
A Power-Aware Multimedia Streaming Protocol for Mobile Users

G. Anastasi and A. Passarella M. Conti, E. Gregori, and L. Pelusi
University of Pisa

Dept. of Information Engineering
Via Diotisalvi, 2 – 56126 Pisa, Italy

{g.anastasi, a.passarella}@iet.unipi.it

IIT Institute - CNR Research Area
Via G. Moruzzi, 1 – 56124 Pisa, Italy

{marco.conti, enrico.gregori,
luciana.pelusi}@iit.cnr.it

Abstract

Smart environments are becoming popular and even
more users are approaching their services through
portable devices like PDAs, laptops, and mobile
phones. These devices are generally battery-fed, thus,
energy efficiency is surely a critical factor for the de-
ployment of pervasive services.

In this paper we focus on the diffusion of multimedia
streaming services in smart environments. Specifically,
we investigate scenarios where mobile users who have
a Wi-Fi access to the Internet receive audio files from
remote streaming servers. We address energy saving
by including periodic transmission interruptions in the
schedule of audio frames at the server, so that the net-
work interface card at the receiver can be set to a low-
power consuming state.

Experimentation on a software prototype shows that
our solution makes possible an energy saving ranging
from 76% to 91% (depending on the data rate and the
background traffic) of the total consumption due to the
network interface. It also preserves a good user level
QoS.

1. Introduction

The growing interest that people are showing in
pervasive environments is encouraging migration of
popular Internet services to mobile users. However,
since deep differences exist between mobile devices
and desktop computers, much effort must be spent to
adapt the classical Internet applications to the world of
wireless. Multimedia streaming services are envisioned
to become very popular in mobile environments thus,
in this paper, we focus on the development of stream-
ing solutions for mobile users with emphasis on energy
efficiency that we consider a key factor for the de-
ployment of pervasive environments.

Streaming is a distributed application which pro-
vides on-demand transmission of audio/video files
from a server to a client over the Internet while allow-
ing playback of the arriving file chunks at the client.
Playback starts a few seconds (initial delay) after the
client receives the first chunk of the requested file and
goes on while later parts of the file still arrive. Before
playback, arriving chunks are temporarily stored at the
client in a buffer.

The streaming service must guarantee a good play-
back quality. This fixes strict time-constraints to the
transmission process because a timely delivery of
packets is needed in order to ensure their availability at
the client for playback.

Since constant-quality encoded audio/video files
produce variable-bit-rate (VBR) streams, the resource
allocation through the Internet during a streaming ses-
sion is a hard task, and one of the main goals for a
streaming server must be the design of a transmission
schedule that tunes the outgoing traffic to the desired
network and client resource usage, while obviously
respecting the playback time constraints. A good
scheduling algorithm is characterised by efficient use
of the available network resources without overflow-
ing or underflowing the client buffer. Moreover, it
should minimize the delay before playback starts be-
cause users do not generally tolerate high initial delays
(greater than 5-10s) especially when waiting for short
sequences. Many smoothing algorithms have been
proposed in the literature [1], however no one can be
elected as the best because the performance metrics to
be considered are conflicting and cannot be optimised
all together. These metrics are: (i) peak bandwidth
requirement, (ii) variability of transmission rate, (iii)
number of rate changes, (iv) client buffer utilization,
(v) additional computational burden to the server.
Moreover, the same algorithm generally performs dif-
ferently when applied to different media streams with

different burstiness. As a result, the most suitable
smoothing algorithm changes every time depending on
the particular resource allocation model adopted at the
server, at the client and at the network routers, as well
as on the particular performance goals of the system
components.

In this paper we focus on streaming services in wire-
less scenarios where servers are intended to be fixed
hosts in the Internet whereas clients are on mobile de-
vices (e.g., PDAs, laptops or mobile phones with wire-
less network interfaces) and access the Internet
through an intermediate base station. We assume the
presence of a proxy between the client and the server
since proxies are commonly used to boost wireless
network performances. In this environment we concen-
trate on energy efficiency because, since mobile de-
vices are battery-fed, this is a key factor in the devel-
opment of applications for mobile scenarios [12]. We
will provide a solution that allows the energy con-
sumption due to the Wireless Network Interface Card
(WNIC) to go down to 9-24% of the energy consump-
tion achieved by current systems.

Another challenging goal, in this area, is certainly
minimizing the client buffer size, as memory costs for
mobile devices are still high. We will demonstrate that
our solution achieves good energy savings even with
small buffers, i.e., down to 50 Kbytes.

Hereafter we will refer to WLAN 802.11b environ-
ments therefore we will consider that access to the
Internet is provided to mobile hosts by the means of
Access Points. However, our solution is flexible
enough to adapt to any type of infrastructure-based
wireless LAN.

The remainder of the paper is organized as follows.

In Section 2 we will investigate some related work on
power management solutions with emphasis on those
tailored on real-time streaming applications. Sections
3, 4 and 5 will be devoted to describing our power-
saving solution. In Section 6 we will provide experi-
mental results assessing the system effectiveness, and
we will draw our conclusion in Section 7.

2. Related Work

Energy consumption issues in wireless networks
have been addressed in many papers. [2] and [3] found
that one of the most energy-consuming components in
mobile devices is the WNIC since networking activi-
ties are responsible for up to the 50% of the total en-
ergy consumption (10% in laptops, up to 50% in hand-

held devices). In order to reduce the activity of the
WNIC, [4] targeted the reduction of transfer delays
over the Internet and first proposed an alternative to
the classical TCP-IP architecture for the management
of communications between mobile hosts and fixed
hosts: the indirect-TCP. It splits the connection be-
tween the mobile host and the fixed host in two parts,
one between the mobile host and the Access Point, the
other between the Access Point and the fixed host. At
the Access Point a running daemon is in charge of re-
laying data between the two connections. The Indirect-
TCP correctly handles wireless losses and avoids the
throughput reduction due to the combined action of
such losses and the TCP congestion control so the total
transfer delay significantly reduces. Further improve-
ments are possible by adding proxy facilities at the
Access Point. The TCP proxy shields the wireless link
from packet losses in the Internet leading to better link
utilization and throughput [5].

Nevertheless, the reduction of the total transfer de-
lay can only produce a slight energy saving in contrast
to the significant gains that can be achieved by switch-
ing the WNIC off when not actually working and by
exchanging messages at the maximum rate allowed by
the network channel when working. As stated in [2],
[8], during the total transfer delay the WNIC consumes
almost the same both in receiving, transmitting and
idle state. As a result, the burstiness of the traffic,
which is responsible for even long idle periods, natu-
rally leads to energy wastage. [2], [3], [6], and [7] han-
dle power saving in an Indirect-TCP architecture by
switching off the WNIC during inactivity time periods.
[6] proposes an application dependent approach tai-
lored on web applications and exploits the knowledge
of statistical models for web traffic to predict packet
arrival times and switch the WNIC off between con-
secutive arrivals. [7] proposes an application inde-
pendent approach and suits much more traffic types.

Solutions mentioned so far are not good for stream-
ing applications because of the time-constraints im-
posed to the transmission process. Existing power
management solutions for real-time applications are
targeted to both switch the WNIC to a sleep (doze)
mode during inactivity time periods and reduce the
total transfer delay of the streaming session.

Transcoding techniques have been introduced to
shorten the size of audio/video streams so as to reduce
the transfer delay. However, while leading to little en-
ergy savings (see above), these techniques may deter-
mine a significant reduction in the stream quality.

A power management system that exploits the sleep
mode of WNICs is described in the IEEE 802.11 stan-
dard: it is the PSM (Power Saving Mode) protocol
[13]. However, as stated in [10], it only performs well
when the arriving traffic is regular, whereas it is not
suitable for popular multimedia streams; therefore,
hereafter we will consider the PSM not being active.

Application layer techniques have been proposed in
order to make predictions on the arriving traffic so as
to switch the WNIC on when a packet is expected to
arrive and to the sleep mode when an idle period is
expected to start. [9], [11] propose solutions with client
side predictions of the inter-arrival periods based on
the history of the experimented inter-arrival periods in
the past. Wrong predictions result in packet loss and in
the worsening of the quality perceived during play-
back. Moreover, low packet loss probability and high
energy saving are conflicting targets and a tradeoff
must be met. Techniques based on client predictions
can lead to energy saving ranging between 50% and
80% [9]. As for the PSM case, however, the best per-
formances are achieved when the incoming traffic is
regular. Traffic shaping can help predictions at the
client become effective. However, an intermediate
proxy must be introduced because transmission over
the Internet change the traffic profile by adding jitter to
the packets, thus performing traffic shaping at the
server is useless. The power saving solutions proposed
in [10] and [11] perform traffic shaping at the proxy
and make use of client side predictions on idle periods
in order to set the WNIC to the sleep mode. [11] also
proposes a second solution where predictions are
proxy-assisted. The proxy sends to the client all the
packets of an interval in a single burst, and then in-
forms the client that the transmission will go on after a
sleep time period. The client can set the WNIC to the
sleep mode for all that entire time period. [11] achieves
a total energy saving which ranges from 65% to 85%
when using client side predictions and from 80% to
98% with proxy-assisted predictions. These results are
worked out by summing up contributions from both
the WNIC, which is set to the sleep mode during inac-
tivity time periods, and the CPU whose utilization (for
decoding) is decreased thanks to transcoding tech-
niques used to shrink the stream.

The power management solution that we propose
makes use of a proxy-based architecture where the
proxy is in charge of planning transmission to the cli-
ent: it alternates periods of transmission and periods of
non-transmission and warns the client of a non-
transmission period when it starts. It also informs the

client of the duration of the next non-transmission pe-
riod so as it can set the WNIC’ sleep mode for all that
entire period. As novelty we propose that plans of
transmission are dynamically obtained by considering
the available bandwidth on the wireless link together
with the current client buffer level.

We concentrate on Stored Audio Streaming applica-
tions and mainly refer to audio files which are MP3
coded. Since MP3 compression already reduces the
quality of the audio stream to a boundary limit, we
decide not to make use of transcoding techniques so as
to preserve the remaining audio quality. We believe
that only video streams can take advantage from
transcoding techniques because they allow significant
shrinkage of the file without severely affecting the
playback quality (see [11]).

3. Proxy-based Architecture and Power
Saving Strategies

The proxy-based architecture we refer to in our so-
lution is depicted in Figure 1: the connection between
the mobile host and the fixed host is split like in the
Indirect-TCP model. Moreover, on the wired and wire-
less connections two different goals are targeted: on
the wireless link the major goal is to reduce the energy
consumption whereas on the wired connection a clas-
sical approach to the streaming with smoothness goals
is provided.

Mobile Host Access Point Fixed Host

RTP, RTSP,
RTCP

TFRC
RTP, RTSP

UDP
RT_PS

UDP

TFRC

RTP, RTSP,
RTCP
UDP

IP
MACWMAC MAC

IP

Streaming Server

RT_PS

RTP, RTSP

UDP

WMAC
IP

Media Player

Mobile Host Access Point Fixed Host

RTP, RTSP,
RTCP

TFRC
RTP, RTSP

UDP
RT_PS

UDP

TFRC

RTP, RTSP,
RTCP
UDP

IP
MACWMAC MAC

IP

Streaming Server

RT_PS

RTP, RTSP

UDP

WMAC
IP

Media Player

Figure1. Streaming architecture for a wireless scenario.

This differentiation is due to the fact that by reduc-
ing the peak transmission rate the traffic smoothing
also increases the total transfer delay over the Internet
thus conflicting with the power saving objectives.

The streaming server is located at the fixed host and
sends streams to the Access Point. Its scheduling pol-
icy is smoothness-driven. Real-time data are encapsu-
lated in RTP (Real Time Protocol [14], [15]) packets
while the Real Time Streaming Protocol (RTSP) [19] is
used in order to exchange playback control informa-
tion with the other streaming peer.

Since RTP uses UDP as underlying transport proto-
col, which provides no built-in congestion control
mechanism, the presence of multimedia traffic in the
Internet can potentially lead to congestion. The TCP-

Friendly Rate Control (TFRC [21]) protocol adaptively
establishes an upper bound to the server transmission
rate thus leading to congestion avoidance. RTP and
RTCP (Real Time Control Protocol [21]) packets are
used in order to carry TFRC information [22]. Proxy
facilities are located at the Access Point as well as a
running daemon which is in charge of relaying streams
arriving from the server to the mobile host.

The RT_PS (Real Time and Power Saving) protocol
that we have designed is located on top of the UDP
transport layer on both the Access Point and the mo-
bile host and is responsible for the power management
during a streaming session. Since the main contribu-
tion of this paper is energy efficiency, hereafter we
will only concentrate on the mobile host and the Ac-
cess Point and will assume that an application layer
with the streaming server is present at the Access
Point.

According to the RT_PS protocol the proxy sched-
ules packets to the client in an on-off fashion. During a
streaming session, the time can be subdivided, from
the wireless net standpoint, in transmission periods,
i.e., on-periods, and non-transmission periods, i.e., off-
periods. During on-periods the proxy transmits frames
to the mobile host at the highest possible rate whereas
during off-periods the mobile host sets the WNIC to
the sleep mode. The traffic shaping that we propose
exploits a priori knowledge of the frame lengths, the
knowledge of the client buffer size and an estimate of
the current available bandwidth on the wireless link
which corresponds to the maximum throughput that
the proxy can exploit for transmission. During an on-
period the proxy decides whether to stop transmitting
or not depending on the available bandwidth: when
high it continues transmitting until it fills up the client
buffer; when low, it stops transmitting in order to
avoid increasing congestion and transfer delay. The
duration of an off-period is decided by the proxy when
it stops transmitting and depends on the client buffer
level: an off-period ends when the client buffer level
falls down a dynamic threshold, low water level, that
warns the proxy about the risk of a playback starva-
tion. The low water level depends on the available
bandwidth too: when the current available bandwidth
is low then the low water level is high in order to pre-
serve a large supply for the playback process; when the
current available bandwidth is high the low water level
is lower since the proxy can quickly feed the buffer
and the risk of underflow is very low. Finally, in order
to avoid bandwidth wastage, only frames that are ex-

pected to arrive in time for their playback are delivered
to the client whereas the others are discarded. The
computation of frame arrival times makes use of the
estimate of the available throughput on the wireless
link.

Together with the presence of a buffer at the client,
where arriving frames are stored in advance of their
playback times, our solution also exploits an initial
playback delay and the amount of pre-buffered data
depends on its duration. Anyway, it is worth noticing
that an initial playback delay and a client buffer are
always needed in case of streaming applications in
order to consider the transfer delay and absorb the jit-
ter.

4. The RT_PS Protocol

The RT_PS protocol is distributed on a client at the
mobile device and on a server at the Access Point. The
RT_PS server main facilities are: transmitting the au-
dio frames to the mobile host; calculating the client
buffer level by keeping into consideration the progres-
sion of both the transmission and the playback proc-
esses; evaluating the possibility to stop transmitting
and let the WNIC of the receiving mobile device as-
sume a low power consuming state; calculating the
duration of the sleep periods for the WNIC of the mo-
bile device while preventing the playback process to
starve due to the client buffer underflow.

The RT_PS client main facilities are: sending the re-
quest for the audio file to the proxy also specifying the
available buffer size; receiving and interpreting the
arriving messages from the proxy containing either
audio content or commands; collecting the audio
frames in a buffer where the media player can take and
play them out; evaluating the available bandwidth on
the wireless channel and forwarding its estimates to the
RT_PS server; updating the playback start point upon
proxy notification; triggering the playback process
when the start point elapses; commanding for the
WNIC to be set to the sleep mode upon receipt of a
sleep command from the proxy and for its raising up
when the sleep time finishes.

Details on the key components of the RT_PS proto-
col follow in Sections 5 and 6. Due to the lack of
space, the complete description of the RT_PS server
and client behaviours is omitted here, however it can
be found in [16].

5. Computation of Start Point and Sleep
Time Intervals

Before describing the computation details that this

section is devoted to, an introduction is needed on the
specific terminology that will be used. It follows.

5.1. Analytical model

An MP3 audio file is a sequence of frames and its

playback begins at the start point (SP) which specifi-
cally is the time when the first frame of the file is
played out. From then on, each subsequent frame must
be played out starting at fixed, equally spaced, times
called playback times. In Figure 2 the playback process
is represented in a graphical model ([1], [23]) whose
symbols are explained in Table 1.

Given ∆ the time that a single frame playback

lasts1, V(t) is the playback function and represents the
total number of bytes played out by the time t:

 () ()
⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎢
⎣

⎡
∆⋅++∆⋅+∈

<
= ∑

=

1,

0

0
kSPkSPtwhenf

SPtwhen
tV k

i
i

 , (1)

where k = 0..N-1. During a streaming session, frames
arriving to the client for playback are collected in a
buffer: let the size of the buffer be B. The playback
process extracts one single frame at a time from the
client buffer at their playback times. Therefore the cli-
ent buffer level, at the time instant t, is the difference
between the total number of bytes arrived at the client
by the time t, and the total number of bytes already
played back, i.e., V(t). Playback times are actual dead-
lines for frames arriving from the server to the client
and consequently for frames delivered at the server.

 S(t) gives the total number of bytes which the server
has already sent to the client by the time t. Since the
server must transmit enough data to the client in order
to support the playback process and avoid client buffer
underflows, the relation: () ()tVtS ≥ must be true.

()tV B is an upper bound for the server delivery proc-
ess (being B the client buffer size): whenever the
server sends more than ()tV B bytes to the client by
the time t an overflow occurs at the client buffer.

() ()() ()
⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎜⎜
⎝

⎛
∆⋅+∆⋅−+∈∆⋅−++

≤
= kSPkSPtwhenkSPVB

SPtwhenB
tV B

,11
 ,(2)

where k = 1..N-1. The schedule S(t) followed by the
server in order to transmit packets to the client must be
within the two mentioned curves:
() () ()tVtStV B≤≤ . (3)
When traffic-smoothing goals are targeted, the

scheduling curves are polyline functions with line
segments of different slopes corresponding to different
transmission rates (Ri is the i-th transmission rate). Our
scheduling curve is also a polyline and it alternates line
segments with zero slope (off-periods) to line seg-
ments with non-zero slope (on-periods). The function
A(t) –omitted in Figure 1- giving the number of bytes
already arrived at the client by the time t is such that

)()(tAtS ≥ and it strongly depends on the transfer
delay between the server and the client and on the jit-
ter. However, when investigating streaming issues it is
generally assumed that S(t)=A(t); variations between
the two curves are finally taken into account by
slightly enlarging the client buffer size so as it can ab-
sorb both the jitter and the transfer delay. Therefore

1 ∆ is the number of samples inside a single frame divided by the

sampling frequency.

B

0 f
2 f

1 − N f

t
(sec)∆ ∆ ∆ ∆

…

M

1 f
3 f

…

SP

V(t)

V B (t)
S(t)

R 1
R 2

R 3

y (Bytes)

0

B

0 f
2 f

1 − N f

t
(sec)∆ ∆ ∆ ∆

…

M

1 f
3 f

…

SP

V(t)

V B (t)
S(t)

R 1
R 2

R 3

y (Bytes)

0

Figure2. Streaming model under real-time constraints:
graphical model.

Table1. Symbols used in the Streaming Model

Symbol Meaning

∆
The time interval between two consecutive
frames.

N The number of frames in the multimedia file.
fi, Ni <≤0 The size of the i-th frame in the multimedia file.

∑
−

=

=
1

0

N

i
ifM

The size of the multimedia file.

iNi
fB

<≤
≥

0
max

The size of the client buffer,

S(t) Scheduling function.

Ri i-th transmission rate.

SP Start Point: when the playback begins.

V(t) The playback curve.

()tV B The upper bound constraint to the scheduling
function.

hereafter we will assume that S(t)=A(t).

5.2. Initial delay computation

A deep investigation on properties of on-off sched-

ules when transmitting VBR traffic at a constant rate R
can be found in [23] and [24]. They demonstrate that,
given the constrained region delimited by the functions
V(t), VB(t), t=0, y=0 and y=M (see Figure 1), it is not
always possible to schedule a file in an on-off fashion
but when the transmission rate is greater than a mini-
mum value, hereafter referred to as R (see below).
Moreover when RR ≥ , given V(t) the playback func-
tion for the file to be played out and B the client buffer
size, many on-off schedules are possible differing for
the start point value and the number, position and dura-
tion of the off-periods. Anyway, a minimum on-off
schedule can be found, R-envelope ER(t) of the se-
quence V(t), and for every possible on-off schedule
SR(t) the following is true:

t∀ , ∆⋅+<≤ NSPt0 , () ()tEtS RR ≥ ; (4)
where N is the total number of frames which compose
the file, and ∆ is the time the playback process spends
playing a single frame. ER(t) is the nearest possible on-
off schedule to the playback curve V(t) and its formal
definition can be found in [23], however for our pur-
poses the definition of the []kER sequence may suffice
[25] which is composed by the samples picked up by
the ER(t) continuous function at regular time intervals.
It can be easily obtained starting from the end: the last
value corresponds to the end of the playout curve at
the last playback time when ∆⋅−+=)1(NSPt and
V(t)=M, so MNER =−]1[. From there, a descending
line segment with slope R must be drawn which ends
at the previous playback time, i.e., ∆ s before, when

∆⋅−+=)2(NSPt . If the ending point of the segment
is higher than the value of the playout curve V(t) (at
that playback time) then the ending point itself is the
new sample]2[−NER . Otherwise the value of the
playout curve is taken as]2[−NER . Again, starting
from the new sample, a new R-sloped line segment
must be drawn till the previous playback time. The
new sample, again, is the maximum between the end-
ing point of the line segment and the playback curve.
By repeating this procedure until the time t=0 is
reached, all the samples of the sequence []kER are
obtained. More formally:

=∆⋅+=)(][kSPEkE RR
()()

[] (){ }
⎪
⎩

⎪
⎨

⎧

<
−<≤∆⋅+−+

−=∆⋅−+
= ∆

00
10;,1max

1;1

k
NkkSPVRkE

NkNSPV

R

 , (5)

where Nk <≤0 and ∆R is the total number of bytes
which can be transmitted during the time interval ∆
when the transmission rate is R.

The minimum rate R that allows an on-off schedule
to be traced is exactly the minimum rate for which an
R-envelope ER(t) of the sequence V(t) exists inside the
constrained region:

(){ }tERR R∃= |min . (6)
At the beginning of the streaming session, the

RT_PS server works out the minimum rate R for the
audio sequence to be transmitted and contrasts it with
the available bandwidth R on the wireless link: the
streaming goes on only in case RR ≥ . Each possible
on-off schedule SR(t) for the sequence V(t) lies above
the R-envelope ER(t) of the same curve at a larger dis-
tance. This causes an increase in the need for buffer
space being the minimum client buffer size [23]:

() (){ }iRNiR fiSPViSPEB +∆⋅+−∆⋅+=
<≤0

max . (7)

The playback start point is the time instant when
playback starts. Assuming that the time when the
transmission starts is the time 0, the start point corre-
sponds to the initial delay. Though having a long initial
delay grants more time to do pre-buffering at the cli-
ent, and thus prevents the playback process to starve
due to the buffer underflow, some evidences suggest
keeping the initial delay short. Firstly, an increase in
the initial delay determines a decrease in the QoS that
the user perceives because he has to wait more to start
listening the selected song. Secondly, as stated in [23]
an increase in the initial delay causes an increase in the
total idle period (i.e., the sum of all the off-periods)
while the total on-period remains unmodified; this
leads in our solution to a higher power consumption
due to the energy, though minimum, consumed by the
WNIC in sleep mode.

Given the initial transmission rate R0, the minimum
possible initial delay corresponds to the distance,
measured on the X-axis (t), between the R0–envelope

()tE
R0 to the V(t) function and the V(t) function itself.

Using the R0/2-envelope ()tER 2/0 of the V(t) function

instead of the R0–envelope ()tER0 for the calculation,

the initial delay becomes longer and more guarantees
are offered against the playback process starvation.
The motivation for this assumption comes from the

following property of the envelope curves by [23]:
given two transmission rates R1, R2, 210 RR ≤≤ ,

t∀ , ∆⋅+<≤ NSPt0 ,)()(
21

tEtE RR ≥ . (8)
Therefore, with a higher rate the envelope curve is
closer to the playout function and the risk of underflow
greater. The lower the rate the farther the rate-
envelope, the less the underflow risk. An on-off sched-
ule starting with a transmission rate equal to R0, and an
initial delay computed by using the R0/2 envelope to
V(t), does not cause buffer underflow unless the trans-
mission rate falls down R0/2. This will be our choice
for the initial delay hereafter. However, when the ini-
tial transmission rate is particularly low, it is much
more convenient setting the initial delay to a boundary
limit tailored on the user QoS needs.

5.3. Sleep time-periods computation

The procedure we have just described to calculate

the initial delay is also used to calculate the duration of
an off-period. Suppose that the server has just sched-
uled and sent to the client S(t*) bytes. Suppose that,
according to the last estimation provided by the client,
the transmission rate is R*. Then, the maximum possi-
ble sleep time duration corresponds to the distance,
measured on the y=S(t*) horizontal axis, between S(t*)
and the R*–envelope ()tER* to the V(t) function. Intui-

tively, by assuming that R* will be available also in the
near future, the mobile host can sleep until the schedul-
ing function reaches ()tE

R* . In order to reduce the risk

for starvation of the playback process, we use the R*/2-
envelope ()tER 2/* curve instead of the R*–envelope

()tER* . A buffer underflow does not occur unless the

transmission rate falls down R*/2. An off-period can
start if the calculated off-period duration is greater than
the time that the WNIC needs to switch to the sleep
mode and subsequently resume: we have considered
this time is 1ms. When this condition is not verified
then the client buffer level is considered to be a low
water level because the scheduling function is very
close to the playback curve and a transmission inter-
ruption is too dangerous. In this case, the transmission
must continue even if the available bandwidth on the
wireless channel is low. Otherwise the client buffer
level is considered safe and an off-period can start. As
a final remark, it is worth noticing that the procedure
for off-periods’ calculation is invoked when the client
buffer fills up as well as when the transmission rate
becomes low (half the initial value) so stopping the

transmission can avoid increasing the congestion and
the total transfer delay.

6. Available Bandwidth Estimation

The transmission rate that the RT_PS protocol
largely uses for its computations corresponds to the
available bandwidth on the wireless channel. This is
why the RT_PS server when transmitting (on-periods)
forwards packets to the RT_PS client with the highest
possible rate so as to nearly saturate the bandwidth
available on the wireless channel (though for small
periods of time).

We use a very simple and fast technique for the
available bandwidth estimation with an accuracy that
suffices to our purposes. The RT_PS server sends
trains of back-to-back packets to the RT_PS client and
for each train the client works out the total number of
bytes it contains and the total transfer time since the
first packet has been sent to the time the last packet is
received. Therefore, the transfer time represents the
total time the channel spends to transfer a complete
packet train from the sender to the receiver. Once re-
ceived a complete packet train the client divides the
train length (the number of bits arrived) by its transfer
time and the result is the current available bandwidth.
For a good estimation two key factors must be consid-
ered: the packet train length and the size of each single
packet. For best accuracy the packet size should be
1472 bytes and a single packet train should include at
least 50 packets. The value 1472 corresponds to the
maximum possible UDP payload size which does not
suffer the MAC layer fragmentation2. Experimental
results show that under these best conditions the
maximum available bandwidth on a WLAN network is
about 6.35 Mbps when the WNIC data rate is 11
Mbps, 3.95 Mbps when the data rate is 5.5 Mbps and
1.69 Mbps when the data rate is 2 Mbps.

However, in our implementation, estimates are
worked out on the RT_PS traffic so a packet is an
RT_PS message which includes an RTP packet. The
RTP packet is further composed by ADU descriptor -
ADU frame couples which cannot be fragmented for
the sake of loss tolerance [19]. This leads to a great
variety of packet lengths and a decrease in estimation
accuracy. We have collected an integer value (greater

2 When packets transmitted during the streaming session are

shorter than 1472 bytes the overhead times introduced at the MAC
layer (according to the 802.11b standard) for each single transmis-
sion have a greater impact on the total transmission time and thus on
the resulting calculated throughput.

than one) of ADU descriptor - ADU frame couples into
a single RTP packet in order to keep the RT_PS packet
lengths as close as possible to the ideal value and bet-
ter exploit the wireless channel capacity. We have also
increased the packet train length to 60 instead of 50 in
order to make the total train length, in byte, closer to
the best value. This is generally possible in our sce-
nario except when the client buffer is small; in this
case the estimation accuracy decreases.

Nevertheless, even when working in absence of
competing traffic the streaming session cannot experi-
ence the best throughputs mentioned above. In fact,
according to the RT_PS scheduling algorithm, packets
cannot be transmitted back-to-back due to the evalua-
tion of the sleep conditions in between them. Hence,
the bandwidth estimation that the client provides dur-
ing the streaming session is necessarily error-prone.
Results show that a streaming session, in absence of
background traffic, is able to exploit up to 5.84 Mbps
(instead of 6.35 Mbps) with 11 Mbps data rate, up to
3.72 Mbps (instead of 3.95 Mbps) with 5.5 Mbps data
rate, and 1.63 Mbps (instead of 1.69 Mbps) with 2
Mbps data rate.

When changing the client buffer size another factor
appears to affect the bandwidth estimation: the number
of control messages exchanged between the client and
the server. When the client buffer is large, the RT_PS
schedule produces a small number of very long off-
periods. This results in a very bursty traffic where
transmissions are concentrated in small periods alter-
nated with long interruptions. As the client buffer size
decreases the number of interruptions increases
whereas their lengths decrease. In order to manage this
schedule, more control messages have to be sent, espe-
cially SLEEP messages [16]: they are shorter than the
AUDIO messages and therefore responsible for the
throughput to decrease. This behavior is much more
evident when the data rate is 2 Mbps because the num-
ber of off periods is even greater. With a 5.5 Mbps
data rate, variations in the available bandwidth esti-
mates range from 9 to 15%; with a 2 Mbps data rate,
they range from 4 to 29%. When adding background
traffic to the streaming flow the estimated available
bandwidth decreases accordingly. In our case, i.e., with
only one background flow, even when the requested
background throughput grows up, the available band-
width estimated by the RT_PS client, never goes down
900 Kbps, with a data rate of 2Mbps, 1.8 Mbps, with a
data rate of 5.5 Mbps, or 3.2 Mbps with a data rate of
11 Mbps, thus resulting in a fair bandwidth allocation
between the two competing traffics.

7. Performance Evaluation

In order to evaluate the effectiveness of the RT_PS
protocol, we have implemented a software prototype
and tested it. An experiment consisted of a single
streaming session where the server had to transmit to
the client the Mp3 audio file it had previously re-
quested. We have repeated the experimentation with
different client buffer sizes from 1 Mbytes down to 50
Kbytes and we have evaluated the impact of some
background traffic by adding a competing CBR traffic
flow during the streaming session. Moreover, we have
repeated the same experiments by changing the data
rate of the WNIC. During each single experiment we
have manually set the WNIC to work at a constant data
rate of either 2 Mbps or 5.5 Mbps or 11 Mbps.

Table2. I_PS vs. Client Buffer Size
Best Case: 11Mbps Data Rate, No Background Traffic

Client
Buffer Size

(Kbytes)

Average
Transmission
Rate (Mbps)

(%)
ONSLEEP

SLEEP

TT
T

+
 I_ps (%)

1000 5.74 96.69 9.76
500 5.76 97.32 9.17
200 5.84 97.24 9.24
100 5.82 97.23 9.25
50 5.62 96.79 9.66

In order to measure the energy saving, each experi-
ment produced the power saving index, I_ps, as the
ratio between the energy consumed by the WNIC dur-
ing the streaming session when the RT_PS layer
worked and the energy that it would have consumed if
the RT_PS layer had not worked [6], [7]:

PSRT

PSRT

E
E

psI
_

__ = , (9)

where:
() ()SLEEPSLEEPONONPSRT WTWTE ⋅+⋅=_ , (10)

()ONSLEEPONPSRT TTWE +⋅=_
 , (11)

TON giving the sum of all the on-periods, TSLEEP repre-
senting the sum of all the off-periods, and finally con-
sidering WON = 750 mW and WSLEEP = 50 mW [17].

As shown in Table 2, in absence of any interfering
traffic and when the data rate is 11 Mbps, the achiev-
able I_ps ranges from 9.17% to 9.76% depending on
the client buffer size. Hence, the best power saving is
90.83% of the energy globally consumed when no
power aware policy is provided.

When decreasing the data rate the I_ps grows up
and thus the energy saving decreases. When the data
rate is 5.5 Mbps, the I_ps ranges from 10.05% to

10.92% (up to 89.95% energy saving); whereas, when
the data rate is 2 Mbps it ranges from 14.54% to
16.26% (up to 85.46% energy saving).

Table3. I_PS vs. Client Buffer Size.
Worst Case: 2Mbps Data Rate, 2Mbps Background Traffic.

Client
Buffer Size

(Kbytes)

Average
Transmission
Rate (Mbps)

(%)
ONSLEEP

SLEEP

TT
T

+
 I_ps (%)

1000 1.017 84.84 20.82
500 1.063 85.80 19.92
200 1.037 86.38 19.38
100 .995 85.13 20.55
50 .854 81.71 23.74

The I_ps also goes up when some competing traffic
is added because, in order to prevent the playback
process starvation, the WNIC is kept ON and working
for much more time and this results in a lower energy
saving. The greater the throughput of the background
traffic, the higher the I_ps. In Table 3 the worst per-
formance of our solution is presented. It is obtained by
combining the minimum data rate (2 Mbps) and the
maximum transmission rate of the background traffic
(2 Mbps). As can be seen the I_ps equals 23.74% in
the worst case thus leading to 76.26% energy saving.

In both Table 2 and 3 I_ps variations are evident
when the client buffer size changes. These variations
are not easy to foresee because they are connected to
the fluctuations of the ratio:

ONSLEEP

SLEEP

TT
T

+
 , (12)

where both TON and TSLEEP always change together and
with the same sign. When TON grows up due to a de-
crease in the transmission rate, also TSLEEP grows up
because of the increase of the initial delay. On the
other hand, when TSLEEP goes down due to a transmis-
sion rate increase, also TON goes down because less
time is needed in order to transfer the same number of
bytes. Experimental results show that when the client
buffer size decreases, the ratio (12) increases until it
reaches a maximum value, then starts decreasing. The
I_ps ratio, consequently, decreases first, then increases.
The best I_ps value (the minimum) corresponds to a
client buffer size which ranges from 500 Kbytes to 100
Kbytes. However, in most experiments it corresponds
to 200 Kbytes.

Finally, we have repeated the experimentation by
changing the burstiness of the competing traffic flow.
In this set of experiments the CBR traffic generator has
delivered, instead of one single packet at a time, one
burst of packets at a time. We have used bursts of 2, 4,
8, 16, 32 and 264 packets in different experiments and
we have found that as the number of packets per burst

increases, the ratio (12) also increases and hence the
I_ps goes down (even though very slowly). This be-
havior can only be seen when the transmission rate of
the background traffic is less than the maximum
throughput that it can achieve on the wireless link. In
Table 4 the I_ps changes are shown when the number
of packets sent per single burst of the background traf-
fic also changes. These results have been obtained with
a data rate of 5.5 Mbps and background traffic of 1
Mbps.

During the experimentation, initial playback delays
have always been less than 2s. Moreover, the sum of
the discarded frames (because expected not to arrive in
time for playback) and the lost frames has always been
less than 5% of the total number of frames. These
losses are negligible since, when transmitting real-time
traffic, losses up to 20% of the total number of frames
can be tolerated if loss concealment techniques are
implemented at the receiver.

8. Acknowledgements

This work has been carried out under the financial
support of the Fondazione Cassa di Risparmio di Pisa
in the framework of the SMILE project.

9. Conclusion

In this paper we have investigated a wireless sce-
nario for multimedia streaming applications and pro-
posed a solution which provides streaming services
between a fixed host and a mobile host while imple-
menting power saving strategies in order to reduce the
energy consumption due to the WNIC activity of the
mobile device. Specifically, we have focused on audio
streaming services for Mp3 files.

Our architecture is based on an indirect-model that
splits the connection between the server, on the fixed
host, and the client, on the mobile host, in two parts:
one between the mobile host and the Access Point and
the other between the Access Point and the fixed host.

Table4. I_ps vs. Background Traffic Burstiness:
1Mbps Background Traffic, 5.5 Mbps Data Rate

Packets per
burst

Average
Transmission
Rate (Mbps)

(%)
ONSLEEP

SLEEP

TT
T

+

I_ps (%)

2 2.73 94.96 11.37
4 2.75 94.94 11.39
8 2.77 94.96 11.37
16 2.83 95.04 11.30
32 2.90 95.52 10.85

264 3.04 95.88 10.51

The power saving strategy is applied to the wireless
connection between the Access Point and the mobile
host. We have designed an RT_PS (Real Time and
Power Saving) protocol that, by exploiting an adaptive
on-off schedule for transmission of the audio frames to
the mobile host, periodically provides time intervals
where the mobile host can let its WNIC assume a low-
power consuming state, i.e., a sleep-mode, and resume
it later in order to keep on receiving frames. The
RT_PS schedule policy considers that when the avail-
able bandwidth on the wireless link is high it is better
to transmit until the client buffer becomes full and then
stop; when the available bandwidth is low instead it is
better to stop first, wait a while and then keep on re-
ceiving. Anyway, each schedule decision must con-
sider the risk for the playback starvation (i.e., for the
client buffer underflow) and avoid it.

We have implemented a software prototype for both
the RT_PS client and server and tested it. Experimental
results show that this solution can produce up to
90.83% energy saving when working with 11Mbps
data rate, 89.95% with a data rate of 5.5 Mbps, up to
85.46% with a data rate of 2 Mbps. We have also ob-
served that energy savings change with the client
buffer size, however high energy savings are experi-
mented also for small client buffers (less than 200
Kbytes). When the streaming session competes with
some background traffic another influencing factor
arises i.e., the burstiness: the higher the burstiness the
higher the saving.

9. References

[1] W. Feng and J. Rexford, “A comparison of bandwidth

smoothing techniques for the transmission of prere-
corded compressed video,” in Proc. of the IEEE INFO-
COM, Apr.1997, pp. 58–66.

[2] G. Anastasi, M. Conti, W. Lapenna, “Power Saving
Policies for Wireless Access to TCP/IP Networks”, in
Proc. of the 8-th IFIP Workshop on Performance Mod-
elling and Evaluation of ATM and IP Networks (IFIP
ATM&IP2000), Ilkley (UK), July 17-19, 2000.

[3] R. Kravets, P. Krishnan, “Power Management Tech-
niques for Mobile Communication”, in Proc. of the 4th
Annual ACME/IEEE International Conference on Mo-
bile Computing and Networking (Mobicom ‘98).

[4] A. Bakre, B. R. Badrinath, “Implementation and Per-
formance Evaluation of Indirect TCP”, IEEE Transac-
tions on Computers, Vol. 46, No. 3, March 1997.

[5] M. Meyer, J. Sachs, M. Holzke, “Performance Evalua-
tioin of a TCP Proxy in WCDMA Networks”, in Proc.
of the ACM MobiCom 2002, Sept. 2002.

[6] G. Anastasi, M. Conti, E. Gregori, A. Passarella, “Per-
formance Comparison of Power Saving Strategies for

Mobile Web Access”, Performance Evaluation Jour-
nal, Vol. 53, Issue 3-4, August 2003, pp. 273-294.

[7] G. Anastasi, M. Conti, E. Gregori, A. Passarella,
“Balancing Energy Saving and QoS in the Mobile Inter-
net: An Application-Independent Approach”, in Proc. of
the 36th Hawaii International Conference on System
Sciences (HICSS-36), Hawaii, January 6-9, 2003

[8] M. Stemm, R. H. Katz, “Measuring and Reducing En-
ergy Consumption of Network Interfaces in Hand-Held
Devices”, in Proc. of the 3rd International Workshop on
Mobile Multimedia Communication, Princeton, NJ, Sep-
tember 1996.

[9] S. Chandra, “Wireless Network Interface Energy Con-
sumption Implications of Popular Streaming Formats”,
Multimedia Systems, Vol. 9, No. 2, August 2003.

[10] S. Chandra, A. Vahdat, “Application-specific Network
Management for Energy-Aware Streaming of Popular
Multimedia Formats”, in Proc. of the General Track:
2002 USENIX Annual Technical Conference, 2002.

[11] P. Shenoy, P. Radkov, “Proxy-Assisted Power-Friendly
Streaming to Mobile Devices”, Multimedia Computing
and Networking, 2003.

[12] G. Anastasi, M. Conti, A. Passarella, “Power Manage-
ment in Mobile and Pervasive Computing Systems” in
Algorithms and Protocols for Wireless and Mobile Net-
works, Azzedine Boukerche (Editor), CRC_Hall Pub-
lisher, 2005.

[13] Web site of IEEE 802.11 WLAN:
http://grouper.ieee.org/groups/802/11/main.html.

[14] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson,
“RTP: A Transport Protocol for Real-Time Applica-
tions”, Internet-draft, updates RFC 1889, March 2003,
http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-
new-12.ps.

[15] H. Schulzrinne, “RTP site” ,
http://www.cs.columbia.edu/~hgs/rtp/, 1999.

[16] Technical report, IIT-CNR, February 2005,
http://bruno1.iit.cnr.it/~bruno/techreport.html.

[17] R. Krashinsky, H. Balakrishnan, “Minimizing Energy
for Wireless Web Access with Bounded Slowdown”, in
Proc. of the ACM International Conference on Mobile
Computing and Networking (Mobicom 2002).

[18] R. Finlayson, “A More Loss-Tolerant RTP Payload
Format for MP3 Audio”, Internet-draft, updates RFC
3119, October 2004,
http://www.cs.columbia.edu/~hgs/rtp/drafts/draft-ietf-
avt-rfc3119bis-03.txt.

[19] H. Schulzrinne, A. Rao, R. Lanphier, “Real Time
Streaming Protocol (RTSP)”, Internet-draft, updates
RFC 2326, February 2004,
http://www.rtsp.org/2004/drafts/draft06/draft-ietf-
mmusic-rfc2326bis-06.txt.

[20] M. Handley, S. Floyd, J. Padhye, J. Widmer, “TCP-
Friendly Rate Control (TFRC): Protocol Specification”,
RFC 3448, January 2003,
http://www.faqs.org/rfcs/rfc3448.html.

[21] C. Huitema, “Real Time Control Protocol (RTCP): at-
tribute in Session Description Protocol (SDP)”, RFC

3605, October 2003,
http://www.faqs.org/rfcs/rfc3605.html.

[22] L. Gharai, “RTP Profile for TCP-Friendly Rate Con-
trol”, Internet-draft, August 2004,
http://macc.east.isi.edu//tfrc-profile.txt.

[23] J. Zhang, “Optimal buffering algorithms for client-
server VBR video retrievals”, PhD thesis, Rutgers Uni-
versity, 1996.

[24] J. Zhang, J. Y. Hui, “Traffic characteristics and smooth-
ness criteria in VBR video traffic smoothing”, in Proc.
IEEE International Conference on Multimedia Comput-
ing and Systems, June 1997.

[25] L. Huang, F. Hartung, U. Horn, M. Kampmann, “A
Proxy-based TCP-friendly streaming over mobile net-
works”, in Proc. of the 5th ACM international workshop
on Wireless mobile multimedia, Atlanta, September
2002.

