see that MLC and MDC re-
quire almost equal number of devices per composition.

D. Fault Tolerance

Figure 10 shows the success probability of service
executions with and without using fault tolerance.
There were 10 devices in the network and on average 5
services per device. For replication, we need more than
one service composition paths between a given input
and required output. From Figure 4(b), we see that the
probability of finding at least one service composition

Figure 10. Probability of success with and without fault tolerance
(RWP)

is around 0.6. Hence the probability of finding more
than one path will be less than 0.6. Hence in Figure
10, when the success probability of individual service
is less, the two trends have almost equal values. When
the success probability of individual service increases,
the probability of success with replication is higher.
When the success probability of individual services
becomes 1, there are no failures, and hence the success
probabilities reach 1.

VIII. Conclusion and future work

In this paper, we have developed a modular mid-
dleware architecture for opportunistic computing. The
paper also presents service composition in opportunis-
tic networks. Since the devices and service executions
are prone to failure, the middleware performs fault
tolerant service composition by the means of replica-
tion. The work presented in the paper demonstrates
that application oriented service composition can be
effectively performed in opportunistic environments.
The concepts developed in this paper can be employed
in such CPS pervasive applications as e-health, traffic
management, environment monitoring and sustain-
ability, and others. In the future we will investigate
incorporation of context information into the service
composition algorithm.

References

[1] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic
networking: data forwarding in disconnected mobile ad
hoc networks,” IEEE Communications Magazine, vol. 44,
no. 11, pp. 134–141, Nov. 2006.

[2] M. Conti and M. Kumar, “Opportunities in opportunis-
tic computing,” Computer, vol. 43, no. 1, pp. 42–50, Jan.
2010.

[3] M. Conti, S. Das, C. Bisdikian, M. Kumar, L. Ni,
A. Passarella, G. Roussos, G. Trster, G. Tsudik, and
F. Zambonelli, “Looking ahead in pervasive computing:
Challenges and opportunities in the era of cyberphysical
convergence,” Pervasive and Mobile Computing, vol. 8,
no. 1, pp. 2–21, February 2012.

[4] J. Ott and D. Kutscher, “Bundling the web: Http over
dtn,” in Workshop on Networking in Public Transport
(WNEPT), Aug. 2006.

[5] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-
based forwarding in delay tolerant networks,” in In-
ternational Symposium on Mobile Ad Hoc Networking and
Computing, 2008, pp. 241–250.

[6] C. Boldrini, M. Conti, and A. Passarella, “Exploiting
users social relations to forward data in opportunistic
networks: The hibop solution,” Pervasive and Mobile
Computing, vol. 4, no. 5, pp. 633–657, October 2008.

[7] A. Passarella, M. Conti, E. Borgia, and M. Kumar, “Per-
formance evaluation of service execution in opportunis-
tic computing,” in ACM MSWiM, October 2010, pp. 17–
21.

[8] A. Passarella, M. Kumar, M. Conti, and E. Borgia,
“Minimum-delay service provisioning in opportunistic
networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 8, pp. 1267–1275, August 2011.

[9] U. Sadiq, M. Kumar, A. Passarella, and M. Conti, “Mod-
eling and simulation of service composition in oppor-
tunistic networks,” in ACM MSWiM, October 2011.

[10] S. Kalasapur, M. Kumar, and B. A. Shirazi, “Dynamic
service composition in pervasive computing,” Transac-
tions on Parallel and Distributed Systems, vol. 18, no. 7,
pp. 907–918, July 2007.

[11] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Service
composition for mobile environments,” Mobile Networks
and Applications, vol. 10, no. 4, pp. 435–451, Aug. 2005.

[12] WiFi-Alliance, “Miracast,” http://www.wi-
fi.org/media/press-releases/wi-fi-alliance-launch-wi-fi-certified-
miracast-deliver-display-applications, May 2012.

[13] S. Tamhane and M. Kumar, “Token based algorithm
for supporting mutual exclusion in opportunistic net-
works,” in International Workshop on Mobile Opportunistic
Networking (MobiOpp), Feb 2010.

[14] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot,
and A. Chaintreau, “CRAWDAD trace cam-
bridge/haggle/imote/cambridge (v. 2006-01-31),”
Downloaded from http://crawdad.cs.dartmouth.edu/
cambridge/haggle/imote/cambridge, Jan. 2006.

[15] W. Navidi, T. Camp, and N. Bauer, “Improving the accu-
racy of random waypoint simulations through steady-
state initialization,” in 15th International Conference on
Modeling and Simulation, March 2004, pp. 319–326.

[16] C. Boldrini, M. Conti, and A. Passarella, “Users mobility
models for opportunistic networks: the role of physical
locations,” in In Proc. IEEE Wireless Rural and Emergency
Communications Conference (WRECOM 2007), October
2007, pp. 1–6.

