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Abstract—Opportunistic communications have been recently
proposed as a key strategy for offloading traffic from 3G/4G cellu-
lar networks, which is particularly beneficial in case of crowded
areas where many users are interested in similar contents. To
conserve energy, duty cycling schemes are typically applied,
and therefore contacts between nodes may become intermittent
and sporadic also in dense networks. It is thus of paramount
importance to accurately tune the duty cycling policy in order
to meet energy requirements without compromising the quality

of communications. In this paper, building upon a model of
duty cycling in opportunistic networks that we have validated
in a previous work, we study how to optimise the value of the
duty cycle in order to provide probabilistic guarantees on the
delay experienced by messages. More specifically, for a broad
range of end-to-end delay distributions, we provide closed-form
approximated solutions for deriving the optimal duty cycle such
that the probability that the delay is smaller than a target value z

is greater than or equal to a configurable probability p.

I. INTRODUCTION

Opportunistic networks have been conceived at the inter-
section between Mobile Ad hoc NETworks (MANET) and the
Delay Tolerant (DTN) paradigm. In the conventional model,
they exploit the movements of the nodes of the network
(people with their smart, handheld devices like tablets and
smartphones) in order to deliver messages to their destinations
according to the store-carry-and-forward paradigm: nodes hold
messages while they move and forward them to other nodes
that are in radio contact, until messages reach their final
destination. Opportunistic communications were initially seen
as a standalone solution for those scenarios in which the nodes
of the network were sparse and the infrastructure unavailable
(disaster/emergency scenarios, developing countries, etc.). Re-
cently, however, they have become one of the key strategies
for mobile data offloading [1], whose main goal is to offload
the traffic from cellular networks to other types of networks
(e.g., WiFi infrastructured or MANET) in a synergic way, in
order to address the overloading of the 3G/4G infrastructure.

In case of crowded environments (and thus dense networks)
overloading may be even more critical, and opportunistic
networking techniques can be usefully applied, as follows.
Due to the typical Zipf-like shape of content interest, it is
likely that large fractions of users in the crowd are interested
in few, very popular contents (e.g., those mostly related to the
area where the crowd gathers). Multicast can be a solution
to reduce the traffic load only when content requests can be
synchronised. When requests are generated dynamically by
users, exploiting communications between users’ devices is
a more flexible solution, as content can be sent through the
cellular network only to a few of them, exploiting opportunistic

communications for the rest. The D2D technology addresses
this goal to some extent, and is currently proposed in latest
LTE releases. In this paper we focus on offloading through ad-
hoc WiFi or Bluetooth technologies, as this approach permits
to exploit additional portions of the spectrum (and, therefore,
additional bandwidth) with respect to that allocated to cellular
networks. A possible roadblock in this scenario is the fact that
direct communications consume significant energy. To address
this, nodes are typically operated in duty cycling mode, by
letting their WiFi (or Bluetooth) interfaces ON only for a
fraction of time. The joint effect of duty cycling and mobility
is that, even if the network is dense, the resulting patterns
in terms of communication opportunities is similar to that of
conventional opportunistic networks, as devices are able to
directly communicate with each other only when they come
in one-hop radio range and both interfaces are ON.

The net effect of implementing a duty cycling scheme is
thus the fact that some contacts between nodes are missed
because the nodes are in power saving mode. Hence, detected
intercontact times, defined as the time between two consec-
utive contact events during which a communication can take
place for a pair of nodes, are longer than intercontact times
determined only by mobility, when a duty-cycling policy is in
place. This heavily affects the delay experienced by messages,
since the main contribution to message delay is in fact due
to the intercontact times. In our previous work [2], we have
focused on exponentially distributed intercontact times and we
have studied how these are modified by duty cycling, obtaining
that intercontact times remain exponentially distributed but
their rate is scaled by the inverse of the duty cycle (see
Proposition 1, Section III). Building upon this result, we have
then investigated how the first moments of the end to end
delay vary with the duty cycle for a number of opportunistic
forwarding schemes. In addition, we have found that energy
saving and end-to-end delay both scale linearly with the duty
cycling. Therefore, for a single message delivery, the same
energy saved through duty cycling is spent because the network
must stay alive longer. Thus, the main advantage of duty
cycling is enabling the network to carry more messages by
being alive longer (rather than improving the energy spent for
each single delivery).

Our work in [2] assumed that the value of the duty cycle
was given and studied its effects on important performance
metrics such as the delay, the network lifetime, and the number
of messages successfully delivered to their destination. More
in general, the duty cycling can be seen as a parameter that
can be configured, typically, based on some target performance
metrics. To this aim, the main contribution of this paper



is a mathematical model that allows us to tune the duty
cycle in order to meet a given target performance, expressed
as a probabilistic guarantee (denoted as p) on the delay
experienced by messages. Considering probabilistic, instead
of hard, guarantees, allows us to cover a very broad range of
application scenarios also beyond best-effort cases – all but
those requiring real-time streaming. Specifically, we study the
case of exponential, hyper-exponential and hypo-exponential
delays (please recall that any distribution falls into one of
these three cases, at least approximately [3]), deriving the
optimal duty cycle for each of them. For the simple case of
exponential delays we are able to provide an exact solution.
For the other two cases, we derive an approximated solution
and the conditions under which this approximation introduces
a small fixed error ε (which is always below 0.14) on the target
probability p. Specifically, in the worst case, the approximated
duty cycle introduces an error on the target probability p of
about 0.1 (hyper-exponential case) and 0.14 (hypo-exponential
case), while in the other cases the error is well below these
thresholds.

The paper is organised as follows. In Section II we
overview the literature on duty cycle optimisation for oppor-
tunistic networks. After having introduced the network and
duty cycle model that we consider in this work (Section III)
we derive in Section IV the optimal duty cycles for the case of
exponential, hyper-exponential, and hypo-exponential delays.
Then, in Section V, given a target performance for the delay,
we discuss how the optimal duty cycle affects the volume
of messages delivered during the network lifetime and we
highlight that in the case of hyper-exponential delays it is
possible to achieve a lower duty cycle than hypo-exponential
delays for a given target performance. Finally, Section VI
concludes the paper.

II. RELATED WORK

There are not many contributions in the DTN literature
studying the optimisation of the duty cycling policy. In [4],
using a fixed duty cycle scheme, Wang et al. study the
relationship between the probability of missing a contact
and the associated energy consumption (considered inversely
proportional to the contact probing interval). Building upon
these results, [4] provides some heuristic algorithms to achieve
an optimal contact probing. Differently from this work, in this
paper we mathematically define the optimisation problem and
we provide an analytical, closed form, result.

In [5], Gao and Li focus on the design of an adaptive duty
cycle that minimises wakeups during intercontact times (which
are useless, from a contact probing standpoint). Differently
from [5], we have chosen to optimise the duty cycle directly,
based on the performance goal that we want to achieve.
While it is true that an optimisation based on intercontact
times impacts directly on the delay performance, it is not
straightforward how to control the one based on the other. With
our model, instead, we can directly go from the requirements
in term of probability of staying below a fixed delay threshold
to the corresponding duty cycle value. In addition, differently
from [5], we focus on a fixed duty cycle, similar to [6] [7] [4].
It is still an open research point which duty cycling strategy
is to be preferred. However, preliminary results in [4] show
that, under some assumptions, fixed duty cycle is the optimal
strategy.

Another contribution focused on duty cycle optimisation
is [8], in which Altman and Azad study the optimisation of
node activation in DTN relying on a fluid approximation of the
system dynamics. However, the problem analysed is different
from the one studied in this paper, since in [8] nodes, once
activated, remains active. In addition, this model is based
on the assumption of i.i.d. intercontact times, while it has
been shown that realistic intercontact times are intrinsically
heterogeneous. For this reason, here we focus on heterogenous
(but still independent) intercontact times.

III. PRELIMINARIES

We assume that user mobile devices alternate between ON
and OFF states, whose duration is fixed. We denote as duty
cycle ∆ the ratio between the duration of the ON and OFF
states, and as T their sum. We assume that when a node
is in the ON state it is able to detect contacts with other
nodes. Please refer to [2] for a discussion on how to apply
this model to popular technologies such as Bluetooth and
WiFi Direct. For the sake of simplicity, coarse synchronisation
(e.g., controlled by the cellular infrastructure in the case of
mobile data offloading) can be used to guarantee that ON
intervals overlap between any pair of nodes, such that they
can communicate during a contact if this overlaps with their
ON phases. Under this assumption, in [2] we have investigated
the effect of duty cycling on the detection of encounters
between pairs of nodes. As discussed in Section I, this problem
is extremely relevant to opportunistic networks, in which
messages are delivered by means of consecutive exchanges
between encountering nodes. In fact, the net effect of a duty
cycling policy is to reduce the number of contacts that can be
exploited for exchanging messages. More specifically, we have
shown that, when intermeeting times follow an exponential
distribution1, the contact rate between a tagged node pair is
approximately decreased by a factor ∆. We summarise this
result below.

Proposition 1: Considering a tagged pair of nodes i and j
with exponential intercontact time of rate λij , the detected
intercontact time, i.e., the effective intercontact time when
a duty cycling policy is in place, features approximately an
exponential distribution with rate ∆λij , as long as λijT ≪ 1,
where T is the duty cycling period.

In [2] we have shown that the condition λijT ≪ 1 holds for
the majority of contact traces available in the literature. Please
note also that the above result has been obtained assuming
that the duration of a contact is negligible with respect to the
duration of the OFF period, which is reasonable (for example,
results in [11] show that in absence of duty cycling the median
contact duration is below 48s, while the period of typical duty
cycling policies is in the order of several minutes).

Exploiting the result in Proposition 1, in our previous
work [2] we have evaluated how intercontact times modified
by the duty cycling policy affect the first two moments of
the pairwise end-to-end delay for a set of representative (both
social-oblivious and social-aware) opportunistic forwarding

1Exponential intercontact times are a popular assumption in the related
literature [9] [10], even if a general consensus on the best probability
distribution to approximate the realistic intercontact process has not been
reached yet.



strategies. Specifically, we have derived the following prop-
erties, which we will use extensively throughout the paper:

P1 The dependence of the coefficient of variation c of the
delay from ∆ is negligible.

P2 The expected delay when a duty cycling policy is in
place (denoted as E[D∆]) is approximately equal to the
expected delay E[D] with no duty cycle scaled by a factor
1
∆ , i.e, E[D∆] =

E[D]
∆ .

P3 The second moment of the delay when a duty cycling
policy is in place (denoted as E[D2

∆]) is approximately
equal to the second moment of the delay E[D2] with no

duty cycle scaled by a factor 1
∆2 , i.e, E[D2

∆] =
E[D2]
∆2 .

IV. SETTING THE DUTY CYCLE FOR ACHIEVING A

PROBABILISTIC GUARANTEE ON THE DELAY

In this section we discuss how to derive the optimal duty
cycle ∆opt such that the delay of a tagged message remains,
with a certain probability p, under a target fixed threshold z or,
in mathematical notation, ∆opt = min{∆ : P{D∆ < z} ≥ p}.
Since the delay increases with ∆, the latter is equivalent to
finding the solution to the following2:

∆opt = {∆ : P{D∆ < z} = p}. (1)

Please note that in the following we will denote the CDF of
D∆ as F∆(x). In order to find the solution to Equation 1,
the distribution of the delay D∆ should be known. Although
it is in general unfeasible to obtain an exact closed form
for the distribution of D∆ (except for some trivial cases,
such as when the source node can only deliver the message
to the destination directly), it is often possible to compute
its moments, either exactly or approximately, under different
distributions for intercontact times, as shown, e.g., in [9][12].
When the first two moments of the delay can be derived, it
is possible to approximate its distribution with either a hypo-
exponential or hyper-exponential random variable, using the
moment matching approximation technique [3]. So, assuming
that we have derived the first moment E[D∆] and the second
moment E[D2

∆] of the delay using, e.g., the models in [9] [12],
exploiting property P1, we can compute the coefficient of

variation c as

√

E[D2]
E[D]2 − 1. Then, when c is greater than one,

D∆ can be approximated using a 2-stages hyper-exponential
distribution with the same moments of D∆, as stated in the
following Lemma.

Lemma 1 (Hyper-exponential approximation): The two
moments matching approximation of D∆ with coefficient of
variation c ≥ 1 is a 2-stages hyper-exponential distribution
with parameters (λ1, p1), (λ2, p2) given by the following:

{

p1 = 1
2

(

1 +
√

c2−1
c2+1

)

λ1 = 2p1

E[D∆]

{

p2 = 1− p1
λ2 = 2p2

E[D∆]
(2)

Vice versa, when the coefficient of variation of the delay
is smaller than 1 (but greater than 1√

2
[13]), D∆ can be

approximated with an hypo-exponential distribution with CDF
FX(x) = 1 − µ2

µ2−µ1
e−µ1x + µ1

µ2−µ1
e−µ2x, for all x ≥ 0,

according to the following lemma.

2In the rest of the paper, for convenience of notation, we will drop subscript
opt since all ∆ we derive are the optimal ones.
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Fig. 1. ∆ optimum for the exponential delay.

Lemma 2 (Hypo-exponential approximation): The two
moments matching approximation of D∆ with a coefficient
of variation c ∈ ( 1√

2
, 1) is an hypo-exponential distribution

with rates µ1, µ2 given by the following:






µ1 = 2
E[D∆] · 1

1+
√

1+2(c2−1)

µ2 = 2
E[D∆] · 1

1−
√

1+2(c2−1)

(3)

In the rest of the section, we will analyse the optimisation
problem in Equation 1 assuming that D∆ features an exponen-
tial (Section IV-A), hyper-exponential (Section IV-B) or hypo-
exponential distribution (Section IV-C). Please note that all
three cases are possible starting from exponential intercontact
times.

A. The exponential case

The simplest case is when the delay features a coefficient
of variation c equal to one. In this hypothesis, the distribution
of the delay is exponential with parameter λ∆ = E[D∆]

−1.
Then, it is straightforward to derive Theorem 1.

Theorem 1: The optimal duty cycle when D∆ features an
exponential distribution is given by the following:

∆ = − log(1− p)

λz
, (4)

where we indicate with λ the parameter of the exponential
distribution obtained with ∆ = 1, i.e., λ = E[D]−1.

Proof: We know that λ∆ = 1
E[D∆] , hence, since E[D∆] ∼

E[D]
∆ (Property P2), we have that λ∆ = λ∆. Thus, we can

rewrite Equation 1 as 1 − e−λ∆z = p, from which ∆ can be
easily obtained.

For the sake of example, in Figure 1 we plot ∆ obtained
from Theorem 1 setting p = 0.8. E[D] is set to 154s, which is
the average expected delay obtained in [2] for a simple social-
aware policy that selects the next relay of a message based on
its contact rate with the destination and assuming the average
contact rate equal to 4.07 · 10−3s−1 (the average contact rate
measured in the RollerNet contact dataset [14]). Figure 1
shows that, as expected, when the target delay threshold is
too small, it is impossible to achieve it with a probabilistic
guarantee p, regardless of the value of the duty cycle. Instead,

starting from z = − log (1−p)
λ , ∆ is inversely proportional to z.

Varying the parameters z and p, Equation 1 describes a
surface in R

3, and more precisely the surface K given by:

K = {(z, p,∆) ∈ R× [0, 1]× [0, 1] : P{D∆ < z} = p} .
(5)
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Given a certain duty cycle ∆ ∈ (0, 1], we can thus describe
K as the union of its level sets K∆ or, in other terms, K =
⋃

∆∈(0,1]K∆ where:

K∆ = {(z, p) ∈ R× [0, 1] : P{D∆ < z} = p} . (6)

K∆ is thus the set of pairs (z, p) that can be obtained with
a given duty cycling ∆. It can be useful to plot K∆ for
different ∆ in order to study whether it is possible to slightly
compromise on the target performance in order to achieve a
lower duty cycle. Assuming that we want z = 250s, in the
exponential case (Figure 2) we can achieve it with a probability
0.8 with ∆ = 1 or with 0.68 with ∆ = 0.7, thus saving battery
lifetime. Similarly, if we want to guarantee a target probability
p = 0.8, with ∆ = 1 we obtain approximately z = 250s. If we
are more flexible in terms of z, we can choose level set K0.7

which gives z = 350s. This kind of analysis can be performed
also for the hyper-exponential and hypo-exponential delays,
with similar results.

B. The hyper-exponential case

When the coefficient of variation of the delay is greater than
one, the delay can be approximated with an hyper-exponential
distribution as stated in Lemma 1. This means that Equation 1
becomes 1 − p1e

−λ1z − p2e
−λ2z = p, where parameters

(λ1, p1), (λ2, p2) are given by Equation 2. From Equation 2, λ1

and λ2 depend on ∆ (while p1 and p2 do not), thus, denoting
with λ0

1 and λ0
2 the rates when ∆ = 1 and exploiting property

P2, we can write Equation 1 as follows:

1− p1e
−λ0

1∆z − p2e
−λ0

2∆z = p. (7)

The exact solution ∆ to this equation cannot be found ana-
lytically because Equation 7 cannot be inverted. However, in
Theorem 2 below, we show how to obtain an approximated
solution ∆a that introduces a small error at most equal to ε.

Theorem 2: Let us λ0 denote E[D]−1 and λ0
1, λ

0
2 the rates

of the hyper-exponential delay (Equation 2) for ∆ = 1. When
delay D∆ has coefficient of variation greater than one, given
a threshold z of the delay and a target probability p, for every
fixed ε ≥ min{ε1, ε2} (whose definition is provided in the
proof below), the duty cycle defined by:

∆a =







































1
z

[

− 1−p−p2

λ0
2p2

+

+ 1
λ0
1
W

(

p2
1

p2
2
e

λ0
1(1−p−p2)

λ0
2p2

)]

if ε1 < ε2

− log 1−p
λ0z if ε1 ≥ ε2,

(8)

where W is the Lambert function3, verifies that |F∆a
(z) −

p| ≤ ε and so it is a good approximation of the solution to
Equation 7.

Proof: We will provide below an intuitive sketch of the
proof whose detailed version can be found in [15]. The idea
for finding an approximate solution to Equation 7 is to identify
an approximation F̃ (z) that is close to F∆(z) under some

conditions. So, we build a function F̃ for which it is possible
to solve Equation 7 and for which min{ε1, ε2} is the error
introduced (we will clarify this point below). Specifically, we
have identified the following function:

F̃ (z) =

{

1− p1e
−λ0

1∆z − p2(1− λ0
2∆z) if ε1 < ε2

1− e−λ0∆z if ε1 ≥ ε2
(9)

Let us denote with F̃1(z) and F̃2(z) the two parts of F̃ (z)
in the above equation. In F̃1(z), we have approximated the
third term on the left hand side of Equation 7 using the Taylor
expansion, after noting that this term contributes to F∆(z) less
and less as the coefficient of variation c increases. Vice versa,
the pure exponential behaviour (F̃2(z)) dominates when c is

close to 1. Both F̃1(z) and F̃2(z) can be solved to find ∆,
from which Equation 8 follows.

The quality of these two approximations depends on the
desired tolerance to the error that we inevitably introduce when
we approximate F∆(z). If we tolerate a large error, either
approximation can be chosen. Instead, if we want to achieve
the smallest error, depending on the coefficient of variation
of D∆ we might have to prefer the one or the other. In the
following we briefly discuss how to identify the minimum

error introduced by F̃1(z) and F̃2(z), which we denote with

ε1 and ε2 respectively. Let us start with F̃1(z). We want to
find the region for which |F∆a

(z) − p| ≤ ε or, equivalently,

|F∆a
(z) − F̃

(∆a)
1 (z)| ≤ ε, where we denote with superscript

(∆a) the fact that the CDF is computed using the approximated
solution for ∆. Solving the above inequality, we find that it
holds for all p < pmax, where pmax is a function of c and ε
(due to lack of space, we do not report its formula here, please
refer to [15] for details). Specifically, pmax monotonically
increases with ε. So, if we want to derive the minimum error
for which inequality |F∆a

(z)−p| ≤ ε holds for all p, we have
to solve equation pmax(c, ε) = 1. We obtain the following:

ε1 =

(a− 1)

(

−(a− 1)W

(

(a+1)2e
a+1
a−1

(a−1)2

)

+ a+ 1

)2

4(a+ 1)2
, (10)

where again W (x) denotes the Lambert function and a is

defined as
√

1 + 2(c2 − 1).

Let us now consider F̃2(z). We are able to prove that
function |F∆a

(z)− p| has a maximum in p∗. We derive p∗ by
finding the p in which the derivative of |F∆a

(z)− p| becomes
zero. Then, ε2 can be computed as ε2 = |F∆a

(z) − p∗|,
obtaining the following:

ε2 =
1

2
(a+ 1)−2/a

(

a
√

2− a2 + 1
)1/a

·

·
(

(a− 1)(a+ 1)2

a
√
2− a2 + 1

− a
√
2− a2 + 1

a+ 1
+ 2

)

, (11)

3The Lambert function is defined as W (x)eW (x) = x, for all x ≥ − 1
e
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where again a =
√

1 + 2(c2 − 1). Thus, for both ε1 and ε2
we have derived a closed-form expression that tells us that
the error that we make with our approximation is fixed for a
given c.

In Figure 3, we show how ε1 and ε2 vary with respect
to the coefficient of variation c. As expected, for small c
(recall that we are in the hyper-exponential case, so c > 1
by definition) the exponential assumption F̃2 allows us to
achieve smaller errors. The opposite is true for large c. The
worst case is reached for c ∼ 1.5, when the minimum error
is around 0.1, which is still low. In Figure 4 we plot how the
optimal duty cycle varies with z, setting the target probability
to p = 0.8, for two values of coefficient of variation (c = 1.3
and c = 3). In both cases the approximation is good (the exact
value is computed with standard numerical techniques to solve
Equation 7). Specifically, when c = 1.3 the minimum error

that can be achieved is 0.06 and is provided by F̃2(z), hence
confirming the predominance of the exponential behaviour for
c close to 1. Vice versa, when c = 3 the minimum error is
0.026 and is provided by F̃1(z). It is also interesting to notice
that smaller duty cycles can be achieved when c increases, i.e.,
when the variability of the delay is higher. The importance of
this result will be further discussed in Section V.

C. The hypo-exponential case

When the coefficient of variation c of the delay D∆

is smaller than one, following Lemma 2, it is possible to
approximate the delay with a hypo-exponential distribution.
In particular, using property P2, if we denote with µ0

1 and µ0
2

the parameters obtained when ∆ = 1 in Equation 3, we can
rewrite Equation 1 making explicit the dependence on ∆:

1− µ0
2

µ0
2 − µ0

1

e−µ0
1∆z +

µ0
1

µ0
2 − µ0

1

e−µ0
2∆z = p. (12)

As in the hyper-exponential case, this equation can not be
directly inverted for finding ∆, but it is possible to derive an
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Fig. 6. ∆ optimum (approximated vs exact) for the hypo-exponential delay
with target probability p = 0.8 and varying c.

approximate solution for which a small fixed (for a given c)
error is introduced.

Theorem 3: Let µ0
1 and µ0

2 be the parameters given by
Equation 3 with ∆ = 1. When the delay D∆ has coefficient
of variation smaller than one, the duty cycle defined by:

∆a =

{

− 1
µ0
1z

log
[

(1− p) · µ0
2−µ0

1

µ0
2

]

if ε1 < ε2

− log 1−p
λ0z if ε1 ≥ ε2,

(13)

verifies that |F∆a
(z) − p| ≤ ε (with ε ≥ min{ε1, ε2}, see

the proof in [15]), and so it is a good approximation of the
solution to Equation 12.

Due to lack of space and since the rationale follows that
of the proof for Theorem 2, we omit the proof of the above
theorem, which can however be found in [15].

In Figure 5 we plot ε1 and ε2 varying c. When c is close
to one, both approximations are very good. For values of
c roughly in the interval (0.83, 0.97), F̃1(z) provides better

results, while, for low values of c, F̃2(z) is to be preferred.
In Figures 6(a) and 6(b) we show how the optimal duty cycle
varies with z, setting the target probability to p = 0.8, for
two values of coefficient of variation (c = 0.75 and c = 0.9,
respectively). In both cases the approximation and the exact
value are very close. In Figure 6(a) the minimum error that

can be achieved is 0.13 and is provided by F̃2(z), while in
Figure 6(b) the minimum error is 0.05 and is provided by
F̃1(z).

V. OPTIMAL DUTY CYCLE AND TRAFFIC GAIN

In this section we investigate how the choice of the optimal
duty cycle affects the volume of traffic carried by the network.
As already discussed, the advantage of implementing a duty
cycle policy is that device batteries are preserved and, as a
consequence, the lifetime of the network increases. Specifi-
cally, with a duty cycle ∆ and a baseline network lifetime L
(i.e., with ∆ = 1), the network lifetime when a duty cycling
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Fig. 7. N (∆) varying z for different p in the case of hyper-exponential
(c = 3) and hypo-exponential (c = 0.75) delay.

policy is in place is given by L
∆ . A longer network lifetime is

very useful because it allows nodes to exchange messages for
a longer time. If we assume, similarly to [2], that messages are
generated according to a Poisson process with rate η, we can
derive how the total number of messages N delivered by the
nodes varies with ∆. Due to lack of space, in the following
we only consider the hypo-exponential and hyper-exponential
cases. First, in the theorem below we recall the main results
for N derived in [2].

Theorem 4: If the delay D∆ has coefficient of variation c
greater than one, the volume N (∆) of messages delivered by
the system under duty cycling ∆ is given by:

N (∆)= ηL
∆ −ηE[D∆]
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(14)
Instead, if the delay D∆ has coefficient of variation c smaller
than one, the volume N (∆) of messages delivered by the
system under duty cycling ∆ is given by:

N (∆)= ηL
∆ −ηE[D∆]·
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. (15)

If we substitute in the above equations the optimal ∆
derived in the previous section, we obtain how N varies as
a function of the target performance (z, p). In order to study
this dependence, we set the network lifetime L to 60000s and
we assume that each node generates one message every ten
minutes (η = 1

600s
−1). In Figure 7(a) we set p to the value

0.8 and we plot N varying z, while in Figure 7(b) we set
p = 0.4. Besides the expected result that the less stringent the
performance requirements (i.e., higher p) the higher the volume
of traffic (because smaller duty cycles can be used), we observe
an interesting difference between the two delay distributions.
The traffic delivered under hyper-exponential delays is always
higher than that exchanged under hypo-exponential delays.
This is due to the fact that, as we have seen in Section IV-B,
when c increases we can achieve smaller optimal duty cycle for
a given target performance (z, p), hence saving more energy
and increasing the lifetime of the network.

VI. CONCLUSION

In this work we have studied how to optimise the duty
cycle in order to guarantee, with probability p, that the delay
of messages remains below a threshold z, assuming that inter-
contact times are exponentially distributed. We have provided

an exact solution for the case in which the delay follows an
exponential distribution, and approximated solutions for the
cases in which the coefficient of variation of the delay is
greater than or smaller than 1. We have also demonstrated that
the approximation of ∆ introduces an error ε whose formula
we have provided and that is small and fixed for a given
coefficient of variation c of the delay. Finally we have focused
on the volume of traffic delivered by the network when the
optimal duty cycle is implemented, and we have discussed how
the two parameters z and p impact on the number of messages
delivered. Specifically, we have shown that the optimisation of
the duty cycle is more efficient with hyper-exponential delays,
as it achieves lower duty cycles and thus provides higher
energy gains.
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