
Balancing Energy Saving and QoS in the Mobile Internet:
An Application-Independent Approach‡

G. Anastasi•, M. Conti*, E. Gregori*, A. Passarella•

•Univ. of Pisa, Dept. of Information Engineering
Via Diotisalvi 2 - 56122 Pisa, Italy

{g.anastasi, a.passarella}@iet.unipi.it,

*CNR-IIT Institute
 Via G. Moruzzi, 1 - 56124 PISA, Italy

{marco.conti, enrico.gregori}@iit.cnr.it

Abstract

The scarcity of energetic resources in mobile

computers is a very limiting factor. In this paper we
propose a solution that tries to balance energy
consumption and QoS requirements. Our solution follows
an application-independent approach and, therefore, it
can be used concurrently, and without modifications, by
any network application. Furthermore, our solution is
independent from the sub-network technology. We
implemented this solution and we extensively tested it.
Experimental results have shown that a relevant energy
saving (about 70% on average) can be achieved with
respect to the legacy approach based on the TCP/IP
protocol stack. Furthermore, these savings are obtained
without a significant degradation in the QoS perceived by
the user. We also compared our application-independent
approach with an application-dependent one (i.e., a
solution tailored to Web browsing) which performs
(slightly) better. However, the application-independent
solution still guarantees significant savings, and fits
better a general-purpose mobile environment.

1. Introduction

The Internet explosion in the last years has
demonstrated that accessing information of some interest
in the same moment they are needed is a valuable
opportunity. In this context, the concept of mobility adds a
new dimension: the user is no longer bound to his/her
desktop personal computer to access Internet services. It
is not visionary to foresee that in a near future millions of
users will access Web pages (or read their e-mail) by
using a PDA, a pager or a cellular phone. However,
integrating mobile devices in the legacy Internet scenario
is still a challenging problem for several reasons. Mobile
devices have less computational, storage, and energetic
resources with respect to desktop computers.
Furthermore, they usually connects through wireless links

 ‡ The work described in this paper was carried out under the

financial support of the Italian Ministry for Education and
Scientific Research (MIUR) in the framework of the Projects
"Web Systems with QoS Guarantees" and "Internet:
Efficiency, Integration and Security".

that are characterized by lower bandwidth and greater bit
error rates with respect to wired links. Using the legacy
Internet solutions may thus result in a non-optimal usage
of the system resources. In particular, power saving
mechanisms need to be introduced to optimise energetic
resources’ usage. Finally, the provision of added-value
services (e.g., QoS support, security, etc.), that are still an
open issue even in the legacy Internet scenario, becomes
an extremely challenging problem in the Mobile Internet
where the path between the communication’s endpoints is
not static but changes in time. Among these problems, the
scarcity of energy resources is a very limiting factor [8,
11, 16]. Users are not happy if their mobile computer
switches off in the middle of a network transaction
because the battery is exhausted. At the same time, the
user does not like to recharge the battery too often. This
paper focuses on strategies to optimise the usage of the
mobile-computer battery power.

In principle, energy-related problems in mobile access
to the Internet could be solved by either increasing the
battery capacity or reducing the energy consumption.
Projections on progresses in battery technology show that
only small improvements in the battery capacity are
expected in next future [18]. As the battery capacity
cannot significantly be improved, it is vital that energy
utilization is managed efficiently by identifying ways to
use less power preferably with no impact on the
applications. Strategies for energy saving have been
investigated at several layers including the physical-layer
transmissions [20], the operating system (techniques can
be adopted for hard-disk management [9], CPU
scheduling [15], screen blanking [15]), the network
protocols and the application level. At the application
level some techniques profit of remote tasks’ execution
[7] (e.g., the mobile computer discards on a fixed host
some energy-consuming task, taking only the task’s
results from it); another approach consists in exploiting
the application semantic [12] (e.g., the application
compresses the data before exchanging them, or finds
some tradeoff between performance and power
consumption).

In this paper we investigate energy-saving strategies
implemented in software network protocols. We use an
application-independent approach in the sense that
envisaged strategies do not exploit knowledge about the

above applications. Our solution presents to the above
layer a standard socket interface, and thus it does not
require any modification in the applications. In addition, it
is completely independent from the sub-network
technology. This work is complementary to a previous
one [1] in which we developed an application-dependent
solution to power saving. Specifically, the application-
dependent solution was tailored to Web browsing. The
two approaches (application dependent and application
independent) share some basic architectural design
aspects. Both approaches exploit a network architecture
based on the Indirect-TCP model [3]. The mobile
computer connects to a fixed host (e.g., a Web server)
through a third entity (the Access Point) located at the
border between the wireless and wired networks (see
Figure 1). With respect to the traditional TCP/IP
architecture, the transport connection between the mobile
host and the fixed host (e.g., a Web server) is split into
two parts. The first one connects the mobile host with the
Access Point, while the second connects the Access Point
and the fixed host. At the Access Point a software agent
(the Indirect-TCP Daemon) relays data between the two
connections. To achieve power saving the mobile host
periodically switches the network interface off. While
disconnected, data coming from the Internet and destined
to the mobile host are temporarily stored by the Indirect-
TCP Daemon. To decide when and how long the network
interface should be off, both the approaches (i.e., the
independent and the dependent one) dynamically estimate
the traffic behavior (packet inter-arrival times, idle
periods, etc.). Switching off the network interface actually
reduces the energy consumption but can heavily increase
the User Response Time (URT, i.e., the elapsed time
between the generation of a request from the browser, for
the retrieval of a Web page, and the rendering of that page
at that browser’s site), thus negatively affecting the QoS
perceived by the user. Thus, a trade off between these
two orthogonal performance figures must be reached.

Mobile
Host Access

Point

Wireless
Link

Fixed
Host

Wired
Link

Wired
Link

Internet

Figure 1. Mobile Internet scenario

The basic difference among the two approaches resides
in the algorithms used to decide when, and how long, to
keep the network interface off. In the application
dependent approach the semantic of the Web application
is exploited. Hence, this approach requires a specialized
protocol for each application to be supported. For this
reason, hereafter we design and evaluate the independent
approach that is based on algorithms that do not rely upon
any a priori application semantic but try to dynamically

intercept the behavior of the active application(s). This
approach is much more flexible, and it is therefore
interesting to compare its performance with those of the
application dependent approach that constitute a target
reference. It can be expected that the dependent approach
provides better power saving characteristics.

We implemented the application-independent solution
in a prototype system and extensively tested it. The target
of our experiments was twofold: (i) to understand how our
solution performs in an actual Internet scenario, with
respect to the power savings, and the QoS perceived by
the user; and (ii) to compare and contrast it with the
application dependent solution. Our experimental results
indicated that both the dependent and the independent
approach guarantee a significant power saving: the
application dependent solution saved, on average, more
than 80% of the legacy TCP/IP-architecture energy-
consumption, while, in the same application scenario and
under similar conditions, the application independent
solution saved, on average, around 70% of the legacy
TCP/IP-architecture energy-consumption. Furthermore,
these reductions in the power consumption were obtained
without a significant degradation of the QoS. Specifically,
we measured the increase in the User Response Time
(URT) caused by our power saving architectures. With
respect to the legacy TCP/IP-architecture, the application
dependent approach increased the URT of less than 2
seconds, while in the application independent approach
the additional URT was less than 2.5 seconds.

The paper is organized as follows. Section 2 presents
and discusses previous works. Section 3 is devoted to the
definition of our application independent architecture.
Section 4 reports some experimental results obtained by
using the prototype implementation. Finally, Section 5
concludes the paper.

2. Related works

Among the hardware components of a mobile

computer, the network interface accounts for a significant
part of the total energy consumption. For devices such as
laptops, this portion is approximately 10%, while in small
size mobile computers (PDA, hand-held devices, ...) the
percentage increases up to 50% [13]1. Thus, in current
mobile computers it is vital to implement smart power-
saving strategies tailored to the networking subsystem.

In principle, there are different approaches to limit the
power consumed by the network interface. Some
researchers focused on the impact of the transmission
layer errors on the power consumption. When the bit error
rate of the wireless channel is too high, a transmitted

1 Recall that small mobile computers frequently have no hard-

disk, and have limited computational resources, while the
network interface must still provide the same functionalities
as in a laptop or a PC.

message will be almost certainly corrupted, and this will
cause a power wastage. In this case, it is wise to defer the
transmission. Other works suggest to limit the number of
transmissions, as transmitting consumes more energy than
receiving. These strategies apply well in a cellular
environment, due to power consumption characteristics of
mobile phones. But they do not seem useful in a WLAN
environment. In this scenario, the network interface
requires nearly the same power in the transmit, receive,
and idle states [19, 14]. Thus, the only effective way to
reduce the power consumption is to switch the network
interface in a sleep status (or, if possible, switch it off)
when it is not needed. Furthermore, in WLANs, the
exchange of messages should be done at the maximum
rate allowed by the wireless channel. This policy reduces
the time in which the network interface is on, and
therefore the power drained from the battery. The
effectiveness of this policy was pointed out in several
research works [19, 13, 14]. In the same work it has also
been shown that using the legacy TCP/IP architecture (in
a mobile Internet scenario) causes a very bad energy
utilization at the mobile host. The TCP bandwidth
decreases as ()pRTT1 , where p is the error probability
along the TCP connection, and RTT is the sum of the
wireless and wired links’ round trip times [17]. Because
the wireless link is typically noisy, many retransmissions
may occur, and hence the RTT value can be high, thus
significantly decreasing the TCP performance.
Consequently, the data transfer can be very long, and this
results in a great power consumption. Several solutions
have been proposed to handle this problem [3, 4]. A
possible way is to use the Indirect-TCP model [3]. This
model was originally proposed to improve the TCP
performance in a mobile Internet scenario [3], and then it
has been used to handle power saving problems [13, 14,
1].

The approach in [13] implements the power saving
strategies at the transport layer: switching the network
interface off after an inactivity timeout expires (from the
last transmission or reception), and resuming it after a
sleeping timeout, or when the application running on the
mobile host generates new data to exchange. The main
advantage of this approach is the application
independence. In the solution proposed by [13] both
inactivity and sleeping timeouts have a fixed value. As the
traffic characteristics dynamically vary, using fixed
timeouts may result in poor performance. This can lead
both to a weak management of the power consumed by
the network subsystem (e.g., if the sleeping timeouts are
too small, the network interface is almost always on),
and/or to significant degradations in the QoS perceived by
the users (e.g., if the sleeping timeouts are too long, the
power management subsystem introduces large URTs).

[14] and [1] design power saving strategies by
exploiting some knowledge about the behavior of the

applications. They use a proxy-based approach, and
implement a power saving subsystem tailored to file
transfers and to Web service, respectively. This approach
provides a nearly optimal power management, because
the wireless link is used only when there is some message
to exchange and the data can flow at the maximum rate.
Moreover, the QoS issue is well addressed. The main
drawback is the dependence from the application
semantic. Thus, this approach fits better a dedicated
environment, where the flexibility with respect to the
applications is not a critical factor.

3. Network architecture and protocols

In a mobile environment, host mobility is typically

handled at the data-link layer (e.g., in WLANs) or at the
network layer (e.g., using the Mobile IP). In both cases, it
is transparent to the transport layer. Thus, the TCP
protocol and the legacy Internet applications can be used
even in a mobile environment. Although very simple and
costless, this solution presents various drawbacks which
heavily impact the power required by the network
subsystem of the mobile host.
1. The TCP bandwidth is proportional to ()pRTT1 ,

where p is the loss probability on the connection, and
RTT is the sum of the wired and the wireless round trip
times [17]. Because the wireless link is typically noisy,
the RTT can be very high2, and the available bandwidth
much lower than the wireless-link capacity [14]. A low
throughput causes long transfer delays and, hence, the
mobile’s network interface remains unnecessarily on
for long periods.

2. Congestions on the Internet reduce the bandwidth,
increasing both p and RTT. If the overall throughput is
less than the rate available on the wireless link, the
effects are similar to those discussed in the point 1.

3. The typical Internet applications (e.g., Web, e-mail,
ftp, ...) do not continuously generate traffic on the
network: their traffic is characterized by bursts of data
(e.g., when the user requests a Web page from the
server) followed by idle times (e.g., when the user
reads the page that he has just downloaded). During the
idle times, the mobile’s network interface remains on,
and this greatly increases the power consumed without
any reason.
To overcome these drawbacks, we extended the

Indirect-TCP model (see Figure 2) used in previous
power-saving architectures, see [14] and [1].

As shown in the figure, the Access Point and the fixed
host communicate by using the TCP protocol. On the
other hand, the mobile host and the Access Point

2 Note that the wireless link layer is typically reliable, e.g.,

IEEE 802.11, and this hides the losses due to channel noise to
the transport protocol.

communicate through a high-speed low latency WLAN
(e.g., IEEE 802.11). In this case it is more efficient to use
a Simplified Transport Protocol (STP) that implements
only the necessary functionalities. Specifically, STP
provides a reliable connectionless type of service
relieving the mobile host from the TCP computational
burden.

IP

STP

application

IP

STP TCP

IP

TCP

application

I-TCP Daemon

Mobile Host Access Point Fixed Host
Figure 2. The Indirect-TCP model

t

MH->FH direction
FH->MH direction

bursts idle phases

inter-arrival times idle times
Figure 3. Typical traffic profile, as seen at the

mobile transport layer

As noted in point 3 above, mobile hosts do not
continuously exchange data, but data transfer phases are
characterized by bursts interleaved by idle phases during
which data are locally processed. Figure 3 shows a
snapshot of a typical data exchange3. Our approach is
based on a dynamic estimate of the duration of idle and
data transfer phases. Specifically, we measure at run time
the data inter-arrival times and the length of the idle
times. From these measures, we predict the future traffic
behavior, and hence, we decide whether the network
interface should be switched off (or not), and when to
resume it4. Our target is to let the network interface on
only when it is energetically convenient, and to transmit
data at the maximum rate allowed by the wireless link.
This strategy approximates the optimal strategy, and
works well if the estimates are accurate. Therefore, the
core of our approach are a set of smart algorithms for
estimating the traffic characteristics (see Section 3.2 for
details). We integrated our power-strategy in the Indirect-
TCP architecture shown in Figure 2 by introducing, on

3 When several applications are concurrently running the

resulting traffic profile is the superposition of the single data
exchanges.

4 The network interface has a transient in getting on during
which it drains power from the battery but is not available for
exchanging data. Therefore, for small inter-arrival or idle
times it is energetically convenient to leave the network
interface on.

top of the STP protocol, the Power Saving Packet
Transfer Protocol (PS-PT), see Figure 4.

IP

STP

PS-PT

IP

STP
TCP

IP

applicationI-TCP Daemon

Mobile Host Access Point Fixed Host

PS-PT
TCP

application

Figure 4. The Power Saving network

architecture; evidence on added protocols

When the I-TCP Daemon or the mobile’s applications
generates a new packet for the mobile host, the PS-PT at
the Access Point logs the interval elapsed from the arrival
of the previous packet. These logs are used for estimating
the traffic inter-arrival times. Specifically, when the
transmission queues at both side are empty, the PS-PT
estimates when the next packet will arrive. This value is
used to decide if the network interface must be switched
off. When the network interface is off, the mobile host
doesn’t know if some packet is waiting at the Access
Point. Thus, when the estimated inter-arrival (or idle) time
has elapsed, the mobile host must always poll the Access
Point for possible new packets, even if its application
level has not generated new data to be sent.

We designed algorithms that achieve a tradeoff
between the “responsiveness” of the protocol (i.e., if the
mobile host polls the Access Point frequently the
additional delay introduced by the system is minimum),
and its power-saving performance (i.e., if the Access
Point is polled rarely, when the mobile host reconnects it
is very likely that new data are available thus avoiding
power wastage due to useless polls).

3.1. Power Saving Protocols

The core of the PS-PT protocol are the algorithms for

estimating when the next packet will arrive. We used an
adaptive approach that records the history of the previous
inter-arrival and idle times, and relies on this information,
to estimate the next inter-arrival or idle time (see Section
3.2 for details). In our prototype implementation we chose
to run these algorithms at the Access Point in order to
minimize the computational burden (and hence the energy
consumption) at the mobile host.

The PS-PT protocol was implemented as a simple
master/slave protocol. When there are no more data to be
exchanged, the Access Point decide whether it is
convenient to the mobile host to switch the network
interface off. If so, it sends a “shutdown” command to the
mobile host including an indication of the time interval
during which the mobile host should remain disconnected.
The mobile host uses this interval to set a timer. Upon the
timer expiration, the mobile host polls the Access Point

again. In the following, we shall describe in detail the
actions performed at the mobile host, and at the Access
Point, respectively (the pseudo-code here is optimized for
clarity rather than for efficiency).

PS-PT Actions at the Mobile Host

1 OnPacketFromApplications(packet)
2 timestamp(packet)
3 if(card is OFF)
4 stop timer
5 turn card ON
6 send packet to Access Point

7 OnPacketFromAccessPoint(packet)
8 cmd = extract_command(packet)
9 if(cmd == OFF)
10 turn card OFF
11 t_i = extract_interval(packet)
12 set_timer(t_i)

13 OnTimerExpired()
14 turn card ON
15 send ON_signal to Access Point

Figure 5. PS-PT protocol: actions performed
at the mobile host.

Upon reception of a new packet from the above
application(s), the mobile host bounds a timestamp to the
packet (this timestamp will be used at the Access Point to
maintain the history of the arrival times, see line 2). If the
network interface is OFF, then the timer used to signal
when the mobile host have to reconnect and poll the
Access Point is active. The mobile host stops this timer
(i.e., the last estimate was too large, lines 3-5) and sends
the packet to the Access Point (line 6).

When a new packet from the Access Point arrives, the
mobile host checks whether it contains a “shutdown”
command (lines 8-9). In this case the packet also includes
the time interval during which the network interface
should remain OFF. The mobile host switches the
network interface OFF, and sets the timer accordingly
(lines 10-12). Finally, upon timer expiration, the mobile
host polls the Access Point (lines 13-15).

PS-PT Actions at the Access Point

16 OnNewPacket(packet)
17 if(card is OFF)
18 timestamp(packet)
19 buffer(packet)
20 else
21 stop timer
22 send/receive data
23 t_i = evaluate_next_interarrival()
24 if(card must get OFF)
25 send (OFF_CMD, t_i – t_PWON) to

 Mobile Host
26 else
27 set_timer(t_i)

28 OnTimerExpired()
29 t_i = update_estimate()
30 if(card must get OFF)
31 send (OFF_CMD, t_i – t_PWON) to

 Mobile Host
32 else
33 set_timer(t_i)
34 OnMobileGetsON()
35 if(there is no data to exchange)
36 t_i = update_estimate()
37 if(card must get OFF)
38 send (OFF_CMD, t_i – t_PWON) to

 Mobile Host
39 else
40 set_timer(t_i)
41 else
42 send/receive data
43 t_i = evaluate_next_interarrival()
44 if(card must get OFF)

45
 send (OFF_CMD, t_i – t_PWON) to
 Mobile Host

46 else
47 set_timer(t_i)

Figure 6. PS-PT protocol: actions performed
at the Access Point.

At the Access Point side, the system records the state
of the mobile host’s network interface. Upon reception of
a new packet (from the Internet) while the mobile host is
disconnected, the Access Point buffers the packet and
waits for a poll from the mobile host (lines 17-19). On the
other hand, if the packet is received while the mobile host
is connected, the Access Point relays the packet to the
mobile host (if it was received from the Internet, line 22),
estimates the next packet arrival time, and decides
whether its is convenient to shut down the network
interface (lines 23-27). It is worthwhile to recall that the
network interface has a transient period t_PWON in
getting on during which it is not able to handle data. This
implies that the mobile host must be ON t_PWON units
of time before the estimated arrival (line 25). If the
Access Point estimates that it is convenient for the mobile
host to disconnect, it sends a OFF command to the mobile
host together with the time interval during which it must
remain disconnected (lines 24-25). Otherwise, it sets a
timer with the estimated arrival time (lines 26-27). In the
latter case the mobile host remains connected. Therefore,
if a new packet arrives, the network interface is ON and,
hence, the system must stop the timer (line 21).

When the mobile host polls the Access Point, there
might be data to exchange or not. In the former case, the
Access Point uses the new data to generate a new estimate
and performs the same actions described above (lines 41-
47). In the latter case, the last estimate provided to the
mobile host was too short. Thus, the Access Point updates
this estimate and decides what the mobile host must do
(lines 35-40). The same situation occurs when the timer
expires: the last estimate was too short, but it didn’t cause
the switching off of the network interface. The mobile
host is still connected and the Access Point has to decide
whether it is convenient that the mobile host disconnects
or not (lines 28-33).

3.2. Algorithm for packet arrivals estimates

As clearly appears from the previous section, our

solution relies upon the prediction of the traffic behavior.
Therefore, we need an algorithm that provides accurate
estimates of packet inter-arrivals and idle times, and is
able to adapt quickly to changes in the traffic conditions.
The Variable-Share Update algorithm [10] fits these
requirements. This algorithm has been proposed as a
dynamic algorithm to estimate a generic variable spanning
a given range, and is not bound to a specific problem.

Let I be the range of possible values for a variable y
that we want to estimate. To predict the value of y, the
Variable-Share Update algorithm relies upon a set of
“experts”. Each expert xi provides a (fixed) value within
the range I, i.e., a value that y can assume. The number of
experts to be used, as well as their distribution among the
range I, are input data for the algorithm. Each expert xi is
associated with a weight wi, a real number that measures
the dependability of the expert (i.e., how accurately the
expert has estimated y in the past). At a given time instant,
an estimate of y is achieved as the weighted sum of all
experts, using the current wi value as the weight (i.e.,
reliability) for the expert xi. Once the actual value of the
variable y is known, it is compared with the estimates
provided by the experts, to recalculate and update the
weight associated with each expert.

The algorithm is summarized in Figure 7. As shown in
the figure, the core of the algorithm is the weights
updating algorithm. Updates occur every time a new
actual value of the variable y becomes available. First, an
error function L is evaluated for each expert: this function
measures the deviation of the (prediction provided by the)
expert from the actual variable’s value. Then, the
Variable-Share Update is executed, as follows:
1. each expert loses a portion of its weight, according to

the deviation from the actual value; the weight wi
becomes iw′ (if L=0 the weight is not changed);

2. each expert shares a portion of its weight, according
to its error function: a pool is created by using all the
shares (if L=0 the expert doesn’t share anything);

3. for each expert, the new weight is calculated as the
sum of two components: a portion of the weight
evaluated in 1, and a portion of the pool evaluated in
2. Both components depend on the error function
(e.g., if L=0, the new weight is the old one, plus a
fraction of the pool).

Figure 7. Variable-Share Update algorithm

The Variable-Share Update algorithm reduces the
weights of those experts that provides bad predictions,
and increases the weights of the experts that provide the
more accurate predictions. The speed in
increasing/decreasing weights is determined by two
algorithm parameters: α and η.

This algorithm has been proposed to implement a spin-
down technique in hard disks power management [9]. In
that context, the update policy guarantees a quick
adaptation to changes of the variable’s values.

In our problem we have to estimate two variables –
inter-arrival times and idle times – that span different
ranges. Inter-arrival times are time intervals between two
consecutive packets within a burst, while idle times are
time intervals between two consecutive bursts of packets.
Typically, inter-arrival times are smaller than idle times.
We assumed 1 second as the largest value for inter-arrival
times: this assumption relies on previous works on Web
traffic characterization [6, 2]. Furthermore, we used this
value to discriminate between inter-arrival times, and idle
times, respectively. Accordingly, we used two different
sets of experts for the two quantities, and we considered
two non-overlapping intervals for experts values: the first
interval ranges from 0 to 1 second, the second one from 1
to 60 seconds.

Choosing 60 seconds as the largest value for an
estimated idle time is a tradeoff between power saving
and QoS requirements. When an idle phase occurs, the
mobile host polls the Access Point with a maximum
period of 60 seconds (see Section 3, lines 35-40). Thus,
the maximum additional delay introduced by the
algorithm to the first packet of the new burst is 60
seconds, which is an acceptable upper bound for
applications without real-time requirements.

We used 20 experts for each set. The experts’ values
are uniformly distributed over the corresponding intervals
(experts of the first set are placed every 50 msec, while
experts of the second set are spaced by approximately 3
seconds each other).

The update policy shown in Figure 7 needs two
additional parameters, α and η. According to [9]5, we

5 [9] compares several values for α and η assuming a uniform

distribution of experts. The experimental results indicate
α=0.08 and η=4 as the best choice.

Loss Update:

()ixyL
ii eww ,η−

∆
=′

Variable share:

() ()[]
() ()

() ()



















 ′



 −−−

−
+′−=

∑ ′−−=

i
xyL

i
xyL

i

i
i

xyL

wpool

n
ww

wpool

i

i

i

,

,

,

11

1
11

11

α

α

α

Parameters: η > 0, 0 ≤ α ≤ 1, n (number of experts)
Variables: xi (experts), wi (weights), y (actual variable’s

value), ŷ (estimated variable’s value)

Initialization: ninwi ,...,11 =∀=

Prediction: ∑∑
==

=
n

i
i

n

i
ii wxwy

11
ˆ

used α=0.08 and η=4. Finally, the algorithm requires the
definition of a loss function L. This function provides a
measure of the deviation of each expert from the actual
value of the variable, and its values must lie in [0,1], see
[10]. In our implementation we used

() yxyxyxL iiii −−= max, as the error function.

The last steps to build our system requires (i) to decide
how to manage an estimate that happens to be too short,
and (ii) to decide when to use the first set of experts, and
when the second one.

Let us consider a too short inter-arrival time estimate

iŷ . When the mobile host polls the Access Point the
system must update this estimate (see lines 35-36 of
Section 3). As all the experts below iŷ have clearly
provided a wrong prediction, we update the estimate by
taking into considering only the other experts in the set.
Specifically, the new estimate iy′ˆ is the weighted sum of

all experts that have an associated value greater than iŷ .

In addition, as iŷ seconds have already elapsed since the
previous arrival, the next arrival is expected in ii yy ˆˆ −′
seconds. The PS-PT protocol uses this value (ii yy ˆˆ −′) to
decide whether it is convenient (or not) to the mobile host
to switch the network interface off (lines 37-40). The
system reuses the same procedure every time it detects
that the previous estimate was too short, until the inter-
arrival time becomes bigger than the maximum value for
that set of experts (1 second). At this point in time, it is
assumed that an idle phase has begun, and thus, the
second set of experts is used to estimate the length of the
idle phase. If even the second set of the experts provide a
too short estimate, a similar updating procedure is used:
the estimate is updated by considering only experts that
provided predictions greater than wrong estimate until the
idle phase reaches the maximum value, i.e., 60 seconds.
From this time instant onward, the mobile host polls the
Access Point periodically every minute, until some data
becomes available. The arrival of a new packet is
interpreted as the beginning of a new burst, and thus, the
algorithm switches again to the first set of experts.

Our updating policy guarantees a smooth increase
towards greater estimates. Thus, it minimizes the
probability of interpreting an actual inter-arrival time as
an idle phase, and so it introduces small delays to the
packet transfers (see the experimental results in Section
4).

4. Experimental results

The objective of the proposed solution is twofold: it

should allow significant power savings with respect to the
legacy TCP/IP approach by minimizing, at the same time,
the degradation of the QoS perceived by the users. To

evaluate our architecture in an actual network scenario,
we used the Web as the testing application. The Web is
today one of the most popular Internet application, and it
is the candidate to become the killer application even for
mobile Internet. Moreover, Web users are sensitive to
delays. Hence, it is important to achieve significant power
savings, while maintaining acceptable QoS levels, i.e., to
minimize the URT increase.

To evaluate the performance of our architecture we
defined two indices: a Power Saving Index and a QoS
index. The Power Saving Index, I_ps, is defined as:

rearchitectuTCP in nconsumptio int. net.

rearchitectu our in nconsumptio int. net.
psI =_ (1)

I_ps measures the percentage of power consumed by
our architecture with respect to the legacy one, and,
hence, provides an indication of the power saving
achieved by using our architecture. The QoS index,
named the Page Delay Index (I_pd), is defined as:

I_pd = (URT in our arch.) – (URT in TCP arch.) (2)

I_pd measures the additional URT introduced by our
architecture with respect to the legacy architecture, and
hence provides an indication of the URT increase to pay
to achieve power savings.

In our experiments we used SURGE as the application
layer at the client side [5]. SURGE is a Web traffic
simulator, designed by Barford and Crovella, that models
the statistical properties of the traffic generated by a
realistic Web user browsing the Internet. Furthermore, at
the server side, we used a real Web server. Specifically, in
our experiments the Web server was located at the
University of Texas at Arlington, while the client was
located at the Department of Information Engineering of
the University of Pisa (Italy). Hence, our client-server
path crossed (congested) intercontinental links, and this
allowed us to test our architecture in a congested
situation.

To significantly evaluate our architecture, we
performed a large set of experiments. Each experiment
included 150 file-transfer operations from the Web server
to the client6 (an experiment stopped when the whole page
“in flight” arrived at the client). In each experiment, the
same set of files were requested in parallel both in our
architecture, and in the legacy one. This guarantees the
same network conditions in both cases. We ran a set of
experiments, where each experiment spanned an entire
working day. To increase results’ reliability, we replicated
the experiments in several working days.

Finally, we compared the results obtained with those
related to an application-dependent solution developed

6 Transferring 150 files allowed a significant sampling from the

Web file dimensions distribution.

[1]. In [1] we performed an identical set of experiments,
evaluating the same indices, under similar network
conditions. For the sake of brevity, below we only present
the results from a particular day. However, the results
obtained in different days exhibit the same statistical
behavior.

4.1. Power Saving Analysis

As mentioned in Section 2, the energy drained from the
battery by the wireless network interface of a mobile host
is almost the same irrespective of its status (receiving,
transmitting or idle). Thus, the energy consumption is
well approximated by the time the network interface
remains on. Accordingly, to evaluate the I_ps index (see
(2)), we measured this time both in our architecture and in
the legacy one.

100

300

500

700

900

1100

0

200

400

Energy Consumption
C_ps

C_surge

service
rate

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

ca
rd

 i
n
 O

N
 s

ta
te

 (
s)

se
rv

ic
e

ra
te

 (
K
bp

s)

italian time
Figure 8. Energy consumption as a function of

time.

For each experiment, Figure 8 reports the total time
during which the network interface remains on in the
legacy architecture (middle curve) and in our architecture
(bottom curve), respectively. Figure 8 also includes the
service rate (top curve) defined as the ratio between the
number of bytes transferred on the wired network and the
time needed to transfer them. Therefore, the service rate
provides a measure of the Web service responsiveness to
client’s requests. The service rate allows us to understand
how the energy consumption depends on the environment
conditions.

From Figure 8 it appears that the power consumption
in our architecture is almost independent from the service
rate. This is a joint effect of: (i) the splitting of the TCP
connection in two parts, and (ii) the use of our power-
saving policies. Specifically, our power-saving policies
allow the network interface to remain on only when there
are data to exchange on the wireless link. Therefore, the
energy consumption does not depend on the time needed
to complete the whole transfer between the remote and the
mobile host (this time highly varies with the network
conditions).

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0

200

400

Consumption ratio (I_ps)I_ps
avg(I_ps)

service
rate

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

I_
p
s

se
rv

ic
e

ra
te

 (
K

b
p
s)

italian time
Figure 9. I_ps as a function of time

Figure 9 shows the I_ps index as a function of time
(bottom curve), its average value on the entire day
(straight curve), and the service rate (top curve). These
curves confirms that our architecture introduces a
significant power savings: the energy consumption is
always less than 45% of the one in the legacy architecture,
its average value is 32%, with values less than 15%. This
means that we can save always more than 55%, on
average 68%, and with peaks over 85%.

When using an application-dependent approach [1], we
obtained a slightly better performance: about 80% saving
on average, with peaks over 90%. This difference can be
easily explained as the application-dependent approach
exploits informations about the traffic characteristics, and
the application behavior. On the other hand, the
application-independent approach cannot rely on such
informations.

4.2. QoS Analysis

Figure 10 shows the additional delay introduced in our

architecture to the transfer delay of a single file.
Specifically, for each file we measured the additional
delay, then we averaged the values on each experiment of
a day, and we plotted these average values (bottom
curve), together with the average value on the entire day
(straight curve). For convenience, we also plotted the
service rate (top curve).

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

200

400

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

Average additional
FILE delay

avg_delay
overall avg

service
rate

a
ve

ra
g
e
 d

e
la

y
(s

)

se
rv

ic
e

ra
te

 (
K
b
p
s)

italian time
Figure 10. Average additional file delays as a

function of time

From Figure 10 it appears that the average additional
delay introduced for a single file is no more than 1
second. Furthermore, the average value on all the
experiments is below 0.2 seconds.

The file-delay index does not characterize the users’
QoS. A user does not perceive the delays related to single
files but his/her QoS depends on the URT related to the
whole Web page (a page usually contains several files).
Figure 11 allows us to evaluate the system performance
from this point of view. In each experiment we measured
the average additional URT introduced to the
downloading of Web pages (average I_pd, bottom curve).
We also considered the average additional URT over the
entire day (straight curve), and the service rate (top
curve).

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

0

200

400

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

Average additional
PAGE delay

avg(I_pd)
overall avg

service
rate

a
ve

ra
g
e
 I

_
p
d
 (

s)

se
rv

ic
e

ra
te

 (
K

b
p
s)

italian time
Figure 11. Average I_pd as a function of time

It appears that the additional URT, averaged over the
entire day, is slightly higher than 0.2 seconds, i.e., it is
only slightly higher than the average additional delay of
single files. This means that the delays added to single
files of a Web page do not accumulate in the URT of the
whole Web page. Moreover, the average I_pd in each
experiment is no more than 1 second. So, the user doesn’t
perceive a significant degradation in the QoS.

-1
-0.5

0
0.5

1
1.5

2
2.5

3
3.5

4

0
0.5
1
1.5
2
2.5

Average additional
PAGE delay

avg(I_pd)
overall avg 90perc

0:00 3:00 6:00 9:00 12:00 15:00 18:00

av
g
(I

_
p
d
)

(s
)

9
0
p
erc (s)

italian time
Figure 12. I_pd: confidence interval of the

average and 90th percentile (conf. level 95%)

Finally, we examined the upper bounds of the
additional URTs. For each experiment, we evaluated the
confidence interval of the average and 90th percentile of
I_pd (confidence level 95%). In Figure 12 we plotted the
average I_pd, with the related confidence interval (bottom
curve), the average additional URT over the entire day

(straight curve), and the 90th percentile measured in each
experiment (top curve).

From Figure 12 it appears that the average I_pd values
are small (the values are around 0.5 seconds).
Furthermore, the 90th percentile is typically below 1.5
seconds, and always below 2.5 seconds. Therefore, we
can say that our system, with a probability of 90%, does
not add more than 2.5 seconds, and therefor, the user
doesn’t perceive almost any degradation in the QoS.

The QoS performances related to the application-
dependent system are slightly worse (see [1 for details). In
that case we obtained similar values with respect to the
average I_pd, its confidence interval, and its overall
average over an entire day. On the other hand, the
application-dependent approach exhibited higher peak
values (up to 5 seconds) with respect to the 90th percentile
of the I_pd. This can be explained by the aggressive
power-saving policy adopted by the application-
dependent approach: the mobile host’s network interface
remains off for more time (and, thus, the energy
consumption is higher), but this causes an increase in the
upper bound of the additional delays. However, on the
average, both approaches are equivalent in terms of the
QoS perceived by the user. Specifically, with respect to
the Web application taken into consideration in both
cases, it can be expected that the user does not experience
a significant degradation in the QoS.

5. Conclusions

In this work we have designed and evaluated a novel

network architecture for reducing the power consumption
of mobile hosts in a mobile Internet scenario, while
maintaining almost the same QoS level. Our architecture
follows an application-independent approach as it does
not make any assumption about the traffic profile
generated by the applications. Therefore, it fits any
Internet application, and can be used concurrently by
different applications. Furthermore, it is totally
transparent to the upper layer as it presents a standard
socket interface. Hence, it can be used without any
modifications in the code of legacy Internet applications.

Our architecture exploits the Indirect-TCP model: it
splits the transport connection between the mobile and the
fixed host. This allows an improvement in the bandwidth
available at the transport layer and, consequently, reduces
the energy required to transfer a given amount of data.

The core of our approach, is the Variable-Share Update
algorithm that predicts packet inter-arrival times and idle
period lengths, and manages the network interface of the
mobile host accordingly. Specifically, the mobile host
switches off its wireless network interface when there are
no data to be exchanged over the wireless link. This
allows to consume the minimum amount of power for
each data communications.

We have implemented a prototype of our architecture
and we have extensively evaluated it. We used in the
evaluation a Web as application as: (i) the Web is the
most popular Internet application, and (ii) Web users are
typically delays sensitive. Furthermore, this choice has
allowed us to compare the results obtained by using our
application-independent approach with those related to
the application-dependent approach developed in a
previous paper.

The experimental results have shown that the
application-independent architecture is able to save, on
average, the 68% of the energy consumed by the legacy
TCP/IP architecture, with peaks over 85%. Furthermore,
this energy saving is obtained without a severe
degradation in the QoS perceived by the users. The
additional URT introduced for transferring a Web page is
no more than 2.5 seconds. The comparison between the
application-independent approach, and the application-
independent one, has shown that exploiting some
knowledge about the application behavior results in a
slightly better power saving, but may introduce – in the
worst case – larger additional delays. However, in the
average case, both approaches have exhibited similar
performance in terms of QoS provided to Web users. By
considering the high flexibility of the application-
independent architecture, these results seem to indicate
that this approach is a very promising one for power
saving. Experiments with different type of applications
(e.g., e-mail), and several applications concurrently active
on the mobile host, are however required to further
validate its potentialities.

Acknowledgments

The authors wish to express their gratitude to Paul

Barford for providing the SURGE traffic generator used
in the experiments. Also many thanks to Mohan Kumar
for giving the opportunity to use the Web server at the
University of Texas at Arlington.

References

[1] G.Anastasi, M.Conti, E.Gregori and A.Passarella, “A
Power Saving Architecture for Web Access from Mobile
Computers”, Proceedings of the IFIP Networking Conference
(Networking’02), Pisa (I), May 2002, Lecture Notes in
Computer Science, LNCS 2345, pp. 240-251.
[2] M.Arlitt, T.Jin, “Workload Characterization of the 1998
World Cup Web Site”, HPL-1999-35(R.1), Internet System and
Applications Laboratory, HP Laboratories Palo Alto, September
1999.
[3] A.Bakre, B.R.Badrinath, “Implementation and
Performance Evaluation of Indirect TCP”, IEEE Transactions
on Computers, Vol.46, No.3, March 1997.
[4] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, R. H.
Katz, “A Comparison of Mechanisms for Improving TCP

Performance over Wireless Links”, IEEE/ACM Transactions on
Networking, Vol. 5, N. 6, December 1997.
[5] P.Barford e M.Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation”,
Proceedings of ACM SIGMETRICS ´98, Madison, WI, pp. 151-
160, June 1998.
[6] M.Crovella e A.Bestavros, “Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes”, IEEE/ACM
Transaction on Networking, Vol.5, No.6, pp.835-846, December
1997.
[7] J.Flinn, S.Y. Park and M.Satyanarayanan, “Balancing
Performance, Energy, and Quality in Pervasive Computing”,
Proceedings of the IEEE International Conference on
Distributed Computing Systems (ICDCS’02), Wien (Austria),
July 2002.
[8] G. H. Forman, J. Zahorjan, "The Challenges of Mobile
Computing", Technical Report, University of Washington,
March 1994.
[9] D.P. Helmbold, D.E. Long, B. Sherrod "A Dynamic Disk
Spin-down Technique for Mobile Computing", Proceedings of
the Second Annual ACM International Conference on Mobile
Computing and Networking, NY, pp. 130 - 142, November
1996.
[10] M.Herbster and M.K.Warmuth, “Tracking the Best
Expert”, in the Proceedings of the Twelfth International
Conference on Machine Learning, (Tahoe City, CA), pp. 286-
294, Morgan Kaufmann, 1995.
[11] T. Imielinscki B.R. Badrinath “Wireless Computing”,
Communication of the ACM, Vol. 37, No. 10, October 1994.
[12] A. Joshi, “On proxy agents, mobility, and web access”,
ACM/Baltzer Mobile Networks and Applications, Vol. 5 (2000),
pp. 233-241.
[13] R.Kravets e P.Krishnan, “Power Management Techniques
for Mobile Communication”, Proceedings of the Fourth Annual
ACME/IEEE International Conference on Mobile Computing
and Networking (Mobicom’98).
[14] G. Anastasi, M. Conti, W. Lapenna, “Power Saving
Policies for Wireless Access to TCP/IP Networks”, Proceedings
of the 8-th IFIP Workshop on Performance Modelling and
Evaluation of ATM and IP Networks (IFIP ATM&IP2000),
Ilkley (UK), July 17-19, 2000.
[15] J.R. Lorch, A.J. Smith, “Scheduling Techniques for
Reducing Processor Energy Use in MacOS”, ACM/Baltzer
Wireless Networks, pp.311-324, 1997.
[16] J.R.Lorch e A.J.Smith, “Software Strategies for Portable
Computer Energy Management”, IEEE Personal
Communication, pp.60-73, June 1998.
[17] M.Mathis, J.Semke, J.Mahdavi and T.Ott, “The
Macroscopic Behavior of the TCP Congestion Avoidance
Algorithm”, Computer Communication Review, Volume 27,
number 3, July 1997.
[18] S. Sheng, A. Chandrakasan, R.W. Brodersen, “A Portable
Multimedia Terminal”, IEEE Communications Magazine,
December 1992.
[19] M.Stemm e R.H.Katz, “Measuring and Reducing Energy
Consumption of Network Interfaces in Hand-Held Devices”,
Proc. 3° International Workshop on Mobile Multimedia
Communication, Princeton, NJ, September 1996.
[20] M.Zorzi e R.R.Rao, “Energy Constrained Error Control for
Wireless Channels”, Proceeding of IEEE GLOBECOM ’96,
pp.1411-1416, 1996.

