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Abstract 
 

Smart environments are becoming popular and even 
more users are approaching their services through 
portable devices like PDAs, laptops, and mobile 
phones. These devices are generally battery-fed, thus, 
energy efficiency is surely a critical factor for the de-
ployment of pervasive services.  

In this paper we focus on the diffusion of multimedia 
streaming services in smart environments. Specifically, 
we investigate scenarios where mobile users who have 
a Wi-Fi access to the Internet receive audio files from 
remote streaming servers. We address energy saving 
by including periodic transmission interruptions in the 
schedule of audio frames at the server, so that the net-
work interface card at the receiver can be set to a low-
power consuming state.  

Experimentation on a software prototype shows that 
our solution makes possible an energy saving ranging 
from 76% to 91% (depending on the data rate and the 
background traffic) of the total consumption due to the 
network interface. It also preserves a good user level 
QoS.  
 
1. Introduction 
 

The growing interest that people are showing in 
pervasive environments is encouraging migration of 
popular Internet services to mobile users. However, 
since deep differences exist between mobile devices 
and desktop computers, much effort must be spent to 
adapt the classical Internet applications to the world of 
wireless. Multimedia streaming services are envisioned 
to become very popular in mobile environments thus, 
in this paper, we focus on the development of stream-
ing solutions for mobile users with emphasis on energy 
efficiency that we consider a key factor for the de-
ployment of pervasive environments. 

Streaming is a distributed application which pro-
vides on-demand transmission of audio/video files 
from a server to a client over the Internet while allow-
ing playback of the arriving file chunks at the client. 
Playback starts a few seconds (initial delay) after the 
client receives the first chunk of the requested file and 
goes on while later parts of the file still arrive. Before 
playback, arriving chunks are temporarily stored at the 
client in a buffer. 

The streaming service must guarantee a good play-
back quality. This fixes strict time-constraints to the 
transmission process because a timely delivery of 
packets is needed in order to ensure their availability at 
the client for playback.  

Since constant-quality encoded audio/video files 
produce variable-bit-rate (VBR) streams, the resource 
allocation through the Internet during a streaming ses-
sion is a hard task, and one of the main goals for a 
streaming server must be the design of a transmission 
schedule that tunes the outgoing traffic to the desired 
network and client resource usage, while obviously 
respecting the playback time constraints. A good 
scheduling algorithm is characterised by efficient use 
of the available network resources without overflow-
ing or underflowing the client buffer. Moreover, it 
should minimize the delay before playback starts be-
cause users do not generally tolerate high initial delays 
(greater than 5-10s) especially when waiting for short 
sequences. Many smoothing algorithms have been 
proposed in the literature [1], however no one can be 
elected as the best because the performance metrics to 
be considered are conflicting and cannot be optimised 
all together. These metrics are: (i) peak bandwidth 
requirement, (ii) variability of transmission rate, (iii) 
number of rate changes, (iv) client buffer utilization, 
(v) additional computational burden to the server. 
Moreover, the same algorithm generally performs dif-
ferently when applied to different media streams with 



different burstiness. As a result, the most suitable 
smoothing algorithm changes every time depending on 
the particular resource allocation model adopted at the 
server, at the client and at the network routers, as well 
as on the particular performance goals of the system 
components.  

In this paper we focus on streaming services in wire-
less scenarios where servers are intended to be fixed 
hosts in the Internet whereas clients are on mobile de-
vices (e.g., PDAs, laptops or mobile phones with wire-
less network interfaces) and access the Internet 
through an intermediate base station. We assume the 
presence of a proxy between the client and the server 
since proxies are commonly used to boost wireless 
network performances. In this environment we concen-
trate on energy efficiency because, since mobile de-
vices are battery-fed, this is a key factor in the devel-
opment of applications for mobile scenarios [12]. We 
will provide a solution that allows the energy con-
sumption due to the Wireless Network Interface Card 
(WNIC) to go down to 9-24% of the energy consump-
tion achieved by current systems.   

Another challenging goal, in this area, is certainly 
minimizing the client buffer size, as memory costs for 
mobile devices are still high. We will demonstrate that 
our solution achieves good energy savings even with 
small buffers, i.e., down to 50 Kbytes. 

Hereafter we will refer to WLAN 802.11b environ-
ments therefore we will consider that access to the 
Internet is provided to mobile hosts by the means of 
Access Points. However, our solution is flexible 
enough to adapt to any type of infrastructure-based 
wireless LAN. 

 
The remainder of the paper is organized as follows. 

In Section 2 we will investigate some related work on 
power management solutions with emphasis on those 
tailored on real-time streaming applications. Sections 
3, 4 and 5 will be devoted to describing our power-
saving solution. In Section 6 we will provide experi-
mental results assessing the system effectiveness, and 
we will draw our conclusion in Section 7.  
 
2. Related Work  
 

Energy consumption issues in wireless networks 
have been addressed in many papers. [2] and [3] found 
that one of the most energy-consuming components in 
mobile devices is the WNIC since networking activi-
ties are responsible for up to the 50% of the total en-
ergy consumption (10% in laptops, up to 50% in hand-

held devices). In order to reduce the activity of the 
WNIC, [4] targeted the reduction of transfer delays 
over the Internet and first proposed an alternative to 
the classical TCP-IP architecture for the management 
of communications between mobile hosts and fixed 
hosts: the indirect-TCP. It splits the connection be-
tween the mobile host and the fixed host in two parts, 
one between the mobile host and the Access Point, the 
other between the Access Point and the fixed host. At 
the Access Point a running daemon is in charge of re-
laying data between the two connections. The Indirect-
TCP correctly handles wireless losses and avoids the 
throughput reduction due to the combined action of 
such losses and the TCP congestion control so the total 
transfer delay significantly reduces. Further improve-
ments are possible by adding proxy facilities at the 
Access Point. The TCP proxy shields the wireless link 
from packet losses in the Internet leading to better link 
utilization and throughput [5]. 

Nevertheless, the reduction of the total transfer de-
lay can only produce a slight energy saving in contrast 
to the significant gains that can be achieved by switch-
ing the WNIC off when not actually working and by 
exchanging messages at the maximum rate allowed by 
the network channel when working. As stated in [2], 
[8], during the total transfer delay the WNIC consumes 
almost the same both in receiving, transmitting and 
idle state. As a result, the burstiness of the traffic, 
which is responsible for even long idle periods, natu-
rally leads to energy wastage. [2], [3], [6], and [7] han-
dle power saving in an Indirect-TCP architecture by 
switching off the WNIC during inactivity time periods. 
[6] proposes an application dependent approach tai-
lored on web applications and exploits the knowledge 
of statistical models for web traffic to predict packet 
arrival times and switch the WNIC off between con-
secutive arrivals. [7] proposes an application inde-
pendent approach and suits much more traffic types. 

Solutions mentioned so far are not good for stream-
ing applications because of the time-constraints im-
posed to the transmission process. Existing power 
management solutions for real-time applications are 
targeted to both switch the WNIC to a sleep (doze) 
mode during inactivity time periods and reduce the 
total transfer delay of the streaming session.  

Transcoding techniques have been introduced to 
shorten the size of audio/video streams so as to reduce 
the transfer delay. However, while leading to little en-
ergy savings (see above), these techniques may deter-
mine a significant reduction in the stream quality.  



A power management system that exploits the sleep 
mode of WNICs is described in the IEEE 802.11 stan-
dard: it is the PSM (Power Saving Mode) protocol 
[13]. However, as stated in [10], it only performs well 
when the arriving traffic is regular, whereas it is not 
suitable for popular multimedia streams; therefore, 
hereafter we will consider the PSM not being active.  

Application layer techniques have been proposed in 
order to make predictions on the arriving traffic so as 
to switch the WNIC on when a packet is expected to 
arrive and to the sleep mode when an idle period is 
expected to start. [9], [11] propose solutions with client 
side predictions of the inter-arrival periods based on 
the history of the experimented inter-arrival periods in 
the past. Wrong predictions result in packet loss and in 
the worsening of the quality perceived during play-
back. Moreover, low packet loss probability and high 
energy saving are conflicting targets and a tradeoff 
must be met. Techniques based on client predictions 
can lead to energy saving ranging between 50% and 
80% [9]. As for the PSM case, however, the best per-
formances are achieved when the incoming traffic is 
regular. Traffic shaping can help predictions at the 
client become effective. However, an intermediate 
proxy must be introduced because transmission over 
the Internet change the traffic profile by adding jitter to 
the packets, thus performing traffic shaping at the 
server is useless. The power saving solutions proposed 
in [10] and [11] perform traffic shaping at the proxy 
and make use of client side predictions on idle periods 
in order to set the WNIC to the sleep mode. [11] also 
proposes a second solution where predictions are 
proxy-assisted. The proxy sends to the client all the 
packets of an interval in a single burst, and then in-
forms the client that the transmission will go on after a 
sleep time period. The client can set the WNIC to the 
sleep mode for all that entire time period. [11] achieves 
a total energy saving which ranges from 65% to 85% 
when using client side predictions and from 80% to 
98% with proxy-assisted predictions. These results are 
worked out by summing up contributions from both 
the WNIC, which is set to the sleep mode during inac-
tivity time periods, and the CPU whose utilization (for 
decoding) is decreased thanks to transcoding tech-
niques used to shrink the stream. 

The power management solution that we propose 
makes use of a proxy-based architecture where the 
proxy is in charge of planning transmission to the cli-
ent: it alternates periods of transmission and periods of 
non-transmission and warns the client of a non-
transmission period when it starts. It also informs the 

client of the duration of the next non-transmission pe-
riod so as it can set the WNIC’ sleep mode for all that 
entire period. As novelty we propose that plans of 
transmission are dynamically obtained by considering 
the available bandwidth on the wireless link together 
with the current client buffer level.  

We concentrate on Stored Audio Streaming applica-
tions and mainly refer to audio files which are MP3 
coded. Since MP3 compression already reduces the 
quality of the audio stream to a boundary limit, we 
decide not to make use of transcoding techniques so as 
to preserve the remaining audio quality. We believe 
that only video streams can take advantage from 
transcoding techniques because they allow significant 
shrinkage of the file without severely affecting the 
playback quality (see [11]). 

 
3. Proxy-based Architecture and Power 
Saving Strategies 
 

The proxy-based architecture we refer to in our so-
lution is depicted in Figure 1: the connection between 
the mobile host and the fixed host is split like in the 
Indirect-TCP model. Moreover, on the wired and wire-
less connections two different goals are targeted: on 
the wireless link the major goal is to reduce the energy 
consumption whereas on the wired connection a clas-
sical approach to the streaming with smoothness goals 
is provided.  
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Figure1. Streaming architecture for a wireless scenario. 

This differentiation is due to the fact that by reduc-
ing the peak transmission rate the traffic smoothing 
also increases the total transfer delay over the Internet 
thus conflicting with the power saving objectives. 

The streaming server is located at the fixed host and 
sends streams to the Access Point. Its scheduling pol-
icy is smoothness-driven. Real-time data are encapsu-
lated in RTP (Real Time Protocol [14], [15]) packets 
while the Real Time Streaming Protocol (RTSP) [19] is 
used in order to exchange playback control informa-
tion with the other streaming peer.  

Since RTP uses UDP as underlying transport proto-
col, which provides no built-in congestion control 
mechanism, the presence of multimedia traffic in the 
Internet can potentially lead to congestion. The TCP-



Friendly Rate Control (TFRC [21]) protocol adaptively 
establishes an upper bound to the server transmission 
rate thus leading to congestion avoidance. RTP and 
RTCP (Real Time Control Protocol [21]) packets are 
used in order to carry TFRC information [22]. Proxy 
facilities are located at the Access Point as well as a 
running daemon which is in charge of relaying streams 
arriving from the server to the mobile host. 

The RT_PS (Real Time and Power Saving) protocol 
that we have designed is located on top of the UDP 
transport layer on both the Access Point and the mo-
bile host and is responsible for the power management 
during a streaming session. Since the main contribu-
tion of this paper is energy efficiency, hereafter we 
will only concentrate on the mobile host and the Ac-
cess Point and will assume that an application layer 
with the streaming server is present at the Access 
Point. 

According to the RT_PS protocol the proxy sched-
ules packets to the client in an on-off fashion. During a 
streaming session, the time can be subdivided, from 
the wireless net standpoint, in transmission periods, 
i.e., on-periods, and non-transmission periods, i.e., off-
periods. During on-periods the proxy transmits frames 
to the mobile host at the highest possible rate whereas 
during off-periods the mobile host sets the WNIC to 
the sleep mode. The traffic shaping that we propose 
exploits a priori knowledge of the frame lengths, the 
knowledge of the client buffer size and an estimate of 
the current available bandwidth on the wireless link 
which corresponds to the maximum throughput that 
the proxy can exploit for transmission. During an on-
period the proxy decides whether to stop transmitting 
or not depending on the available bandwidth: when 
high it continues transmitting until it fills up the client 
buffer; when low, it stops transmitting in order to 
avoid increasing congestion and transfer delay. The 
duration of an off-period is decided by the proxy when 
it stops transmitting and depends on the client buffer 
level: an off-period ends when the client buffer level 
falls down a dynamic threshold, low water level, that 
warns the proxy about the risk of a playback starva-
tion. The low water level depends on the available 
bandwidth too: when the current available bandwidth 
is low then the low water level is high in order to pre-
serve a large supply for the playback process; when the 
current available bandwidth is high the low water level 
is lower since the proxy can quickly feed the buffer 
and the risk of underflow is very low. Finally, in order 
to avoid bandwidth wastage, only frames that are ex-

pected to arrive in time for their playback are delivered 
to the client whereas the others are discarded. The 
computation of frame arrival times makes use of the 
estimate of the available throughput on the wireless 
link.  

Together with the presence of a buffer at the client, 
where arriving frames are stored in advance of their 
playback times, our solution also exploits an initial 
playback delay and the amount of pre-buffered data 
depends on its duration. Anyway, it is worth noticing 
that an initial playback delay and a client buffer are 
always needed in case of streaming applications in 
order to consider the transfer delay and absorb the jit-
ter. 
 
4. The RT_PS Protocol 
 

The RT_PS protocol is distributed on a client at the 
mobile device and on a server at the Access Point. The 
RT_PS server main facilities are: transmitting the au-
dio frames to the mobile host; calculating the client 
buffer level by keeping into consideration the progres-
sion of both the transmission and the playback proc-
esses; evaluating the possibility to stop transmitting 
and let the WNIC of the receiving mobile device as-
sume a low power consuming state; calculating the 
duration of the sleep periods for the WNIC of the mo-
bile device while preventing the playback process to 
starve due to the client buffer underflow.  

The RT_PS client main facilities are: sending the re-
quest for the audio file to the proxy also specifying the 
available buffer size; receiving and interpreting the 
arriving messages from the proxy containing either 
audio content or commands; collecting the audio 
frames in a buffer where the media player can take and 
play them out; evaluating the available bandwidth on 
the wireless channel and forwarding its estimates to the 
RT_PS server; updating the playback start point upon 
proxy notification; triggering the playback process 
when the start point elapses; commanding for the 
WNIC to be set to the sleep mode upon receipt of a 
sleep command from the proxy and for its raising up 
when the sleep time finishes. 

Details on the key components of the RT_PS proto-
col follow in Sections 5 and 6. Due to the lack of 
space, the complete description of the RT_PS server 
and client behaviours is omitted here, however it can 
be found in [16]. 



 

 
5. Computation of Start Point and Sleep 
Time Intervals  

 
Before describing the computation details that this 

section is devoted to, an introduction is needed on the 
specific terminology that will be used. It follows.  

 
5.1. Analytical model 

  
An MP3 audio file is a sequence of frames and its 

playback begins at the start point (SP) which specifi-
cally is the time when the first frame of the file is 
played out. From then on, each subsequent frame must 
be played out starting at fixed, equally spaced, times 
called playback times. In Figure 2 the playback process 
is represented in a graphical model ([1], [23]) whose 
symbols are explained in Table 1. 

Given ∆  the time that a single frame playback 

lasts1, V(t) is the playback function and represents the 
total number of bytes played out by the time t: 
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where k = 0..N-1. During a streaming session, frames 
arriving to the client for playback are collected in a 
buffer: let the size of the buffer be B. The playback 
process extracts one single frame at a time from the 
client buffer at their playback times. Therefore the cli-
ent buffer level, at the time instant t, is the difference 
between the total number of bytes arrived at the client 
by the time t, and the total number of bytes already 
played back, i.e., V(t). Playback times are actual dead-
lines for frames arriving from the server to the client 
and consequently for frames delivered at the server.  

 S(t) gives the total number of bytes which the server 
has already sent to the client by the time t. Since the 
server must transmit enough data to the client in order 
to support the playback process and avoid client buffer 
underflows, the relation: ( ) ( )tVtS ≥  must be true. 

( )tV B  is an upper bound for the server delivery proc-
ess (being B the client buffer size): whenever the 
server sends more than ( )tV B  bytes to the client by 
the time t an overflow occurs at the client buffer. 
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where k = 1..N-1. The schedule S(t) followed by the 
server in order to transmit packets to the client must be 
within the two mentioned curves:  
( ) ( ) ( )tVtStV B≤≤  . (3)  
When traffic-smoothing goals are targeted, the 

scheduling curves are polyline functions with line 
segments of different slopes corresponding to different 
transmission rates (Ri is the i-th transmission rate). Our 
scheduling curve is also a polyline and it alternates line 
segments with zero slope (off-periods) to line seg-
ments with non-zero slope (on-periods). The function 
A(t) –omitted in Figure 1- giving the number of bytes 
already arrived at the client by the time t is such that 

)()( tAtS ≥  and it strongly depends on the transfer 
delay between the server and the client and on the jit-
ter. However, when investigating streaming issues it is 
generally assumed that S(t)=A(t); variations between 
the two curves are finally taken into account by 
slightly enlarging the client buffer size so as it can ab-
sorb both the jitter and the transfer delay. Therefore 

                                                           
1 ∆  is the number of samples inside a single frame divided by the 

sampling frequency. 
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Figure2. Streaming model under real-time constraints: 
graphical model. 

Table1. Symbols used in the Streaming Model 

Symbol Meaning 

∆  
The time interval between two consecutive 
frames. 

N The number of frames in the multimedia file. 
fi, Ni <≤0  The size of the i-th frame in the multimedia file. 

∑
−

=

=
1

0

N

i
ifM  

The size of the multimedia file. 

iNi
fB

<≤
≥

0
max  

The size of the client buffer,  

S(t) Scheduling function. 

Ri i-th transmission rate. 

SP Start Point: when the playback begins. 

V(t) The playback curve. 

( )tV B  The upper bound constraint to the scheduling 
function.  



hereafter we will assume that S(t)=A(t). 
 

5.2. Initial delay computation 
  
A deep investigation on properties of on-off sched-

ules when transmitting VBR traffic at a constant rate R 
can be found in [23] and [24]. They demonstrate that, 
given the constrained region delimited by the functions 
V(t), VB(t), t=0, y=0 and y=M (see Figure 1), it is not 
always possible to schedule a file in an on-off fashion 
but when the transmission rate is greater than a mini-
mum value, hereafter referred to as R  (see below). 
Moreover when RR ≥ , given V(t) the playback func-
tion for the file to be played out and B the client buffer 
size, many on-off schedules are possible differing for 
the start point value and the number, position and dura-
tion of the off-periods. Anyway, a minimum on-off 
schedule can be found, R-envelope ER(t) of the se-
quence V(t), and for every possible on-off schedule 
SR(t) the following is true: 

t∀ , ∆⋅+<≤ NSPt0 , ( ) ( )tEtS RR ≥ ; (4) 
where N is the total number of frames which compose 
the file, and ∆  is the time the playback process spends 
playing a single frame. ER(t) is the nearest possible on-
off schedule to the playback curve V(t) and its formal 
definition can be found in [23], however for our pur-
poses the definition of the [ ]kER  sequence may suffice 
[25] which is composed by the samples picked up by 
the ER(t) continuous function at regular time intervals. 
It can be easily obtained starting from the end: the last 
value corresponds to the end of the playout curve at 
the last playback time when ∆⋅−+= )1(NSPt  and 
V(t)=M, so MNER =− ]1[ . From there, a descending 
line segment with slope R must be drawn which ends 
at the previous playback time, i.e., ∆ s before, when 

∆⋅−+= )2(NSPt . If the ending point of the segment 
is higher than the value of the playout curve V(t) (at 
that playback time) then the ending point itself is the 
new sample ]2[ −NER . Otherwise the value of the 
playout curve is taken as ]2[ −NER . Again, starting 
from the new sample, a new R-sloped line segment 
must be drawn till the previous playback time. The 
new sample, again, is the maximum between the end-
ing point of the line segment and the playback curve. 
By repeating this procedure until the time t=0 is 
reached, all the samples of the sequence [ ]kER  are 
obtained. More formally: 
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where Nk <≤0  and ∆R  is the total number of bytes 
which can be transmitted during the time interval ∆  
when the transmission rate is R.  

The minimum rate R  that allows an on-off schedule 
to be traced is exactly the minimum rate for which an 
R-envelope ER(t) of the sequence V(t) exists inside the 
constrained region: 

( ){ }tERR R∃= |min  . (6) 
At the beginning of the streaming session, the 

RT_PS server works out the minimum rate R  for the 
audio sequence to be transmitted and contrasts it with 
the available bandwidth R on the wireless link: the 
streaming goes on only in case RR ≥ . Each possible 
on-off schedule SR(t) for the sequence V(t) lies above 
the R-envelope ER(t) of the same curve at a larger dis-
tance. This causes an increase in the need for buffer 
space being the minimum client buffer size [23]: 

( ) ( ){ }iRNiR fiSPViSPEB +∆⋅+−∆⋅+=
<≤0

max  . (7) 

The playback start point is the time instant when 
playback starts. Assuming that the time when the 
transmission starts is the time 0, the start point corre-
sponds to the initial delay. Though having a long initial 
delay grants more time to do pre-buffering at the cli-
ent, and thus prevents the playback process to starve 
due to the buffer underflow, some evidences suggest 
keeping the initial delay short. Firstly, an increase in 
the initial delay determines a decrease in the QoS that 
the user perceives because he has to wait more to start 
listening the selected song. Secondly, as stated in [23] 
an increase in the initial delay causes an increase in the 
total idle period (i.e., the sum of all the off-periods) 
while the total on-period remains unmodified; this 
leads in our solution to a higher power consumption 
due to the energy, though minimum, consumed by the 
WNIC in sleep mode.  

Given the initial transmission rate R0, the minimum 
possible initial delay corresponds to the distance, 
measured on the X-axis (t), between the R0–envelope 

( )tE
R0  to the V(t) function and the V(t) function itself. 

Using the R0/2-envelope ( )tER 2/0  of the V(t) function 

instead of the R0–envelope ( )tER0  for the calculation, 

the initial delay becomes longer and more guarantees 
are offered against the playback process starvation. 
The motivation for this assumption comes from the 



following property of the envelope curves by [23]: 
given two transmission rates R1, R2, 210 RR ≤≤ ,  

t∀ , ∆⋅+<≤ NSPt0 , )()(
21

tEtE RR ≥  . (8) 
Therefore, with a higher rate the envelope curve is 
closer to the playout function and the risk of underflow 
greater. The lower the rate the farther the rate-
envelope, the less the underflow risk. An on-off sched-
ule starting with a transmission rate equal to R0, and an 
initial delay computed by using the R0/2 envelope to 
V(t), does not cause buffer underflow unless the trans-
mission rate falls down R0/2. This will be our choice 
for the initial delay hereafter. However, when the ini-
tial transmission rate is particularly low, it is much 
more convenient setting the initial delay to a boundary 
limit tailored on the user QoS needs.  
 
5.3. Sleep time-periods computation 

 
The procedure we have just described to calculate 

the initial delay is also used to calculate the duration of 
an off-period. Suppose that the server has just sched-
uled and sent to the client S(t*) bytes. Suppose that, 
according to the last estimation provided by the client, 
the transmission rate is R*. Then, the maximum possi-
ble sleep time duration corresponds to the distance, 
measured on the y=S(t*) horizontal axis, between S(t*) 
and the R*–envelope ( )tER*  to the V(t) function. Intui-

tively, by assuming that R* will be available also in the 
near future, the mobile host can sleep until the schedul-
ing function reaches ( )tE

R* . In order to reduce the risk 

for starvation of the playback process, we use the R*/2-
envelope ( )tER 2/*  curve instead of the R*–envelope 

( )tER* . A buffer underflow does not occur unless the 

transmission rate falls down R*/2. An off-period can 
start if the calculated off-period duration is greater than 
the time that the WNIC needs to switch to the sleep 
mode and subsequently resume: we have considered 
this time is 1ms. When this condition is not verified 
then the client buffer level is considered to be a low 
water level because the scheduling function is very 
close to the playback curve and a transmission inter-
ruption is too dangerous. In this case, the transmission 
must continue even if the available bandwidth on the 
wireless channel is low. Otherwise the client buffer 
level is considered safe and an off-period can start. As 
a  final remark, it is worth noticing that the procedure 
for off-periods’ calculation is invoked when the client 
buffer fills up as well as when the transmission rate 
becomes low (half the initial value) so stopping the 

transmission can avoid increasing the congestion and 
the total transfer delay. 
 
6. Available Bandwidth Estimation  
 

The transmission rate that the RT_PS protocol 
largely uses for its computations corresponds to the 
available bandwidth on the wireless channel. This is 
why the RT_PS server when transmitting (on-periods) 
forwards packets to the RT_PS client with the highest 
possible rate so as to nearly saturate the bandwidth 
available on the wireless channel (though for small 
periods of time).  

We use a very simple and fast technique for the 
available bandwidth estimation with an accuracy that 
suffices to our purposes. The RT_PS server sends 
trains of back-to-back packets to the RT_PS client and 
for each train the client works out the total number of 
bytes it contains and the total transfer time since the 
first packet has been sent to the time the last packet is 
received. Therefore, the transfer time represents the 
total time the channel spends to transfer a complete 
packet train from the sender to the receiver. Once re-
ceived a complete packet train the client divides the 
train length (the number of bits arrived) by its transfer 
time and the result is the current available bandwidth. 
For a good estimation two key factors must be consid-
ered: the packet train length and the size of each single 
packet. For best accuracy the packet size should be 
1472 bytes and a single packet train should include at 
least 50 packets. The value 1472 corresponds to the 
maximum possible UDP payload size which does not 
suffer the MAC layer fragmentation2. Experimental 
results show that under these best conditions the 
maximum available bandwidth on a WLAN network is 
about 6.35 Mbps when the WNIC data rate is 11 
Mbps, 3.95 Mbps when the data rate is 5.5 Mbps and 
1.69 Mbps when the data rate is 2 Mbps.  

However, in our implementation, estimates are 
worked out on the RT_PS traffic so a packet is an 
RT_PS message which includes an RTP packet. The 
RTP packet is further composed by ADU descriptor - 
ADU frame couples which cannot be fragmented for 
the sake of loss tolerance [19]. This leads to a great 
variety of packet lengths and a decrease in estimation 
accuracy. We have collected an integer value (greater 

                                                           
2 When packets transmitted during the streaming session are 

shorter than 1472 bytes the overhead times introduced at the MAC 
layer (according to the 802.11b standard) for each single transmis-
sion have a greater impact on the total transmission time and thus on 
the resulting calculated throughput. 



than one) of ADU descriptor - ADU frame couples into 
a single RTP packet in order to keep the RT_PS packet 
lengths as close as possible to the ideal value and bet-
ter exploit the wireless channel capacity. We have also 
increased the packet train length to 60 instead of 50 in 
order to make the total train length, in byte, closer to 
the best value. This is generally possible in our sce-
nario except when the client buffer is small; in this 
case the estimation accuracy decreases. 

Nevertheless, even when working in absence of 
competing traffic the streaming session cannot experi-
ence the best throughputs mentioned above. In fact, 
according to the RT_PS scheduling algorithm, packets 
cannot be transmitted back-to-back due to the evalua-
tion of the sleep conditions in between them. Hence, 
the bandwidth estimation that the client provides dur-
ing the streaming session is necessarily error-prone. 
Results show that a streaming session, in absence of 
background traffic, is able to exploit up to 5.84 Mbps 
(instead of 6.35 Mbps) with 11 Mbps data rate, up to 
3.72 Mbps (instead of 3.95 Mbps) with 5.5 Mbps data 
rate, and 1.63 Mbps (instead of 1.69 Mbps) with 2 
Mbps data rate. 

When changing the client buffer size another factor 
appears to affect the bandwidth estimation: the number 
of control messages exchanged between the client and 
the server. When the client buffer is large, the RT_PS 
schedule produces a small number of very long off-
periods. This results in a very bursty traffic where 
transmissions are concentrated in small periods alter-
nated with long interruptions. As the client buffer size 
decreases the number of interruptions increases 
whereas their lengths decrease. In order to manage this 
schedule, more control messages have to be sent, espe-
cially SLEEP messages [16]: they are shorter than the 
AUDIO messages and therefore responsible for the 
throughput to decrease. This behavior is much more 
evident when the data rate is 2 Mbps because the num-
ber of off periods is even greater. With a 5.5 Mbps 
data rate, variations in the available bandwidth esti-
mates range from 9 to 15%; with a 2 Mbps data rate, 
they range from 4 to 29%. When adding background 
traffic to the streaming flow the estimated available 
bandwidth decreases accordingly. In our case, i.e., with 
only one background flow, even when the requested 
background throughput grows up, the available band-
width estimated by the RT_PS client, never goes down 
900 Kbps, with a data rate of 2Mbps, 1.8 Mbps, with a 
data rate of 5.5 Mbps, or 3.2 Mbps with a data rate of 
11 Mbps, thus resulting in a fair bandwidth allocation 
between the two competing traffics. 

 
7. Performance Evaluation 
 

In order to evaluate the effectiveness of the RT_PS 
protocol, we have implemented a software prototype 
and tested it. An experiment consisted of a single 
streaming session where the server had to transmit to 
the client the Mp3 audio file it had previously re-
quested. We have repeated the experimentation with 
different client buffer sizes from 1 Mbytes down to 50 
Kbytes and we have evaluated the impact of some 
background traffic by adding a competing CBR traffic 
flow during the streaming session. Moreover, we have 
repeated the same experiments by changing the data 
rate of the WNIC. During each single experiment we 
have manually set the WNIC to work at a constant data 
rate of either 2 Mbps or 5.5 Mbps or 11 Mbps.  

Table2. I_PS vs. Client Buffer Size 
Best Case: 11Mbps Data Rate, No Background Traffic  

Client 
Buffer Size 

(Kbytes) 

Average 
Transmission 
Rate (Mbps) 

(%)
ONSLEEP

SLEEP

TT
T

+
 I_ps (%) 

1000 5.74 96.69 9.76 
500 5.76 97.32 9.17 
200 5.84 97.24 9.24 
100 5.82 97.23 9.25 
50 5.62 96.79 9.66 

In order to measure the energy saving, each experi-
ment produced the power saving index, I_ps, as the 
ratio between the energy consumed by the WNIC dur-
ing the streaming session when the RT_PS layer 
worked and the energy that it would have consumed if 
the RT_PS layer had not worked [6], [7]:  

PSRT

PSRT

E
E

psI
_

__ =  , (9) 

where:  
( ) ( )SLEEPSLEEPONONPSRT WTWTE ⋅+⋅=_  , (10) 

( )ONSLEEPONPSRT TTWE +⋅=_
 , (11)  

TON giving the sum of all the on-periods, TSLEEP repre-
senting the sum of all the off-periods, and finally con-
sidering WON = 750 mW and WSLEEP = 50 mW  [17].  

As shown in Table 2, in absence of any interfering 
traffic and when the data rate is 11 Mbps, the achiev-
able I_ps ranges from 9.17% to 9.76% depending on 
the client buffer size. Hence, the best power saving is 
90.83% of the energy globally consumed when no 
power aware policy is provided.  

When decreasing the data rate the I_ps grows up 
and thus the energy saving decreases. When the data 
rate is 5.5 Mbps, the I_ps ranges from 10.05% to 



10.92% (up to 89.95% energy saving); whereas, when 
the data rate is 2 Mbps it ranges from 14.54% to 
16.26% (up to 85.46% energy saving). 

Table3. I_PS vs. Client Buffer Size. 
Worst Case: 2Mbps Data Rate, 2Mbps Background Traffic. 

Client 
Buffer Size 

(Kbytes) 

Average 
Transmission 
Rate (Mbps) 

(%)
ONSLEEP

SLEEP

TT
T

+
 I_ps (%) 

1000 1.017 84.84 20.82 
500 1.063 85.80 19.92 
200 1.037 86.38 19.38 
100 .995 85.13 20.55 
50 .854 81.71 23.74 

The I_ps also goes up when some competing traffic 
is added because, in order to prevent the playback 
process starvation, the WNIC is kept ON and working 
for much more time and this results in a lower energy 
saving. The greater the throughput of the background 
traffic, the higher the I_ps. In Table 3 the worst per-
formance of our solution is presented. It is obtained by 
combining the minimum data rate (2 Mbps) and the 
maximum transmission rate of the background traffic 
(2 Mbps). As can be seen the I_ps equals 23.74% in 
the worst case thus leading to 76.26% energy saving. 

In both Table 2 and 3 I_ps variations are evident 
when the client buffer size changes. These variations 
are not easy to foresee because they are connected to 
the fluctuations of the ratio: 

ONSLEEP

SLEEP

TT
T

+
 , (12)  

where both TON and TSLEEP always change together and 
with the same sign. When TON grows up due to a de-
crease in the transmission rate, also TSLEEP grows up 
because of the increase of the initial delay. On the 
other hand, when TSLEEP goes down due to a transmis-
sion rate increase, also TON goes down because less 
time is needed in order to transfer the same number of 
bytes. Experimental results show that when the client 
buffer size decreases, the ratio (12) increases until it 
reaches a maximum value, then starts decreasing. The 
I_ps ratio, consequently, decreases first, then increases. 
The best I_ps value (the minimum) corresponds to a 
client buffer size which ranges from 500 Kbytes to 100 
Kbytes. However, in most experiments it corresponds 
to 200 Kbytes. 

Finally, we have repeated the experimentation by 
changing the burstiness of the competing traffic flow. 
In this set of experiments the CBR traffic generator has 
delivered, instead of one single packet at a time, one 
burst of packets at a time. We have used bursts of 2, 4, 
8, 16, 32 and 264 packets in different experiments and 
we have found that as the number of packets per burst 

increases, the ratio (12) also increases and hence the 
I_ps goes down (even though very slowly). This be-
havior can only be seen when the transmission rate of 
the background traffic is less than the maximum 
throughput that it can achieve on the wireless link. In 
Table 4 the I_ps changes are shown when the number 
of packets sent per single burst of the background traf-
fic also changes. These results have been obtained with 
a data rate of 5.5 Mbps and background traffic of 1 
Mbps.  

During the experimentation, initial playback delays 
have always been less than 2s. Moreover, the sum of 
the discarded frames (because expected not to arrive in 
time for playback) and the lost frames has always been 
less than 5% of the total number of frames. These 
losses are negligible since, when transmitting real-time 
traffic, losses up to 20% of the total number of frames 
can be tolerated if loss concealment techniques are 
implemented at the receiver. 
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9. Conclusion 
 

In this paper we have investigated a wireless sce-
nario for multimedia streaming applications and pro-
posed a solution which provides streaming services 
between a fixed host and a mobile host while imple-
menting power saving strategies in order to reduce the 
energy consumption due to the WNIC activity of the 
mobile device. Specifically, we have focused on audio 
streaming services for Mp3 files.   

Our architecture is based on an indirect-model that 
splits the connection between the server, on the fixed 
host, and the client, on the mobile host, in two parts: 
one between the mobile host and the Access Point and 
the other between the Access Point and the fixed host. 

Table4. I_ps vs. Background Traffic Burstiness:  
1Mbps Background Traffic, 5.5 Mbps Data Rate 

Packets per 
burst 

Average 
Transmission 
Rate (Mbps) 

(%)
ONSLEEP

SLEEP

TT
T

+

 
I_ps (%) 

2 2.73 94.96 11.37 
4 2.75 94.94 11.39 
8 2.77 94.96 11.37 
16 2.83 95.04 11.30 
32 2.90 95.52 10.85 

264 3.04 95.88 10.51 



The power saving strategy is applied to the wireless 
connection between the Access Point and the mobile 
host. We have designed an RT_PS (Real Time and 
Power Saving) protocol that, by exploiting an adaptive 
on-off schedule for transmission of the audio frames to 
the mobile host, periodically provides time intervals 
where the mobile host can let its WNIC assume a low-
power consuming state, i.e., a sleep-mode, and resume 
it later in order to keep on receiving frames. The 
RT_PS schedule policy considers that when the avail-
able bandwidth on the wireless link is high it is better 
to transmit until the client buffer becomes full and then 
stop; when the available bandwidth is low instead it is 
better to stop first, wait a while and then keep on re-
ceiving. Anyway, each schedule decision must con-
sider the risk for the playback starvation (i.e., for the 
client buffer underflow) and avoid it. 

We have implemented a software prototype for both 
the RT_PS client and server and tested it. Experimental 
results show that this solution can produce up to 
90.83% energy saving when working with 11Mbps 
data rate, 89.95% with a data rate of 5.5 Mbps, up to 
85.46% with a data rate of 2 Mbps. We have also ob-
served that energy savings change with the client 
buffer size, however high energy savings are experi-
mented also for small client buffers (less than 200 
Kbytes). When the streaming session competes with 
some background traffic another influencing factor 
arises i.e., the burstiness: the higher the burstiness the 
higher the saving. 
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