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There has recently been an increasing interest in convergence of p2p and ad hoc network research. Actually, p2p systems and
multihop ad hoc networks share similar features, such as self-organisation, decentralisation, self-healing, and so forth. It is thus
interesting to understand if p2p systems designed for the wired Internet are suitable also for ad hoc networks and, if they are not,
in which direction they should be improved. In this paper, we report our experience in running p2p applications in real multihop
ad hoc network testbeds. Specifically, we used group-communication applications that require p2p systems made up of an overlay
network and a p2p multicast protocol. In this paper, we present experimental results specifically related to the performance of a
well-known p2p shared-tree multicast protocol (Scribe). Our results show that such a solution is far from being efficient on ad hoc
networks. We emphasize that the structured multicast approach is one of the main causes of inefficiency, and suggest that stateless
solutions could be preferable.
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1. INTRODUCTION

The integration of p2p systems into multihop ad hoc net-
works is a very interesting and challenging topic that is at-
tracting increasing attention [1, 2]. Actually, p2p systems and
ad hoc networks share a number of similar features. P2p
systems provide a decentralised, self-organising, and self-
healing environment, along with features like subject-based
routing, distributed data storage/retrieval, and load balanc-
ing. Such features, originally devised for p2p overlay net-
works in the legacy Internet, are also well suited for a de-
centralised and dynamic environment like a multihop ad hoc
network. It is thus extremely important to understand how
p2p systems designed for the Internet could be integrated
into ad hoc networks.

Our approach to this study is twofold. Firstly, we run ex-
periments on a real testbed, so as to take into account all the
wireless links complexities that real systems have to deal with.
Secondly, we deploy in our testbed a realistic prototype that
includes all layers of the stack, from the physical up to the
application one. Specifically, we have developed a distributed
whiteboard (WB) at the application layer. WB allows users
to share content within members of a community. It is an

instance of group-communication (GC) applications that are
an interesting example of p2p applications oriented to ad hoc
networks (see Section 3.1).

We believe that both of these features are important to
achieve clear understanding of the p2p system behavior in ad
hoc networks. Actually, most of the research on multihop ad
hoc networks has privileged a simulation and/or theoretical-
driven approach. Simulation and theoretical analysis are very
helpful tools since they allow to manage large scales, con-
trol parameters’ variation, and so forth. However, propa-
gation over wireless medium is so complicated to precisely
model that experimenting on real testbeds is a must. Just
relying on simulation and theoretical models might lead to
conclusions that do not match real measures [3, 4]. Fur-
thermore, little effort has been devoted to analyse the be-
havior of multihop ad hoc networks with respect to realis-
tic applications. Much effort has been spent on evaluating
the behavior of several protocols, mostly developed at the
routing layer, by using CBR- or FTP-like applications. Just
few works (e.g., [5]) try to envision application scenarios in
which ad hoc networks could be an enabling factor for ap-
plications, rather than a hostile networking environment to
cope with.
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The whiteboard application exploits services provided by
a p2p multicast system. Therefore, we have used a p2p system
consisting of an overlay network and a p2p multicast proto-
col. We have used Pastry to implement the overlay network,
and Scribe to build multicast trees on top of the overlay. Pas-
try and Scribe are among the most efficient solutions devel-
oped for the legacy Internet [6]. Finally, we have tested the
system both on proactive and on reactive routing protocols
(i.e., OLSR and AODV, resp.).

While in previous papers we have focused on the per-
formance of Pastry on ad hoc networks [7–9], in this work
we mainly concentrate on the performance of Scribe. Exper-
imental results are discussed in Sections 4 and 5. Specifically,
we focus on the QoS provided to WB users in terms of av-
erage delay and packet loss. Purposely, we report only re-
sults gathered from static ad hoc networks. Taking also into
account users mobility would have added further dimen-
sions to the parameters space, making results quite difficult
to understand. Our experiments emphasize that proactive
routing protocols are much more efficient in our scenario
(Section 4). Actually, AODV is practically not able to support
any configuration of our testbed. However, even when OLSR
is used, Scribe shows severe limitations over ad hoc networks.
Even though refined software releases might improve the user
QoS (Section 5), there are intrinsic Scribe features that hin-
der from using it in this networking environment.

We argue that they mainly stem from the design choice
of concentrating all the application-level traffic on one sin-
gle node (the Scribe root node) before delivering it to the
final destinations. In fact, from the experimental results, we
can conclude that the structured multicast approach used by
Scribe is one of the main reasons of its inefficiency. Specif-
ically, structured multicast tends to concentrate the appli-
cation load on few nodes and links that may become easily
overloaded. As a topic of future research, we emphasize that
structureless (or stateless) multicast approaches can avoid
such concentration, representing a simple and interesting
possibility to implement efficient p2p multicast systems in
multihop ad hoc networks.

2. RELATED WORK

Experiment-based research on wireless networks, and specif-
ically on multihop ad hoc networks, is gaining momentum
in the last few years [10, 11]. Having controllable, repro-
ducible, and reasonable-size wireless testbeds is not trivial.
Thus, several research efforts are focusing on how to design
and implement testbeds which the whole community can ex-
ploit [12–15]. One of the main issues of simulation and the-
oretical analysis is the accuracy of wireless channel models.
Therefore, several papers analyse wireless channel features
aiming at providing realistic models (see, e.g., [3] and refer-
ences herein). Other research efforts target the experimental
evaluation of routing [9, 16] or transport [10, 11] protocols
on multihop ad hoc networks. Significant effort has also been
devoted to build experimental testbeds for mesh networks
(see [17] and references herein).

The root of this paper is our previous work on exper-
imental analysis of routing and middleware platforms for
multihop ad hoc networks. The work in [7, 8] focuses on
issues related to structured overlay networks running on
proactive and reactive routing protocols. Specifically, these
papers analyse Pastry performance running on top of OLSR
[18] and AODV [19]. Work in [7–9] showed that OLSR per-
forms better than AODV in terms of packet loss and delays,
when running either a light application such as the ping util-
ity, or a structured p2p system. Furthermore, in [20, 21] we
started analysing the performance of a full p2p stack includ-
ing a complete p2p multicast system based on Scribe and Pas-
try, and a realistic GC application. In this paper we provide
a systematic and comprehensive view of our major findings
in using legacy p2p systems to support GC applications in
multihop ad hoc networks.

From the study reported in [7–9], the design of an opti-
mised p2p overlay network for multihop ad hoc networks has
arisen. We called it CrossROAD [22], since it exploits a cross-
layer interaction with a proactive routing protocol. The com-
parison between Pastry and CrossROAD shows that such in-
teractions can be an enabler to implement structured overlay
networks over ad hoc networks in a very efficient way. In this
paper we do not focus exclusively on the overlay network, but
take into account also the multicast and application layers. To
have good hints on how to design an efficient p2p multicast
system for multihop ad hoc networks, we do not consider at
this stage any possible cross-layer optimisation. Instead, we
analyse how a legacy protocol (i.e., Scribe) works in the envi-
ronment it has been designed for (i.e., Pastry) when used to
support GC applications. The results we provide in this pa-
per tell that in our experimental environment, the limits of
such a legacy p2p system can be mainly accounted to design
choices of Scribe (see Sections 6 and 7). Therefore, simply re-
placing Pastry with CrossROAD may help because the DHT
will become more efficient, but will not solve the problem.

Multicast support implemented at the p2p layer is just
one of the available options proposed in the literature. Usu-
ally, multicast protocols are classified as operating at the net-
work (L3) layer, or at the application layer, where application
denotes all possible layers above the transport.

In the legacy wired networks, application-level multicast
has been introduced to address the practical problems of im-
plementing L3 multicast in the Internet core. L3 multicast
requires modification at the routers, since they have to main-
tain the multicast groups state, which contrasts the origi-
nal statelessness of the IP protocol. Instead, application-level
multicast runs at edge nodes, and just requires standard uni-
cast support from the core.1 Several application-level mul-
ticast protocols have been proposed for the wired Internet
(e.g., [23–28]). The most recent proposals among them [24–
26, 28] run the multicast protocol on top of an overlay net-
work based on a DHT. This approach is very interesting for

1 Running exclusively on edge hosts, or end systems, application-level mul-
ticast is sometimes referred to as end-system multicast.
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Figure 1: (a) Protocol stack and (b) network topology of our testbed.

a number of reasons. Firstly, the task of defining a network
structure that just encompasses the edge nodes is assigned to
the DHT, and has not to be implemented by the multicast
protocol itself (as, e.g., in [23]). Secondly, the multicast pro-
tocol leverages the self-organising and self-recovery features
of the DHT. Finally, the same DHT can be shared by several
higher-level services running beside the multicast protocol.
To the best of our knowledge, the feasibility of such systems
on multihop ad hoc networks has not been investigated yet.
In this work, we choose Scribe [24], because it is one of the
most recent and popular p2p multicast protocols, and has
shown to outperform other similar approaches sharing the
same concepts [6].

Other papers propose multicast solutions explicitly de-
signed for ad hoc networks (e.g., [29–32], and see the sur-
vey in [33]). Also in this case, it is possible to identify L3
approaches (e.g., [31, 32]) and application-layer approaches
(e.g., [29, 30]). The argument used to justify application-
level multicast in wired networks does not hold in ad hoc net-
works anymore, as in this case there is no distinction between
core and edge hosts. The main reason people highlight to im-
plement multicast at the application level also in ad hoc net-
works is the fact that in this way, the burden of managing the
multicast structure falls exclusively on nodes that are actu-
ally interested in being part of the multicast group. However,
it should be pointed out that application-level multicast po-
tentially generates path stretch because just a subset of nodes
can be used to deliver the data. Moreover, nodes that do not
participate in multicast groups have to forward data never-
theless. Therefore, it is not yet clear whether multicast for ad
hoc networks should be implemented at the routing or at the
application level. To the best of our knowledge, application-
level multicast approaches designed for ad hoc networks do
not leverage underlying p2p systems as some solutions for
wired networks do. We do believe that exploiting DHTs to
build multicast systems can be a valid option in ad hoc net-
works too, due to the advantages highlighted before. This is
why we have chosen to evaluate Scribe on ad hoc networks in
this paper.

Finally, it is worth mentioning the original branch rep-
resented by gossiping protocols applied to multicast (e.g.,
[34]). The main idea of this approach is that senders of

a multicast group select a random subset of nodes in the
group to send data to. The same process is repeated at re-
ceiving nodes for a given number of turns, this number and
the size of the random subsets being protocol parameters. It
has been shown that such protocols are actually able to de-
liver messages with high probability to all intended receivers
[34]. A side effect of gossiping is that the message replication
rate is quite difficult to control. Evaluating such an approach
in comparison with p2p multicasting is an interesting topic
which is however out of the scope of this work.

Similarly, in this work we do not specifically consider re-
liability issues that may arise also in p2p multicasting scenar-
ios (we elaborate this point in Section 3.3). As a future work,
it will be interesting to investigate how to efficiently integrate
multicast reliability techniques available in literature.

3. EXPERIMENTAL SCENARIO AND SETUP

3.1. Application and protocol stack

One of our targets is to envision realistic applications ori-
ented to multihop ad hoc networks and understand how they
could be developed in practice. From this standpoint, GC ap-
plications are quite interesting. They fit well the overall fea-
tures of multihop ad hoc networks since they are distributed,
self-organising, and decentralised in nature. As a simple—
yet significant—example, we developed a whiteboard appli-
cation (WB), which implements a distributed whiteboard
among the network users. WB usage is very intuitive. Users
run a WB instance on their own devices, select a topic they
want to join, and start drawing on the canvas. Drawings are
distributed to all the devices subscribed to that topic, and
rendered on each canvas. WB is just an example of a broader
range of applications, including distributed messaging, dis-
tributed gaming, and so forth. We believe that this kind of
applications can be valuable to users, and they can thus con-
tribute to bring multihop ad hoc networks technologies into
everyday life.

WB has been developed on top of the network proto-
col stack shown in Figure 1(a). Specifically, WB runs on top
of a p2p middleware layer made up of a structured over-
lay network (Pastry [35]), and an application-level multicast
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Figure 2: Scribe main features.

protocol (Scribe [24]). WB maps each interest group (i.e.,
each topic) to a multicast tree, and exploits the multicast pro-
tocol services to deliver information to group members. Pas-
try uses both TCP and UDP at the transport layer, and thus
we have included both protocols in our architecture. Note
that the traffic generated by WB and Scribe is sent over TCP
connections. In line with our previous experiments, at the
routing layer we used OLSR [18] as a proactive routing pro-
tocol, and AODV [19] as a reactive one. The referred imple-
mentations of OLSR and AODV provide a standard L3 for-
warding platform. Therefore, we could run vanilla TCP and
UDP shipped with the Linux kernel on top of them.

Before proceeding, it is useful to give some more details
about Pastry and Scribe features. This helps to understand
the experimental results presented afterwards.

Pastry implements an overlay network based on a dis-
tributed hash table (DHT), on which nodes and data are log-
ically mapped. Specifically, each node gets a logical address
within a circular address space as the hashed value of its
IP address, while a key is associated to each data to be
stored/retrieved in/from the overlay. The onus of defining a
key for each message lies with the layer running on top of
Pastry (Scribe in this case, or any other distributed applica-
tion in general). Pastry guarantees that the message is deliv-
ered to the node in the overlay with the closest logical address
to the hashed key. Thus, the main feature of Pastry is im-
plementing subject-based routing, allowing upper layers to
be completely unaware of the eventual-destination address.
In more detail, a message generated at a node is sent to the
node with the closest address (in the circular space) to the
hashed key, to the best of the local-node knowledge. For scal-
ability reasons, in general, each node knows only a subset of
the other participants in the same overlay. Thus, the message
may reach the final destination following a multihop path on
the overlay, possibly resulting in physical-path stretch. Actu-
ally, Pastry trades path stretch for scalability and ability of
implementing subject-based routing.

In addition, in order to join the overlay, each node has
to contact another node already in the overlay, and collect

information needed to initialise its internal data structures
from the other nodes in the overlay (see [35] for details).
In case this procedure fails, the joining node creates its own
independent overlay, and has no possibility to rejoin the
original network without executing the bootstrap procedure
anew. Failures of the bootstrap procedure become quite likely
in ad hoc networks, due to the intrinsic instability of wire-
less links. As shown in the following, we have actually expe-
rienced such failures several times.

Scribe has been developed on top of Pastry because the
presence of a DHT facilitates the creation and maintenance
of the shared trees among groups of nodes. Each tree is iden-
tified by a topic. Scribe defines a root node, as the node in
the overlay whose address is the closest one to the hashed
topic. In Figures 2(a) and 2(b), the root is node C. The tree
is built as the union of the reverse paths from the mem-
bers to the root. Each node willing to join the tree sends a
subscribe message specifying the topic as the key. If the lo-
cal node does not directly know the root of the topic, the
message is forwarded using a multihop route at the over-
lay level. An intermediate node receiving such message ei-
ther subscribes itself to the same tree by sending its own
subscribe message towards the root (e.g., node B after step
1 in Figure 2(a)), or discards the message if it is already a
member of the tree (e.g., node B in step 3 in Figure 2(a)).
In both cases, it enrolls the node from which it received
the message as a child. Messages to be delivered over the
tree are first sent towards the root of the topic (step 1 in
Figure 2(b)), and are subsequently delivered by each par-
ent to its children (steps 2 and 3 in Figure 2(b)). Parent-
child relations are periodically refreshed by parents send-
ing heartbeats messages to children. Application messages
are also used as implicit heartbeats. A child missing heart-
beats or application messages for a given timeout value as-
sumes that the parent has left the network, and subscribes
again.

As a final remark, we have used the Pastry and Scribe im-
plementations provided by the Rice University in the FreeP-
astry package [36].
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3.2. Network topology

Figure 1(b) shows the network topology we used. In each
trial, nodes A to E ran the whole protocol stack, includ-
ing the WB application, while nodes R1 and R2 just worked
as routers. We think this is a reasonable scenario for stan-
dard standalone multihop ad hoc networks. Specifically, it
lies within the ad hoc horizon defined in [4], that is, up to
10–20 nodes, and up to 2-3 hops. Theoretical [37] and exper-
imental [4] results show that flat multihop networks beyond
this horizon are unable to deliver reasonable throughput to
users, and thus they are not likely to be really deployed.

Note that in a small-scale network as the one we con-
sider, each node becomes aware (at the Pastry level) of all
the other nodes. This is mainly because Pastry is designed
for very large-scale networks, and the subset of the other
nodes locally known by each node is typically 32. Thus, in
our testbed all the nodes ended up being just one hop away
from each other in the overlay network.

Even though this testbed represents a small-scale net-
work, it already highlights main limitations of legacy multi-
cast p2p solutions on multihop ad hoc networks. We can thus
expect these problems to significantly exacerbate in large-
scale networks, or when multiple multicast groups are con-
currently active in the network, or in case of mobility. The
main point we try to make in this paper is the fact that even
in small-scale realistic multihop ad hoc networks, legacy p2p
multicast systems are able to deliver sufficient QoS to user
applications just at light traffic loads.

3.3. Experiments definition and performance indices

In our experiments all the nodes were IBM ThinkPad
R50 laptops with an integrated 802.11b wireless card (In-
tel PRO-Wireless 2200). The OS was linux-2.6.12.3, loading
the ipw2200 driver for the network card. The experiment
software can be downloaded from http://bruno1.iit.cnr.it/
scribe exp sw/.

In all the experiments, nodes A to E ran the WB applica-
tion while the others just worked as routers. Specifically, the
“WB nodes” tried to join a single overlay and consequently a
single tree related to a specific topic of interest. In our con-
figuration, every node always assumed the same logical iden-
tifier obtained by hashing its IP address, and the topic used
by the WB users was always the same.

Under the hypothesis that Pastry generated a single over-
lay encompassing all WB nodes, the root of the Scribe tree
(i.e., the node whose ID is closest to the WB topic ID) was
the same through all the experiments, and was node C in
Figure 1(b). Users interactions with the WB were simulated
by a software agent that alternated between active and idle
phases. Specifically, in each active phase the agent generated
traffic on the network corresponding to strokes drawn on
the WB. Both the number of strokes drawn during an ac-
tive phase, and the duration of an idle phase were exponen-
tially distributed. Such a traffic profile is bursty, representing
the typical behavior of a user that sends content to be shared
with the group, and then “idles,” looking at data generated
by other users.

We ran experiments by varying both the average idle-
phase duration, and the average number of strokes per active
phase. Each trial was composed by 100 active/idle cycles, and
we took care that each node running WB generated at least
100 messages.2 To make trials start at the same time at dif-
ferent nodes, we synchronised the nodes before each trial,
and scheduled the trial to start at the same time on each
node. Then, the Pastry bootstrap sequence occurred as fol-
lows: node C started first, and generated the overlay. Nodes
E and D started 5 seconds after C, and bootstrapped from
C. Node B started 5 seconds after D and bootstrapped from
D. Node A started 5 seconds after B and bootstrapped from
B. Finally, node F started 5 seconds after E and bootstrapped
from E. After all nodes joined the overlay, the Scribe tree was
created and, finally, WB instances started sending application
messages.

The time intervals used for the bootstrap sequence were
defined to reduce the probability of failures during the boot-
strap procedure. Furthermore, the bootstrap sequence was
defined to make each node bootstrap from a physical neigh-
bour. This is a quite realistic assumption, and also increases
the probability of nodes to correctly complete the bootstrap
procedure. However, often this was not sufficient. In fact, the
instability of the wireless links caused high packet loss result-
ing in TCP connection failures and the consequent genera-
tion of an isolated overlay.

In the performance analysis, each trial is identified by
the routing protocol used and by an application-load index,
measured as the number of packets per second (pps) gener-
ated by each user. This index is defined as the ratio between
the average number of strokes generated in the active/idle cy-
cle, and the average duration of the cycle. We have found that
this simple index is sufficient to correctly identify usage cases
of a GC application in our scenario.

The main performance indices presented in the following
are the packet loss and the average delay experienced by each
node during the experiment. The packet loss is defined as
1−(Ri/

∑N
j=1 Sj), where Ri is the number of messages received

by node i, and Sj is the number of messages transmitted by
the jth node. Since Pastry uses TCP at the transport layer,
one could expect not to see any packet loss. Actually, Pastry
uses an internal queue to store messages going to be sent.
Packet loss actually occurs when this queue fills up, and is
thus a side effect of network congestion.3 The average delay
experienced by node i is defined as

∑Ri
j=1 di j /Ri, where di j is

the delay experienced by node i in receiving packet j.
We have also defined a usability threshold for the appli-

cation, indicating reference values for both delays and packet
loss. Beyond these thresholds, the application performance
is deemed not compliant with users expectations. To have
reasonable values, in our case we assume 10-second delay

2 A distinct message was sent for each stroke. The size of each message was
1448 bytes.

3 Properly dimensioning the queue to find the right balance between delay
and packet loss depends on the particular application demands (actually,
in other set of experiments, we have completely removed packet losses by
allowing the queue to grow unlimited).

http://bruno1.iit.cnr.it/scribe_exp_sw/
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Figure 3: Pastry performance on AODV and OLSR.

and 15% packet loss as thresholds. Of course they closely de-
pend on the specific application requirements. We replicated
each configuration several times, obtaining quite variable re-
sults. They are mainly due to the variability of the wireless
medium. In this paper, we show the best results measured in
each configuration.

4. IMPACT OF ROUTING PROTOCOLS ON
SYSTEM PERFORMANCE

Results presented in this section aim at evaluating the im-
pact of the underlying routing protocol on the multicast
tree creation and maintenance. Figures 3(a) and 3(b) show
the packet loss and the delay indices experienced by the
WB nodes at different traffic loads. Specifically, we con-
sider AODV experiments with nodes generating 0.1 pps and
0.2 pps, and OLSR experiments with nodes generating 0.2,
0.5, and 0.8 pps, respectively. System performance running
AODV is quite bad even with such a light traffic load, thus
there was no reason to further increase it. An “x” label for a
particular node and a particular experiment denotes that for
that experiment, we are not able to derive the index related to
the node (e.g., because some component of the stack crashed
during the experiment).

First of all, the impact of the Pastry bootstrap procedure
should be highlighted. In both cases, we experienced several
failures during the bootstrap procedure of Pastry that highly
influence the system performance. The bootstrap procedure
is actually a critical point for Pastry on wireless networks. In
this phase, the bootstrapping node has to initialise its inter-
nal data structures by opening TCP connections with several
other nodes, and gathering portions of their internal data
structures. The intrinsic instability of wireless links results

in possible failures of some of these connections, which pre-
vents the bootstrap procedure to successfully complete, and
the node to join the overlay. Such events were quite frequent
in our testbed. When a node fails to join the overlay, it also
creates an independent tree and it is not able to receive WB
messages from the other participants in the main overlay.
This generates a high packet loss on the isolated node, and
increases the packet loss also on the other nodes that cannot
receive the messages of the isolated node. For this reason, we
report in the legend of the plots the overlays configuration
built during each trial. Each experiment related to a specific
traffic load has been repeated several times observing differ-
ent outcomes of the bootstrap procedure. We report in this
paper the results obtained selecting the experiments in which
the number of overlay partitions is minimised. This allows us
to focus the performance evaluation mainly on the multicast
protocol and the application usability, limiting the effects of
problems during the Pastry bootstrap phase. From the exper-
iments shown in Figure 3, we can note that the probability of
bootstrap failure is higher running AODV than OLSR, even
at lighter traffic loads. This is due to high delays required by
AODV to establish a new route towards a destination, espe-
cially with unstable links, causing TCP-connection failures
[9, 38].

Failures of the bootstrap procedure have a significant
effect on packet loss (Figure 3(a)). In fact, in both AODV
experiments, node A is isolated and creates its own over-
lay. This results in packet loss higher than 80% at node A
(i.e., it just receives its own WB messages, which counts for
about one sixth of the overall WB traffic). The packet loss
is about 16% at node C (the root node), and about 70% at
the other nodes. Qualitatively, similar remarks apply to the
“OLSR 0.5 pps” experiment mainly because some software
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component crashed on node B during the experiment, and
node A was forced to fail its join operation trying to con-
nect to node B. Otherwise, in the other experiments run-
ning OLSR, all nodes correctly joined the overlay, giving a
complete view of WB performance. Specifically, in the case
“OLSR 0.2 pps,” the packet loss is 0 at nodes A, B, C, and D,
while it is about 3% at node E, and about 13% at node F, since
its connection with the root node is quite less stable than
the other nodes’ connection with the root node. In the case
“OLSR 0.8 pps,” the packet loss is higher at all nodes. Specifi-
cally, node C measures a packet loss of about 6%, nodes A, B,
D, and E measure about 20% packet loss, and node F about
45% packet loss. The increased packet loss stems from an ar-
chitectural design choice of Scribe. Due to the Scribe algo-
rithm, each WB message to be distributed on the tree is firstly
sent to root, and then forwarded over the tree. Often, this
is an excessive load for the root node, which, as the applica-
tion load increases, becomes unable to deliver all the received
messages, and drops them at the sending queue. This event
not only depends on the traffic load generated by the applica-
tion, but also on the routing protocol used. The fact that the
root node drops messages at the sending queue is also the rea-
son why the root node always experiences lower packet loss
with respect to the other nodes.

Even though we have replicated the experiments in each
configuration several times, we have not been able to make
all the nodes execute the bootstrap procedure correctly in
the case “OLSR 0.5 pps,” while we have been able in the case
“OLSR 0.8 pps.” This actually does not mean that the system
works for a higher load (0.8 pps), and does not for a lower
load (0.5 pps). In fact, the bootstrap procedure is not in-
fluenced by the application load, because it is executed be-
fore the application starts. Therefore, the probability that all
nodes correctly bootstrap exclusively depends on the links’
stability. From an usability standpoint, results shown for the
case “OLSR 0.5 pps” are useful even if the network config-
uration is different from the other OLSR cases. The packet
loss measured on the main overlay is essentially due to the
isolation of node A, while the other nodes are able to receive
almost all messages from each other. On the other hand, the
packet loss becomes clearly too high at 0.8 pps. We can thus
conclude that the system is surely not usable beyond 0.5 pps
in case of OLSR, while the threshold clearly drops to 0.1 pps
in case of AODV. In this case, besides never being able to cor-
rectly bootstrap, the system drops many messages also in the
main overlay network. Thus, as far as the packet loss is con-
cerned, we can conclude that OLSR outperforms AODV, be-
cause it makes the overlay more stable. It should be pointed
out that the better performance of OLSR with respect to with
AODV confirms our previous findings, even in mobile con-
figurations (see [7] as an example). This is mainly because
AODV builds routes trying to use also unidirectional and
asymmetric links. Therefore, in our experiments the network
turned out to be always far less stable with AODV than with
OLSR.

Similar observations can be drawn by focusing on the
delay index (Figure 3(b)). First of all, it should be pointed
out that the delay related to nodes that are the sole mem-
ber of their own overlay (e.g., node A in the “AODV 0.1

and 0.2 pps” case) is obviously negligible. Furthermore, it is
confirmed that OLSR performs better than AODV. In fact,
while AODV leads to average delays of the order of 100 sec-
onds, OLSR produces delays of at most 20 seconds, at 0.8 pps.
Again, the root node (C) always experiences a lower delay
with respect to the other nodes in the same overlay. From
OLSR experiments, we can note that at 0.5 pps, the maxi-
mum delay is about 2 seconds, while at 0.8 pps, node C mea-
sures an average delay of about 5 seconds, nodes A, B, D, and
E measure about 10 seconds, and node F about 25 seconds.
This confirms the packet loss analysis, also with respect to the
usability thresholds.

All these experiments have been run using the FreePastry
1.3 release of Pastry code. Even though the experiments have
been run in a particular setup, and the results refer to par-
ticular experiments, the outcome of our measurements can
be generalised fairly well. Actually, we can conclude that the
Pastry/Scribe platform is practically unable to support even
light application loads, even though the system performance
running OLSR demonstrates that a proactive approach at the
routing layer can increase the usability threshold. However,
in the last few months, new versions of FreePastry have been
released, and we decided to replicate this analysis using one
of the latest versions (1.4.1) to highlight possible improve-
ments introduced by software refinements of Pastry. In the
next section, we present a comparison of the two releases. As
OLSR drastically outperformed AODV in all cases, we used
only OLSR in this new set of experiments.

5. IMPACT OF PASTRY SOFTWARE REFINEMENTS

In order to compare system performance depending on the
software release, we do not analyse packet loss and delays per
node, but we consider the same indices for the root node,
and an average value for all the other nodes. The root node
represents the best case of the system performance since each
message has to be firstly sent to it and then forwarded to the
others.

Figures 4(a) and 4(b) show the performance we mea-
sured in terms of average delay and packet loss, respectively,
for both software releases. Focusing on “Pastry 1.3” curves,
we can summarise the analysis presented in the previous sec-
tion. The root node experiences a reasonable QoS for all ap-
plication loads (i.e., 0.2 pps, 0.5 pps, and 0.8 pps). Specifi-
cally, the root-node average delay is always below 5 seconds,
and the packet loss below 15%. But other nodes obtain a
largely unsatisfactory service. We can identify a critical point
for an application load between 0.5 and 0.8 pps. At 0.5 pps,
the system performance is highly influenced by the bootstrap
failure of node A. As far as the packet loss is concerned, iso-
lation of node A raises the average packet loss of non-root
nodes to 32.86%. However, the average delay experienced by
node A is clearly negligible. Thus, the delay averaged over
non-root nodes, which is about 2.3 seconds, is a lower bound
of the real delay that non-root nodes would have experienced
under this traffic load if the overlay network had been built
correctly. When the application load increases to 0.8 pps, all
nodes belong to the same overlay. The packet loss slightly
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Figure 4: Pastry releases comparison.

decreases to 26.50% at the expenses of a sharp increase of
the average delay, which raises to 13.17 seconds. Hence, we
can confirm that under Pastry 1.3, the system is reasonably
usable only for very light application loads, and deploying
applications like WB on this platform becomes quite ques-
tionable.

In order to further reduce the impact of Pastry inefficien-
cies on the system performance, in the second set of experi-
ments running the new software release we discarded the tri-
als affected by bootstrap failures, only considering the forma-
tion of a single overlay, even though this represents an op-
timistic assumption in real experiments. This might sound
unfair to the FreePastry 1.3 version. However, it should be
pointed out that even considering only experiments in which
the bootstrap procedure correctly completed, FreePastry 1.3
is clearly unusable at 0.8 pps, while FreePastry 1.4 remains
usable for much greater application loads, as shown by Fig-
ures 4(a) and 4(b).

Analysing “Pastry 1.4” results, we noticed that the major
modifications to the overlay building and maintenance pro-
cedures have drastically reduced the overhead and improved
the overlay stability [36]. Thus, it has been interesting to ex-
plore whether this new release improves also the application
performance in our scenario.

By looking at Figures 4(a) and 4(b), the performance
improvement is evident. The critical point moves by about
one order of magnitude, lying now between 5 and 10 pps.
Indeed, at 5 pps also non-root nodes experience reasonable
QoS, since the average delay is about 3.5 seconds, and the
packet loss is 5%. On the other hand, at 10 pps and beyond
the application becomes hardly usable at any node. Note that
even though the average delay at root node would be almost
acceptable also at 10 and 20 pps (i.e., it is below the usability
threshold), the packet loss increases to 35% and 42%, respec-
tively.

Note also that between 10 pps and 20 pps, the delay
curve relative to the root node flattens. This is actually a

side effect of the higher packet loss experienced at 20 pps.
In detail, in the topology of our experiments, non-root
nodes are either 1 or 2 hops away from root. In the next
section, we show that even at 20 pps, 1-hop-away nodes
are able to send to root almost all the traffic locally gen-
erated. The additional packet loss experienced by root at
20 pps is thus due to less messages received from 2-hop-
away nodes. In other words, out of the whole bunch of
messages received by root, the fraction of messages received
by 1-hop-away nodes increases when the traffic load shifts
from 10 to 20 pps. Since messages from 1-hop-away nodes
experience significant lower delay than messages from 2-
hop-away nodes, the fraction of messages experiencing low
delays increases too. This reduces the average delay mea-
sured at root, resulting in the flat shape of the curve. The
same phenomenon does not apply to non-root nodes. Re-
call that messages have to reach the root before being de-
livered to the other nodes. The delay experienced by non-
root nodes in receiving messages from root increases between
10 and 20 pps. Thus, even though in both cases messages
experience—on average—the same delay between the origi-
nating node and root, in the 20 pps case they undergo higher
delay along the path between root and the final destina-
tion.

To summarise, the above analysis shows a steep improve-
ment in the user-perceived QoS when moving from a FreeP-
astry release to a more advanced one. However, a critical
point still exists, beyond which it practically makes no sense
to use GC applications like WB on this platform. At this
point, it is really important to understand whether this crit-
ical point is going to eventually disappear thanks to future
software releases, or it is intrinsic in the Pastry/Scribe design.
In the following sections, we analyse the results achieved
with FreePastry 1.4.1 more in depth, and show that inde-
pendently of software refinements, the design of Scribe in-
cludes features not suitable for the multihop ad hoc networks
environment.
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Figure 5: Packet loss analysis.

6. ROOT AS THE CENTRAL NODE:
A RATHER OPTIMISTIC SETUP

In the set of experiments presented so far (related to Pas-
try 1.4.1), we have placed the root node at the center of the
topology to minimise the average hop distance to any other
node. Since it is well known that TCP performance drasti-
cally worsens as the hop distance increases [4, 38], this repre-
sents an optimistic setup. To have a clearer picture of the sys-
tem behavior, we now focus on the average delay and packet
loss experienced by each single node. Specifically, curves in
Figures 3(a) and 3(b) show the average performance experi-
enced by non-root nodes, and thus provide indications about
the average QoS a user may expect. In this section we analyse
the performance of nodes at 1 and 2 hops from root sepa-
rately. Together with the “root-curves” in Figures 3(a) and
3(b), this provides a precise view of the expected QoS with
respect to the position of a node in our topology.

Figures 5(a) and 5(b) show the packet loss experienced
by each single node towards and from root, respectively. The
packet loss of the ith node towards root is defined as the ratio
between the number of messages generated at the ith node
and not received by root, and the number of messages gen-

erated at the ith node, that is, 1− (R(i)
r /G(i)), where R(i)

r is the
number of messages generated by the ith node and received
by root, and G(i) is the number of messages generated by the
ith node. The packet loss of the ith node from root is defined
as the ratio between the number of messages not received
by the ith node out of the total number of messages sent
by root, and the total number of messages sent by root, that

is, 1 − (R(r)
i /S(r)), where R(r)

i is the number of messages sent
by root and received by the ith node, and S(r) is the number
of messages sent by root. Note that due to the Scribe archi-
tecture, root not only sends messages locally generated, but
also messages that it receives from all the other nodes. Due
to packet loss towards root, the number of messages sent by

root is less than the sum of messages generated by the sender
nodes, that is, S(r) <

∑N
i=1 G

(i). In addition, the ith node ex-
periences packet loss 0 only if (i) the packet loss of all nodes
towards root is 0, and (ii) the packet loss of the ith node from
root is 0.

On the one hand, Figures 5(a) and 5(b) confirm that as
far as the packet loss is concerned, the critical point for WB
usability lies between 5 and 10 pps. Indeed, below 5 pps the
packet loss towards root is 0 at all nodes. This means that
all nodes are able to send messages locally generated to root.
Apart from node F, also the packet loss from root is 0 at all
nodes. Thus, the overall packet loss experienced by all nodes
except F is 0 at 5 pps and below, making WB usable.

On the other hand, Figures 5(a) and 5(b) show a drastic
difference between nodes at 1-hop and 2-hop distance from
root. Even though the magnitude of this difference is quite
surprising, a steep performance decrease in the case of multi-
hop connections was expected (see, e.g., [4, 38]). Specifically,
Figure 5(a) shows that even at 10 pps and 20 pps, 1-hop-away
nodes are able to send almost all their messages to root. In-
stead, 2-hop-away nodes see their outgoing traffic cut by 50%
to 89%. Figure 5(b) shows a similar trend, in the sense that
at 10 and 20 pps, 2-hop-away nodes experience a far higher
packet loss than 1-hop-away nodes. However, there is a dif-
ference worth to be noted. While for 2-hop-away nodes the
packet loss is higher in the direction towards root, for 1-hop-
away nodes the packet loss is higher in the direction from
root. At a higher level, one could note that as the traffic load
increases, Scribe cuts it because the root node becomes over-
loaded. In our configuration, while 1-hop-away nodes suffer
only in the direction from root, 2-hop-away nodes mainly
suffer in the direction towards root. Actually, we have found
configurations in which for both cases (i.e., 1 and 2 hops),
the main traffic cut occurs in the direction from root. Under-
standing the reason of this behavior is not trivial, thus we are
currently analysing the system even more deeply. However,



10 EURASIP Journal on Wireless Communications and Networking

Table 1:Delays depending on the hop distance from root (seconds).

Average/percentiles Root 1 hop 2 hops

1 pps

Average 0.032 0.055 0.100

90 0.070 0.115 0.221

95 0.126 0.159 0.316

99 0.282 0.321 0.604

5 pps

Average 2.710 2.900 3.924

90 11.00 11.29 13.15

95 13.74 13.95 16.62

99 23.19 23.28 25.71

10 pps

Average 10.22 10.57 14.52

90 34.06 34.79 43.11

95 65.06 65.11 71.36

99 101.4 101.4 101.8

20 pps

Average 9.11 13.12 21.15

90 23.09 31.11 88.03

95 86.30 89.30 115.1

99 145.4 145.7 146.4

it should be noted that as far as the application-level QoS is
concerned, the precise direction along which the main traffic
cut occurs is not that important.

Figures 5(a) and 5(b) finally show that the presence of
2-hop-away nodes makes the application unusable also for 1-
hop-away nodes. For example, let us focus on the 10 pps case.
Nodes 1 hop away from root measure 0 packet loss on both
directions. However, they are unable to receive most of the
messages generated at nodes 2 hops away from root, because
those nodes suffer very high packet loss towards root. This
highlights that since all messages have to be firstly sent to the
root, a poor connection between a particular node and root
makes all other nodes unable to receive the messages gener-
ated by this node.

Analysing the delay figures allows us to highlight a fur-
ther feature of the system. Specifically, Table 1 shows the
average delay and the main percentiles depending on the
application-traffic load, and on the hop-distance from root.
By looking at the average delays only, one could conclude that
the application is usable even at 10 pps by nodes at most 1
hop away from root. However, if the usability threshold is de-
fined with respect to the 90th percentile instead of the aver-
age value, the critical point shifts below 5 pps (for all nodes).

Table 1 also shows a drastic difference between 1 pps and
the other traffic loads. Indeed, at 1 pps WB performance
is completely satisfactory, as the 99th percentile for 2-hop-
away nodes is about 600 milliseconds. At higher traffic loads,
there is a significant difference between the average delays
and the 90th percentiles. This suggests that the delay dis-
tributions have a long tail. This is confirmed by looking at
Figure 6(a), which plots the CCDF of delays measured at root
node. Clearly, for each traffic load, the CCDF at root is a
lower bound of CCDFs at any other node. Figure 6 shows
that CCDFs for application loads of 5 pps and beyond can be
lower bounded by a Pareto distribution with parameter 0.25.

Specifically, they show a long-tail pattern in the range from
5 milliseconds to 10 seconds. Figures 6(b) and 6(c) show the
same feature for 1-hop-away and 2-hop-away nodes, as well.
Being the coefficients of the approximating Pareto distribu-
tion far below 1, the tail is very heavy also in these cases. At
the application level, this means that even though the aver-
age delay can lay below the usability threshold, delay values
are highly variable, and thus no strict QoS guarantees can be
granted.

From results presented in this section, we can conclude
that the centralised approach of Scribe generally hinders
the use of GC applications over multihop ad hoc networks.
Specifically, we have highlighted two main inefficiencies.

(i) Even few nodes poorly connected to root prevent all
the nodes from using GC application properly. This is be-
cause those nodes will experience very high packet losses to-
wards the root, and all the other nodes will be unable to re-
ceive their messages. Even nodes that could be physically very
close to the “poorly connected” nodes, and thus might be po-
tentially able to correctly communicate with them, will just
get a small fraction of their messages.

(ii) The root node very likely experiences a long-tailed
delay distribution. In these cases, any other node experiences
the same pattern in the delay distribution.

Both of these drawbacks are intrinsic to the Scribe design,
and cannot be completely addressed either by refined soft-
ware releases, or by simply improving the underlying DHT.
Note also that our experiments were run with quite powerful
laptops. Performance could thus be even worse in case of less
powerful devices, such as PDAs, that are natural candidates
to be used in multihop ad hoc networks environments.

7. SYSTEM PERFORMANCE VARYING THE
SCRIBE ROOT NODE LOCATION

In the experiments presented so far, the Scribe root node was
always at the center of the network topology and all the other
nodes were 2 hops away at most. However, in the general case
no assumptions about the root location can be done. There-
fore, we ran a further set of experiments by placing the root
node at one edge of the network. This might sound like a
pessimistic configuration, but it should be noted that having
the root node at one edge of the network is more likely than
having it at the center of the topology. In detail, with respect
to the topology in Figure 1(b), we swapped the positions of
nodes C (root node) and A. This setup also allows us to better
analyse the impact of longer paths on Scribe, since we have
TCP connections spanning 1 to 4 hops.

Figures 7(a) and 7(b) show the performance measured at
each single node in terms of average delay and packet loss, re-
spectively. They confirm that the system now is usable just at
lighter application loads. Even at 1 pps, while the packet loss
is 0 at all nodes, the average delay ranges between 5 and 10
seconds. Thus, even at 1 pps, the system is usable just for ap-
plications with loose delay constraints. At a load of 5 pps, the
system is completely unusable for nodes 3 hops away from
root and beyond. At higher loads, the performance might be
too low even for the root node.
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Figure 6: Delay CCDFs.

8. DISCUSSION AND FUTURE WORK

Scribe was designed having in mind a resource-rich environ-
ment, such as the legacy wired Internet, and it has shown to
perform very well in it [6]. However, when used over mul-
tihop ad hoc networks, the centralised approach, in which a
root node is in charge of delivering all application messages,
leads to very low performance in terms of packet loss and de-
lay. One might think of using solutions like SplitStream [28],
which splits a single multicast group in several trees, thus re-
ducing the concentration at the root. However, SplitStream
requires significant a priori knowledge about the application
traffic load, and a quite significant planning effort. Actually,
it is again a system designed for large-scale wired networks,
which introduces even further networking structures to the
shared tree used by Scribe.

In general, we believe that one of the main reasons of the
low performance is indeed the use of a structured multicast
solution. Besides requiring significant overhead in terms of
management traffic, such solutions tend to concentrate the
costs of the application (in terms of network/computation
resources) on a few nodes and links. If these nodes/links
are underprovisioned, or happen to be placed in adverse lo-
cations, the whole system may implode, making it unable
to support the application. Structured solutions are a good
choice in large-scale systems designed for the legacy Internet
(as Scribe is). Indeed, in this case the network and computa-
tional resources are not a big issue, and structured solutions
allow the system to scale up to thousands of nodes. How-
ever, growing up to such a scale is not reasonable for multi-
hop ad hoc networks. Theoretical results and practical expe-
riences (e.g., [4, 37]) show that the most reasonable scale for
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Figure 7: Single-node analysis.

flat ad hoc networks based on 802.11 technologies is up to
10–20 nodes, and 2-3 hops. Furthermore, concentrating the
load on a few resources and managing the multicast structure
may become a serious problem in these networking environ-
ments.

Based on these remarks, we believe that structureless (or
stateless) multicast is a more reasonable choice in this envi-
ronment. For example, approaches like differential destina-
tion multicast (DDM, [39]) and route-driven gossip (RDG,
[34]) seem to be very interesting solutions. Typically, ac-
cording to this approach, each member of a multicast group
knows the other members of the same group (actually, RDG
also works with partial knowledge). When a message is lo-
cally generated, it is sent to the group members by using the
underlying routing protocol, without requiring any multicast
structure. Mechanisms are included to send just once a mes-
sage addressed to destinations sharing an initial portion of
the path from a sending node. These approaches spread the
load more evenly over the nodes and links of the network,
avoid concentration on a few nodes/links, and typically work
remarkably well in small- and medium-size networks. How-
ever, they require costly mechanisms to collect and main-
tain the (partial) list of group members at each node. Typ-
ically, nodes have to periodically flood the network to an-
nounce their presence, or to check for other nodes’ liveness.
Therefore, we are currently designing an improved version
of Scribe, which retains the structureless features of DDM
and RDG, but avoids such costly mechanisms by exploiting a
cross-layer approach. In this view, further advantages would
be brought in by replacing Pastry with CrossROAD. In all
previous experiments, CrossROAD has shown to outperform
Pastry in multihop ad hoc networks by fixing all its ineffi-
ciencies (e.g., path stretches, bootstrap failures, nodes’ iso-
lation, etc.). Since the results presented in this paper clearly
show that even one of the best legacy p2p multicast system
needs drastic improvements to work in ad hoc networks, us-
ing CrossROAD to support an enhanced p2p multicast sys-
tem is a natural choice.
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