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Abstract 
 

Several previous works have shown that TCP exhib-
its poor performance in Mobile Ad Hoc Networks 
(MANETs). The ultimate reason for this is that 
MANETs behave in a significantly different way from 
traditional wired networks, like the Internet, for which 
TCP was originally designed. In this paper we propose 
a novel transport protocol – named TPA – specifically 
tailored to the characteristics of the MANET environ-
ment. It is based on a completely new congestion con-
trol mechanism, and designed in such a way to mini-
mize the number of useless transmissions and, hence, 
power consumption. Furthermore, it is able to manage 
efficiently route changes and route failures. We evalu-
ated the TPA protocol in a static scenario where TCP 
exhibits good performance. Simulation results show 
that, even in such a scenario, TPA significantly outper-
forms TCP. 
 
1. Introduction 
 

In the last years the research activities on MANETs 
have pointed out that the TCP behavior in a multi-hop 
ad hoc network is far from ideal. The ultimate reason 
for this is that MANETs behave in a significantly dif-
ferent way with respect to traditional wired networks, 
like the Internet, for which the TCP protocol was origi-
nally conceived [14].  

To improve the performance of the TCP protocol in 
MANETs several proposals have been presented [1, 3, 
5, 6, 8, 11]. Almost all these proposals are modified 
versions of the legacy TCP protocol. However, we 
think that it is more fruitful to think in terms of a new 
transport protocol optimized for MANETs rather than 

adapting TCP to the ad hoc environment. The motiva-
tions for a novel transport protocol, instead of a modi-
fied TCP, are thoroughly discussed in [14]. The au-
thors in [4] take an approach similar to ours.  

In this paper we propose a transport protocol, TPA 
(Transport Protocol for Ad hoc networks), specifically 
tailored to the characteristics of the MANET environ-
ment. It provides a reliable, connection-oriented type 
of service and includes mechanisms to manage route 
failures and route changes that may arise due to nodes' 
mobility. In addition, the congestion control mecha-
nism is completely re-designed with respect to the leg-
acy TCP. Finally, TPA implements a novel retransmis-
sion policy to reduce the number of useless retransmis-
sions and, hence, the power consumption. 

The rest of the paper is organized as follows. Sec-
tion 2 describes the TPA protocol. Section 3 is devoted 
to the TPA performance evaluation. Section 4 con-
cludes the paper. 

 
2. TPA Protocol Description 
 

The TPA protocol provides a reliable, connection-
oriented type of service. The set up and tear down 
phases are similar to the corresponding phases in the 
TCP protocol, and are thus omitted for the sake of 
space. In the following we will briefly describe the 
data transfer phase (see [15] for details) . 

 
2.1. Data Transfer 
 

TPA  is  based on  a  sliding-window  scheme where 
the window size varies dynamically according to the 
flow control and congestion control algorithms. The 
congestion control mechanism is described in Section 



2.4, while the flow control mechanism is similar to the 
corresponding TCP mechanism [10], and is omitted. 

 

 
Figure 1. ACK reception (a), and timeout expira-

tions (b). 
 

TPA tries to minimize the number of 
(re)transmissions in order to save energy. To this end, 
packets to be transmitted are managed in blocks, with a 
block consisting of K packets1. The source TPA grabs 
a number of bytes - corresponding to K TPA packets - 
from the transmit buffer2, encapsulates these bytes into 
TPA packets, and tries to transmit them reliably to the 
destination. Only when all packets belonging to a 
block have been acknowledged, TPA takes care to 
manage the next block. Each packet header includes a 
sequence number field that identifies the block to 
which the packet belongs, and a data_bitmap field con-
sisting of K bits to identify the position of the packet 
within the block. The TPA header also includes two 
fields for piggybacking ACKs into data packets: ac-
knowledgement number and ack_bitmap. The acknowl-
edgement number identifies the block containing the 
packet(s) to be acknowledged, while a bit set in the 
ack_bitmap indicates that the corresponding packet 
within the block has been received correctly by the 
destination. Of course, it is possible to acknowledge 
more than one packet by setting the corresponding bits 
in the bitmap (a single ACK contains information for 
all the packets within the block). 

Packet transmissions are handled as follows. When-
ever sending a packet, the source TPA sets a timer and 
waits for the related ACK from the destination. Upon 
receiving an ACK for an outstanding packet the source 
TPA performs the following steps: i) derives the new 
window size according to the congestion and flow con-
trol algorithms (see below); ii) computes how many 
packets can be sent according to the new window size; 
and iii) sends next packets in the block (see Figure 1a).  
On the other hand, whenever a timeout related to a 
packet in the current window expires, the source TPA 
                                                           
1 TPA packets have the same size of TCP segments. 
2 A block may include less than K packets if the buffer does contain a 
sufficient number of bytes. 

marks the packet as “timed out” and executes steps i)-
iii) as above, just as in the case the packet was ac-
knowledged  (see Figure 1b).  

In other words, TPA performs a transmission round 
during which it sends all packets within the block, 
without retransmitting timed-out packets. Then, the 
sender performs a second round for retransmitting 
timed-out packets, which are said to form a “retrans-
mission stream” (see Figure 2). In the second round the 
sender performs steps i)-iii) described above with ref-
erence to the retransmission stream instead of the 
original block. This procedure is repeated until all 
packets within the original block have been acknowl-
edged by the destination. If an ACK is received for a 
packet belonging to the retransmission stream, that 
packet is immediately dropped from the stream. 

 

 
Figure 2. Retransmission Stream. 

 
The proposed scheme has several advantages with 

respect to the retransmission scheme used in TCP. 
First, the probability of useless transmissions is re-
duced since packets for which the ACK is not received 
before the timeout expiration are not retransmitted im-
mediately (as in the TCP protocol) but in the next 
transmission round. This is particularly important in 
MANETs where nodes are highly mobile and, thus, the 
timeout value might not reflect the current Round Trip 
Time (RTT) of the connection (see also Section 2.2). It 
should also be observed that the longer waiting time in 
the TPA protocol does not result in throughput degra-
dation, since during this time interval the sender trans-
mits other packets. Second, TPA is resilient against 
ACK losses because a single ACK is sufficient to no-
tify the sender about all missed packets in the current 
block. Third, the sender does not suffer from out-of-
order arrivals of packets. This implies that TPA can 
operate efficiently also in MANETs using multi-path 
forwarding [2]. 

  
2.2. Route Failure Management 

 
Like many other solutions [1, 3, 5, 6], TPA can ex-

ploit, if available, the Explicit Link Failure Notification 
(ELFN) service provided by the network-layer for de-
tecting route failures. 

Upon receiving an ELFN, the source TPA enters a 
freeze state where the transmission window size is lim-
ited to one packet. To limit the number of packets sent 
when there is no available route, while in the freeze 



state the value of the retransmission timer is doubled 
after each timer expiration [15]. 

However, even if the underlying layer does not pro-
vide the ELFN service, the sender TPA is still able to 
detect route failures as it experiences a number of con-
secutive timeout. Specifically, the sender TPA assumes 
that a route failure has occurred whenever it detects 
thROUTE consecutive timeouts. In this case it enters the 
freeze state. While in the freeze state, the TPA sender 
behaves as described above. Obviously, thROUTE is a 
protocol parameter that needs to be set appropriately. 

We assume that the network layer does not provide 
route re-establishment notifications. Therefore, TPA 
realizes that the route has been re-established as soon 
as it receives an ACK for the latest packet sent. Upon 
reception of such an ACK, TPA i) leaves the freeze 
state; ii) sets the congestion window to the maximum 
value CWNDmax; and iii) starts sending new packets 
[15]. On the other hand, if route re-establishment mes-
sage are available, the TPA behavior can be further 
optimized. Specifically, in the freeze state TPA can 
refrains from transmitting any packet, waiting for a 
route re-establishment message. 

 
2.3. Route Change Management 
 

Similarly to TCP, TPA estimates the connection 
RTT, and uses this estimate to set the Retransmission 
Timeout (RTO). Both parameters are derived in the 
same way as in the TCP protocol, i.e.: 
 

where: i) ERTTrtt(n) and DEVrtt(n) are the average 
value and standard deviation of the RTT estimated at 
the nth step, respectively; ii) RTT(n) denotes the nth 
RTT sample; iii) RTO(n) is the retransmission timeout 
computed at the nth step; and iv) g and h (0 < g, h < 1) 
are real parameters (see [10] for details). 

Whenever a route change occurs, the new path may 
differ from the previous one in terms of number of 
hops. This means that, after a route change, packets 
may experience a variation in the RTT and the re-
transmission timeout might be no longer appropriate 
for the new path. To avoid possible re-transmissions, 
the TPA protocol must detect route changes as soon as 
they occur, and modify the RTT estimation method to 
achieve quickly a reliable estimate for the new RTT. In 
practice, TPA detects that a route change has occurred 
either i) when a new route becomes available after a 
route failure; or ii) when thRC consecutive samples of 
the RTT are found to be external to the interval 
[ERTTrtt - DEVrtt, ERTTrtt + DEVrtt]. Upon detecting a 

route change, TPA replaces the g and h values in the 
ERTT and DEV estimators by greater values (g1 and 
h1) so that the new RTT estimates are heavily influ-
enced by the new RTT samples. This allows to achieve 
a reliable estimate of the new RTT immediately after 
the route change has been detected. Finally, after nRC 
updates of the estimated RTT, the parameter values are 
restored to the normal g and h values.  

 
2.4. Congestion Control Mechanism 
 

Congestions due to link-layer contentions manifest 
themselves at the transport layer in two different ways. 
An intermediate node may fail in relaying data packets 
to its neighboring nodes and, thus, it sends an ELFN 
back to the sender node (provided that this service is 
supported by the network layer). This case, throughout 
referred to as data inhibition, cannot be distinguished 
by the sender TPA from a real route failure. On the 
other hand, an intermediate node may fail in relaying 
ACK packets. In this case, throughout referred to as 
ACK inhibition, the ELFN (if available) is received by 
the destination node (i.e., the node that sent the ACK), 
while the source node (i.e., the node sending data 
packets) only experiences consecutive timeouts. When-
ever the sender TPA detects thCONG consecutive timeout 
expirations it assumes that an ACK inhibition has oc-
curred, and enters the congested state. The source TPA 
leaves the congested state as soon as it receives thACK 
consecutive ACKs from the destination.  

If the network layer does not support the ELFN ser-
vice, the only way to detect both data and ACK inhibi-
tions is by detecting consecutive timeouts at the sender. 
Congestions and route failures are no longer distin-
guishable. Hence, thCONG and thROUTE collapse in the 
same parameter, and the freeze and the congested states 
collapse in the same state. 

The TPA congestion control mechanism is window-
based as in the TCP protocol. However, in TPA the 
maximum congestion window size (CWNDmax) is 
very small (in the order of 2-3 TPA packets) and, 
hence, the maximum and minimum values are very 
close. Therefore, the TPA congestion control algorithm 
is very simple. In normal operating conditions, i.e., 
when TPA is not in the congested state, the congestion 
window is set to the maximum value, CWNDmax. 
When TPA enters the congested state, the congestion 
window is reduced to 1 to allow congestion to disap-
pear. 

 
3. Simulation Analysis 
 

In this section we compare, by simulation, the per-
formance of TCP and TPA. To this end, we developed 
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a custom simulation model that extends the model used 
in [7]. Our simulator includes the IEEE 802.11 MAC 
protocol and physical channel model, the DSR routing 
protocol [12], and the transport protocol (TCP or 
TPA). In this model we assumed the same physical 
channel model used in the ns-2 simulation tool (see 
Table 1). The carrier sensing range is thus more than 
twice the transmission range, while the interference 
range is the same as the carrier sensing range.  

 
Table1. Physical channel model. 

Parameter Value 

Bit rate 2 Mbps 
Transmission range 376 m 
Interference range 676 m 

Carrier sensing range 676 m 

 
Table2. Operational Parameters. 

Parameter Value 

Distance between node 300 m 
Packet Size (TCP/TPA) 512 Bytes 
CBR Packet Size (UDP) 512 Bytes 

thROUTE  (TPA) 3 
thACK (TPA) 1 

Block Size (TPA) 12 

 
To exercise the TCP protocol in a favorable envi-

ronment we considered a static scenario (i.e., absence 
of node mobility). Furthermore, we assumed that the 
network layer provides neither the ELFN nor the route 
re-establishment services. 

 

 
Figure 3. Network Configuration. 

 
In our experiments we considered the string topology 
depicted in Figure 3, where the distance between con-
secutive nodes is 300 m (the other operation parame-
ters are shown in Table 2). Therefore, each node is 
within the transmission range of only adjacent nodes, 
and the carrier sensing and interference ranges span 
two hops (for instance, when node 4 in Figure 3 is 
transmitting, nodes 2 and 6 can hear its transmission). 
According to the motivations expressed in several pre-
vious works (see [14] and references therein), in our 
experiments we considered a TCP/TPA connection that 
spans a limited number of hops. We assumed that node 
1 is sending ftp-like traffic to node 6. In addition, to 
investigate the effects of background traffic on the per-
formance of the TCP/TPA connection, we also consid-
ered a CBR (Continuous Bit Rate) session where node 
2 sends periodically (UDP) packets to node 5. We 

compared the performance of TCP and TPA both in 
terms of throughput achieved by the destination node 
at the application layer, and percentage of retransmis-
sions, i.e., percentage of packets retransmitted by the 
TCP/TPA sender. Since (re-)transmissions consume 
energy (both at the sender and intermediate nodes) the 
percentage of retransmissions can be regarded as an 
energy-efficiency index. 

 
3.1. Simulation Results3 
 

As a preliminary step in our analysis, we exercised 
TCP and TPA in the network scenario described above 
to determine the optimal maximum window size. In 
these experiments we did not consider any background 
traffic. The results obtained are summarized in Figure 
4. It clearly appears that the optimal window size for 
both protocols is 2. For the TCP protocol this result is 
aligned with the analysis in [13,9]. In this scenario 
both protocols exhibit similar performance both in 
terms of throughput and retransmissions. The reason is 
that in a static MANET without any interfering traffic 
the TCP protocol with limited maximum window size 
exhibits good performance [9].  
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Figure 4. Throughput (left) and retransmission in-
dex (right) vs. window size. 

 
In the following sections we will focus on the per-

formance of TPA and TCP with maximum window 
size equal to 2. However, for completeness, in plots we 
also show curves related to maximum window sizes 
greater than 2. We will investigate how the perform-
ance of both protocols are influenced by factors such as 
interfering traffic produced by others sessions, latency 
for discovery a new route whenever a route failure 
occurs, and presence of a selfish node along the con-
nection path. 

 
3.1.1. Impact of the Background Traffic. To investi-
gate the effects of the background traffic we ran a set 
of experiments with the CBR session active. In this set 

                                                           
3 The results shown in this section were obtained by using the inde-
pendent replication method with a confidence level of 95%. The 
confidence interval is always in the order of some percents. 
 



of experiments we assumed a route-recovery latency 
equal to 0, i.e., we assumed that a new route is imme-
diately found after a route failure. The results in Figure 
5 show that TPA tends to outperform TCP as the back-
ground load increases. This is especially highlighted by 
the retransmission index. Even with a maximum win-
dow size equal to 2, when the background load reaches 
150 Kbps, the percentage of retransmitted packets is 
halved by TPA (6% vs. 12%). In addition, TPA pro-
vides a higher throughput. In conclusion, TPA pro-
vides a higher throughput than TCP, while consuming 
roughly half of the energy spent by TCP in retransmis-
sions.  
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Figure 5. Throughput (left) and retransmission in-

dex (right) vs. Background Traffic. 
 
3.1.2. Impact of the Route Discovery Latency. In 
static MANETs route failures occur due to link-layer 
contentions. Whenever a route failure is detected, the 
routing protocol tries to find an alternative route. The 
discovery of the new route may take some time. In our 
experiments a fixed delay parameter, RouteDel, repre-
sents the amount of time during which no route to the 
destination is available after a route failure. Plots in 
Figure 6 show the effects of increasing the route dis-
covery latency. Plots in the top show that, in the ab-
sence of background traffic, the route discovery la-
tency has no meaningful effect. TPA only provides 
small improvements over TCP with window size equal 
to 2. This is, because with a window size equal to 2, 
the number of route failures is close to zero.  

The situation is quite different when there is inter-
fering traffic. Plots in the bottom of Figure 6 show that, 
even with a moderate background traffic (i.e., 50 
Kbps), TPA largely outperforms TCP both in terms of 
throughput and percentage of retransmissions. Specifi-
cally, when the route-discovery latency is 1 second, the 
throughputs achieved by TPA and TCP are 124.9 and  
71.8 Kbps, respectively. In addition, the TCP retrans-
mission index is 8.9 %, while the TPA retransmission 
index is still close to 1%. These performance differ-
ences stem from the fact that TPA leverages buffer 
functionalities that are implemented in typical MANET 
network protocols. MANET routing protocols (e.g., 

DSR) usually buffer packets generated by the sender 
while a new route is being searched. When the conges-
tion level in the MANET increases, the number of 
packets required to find a new route increases as well. 
In this case, TCP keeps retransmitting always the same 
packet until the new route is found, since its congestion 
window size is stuck at 1. On the contrary, TPA trans-
mits successive packets in the main or retransmission 
streams. These packets are buffered at the sending-
node network layer, and thus they are immediately 
delivered once a new route is found.  

 

20

40

60

80

100

120

140

160

180

100 300 500 700 900

Background Load = 0Kbps

TCP W=2
TCP W=3
TCP W=4
TCP W=32
TPA W=2
TPA W=3

Th
ro

ug
hp

ut
 (K

bp
s)

RouteDel (msec)  
0

5

10

15

20

25

30

100 300 500 700 900

Background Load = 0Kbps

TCP W=2
TCP W=3
TCP W=4
TCP W=32
TPA W=2
TPA  W=3

In
de

xR
tx

 (%
)

RouteDel (msec)

20

40

60

80

100

120

140

160

100 300 500 700 900

Background Load = 50Kbps

TCP W=2
TCP W=3
TCP W=4
TCP W=32
TPA W=2
TPA W=3

Th
ro

ug
hp

ut
 (K

bp
s)

RouteDel (msec)  
0

5

10

15

20

25

30

100 300 500 700 900

Background Load = 50Kbps

TCP W=2 
TCP W=3
TCP W=4
TCP W32
TPA W=2
TPA W=3

In
de

xR
tx

 (%
)

RouteDel (msec)

 
Figure 6.Throughput and retransmission index vs. 
Route Discovery Latency, without (top) and with 

(bottom) Background Traffic. 
 
We performed additional experiments with increas-

ing background traffic and found that the difference 
between TPA and TCP performance becomes larger 
and larger as the background traffic grows up (results 
are not shown for the sake of space).  
 
3.1.3. Impact of node selfishness. In this section we 
investigate the impact of node selfishness. MANETs 
rely on the assumption that intermediate nodes are 
willing to forward data traffic originated by other 
nodes towards the final destination. However, an in-
termediate node might not cooperate either because it 
is selfish or because it has limited energetic resources 
(that are deserved to local traffic). In our simulations 
we modeled the behavior of a selfish node by assuming 
that it does not forward (i.e, discards) a packet gener-
ated by another node with probability p (p defines the 
degree of node selfishness). Specifically, in our ex-
periments, we assumed that the selfish node is node 3 
(see Fig. 3).  

Figure 7 shows the performance of TPA and TCP 
for different values of node selfishness. Even in this 



case, the advantage of using TPA instead of TCP re-
sides both in the lower number of retransmissions, and 
in the higher throughput. At a selfishness level of 10%, 
TPA requires around 34% less retransmissions than the 
TCP, and the TPA throughput is 7% higher than the 
TCP throughput. At a selfishness level of 50%, the 
TPA throughput is 150% higher than the TCP through-
put, and the TPA retransmission index is 20% lower.  
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Figure 7. Throughput (left) and retransmission in-

dex (right) vs. node selfishness. 
 

4. Conclusions 
 

In this paper we have proposed a novel transport 
protocol for ad hoc networks, TPA, specifically tai-
lored to the characteristics of the MANET environ-
ment. This proposal is motivated by the evidence that 
the TCP protocol exhibits poor performance in 
MANETs. The ultimate reason for this is that 
MANETs behave in a significantly different way with 
respect to traditional wired networks, like the Internet, 
for which the TCP protocol was originally conceived.  
We have compared, by simulation, the performance of 
TPA and TCP (with limited maximum window size) in 
a static scenario. The results obtained show that TPA 
outperforms TCP in all operating conditions. Specifi-
cally, the TPA protocol is able to conserve energy by 
avoiding many useless transmissions, while providing, 
at least, the same throughput provided by TCP. The 
analysis of TPA performance in a mobile environment 
has been left for further study. 
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