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Abstract     

 
The scarcity of energetic resources in mobile 

computers is a very limiting factor. In this paper we 
propose a solution that tries to balance energy 
consumption and QoS requirements. Our solution follows 
an application-independent approach and, therefore, it 
can be used concurrently, and without modifications, by 
any network application. Furthermore, our solution is 
independent from the sub-network technology. We 
implemented this solution and we extensively tested it. 
Experimental results have shown that a relevant energy 
saving (about 70% on average) can be achieved with 
respect to the legacy approach based on the TCP/IP 
protocol stack. Furthermore, these savings are obtained 
without a significant degradation in the QoS perceived by 
the user. We also compared our application-independent 
approach with an application-dependent one (i.e., a 
solution tailored to Web browsing) which performs 
(slightly) better. However, the application-independent 
solution still guarantees significant savings, and fits 
better a general-purpose mobile environment. 
 
1. Introduction 
 

The Internet explosion in the last years has 
demonstrated that accessing information of some interest 
in the same moment they are needed is a valuable 
opportunity. In this context, the concept of mobility adds a 
new dimension: the user is no longer bound to his/her 
desktop personal computer to access Internet services. It 
is not visionary to foresee that in a near future millions of 
users will access Web pages (or read their e-mail) by 
using a PDA, a pager or a cellular phone. However, 
integrating mobile devices in the legacy Internet scenario 
is still a challenging problem for several reasons. Mobile 
devices have less computational, storage, and energetic 
resources with respect to desktop computers. 
Furthermore, they usually connects through wireless links 
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that are characterized by lower bandwidth and greater bit 
error rates with respect to wired links. Using the legacy 
Internet solutions may thus result in a non-optimal usage 
of the system resources. In particular, power saving 
mechanisms need to be introduced to optimise energetic 
resources’ usage. Finally, the provision of added-value 
services (e.g., QoS support, security, etc.), that are still an 
open issue even in the legacy Internet scenario, becomes 
an extremely challenging problem in the Mobile Internet 
where the path between the communication’s endpoints is 
not static but changes in time. Among these problems, the 
scarcity of energy resources is a very limiting factor [8, 
11, 16]. Users are not happy if their mobile computer 
switches off in the middle of a network transaction 
because the battery is exhausted. At the same time, the 
user does not like to recharge the battery too often. This 
paper focuses on strategies to optimise the usage of the 
mobile-computer battery power. 

In principle, energy-related problems in mobile access 
to the Internet could be solved by either increasing the 
battery capacity or reducing the energy consumption. 
Projections on progresses in battery technology show that 
only small improvements in the battery capacity are 
expected in next future [18]. As the battery capacity 
cannot significantly be improved, it is vital that energy 
utilization is managed efficiently by identifying ways to 
use less power preferably with no impact on the 
applications. Strategies for energy saving have been 
investigated at several layers including the physical-layer 
transmissions [20], the operating system (techniques can 
be adopted for hard-disk management [9], CPU 
scheduling [15], screen blanking [15]), the network 
protocols and the application level. At the application 
level some techniques profit of remote tasks’ execution 
[7] (e.g., the mobile computer discards on a fixed host 
some energy-consuming task, taking only the task’s 
results from it); another approach consists in exploiting 
the application semantic [12] (e.g., the application 
compresses the data before exchanging them, or finds 
some tradeoff between performance and power 
consumption). 

In this paper we investigate energy-saving strategies 
implemented in software network protocols. We use an 
application-independent approach in the sense that 
envisaged strategies do not exploit knowledge about the 



above applications. Our solution presents to the above 
layer a standard socket interface, and thus it does not 
require any modification in the applications. In addition, it 
is completely independent from the sub-network 
technology. This work is complementary to a previous 
one [1] in which we developed an application-dependent 
solution to power saving. Specifically, the application-
dependent solution was tailored to Web browsing. The 
two approaches (application dependent and application 
independent) share some basic architectural design 
aspects. Both approaches exploit a network architecture 
based on the Indirect-TCP model [3]. The mobile 
computer connects to a fixed host (e.g., a Web server) 
through a third entity (the Access Point) located at the 
border between the wireless and wired networks (see 
Figure 1). With respect to the traditional TCP/IP 
architecture, the transport connection between the mobile 
host and the fixed host (e.g., a Web server) is split into 
two parts. The first one connects the mobile host with the 
Access Point, while the second connects the Access Point 
and the fixed host. At the Access Point a software agent 
(the Indirect-TCP Daemon) relays data between the two 
connections. To achieve power saving the mobile host 
periodically switches the network interface off. While 
disconnected, data coming from the Internet and destined 
to the mobile host are temporarily stored by the Indirect-
TCP Daemon. To decide when and how long the network 
interface should be off, both the approaches (i.e., the 
independent and the dependent one) dynamically estimate 
the traffic behavior (packet inter-arrival times, idle 
periods, etc.). Switching off the network interface actually 
reduces the energy consumption but can heavily increase 
the User Response Time (URT, i.e., the elapsed time 
between the generation of a request from the browser, for 
the retrieval of a Web page, and the rendering of that page 
at that browser’s site), thus negatively affecting the QoS 
perceived by the user. Thus, a trade off  between these 
two orthogonal  performance figures must be reached. 
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Figure 1. Mobile Internet scenario 

The basic difference among the two approaches resides 
in the algorithms used to decide when, and how long, to 
keep the network interface off. In the application 
dependent approach the semantic of the Web application 
is exploited. Hence, this approach requires a specialized 
protocol for each application to be supported. For this 
reason, hereafter we design and evaluate the independent 
approach that is based on algorithms that do not rely upon 
any a priori application semantic but try to dynamically 

intercept the behavior of the active application(s). This 
approach is much more flexible, and it is therefore 
interesting to compare its performance with those of the 
application dependent approach that constitute a target 
reference. It can be expected that the dependent approach 
provides better power saving characteristics.  

We implemented the application-independent solution 
in a prototype system and extensively tested it. The target 
of our experiments was twofold: (i) to understand how our 
solution performs in an actual Internet scenario, with 
respect to the power savings, and the QoS perceived by 
the user; and (ii) to compare and contrast it with the 
application dependent solution. Our experimental results 
indicated that both the dependent and the independent 
approach guarantee a significant power saving: the 
application dependent solution saved, on average, more 
than 80% of the legacy TCP/IP-architecture energy-
consumption, while, in the same application scenario and 
under similar conditions, the application independent 
solution saved, on average, around 70% of the legacy 
TCP/IP-architecture energy-consumption. Furthermore, 
these reductions in the power consumption were obtained 
without a significant degradation of the QoS. Specifically, 
we measured the increase in the User Response Time 
(URT) caused by our power saving architectures. With 
respect to the legacy TCP/IP-architecture, the application 
dependent approach increased the URT of less than 2 
seconds, while in the application independent approach 
the additional URT was less than 2.5 seconds. 

The paper is organized as follows. Section 2 presents 
and discusses previous works. Section 3 is devoted to the 
definition of our application independent architecture. 
Section 4 reports some experimental results obtained by 
using the prototype implementation. Finally, Section 5 
concludes the paper. 

 
2. Related works  

 
Among the hardware components of a mobile 

computer, the network interface accounts for a significant 
part of the total energy consumption. For devices such as 
laptops, this portion is approximately 10%, while in small 
size mobile computers (PDA, hand-held devices, ...) the 
percentage increases up to 50% [13]1. Thus, in current 
mobile computers it is vital to implement smart power-
saving strategies tailored to the networking subsystem. 

In principle, there are different approaches to limit the 
power consumed by the network interface. Some 
researchers focused on the impact of the transmission 
layer errors on the power consumption. When the bit error 
rate of the wireless channel is too high, a transmitted 
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disk, and have limited computational resources, while the 
network interface must still provide the same functionalities 
as in a laptop or a PC. 



message will be almost certainly corrupted, and this will 
cause a power wastage. In this case, it is wise to defer the 
transmission. Other works suggest to limit the number of 
transmissions, as transmitting consumes more energy than 
receiving. These strategies apply well in a cellular 
environment, due to power consumption characteristics of 
mobile phones. But they do not seem useful in a WLAN 
environment. In this scenario, the network interface 
requires nearly the same power in the transmit, receive, 
and idle states [19, 14]. Thus, the only effective way to 
reduce the power consumption is to switch the network 
interface in a sleep status (or, if possible, switch it off) 
when it is not needed. Furthermore, in WLANs, the 
exchange of messages should be done at the maximum 
rate allowed by the wireless channel. This policy reduces 
the time in which the network interface is on, and 
therefore the power drained from the battery. The 
effectiveness of this policy was pointed out in several 
research works [19, 13, 14]. In the same work it has also 
been  shown that using the legacy TCP/IP architecture (in 
a mobile Internet scenario) causes a very bad energy 
utilization at the mobile host. The TCP bandwidth 
decreases as ( )pRTT1 , where p is the error probability 
along the TCP connection, and RTT is the sum of the 
wireless and wired links’ round trip times [17]. Because 
the wireless link is typically noisy, many retransmissions 
may occur, and hence the RTT value can be high, thus 
significantly decreasing the TCP performance. 
Consequently, the data transfer can be very long, and this 
results in a great power consumption. Several solutions 
have been proposed to handle this problem [3, 4]. A 
possible way is to use the Indirect-TCP model [3]. This 
model was originally proposed to improve the TCP 
performance in a mobile Internet scenario [3], and then it 
has been used to handle power saving problems [13, 14, 
1].  

The approach in [13] implements the power saving 
strategies at the transport layer: switching the network 
interface off after an inactivity timeout expires (from the 
last transmission or reception), and resuming it after a 
sleeping timeout, or when the application running on the 
mobile host generates new data to exchange. The main 
advantage of this approach is the application 
independence. In the solution proposed by [13] both 
inactivity and sleeping timeouts have a fixed value. As the 
traffic characteristics dynamically vary, using fixed 
timeouts may result in poor performance. This can lead 
both to a weak management of the power consumed by 
the network subsystem (e.g., if the sleeping timeouts are 
too small, the network interface is almost always on), 
and/or to significant degradations in the QoS perceived by 
the users (e.g., if the sleeping timeouts are too long, the 
power management subsystem introduces large URTs). 

[14] and [1] design power saving strategies by 
exploiting some knowledge about the behavior of the 

applications. They use a proxy-based approach, and 
implement a power saving subsystem tailored to file 
transfers and to Web service, respectively. This approach 
provides a nearly optimal power management, because 
the wireless link is used only when there is some message 
to exchange and the data can flow at the maximum rate. 
Moreover, the QoS issue is well addressed. The main 
drawback is the dependence from the application 
semantic. Thus, this approach fits better a dedicated 
environment, where the flexibility with respect to the 
applications is not a critical factor. 

 
3. Network architecture and protocols 

 
In a mobile environment, host mobility is typically 

handled at the data-link layer (e.g., in WLANs) or at the 
network layer (e.g., using the Mobile IP). In both cases, it 
is transparent to the transport layer. Thus, the TCP 
protocol and the legacy Internet applications can be used 
even in a mobile environment. Although very simple and 
costless, this solution presents various drawbacks which 
heavily impact the power required by the network 
subsystem of the mobile host.  
1. The TCP bandwidth is proportional to ( )pRTT1 , 

where p is the loss probability on the connection, and 
RTT is the sum of the wired and the wireless round trip 
times [17]. Because the wireless link is typically noisy, 
the RTT can be very high2, and the available bandwidth 
much lower than the wireless-link capacity [14]. A low 
throughput causes long transfer delays and, hence, the 
mobile’s network interface remains unnecessarily on 
for long periods. 

2. Congestions on  the Internet reduce the bandwidth, 
increasing both p and RTT. If the overall throughput is 
less than the rate available on the wireless link, the 
effects are similar to those discussed in the point 1. 

3. The typical Internet applications (e.g., Web, e-mail, 
ftp, ...) do not continuously generate traffic on the 
network: their traffic is characterized by bursts of data 
(e.g., when the user requests a Web page from the 
server) followed by idle times (e.g., when the user 
reads the page that he has just downloaded). During the 
idle times, the mobile’s network interface remains on, 
and this greatly increases the power consumed without 
any reason. 
To overcome these drawbacks, we extended the 

Indirect-TCP model (see Figure 2) used in previous 
power-saving architectures, see [14] and [1]. 

As shown in the figure, the Access Point and the fixed 
host communicate by using the TCP protocol. On the 
other hand, the mobile host and the Access Point 

                                                           
2  Note that the wireless link layer is typically reliable, e.g., 

IEEE 802.11, and this hides the losses due to channel noise to 
the transport protocol. 



communicate through a high-speed low latency WLAN 
(e.g., IEEE 802.11). In this case it is more efficient to use 
a Simplified Transport Protocol  (STP) that implements 
only the necessary functionalities. Specifically, STP 
provides a reliable connectionless type of service 
relieving the mobile host from the TCP computational 
burden.  

IP

STP

application

IP

STP TCP

IP

TCP

application

I-TCP Daemon

Mobile Host Access Point Fixed Host  
Figure 2. The Indirect-TCP model 

t

MH->FH direction
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bursts idle phases

inter-arrival times idle times  
Figure 3. Typical traffic profile, as seen at the 

mobile transport layer 

As noted in point 3 above, mobile hosts do not 
continuously exchange data, but data transfer phases are 
characterized by bursts interleaved by idle phases during 
which data are locally processed. Figure 3 shows a 
snapshot of a typical data exchange3. Our approach is 
based on a dynamic estimate of the duration of idle and 
data transfer phases. Specifically, we measure at run time 
the data inter-arrival times and the length of the idle 
times. From these measures, we predict the future traffic 
behavior, and hence, we decide whether the network 
interface should be switched off (or not), and when to 
resume it4. Our target is to let the network interface on 
only when it is energetically convenient, and to transmit 
data at the maximum rate allowed by the wireless link. 
This strategy approximates the optimal strategy, and 
works well if the estimates are accurate. Therefore, the 
core of our approach are a set of smart algorithms for 
estimating the traffic characteristics (see Section 3.2 for 
details). We integrated our power-strategy in the Indirect-
TCP architecture shown in Figure 2 by  introducing, on 
                                                           
3  When several applications are concurrently running the 

resulting traffic profile is the superposition of the single data 
exchanges. 

4  The network interface has a transient in getting on during 
which it drains power from the battery but is not available for 
exchanging data. Therefore, for small inter-arrival or idle 
times it is energetically convenient to leave the network 
interface on. 

top of the STP protocol, the Power Saving Packet 
Transfer Protocol (PS-PT), see Figure 4. 
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Figure 4. The Power Saving network 

architecture; evidence on added protocols 

When the I-TCP Daemon or the mobile’s applications 
generates a new packet for the mobile host, the PS-PT at 
the Access Point logs the interval elapsed from the arrival 
of the previous packet. These logs are used for estimating 
the traffic inter-arrival times. Specifically, when the 
transmission queues at both side are empty, the PS-PT 
estimates when the next packet will arrive. This value is 
used to decide if the network interface must  be switched 
off. When the network interface is off, the mobile host 
doesn’t know if some packet is waiting at the Access 
Point. Thus, when the estimated inter-arrival (or idle) time 
has elapsed, the mobile host must always poll the Access 
Point for possible new packets, even if its application 
level has not generated new data to be sent.  

We designed algorithms that achieve a tradeoff 
between the “responsiveness” of the protocol (i.e., if the 
mobile host polls the Access Point frequently the 
additional delay introduced by the system is minimum), 
and its power-saving performance (i.e., if the Access 
Point is polled rarely, when the mobile host reconnects it 
is very likely that  new data are available thus avoiding 
power wastage due to useless polls). 

 
3.1. Power Saving Protocols 

 
The core of the PS-PT protocol are the algorithms for 

estimating when the next packet will arrive. We used an 
adaptive approach that records the history of the previous 
inter-arrival and idle times, and relies on this information, 
to estimate the next inter-arrival or idle time (see Section 
3.2 for details). In our prototype implementation we chose 
to run these algorithms at the Access Point in order to 
minimize the computational burden (and hence the energy 
consumption) at the mobile host. 

The PS-PT protocol was implemented as a simple 
master/slave protocol. When there are no more data to be 
exchanged, the Access Point decide whether it is 
convenient to the mobile host to switch the network 
interface off.  If so, it sends a “shutdown” command to the 
mobile host including an indication of the time interval 
during which the mobile host should remain disconnected. 
The mobile host uses this interval to set a timer. Upon the 
timer expiration, the mobile host polls the Access Point 



again.  In the following, we shall describe in detail the 
actions performed at the mobile host, and at the Access 
Point, respectively (the pseudo-code here is optimized for 
clarity rather than for efficiency). 

PS-PT Actions at the Mobile Host 
 

1 OnPacketFromApplications(packet) 
2  timestamp(packet) 
3  if(card is OFF) 
4   stop timer 
5   turn card ON 
6  send packet to Access Point 
  
7 OnPacketFromAccessPoint(packet) 
8  cmd = extract_command(packet) 
9  if(cmd == OFF) 
10   turn card OFF 
11   t_i = extract_interval(packet) 
12   set_timer(t_i) 
  
13 OnTimerExpired() 
14  turn card ON 
15  send ON_signal to Access Point 

Figure 5. PS-PT protocol: actions performed 
at the mobile host. 

Upon reception of a new packet from the above 
application(s), the mobile host bounds a timestamp to the 
packet (this timestamp will be used at the Access Point to 
maintain the history of the arrival times, see line 2). If the 
network interface is OFF, then the timer used to signal 
when the mobile host have to reconnect and poll the 
Access Point is active. The mobile host stops this timer 
(i.e., the last estimate was too large, lines 3-5) and  sends 
the packet to the Access Point (line 6). 

When a new packet from the Access Point arrives, the 
mobile host checks whether it contains a “shutdown” 
command (lines 8-9). In this case the packet also includes 
the time interval during which the network interface 
should remain OFF. The mobile host switches the 
network interface OFF, and sets the timer accordingly 
(lines 10-12). Finally, upon timer expiration, the mobile 
host polls the Access Point (lines 13-15). 

PS-PT Actions at the Access Point 
 

16 OnNewPacket(packet) 
17  if(card is OFF) 
18   timestamp(packet)  
19   buffer(packet) 
20  else 
21   stop timer 
22   send/receive data 
23   t_i = evaluate_next_interarrival() 
24   if(card must get OFF) 
25    send (OFF_CMD, t_i – t_PWON) to   

    Mobile Host 
26   else 
27    set_timer(t_i) 
  
28 OnTimerExpired() 
29  t_i = update_estimate() 
30  if(card must get OFF) 
31   send (OFF_CMD, t_i – t_PWON) to   

    Mobile Host 
32  else 
33   set_timer(t_i) 
34 OnMobileGetsON() 
35  if(there is no data to exchange) 
36   t_i = update_estimate() 
37   if(card must get OFF) 
38    send (OFF_CMD, t_i – t_PWON) to   

    Mobile Host 
39   else 
40    set_timer(t_i) 
41  else 
42   send/receive data 
43   t_i = evaluate_next_interarrival() 
44   if(card must get OFF) 

45 
   send (OFF_CMD, t_i – t_PWON) to   
   Mobile Host 

46   else 
47    set_timer(t_i) 

Figure 6. PS-PT protocol: actions performed 
at the Access  Point. 

At the Access Point side, the system records the state 
of the mobile host’s network interface. Upon reception of 
a new packet (from the Internet) while the mobile host is 
disconnected, the Access Point buffers the packet and 
waits for a poll from the mobile host (lines 17-19). On the 
other hand, if the packet is received while the mobile host 
is connected, the Access Point relays the packet to the 
mobile host (if it was received from the Internet, line 22), 
estimates the next packet arrival time, and decides 
whether its is convenient to shut down the network 
interface (lines 23-27). It is worthwhile to recall that the 
network interface has a transient period t_PWON in 
getting on during which it is not able to handle data. This 
implies that the mobile host must be ON t_PWON units 
of time before the estimated arrival (line 25). If the 
Access Point estimates that it is convenient for the mobile 
host to disconnect, it sends a OFF command to the mobile 
host together with the time interval during which it must 
remain disconnected (lines 24-25). Otherwise, it sets a 
timer with the estimated arrival time (lines 26-27). In the 
latter case the mobile host remains connected. Therefore, 
if a new packet arrives, the network interface is ON and, 
hence, the system must stop the timer (line 21).  

When the mobile host polls the Access Point, there 
might be data to exchange or not. In the former case, the 
Access Point uses the new data to generate a new estimate 
and performs the same actions described above (lines 41-
47). In the latter case, the last estimate provided to the 
mobile host was too short. Thus, the Access Point updates 
this estimate and decides what the mobile host must do 
(lines 35-40). The same situation occurs when the timer 
expires: the last estimate was too short, but it didn’t cause 
the switching off of the network interface. The mobile 
host is still connected and the Access Point has to decide 
whether it is convenient that the mobile host  disconnects 
or not  (lines 28-33). 

 



3.2. Algorithm for packet arrivals estimates 
 
As clearly appears from the previous section, our 

solution relies upon the prediction of the traffic behavior. 
Therefore, we need an algorithm that provides accurate 
estimates of packet inter-arrivals and idle times, and is 
able to adapt quickly to changes in the traffic conditions. 
The Variable-Share Update algorithm [10] fits these 
requirements. This algorithm has been proposed as a 
dynamic algorithm to estimate a generic variable spanning 
a given range, and is not bound to a specific problem. 

Let I be the range of possible values for a variable y 
that we want to estimate. To predict the value of y, the 
Variable-Share Update algorithm relies upon a set of 
“experts”. Each expert xi provides a (fixed) value within 
the range I, i.e., a value that  y can assume. The number of 
experts to be used, as well as their distribution among the 
range I, are input data for the algorithm. Each expert xi is 
associated with a weight wi, a real number that measures 
the dependability of the expert (i.e., how accurately the 
expert has estimated y in the past). At a given time instant, 
an estimate of y is achieved as the weighted sum of all 
experts, using the current wi value as the weight (i.e., 
reliability) for the expert xi. Once the actual value of the 
variable y is known, it is compared with the estimates 
provided by the experts, to recalculate and update the 
weight associated with each expert. 

The algorithm is summarized in Figure 7. As shown in 
the figure, the core of the algorithm is the weights 
updating algorithm. Updates occur every time a new 
actual value of the variable y becomes available. First, an 
error function L is evaluated for each expert: this function 
measures the deviation of the (prediction provided by the) 
expert from the actual variable’s value. Then, the 
Variable-Share Update is executed, as follows:  
1. each expert loses a portion of its weight, according to 

the deviation from the actual value; the weight wi 
becomes iw′  (if L=0 the weight is not changed); 

2. each expert shares a portion of its weight, according 
to its error function: a pool is created by using all the 
shares (if L=0 the expert doesn’t share anything); 

3. for each expert, the new weight is calculated as the 
sum of two components: a portion of the weight 
evaluated in 1, and a portion of the pool evaluated in 
2. Both components depend on the error function 
(e.g., if L=0, the new weight is the old one, plus a 
fraction of the pool). 

Figure 7. Variable-Share Update algorithm 

The Variable-Share Update algorithm reduces the 
weights of those experts that provides bad  predictions, 
and increases the weights of the experts that provide the 
more accurate predictions. The speed in 
increasing/decreasing weights is determined by two 
algorithm parameters: α and η. 

This algorithm has been proposed to implement a spin-
down technique in hard disks power management [9]. In 
that context, the update policy guarantees a quick 
adaptation to changes of the variable’s values. 

In our problem we have to estimate two variables – 
inter-arrival times and idle times – that span different 
ranges. Inter-arrival times are time intervals between two 
consecutive packets within a burst, while idle times are 
time intervals between two consecutive bursts of packets. 
Typically, inter-arrival times are smaller than idle times. 
We assumed 1 second as the largest value for inter-arrival 
times: this assumption relies on previous works on Web 
traffic characterization [6, 2]. Furthermore, we used this 
value to discriminate between inter-arrival times, and idle 
times, respectively. Accordingly, we used two different 
sets of experts for the two quantities, and we considered 
two non-overlapping intervals for experts values: the first 
interval ranges from 0 to 1 second, the second one from 1 
to 60 seconds. 

Choosing 60 seconds as the largest value for an 
estimated idle time is a tradeoff between power saving 
and QoS requirements. When an idle phase occurs, the 
mobile host polls the Access Point with a maximum 
period of 60 seconds (see Section 3, lines 35-40). Thus, 
the maximum additional delay introduced by the 
algorithm to the first packet of the new burst is 60 
seconds, which is an acceptable upper bound for 
applications without real-time requirements.  

We used 20 experts for each set. The experts’ values 
are uniformly distributed over the corresponding intervals 
(experts of the first set are placed every 50 msec, while 
experts of the second set are spaced by approximately 3 
seconds each other). 

The update policy shown in Figure 7 needs two 
additional parameters, α and η. According to [9]5, we 
                                                           
5  [9] compares several values for α and η assuming a uniform 

distribution of experts. The experimental results indicate 
α=0.08 and η=4 as the best choice. 
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used α=0.08 and η=4. Finally, the algorithm requires the 
definition of a loss function L. This function provides a 
measure of the deviation of each expert from the actual 
value of the variable, and its values must lie in [0,1], see 
[10]. In our implementation we used 

( ) yxyxyxL iiii −−= max, as the error function. 

The last steps to build our system requires (i) to decide 
how to manage an estimate that happens to be too short, 
and (ii) to decide when to use the first set of experts, and 
when the second one. 

Let us consider a too short inter-arrival time estimate 

iŷ . When the mobile host polls the Access Point the 
system must update this estimate (see lines  35-36 of 
Section 3). As all the experts below iŷ  have clearly 
provided a wrong prediction, we update the estimate by 
taking into considering only the other experts in the set. 
Specifically, the new estimate iy′ˆ is the weighted sum of 

all experts that have an associated value greater than iŷ . 

In addition, as iŷ  seconds have already elapsed since the 
previous arrival, the next arrival is expected in ii yy ˆˆ −′  
seconds. The PS-PT protocol uses this value ( ii yy ˆˆ −′ ) to 
decide whether it is convenient (or not) to the mobile host 
to switch the network interface off (lines 37-40). The 
system reuses the same procedure every time it detects 
that the previous estimate was too short, until the inter-
arrival time becomes bigger than the maximum value for 
that set of experts (1 second). At this point in time, it is 
assumed that an idle phase has begun, and thus, the 
second set of experts is used to estimate the length of the 
idle phase. If even the second set of the experts provide a 
too short estimate, a similar updating procedure is used: 
the estimate is updated by considering only experts that 
provided predictions greater than wrong estimate until the 
idle phase reaches the maximum value, i.e., 60 seconds. 
From this time instant onward, the mobile host polls the 
Access Point periodically every minute, until some data 
becomes available. The arrival of a new packet is 
interpreted as the beginning of a new burst, and thus, the 
algorithm switches again to the first set of experts. 

Our updating policy guarantees a smooth increase 
towards greater estimates. Thus, it minimizes the 
probability of interpreting an actual inter-arrival time as 
an idle phase, and so it introduces small delays to the 
packet transfers (see the experimental results in Section 
4). 

 
4. Experimental results 

 
The objective of the proposed solution is twofold: it 

should allow significant power savings with respect to the 
legacy TCP/IP approach by minimizing, at the same time, 
the degradation of the QoS perceived by the users. To 

evaluate our architecture in an actual network scenario, 
we used the Web as the testing application. The Web is 
today one of the most popular Internet application, and it 
is the candidate to become the killer application even for 
mobile Internet. Moreover, Web users are sensitive to 
delays. Hence, it is important to achieve significant power 
savings, while maintaining acceptable QoS levels, i.e., to 
minimize the URT increase.  

To evaluate the performance of our architecture we 
defined two indices: a Power Saving Index and a QoS 
index. The Power Saving Index, I_ps, is defined as: 

rearchitectuTCP in nconsumptio int. net.

rearchitectu our in nconsumptio int. net.
psI =_  (1)

I_ps measures the percentage of power consumed by 
our architecture with respect to the legacy one, and, 
hence, provides an indication of the power saving 
achieved by using our architecture. The QoS index, 
named the Page Delay Index (I_pd), is defined as: 

I_pd = (URT in our arch.) – (URT in TCP arch.) (2)

I_pd measures the additional URT introduced by our 
architecture with respect to the legacy architecture, and 
hence provides an indication of the URT increase to pay 
to achieve power savings.   

In our experiments we used SURGE as the application 
layer at the client side [5]. SURGE is a Web traffic 
simulator, designed by Barford and Crovella, that models 
the statistical properties of the traffic generated by a 
realistic Web user browsing the Internet. Furthermore, at 
the server side, we used a real Web server. Specifically, in 
our experiments the Web server was located at  the 
University of Texas at Arlington, while the client was 
located at the Department of Information Engineering of 
the University of Pisa (Italy). Hence, our client-server 
path crossed (congested) intercontinental links, and this 
allowed us to test our architecture in a congested 
situation. 

To significantly evaluate our architecture, we 
performed a large set of experiments. Each experiment 
included 150 file-transfer operations from the Web server 
to the client6 (an experiment stopped when the whole page 
“in flight” arrived at the client). In each experiment, the 
same set of files were requested in parallel both in our 
architecture, and in the legacy one. This guarantees the 
same network conditions in both cases. We ran a set of 
experiments, where each experiment spanned an entire 
working day. To increase results’ reliability, we replicated 
the experiments in several working days. 

Finally, we compared the results obtained with those 
related to an application-dependent solution developed 

                                                           
6  Transferring 150 files allowed a significant sampling from the 

Web file dimensions distribution. 



[1]. In [1] we performed an identical set of experiments, 
evaluating the same indices, under similar network 
conditions. For the sake of brevity, below we only present 
the results from a particular day. However, the results 
obtained in different days exhibit the same statistical 
behavior. 

 
4.1. Power Saving Analysis 

 
As mentioned in Section 2, the energy drained from the 
battery by the wireless network interface of a mobile host 
is almost the same irrespective of its status (receiving, 
transmitting or idle). Thus, the energy consumption is 
well approximated by the time the network interface 
remains on. Accordingly, to evaluate the I_ps index (see  
(2)), we measured this time both in our architecture and in 
the legacy one. 
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Figure 8. Energy consumption as a function of 

time. 

For each experiment, Figure 8 reports the total time 
during which the network interface remains on in the 
legacy architecture (middle curve) and in our architecture 
(bottom curve), respectively. Figure 8 also includes the 
service rate (top curve) defined as the ratio between the 
number of bytes transferred on the wired network and the 
time needed to transfer them. Therefore, the service rate  
provides a measure of the Web service responsiveness to 
client’s requests. The service rate allows us to understand 
how the energy consumption depends on the environment 
conditions. 

From Figure 8 it appears that the power consumption 
in our architecture is almost independent from the service 
rate. This is a joint effect of: (i) the splitting of the TCP 
connection in two parts, and (ii) the use of our power-
saving policies. Specifically, our power-saving policies 
allow the network interface to remain on only when there 
are data to exchange on the wireless link. Therefore, the 
energy consumption does not depend on the time needed 
to complete the whole transfer between the remote and the 
mobile host (this time highly varies with the network 
conditions). 
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Figure 9. I_ps as a function of time 

Figure 9 shows the I_ps index as a function of time 
(bottom curve), its average value on the entire day 
(straight curve), and the service rate (top curve). These 
curves confirms that our architecture introduces a 
significant power savings: the energy consumption is 
always less than 45% of the one in the legacy architecture, 
its average value is 32%, with values less than 15%. This 
means that we can save always more than 55%, on 
average 68%, and with peaks over 85%. 

When using an application-dependent approach [1], we 
obtained a slightly better performance: about 80% saving 
on average, with peaks over 90%. This difference can be 
easily explained as the application-dependent approach 
exploits informations about the traffic characteristics, and 
the application behavior. On the other hand, the 
application-independent approach cannot rely on such 
informations. 

 
4.2. QoS Analysis 

 
Figure 10 shows the additional delay introduced in our 

architecture to the transfer delay of a single file. 
Specifically, for each file we measured the additional 
delay, then we averaged the values on each experiment of 
a day, and we plotted these average values (bottom 
curve), together with the average value on the entire day 
(straight curve). For convenience, we also plotted the 
service rate (top curve). 
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Figure 10. Average additional file delays as a 

function of time 



From Figure 10 it appears that the average additional 
delay introduced for a single file is no more than 1 
second. Furthermore, the average value on all the 
experiments is below 0.2 seconds.  

The file-delay index does not characterize the users’ 
QoS. A user does not perceive the delays related to single 
files but his/her QoS depends on the URT related to the 
whole Web page (a page usually contains several files). 
Figure 11 allows us to evaluate the system performance 
from this point of view. In each experiment we measured 
the average additional URT introduced to the 
downloading of  Web pages (average I_pd, bottom curve). 
We also considered the average additional URT over the 
entire day (straight curve), and the service rate (top 
curve). 
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Figure 11. Average I_pd as a function of time 

It appears that the additional URT, averaged over the 
entire day, is slightly higher than 0.2 seconds, i.e., it is 
only slightly higher than the average additional delay of 
single files. This means that the delays added to single 
files of a Web page do not accumulate in the URT of the 
whole Web page. Moreover, the average I_pd in each 
experiment is no more than 1 second. So, the user doesn’t 
perceive a significant degradation in the QoS. 
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Figure 12. I_pd: confidence interval of the 

average and 90th percentile (conf. level 95%) 

Finally, we examined the upper bounds of the 
additional URTs. For each experiment, we evaluated the 
confidence interval of the average and 90th percentile of 
I_pd (confidence level 95%). In Figure 12 we plotted the 
average I_pd, with the related confidence interval (bottom 
curve), the average additional URT over the entire day 

(straight curve), and the 90th percentile measured in each 
experiment (top curve). 

From Figure 12 it appears that the average I_pd values 
are small (the values are around 0.5 seconds). 
Furthermore, the 90th percentile is typically below 1.5 
seconds, and always below 2.5 seconds. Therefore, we 
can say that our system, with a probability of 90%, does 
not add more than 2.5 seconds, and therefor, the user 
doesn’t perceive almost any degradation in the QoS. 

The QoS performances related to the application-
dependent system are slightly worse (see [1 for details). In 
that case we obtained similar values with respect to the 
average I_pd, its confidence interval, and its overall 
average over an entire day. On the other hand, the 
application-dependent approach exhibited higher peak 
values (up to 5 seconds) with respect to the 90th percentile 
of the I_pd. This can be explained by the aggressive 
power-saving policy adopted by the application-
dependent approach: the mobile host’s network interface 
remains off for more time (and, thus, the energy 
consumption is higher), but this causes an increase in the 
upper bound of the additional delays. However, on the 
average, both approaches are equivalent in terms of the 
QoS perceived by the user. Specifically, with respect to 
the Web application taken into consideration in both 
cases, it can be expected that the user does not experience 
a significant degradation in the QoS. 

 
5. Conclusions 

 
In this work we have designed and evaluated a novel 

network architecture for reducing the power consumption 
of mobile hosts in a mobile Internet scenario, while 
maintaining almost the same QoS level. Our architecture 
follows an application-independent approach as it does 
not make any assumption about the traffic profile 
generated by the applications. Therefore, it fits any 
Internet application, and can be used concurrently by 
different applications. Furthermore, it is totally 
transparent to the upper layer as it presents a standard 
socket interface. Hence, it can be used without any 
modifications in the code of legacy Internet applications. 

Our architecture exploits the Indirect-TCP model: it 
splits the transport connection between the mobile and the 
fixed host. This allows an improvement in the bandwidth 
available at the transport layer and, consequently, reduces 
the energy required to transfer a given amount of data.  

The core of our approach, is the Variable-Share Update 
algorithm that predicts packet inter-arrival times and idle 
period lengths, and manages the network interface of the 
mobile host accordingly. Specifically, the mobile host 
switches off its wireless network interface when there are 
no data to be exchanged over the wireless link. This 
allows to consume the minimum amount of power for 
each data communications. 



We have implemented a prototype of our architecture 
and we have extensively evaluated it. We used in  the 
evaluation a Web as application as: (i) the Web is the 
most popular Internet application, and (ii) Web users are 
typically delays sensitive. Furthermore, this choice has 
allowed us to compare the results obtained by using our 
application-independent approach with those related to 
the application-dependent approach developed in a 
previous paper. 

The experimental results have shown that the 
application-independent architecture is able to save, on 
average, the 68% of the energy consumed by the legacy 
TCP/IP architecture, with peaks over 85%. Furthermore, 
this energy saving is obtained without a severe 
degradation in the QoS perceived by the users. The 
additional URT introduced for transferring a Web page is 
no more than 2.5 seconds. The comparison between the 
application-independent approach, and the application-
independent one, has shown that exploiting some 
knowledge about the application behavior results in a 
slightly better power saving, but may introduce – in the 
worst case – larger additional delays. However, in the 
average case, both approaches have exhibited similar 
performance in terms of QoS provided to Web users. By 
considering the high flexibility of the application-
independent architecture, these results seem to indicate 
that this approach is a very promising one for power 
saving. Experiments with different type of applications 
(e.g., e-mail), and several applications concurrently active 
on the mobile host, are however required to further 
validate its potentialities.  
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