
Design and Evaluation of a BitTorrent Proxy for Energy Saving

Giuseppe Anastasi*, Marco Conti#, Ilaria Giannetti*, Andrea Passarella#

* Dept. of Information Engineering
University of Pisa, Italy

{firstname.lastname}@iet.unipi.it

#CNR-IIT
National Research Council, Italy
{firstname.lastname}@iit.cnr.it

Abstract

Recent studies indicate that the Internet-related
energy consumption represents a significant, and
increasing, part of the overall energy consumption of
our society. The largest contribution to this
consumption is due to Internet edge devices. Typically,
users leave their PCs continuously on for satisfying the
connectivity requirements of file sharing p2p
applications, like BitTorrent. In this paper we propose
a novel proxy-based BitTorrent architecture.
BitTorrent users can delegate the download operations
to the proxy and then power off, while the proxy
downloads the requested files. We implemented our
solution and validated it in a realistic testbed.
Experimental results show that, with respect to a
legacy approach, our solution is very effective in
reducing the energy consumption (up to 95%) without
introducing any QoS degradation.

1. Introduction
In the last years, Internet-related energy

consumption is becoming one of the major research
issues for the networking community. Several reports
show that the Internet energy consumption is already
too high and, without paying attention to it, the
problem will become more and more relevant while the
Internet role in the society expands. As reported in [6]
about 74 TeraWatts hours (TWh) per year of electricity
are consumed by Internet and, although this is only the
2% of the global energy consumption in USA, it’s a
considerable number. Furthermore, it is estimated that
by adopting power management techniques on the
Internet devices, a 32% energy saving can be achieved.
These numbers have stimulated efforts to reduce the
Internet energy consumptions. Researchers’ efforts tend
to concentrate on the network edges (i.e., data-center
networking equipment [4] or personal computing
devices), as there is no much to save inside the Internet
core [9]. In this paper we focus on energy management
in personal computing device (PCs) as they are
widespread and very numerous. Furthermore, they are
often managed by common users who, typically, do not

pay so much attention to the energy problem (e.g., they
often leave their PC always on). Indeed, as reported in
[16], during 2007 in USA data centers accounted for
approximately 2 TWh per year, while office and home
devices accounted for approximately 16 TWh per year.
Furthermore, users generally do not apply any power-
saving policy. This clearly emerges, for example, in the
PC Energy Report by the UK National Energy
Foundation [12] related to the energy consumption of
PCs used at work. This report highlights that about
21% of PCs used at work are almost never switched off
(during nights and weekends), and this causes energy
wastage of about 1.5 TWh of electricity per year,
corresponding to about 700,000 tons of CO2.
However, energy wastage due PCs left always on, for
laziness or omission, is only a part of the problem and
could be easily avoided by means of commercially
available devices (e.g., NightWatchman [12]) can
perform a centralized shutdown of all PCs at a
predefined time. Instead, the most interesting case is
when a PC remains continuously powered on to
perform network activities like, for example, running a
p2p file-sharing application. Recent studies [14]
indicate that 40-73% of Internet traffic is p2p, and
BitTorrent is the most popular p2p protocol (about of
50-75% of the overall p2p traffic).

Based on these remarks, in this paper we focus on
policies for saving energy in PCs running a p2p
application. Specifically, our solution is targeted to PCs
using the BitTorrent platform. However the ideas and
concepts presented here can be easily extended to other
p2p platforms as well.

Traditional power management techniques [2] that
power off the network interface when the PC is not
using the network, are inadequate in an environment
where permanent connections are required. In the
literature we can identify three different categories of
power management techniques compatible with
permanent connectivity: adaptive link rate, switching
between different power management levels, and
proxy-based solutions. Techniques based on adaptive
link rate rely on the evidence that the energy
consumption of the Network Interface Card (NIC)

strongly depends on the supported link rate. For
example, the power consumption of Ethernet NIC
increases from 1W for 10/100 Mb/s, to 7W for 1 Gb/s,
and up to 15 W for 10 Gb/s. The basic idea of adaptive
link rate is, thus, to adjust the link rate according to the
real needs. The idea is known as Adaptive Link Rate
(ALR) [9] or Rapid PHY Selection (RPS) [7].
Techniques based on switching between different
power management levels are targeted to NICs with
different power modes (from completely sleeping to
completely active). They switch the NIC from one
mode to another, depending on the network activity,
e.g., as in Dynamic Ethernet Link Shutdown (DELS)
[10, 11]. While these two techniques can provide some
energy saving, they do not seem to be the best
approach for our environment where a file download
can last for several hours. In this case, we believe that
delegating the download operations to a proxy server,
and shutting down the PC during the download phase,
is the most effective solution. Possibly, the proxy
server could be running on a computer providing other
network services, (e.g., DHCP server, DNS etc.).

Proxy-based architectures are not new, and have
been already considered for energy-efficient Internet
access from mobile devices. However, in that case, the
proxy architecture was designed for supporting a
mobile device running legacy client-server applications
[1]. More recently, the idea of a proxy-based
architecture has been proposed for implementing
energy-aware solutions in the fixed Internet (e.g., [8]).
The idea is to use a proxy that takes the host place to
respond to minimal network interactions and wakeup
the host only when the network requires the host
interaction. In this case, a wakeup mechanism that
awakes the host is required (e.g., the Wake On LAN
NIC [5]). The solution presented in [8] provides a
general framework for saving the energy consumed by
the NIC, and is not tailored to any specific p2p
platform. Instead, our solution introduces a p2p energy-
aware platform that makes possible to completely shut
down the client PC. It is worth noting that the wakeup
mechanism might be integrated in our architecture for
waking up the PC as soon as the proxy has completed
the download operation. However, p2p file-sharing
applications, generally, do not require that the
downloaded file is immediately transferred from the
proxy to the client PC. This can be done at a later time,
e.g., when the user connects again to the Internet.

In the next section we will present and discuss our
solution for saving energy when using BitTorrent for
downloading files, while in Section 3 we will present
an experimental evaluation of our proposal.

2. BitTorrent Energy-saving Architecture
Before describing the proposed BitTorrent energy-

saving architecture, we provide a brief overview of the
standard BitTorrent architecture. More details can be
found in [3].

BitTorrent implements an unstructured overlay
network customized for file sharing. Nodes of the
overlay are called peers. The basic idea of BitTorrent
is that peers both download and upload parts of the
shared files. This results in the fact that each peer
downloads a given file from a multitude of other peers,
instead of downloading it from a single server as in a
conventional client-server model. The resulting
capacity of such cooperative downloading process is
higher than that of the traditional client-server
architectures [13]. A tagged peer wishing to download
a file from scratch needs to get a corresponding torrent
file (hereafter referred to as torrent). Torrents are very
small, are typically hosted by conventional Web
servers, and can be found through standard Internet
search engines. A torrent contains the name of the file’s
tracker, with whom the tagged peer connects first. The
tracker is a node that constantly tracks which peers
have parts of the file. The tagged peer receives from
the tracker a random list of peers, that the tagged peer
can contact to start the download process. Peers
participating in the download of the same file are
collectively called a swarm. At any point in time a peer
in a swarm is in touch with a set of neighbors with
which it exchanges parts of the file. The neighbor set
dynamically changes, mainly according to the “Tit-for-
Tat” (TAT) policy. Each peer preferentially selects –
for uploading parts of the shared files – those neighbors
from which it can download at the highest rate. Once
every 30 seconds neighbors are selected completely at
random, as a way to discover new neighbors, and allow
new peers in a swarm to start-up. Finally, each peer
downloads from neighbors the parts according the
Rarest First policy (i.e., parts which are less spread are
downloaded first).

2.1. Energy-saving BitTorrent

The legacy BitTorrent architecture is not “energy-
friendly”. BitTorrent peers have to stay connected to
the overlay network during the whole download of
requested files, which may typically take several hours.
Periodically turning off peers without modifying the
BitTorrent architecture is not a viable solution for
several reasons. If a peer is downloading content,
powering it off does not save any energy, as the
download itself stops when the peer turns off. Also,
powering off peers that are not downloading anything
(but are sharing content) is not an efficient solution in

general, as this can result in decreasing the overall
download performance of the swarms they participate
to. Thinking at coordinated ways of powering those
peers is also not appropriate, as would require central
control, and is at odds with the BitTorrent P2P design
paradigm.

In this paper we propose a proxy-based energy-
saving architecture to overcome these drawbacks. We
assume a standard LAN environment where several
users run BitTorrent peers on their PC. We pick one
PC in the LAN to behave as a proxy between the peers
and the rest of the BitTorrent network. The proxy can
be either a dedicated PC, or a PC that has to be
continuously powered on for other reasons (the latter is
the best case from an energy saving standpoint). The
basic idea is that peers “behind” the proxy ask the
proxy itself to download the requested content on
behalf of them. The proxy participates to the
conventional BitTorrent overlay, and takes care of all
the downloads of the peers behind it. While downloads
are in progress, the peers behind the proxy can be
switched off. The requested files are then transferred
from the proxy to the peers upon completion.

This architectural design is clearly suitable to save
energy, and also keeps the underlying P2P principles of
the original BitTorrent architecture. The BitTorrent
network is not modified, as the proxy acts exactly as a
standard BitTorrent peer. Modifications are just
required at the proxy and the clients behind the proxy,
and are thus confined within a single LAN. Note that
different proxies “masking” peers on different LANs
are completely independent of each other. Therefore,
this architecture is also scalable, as it does not require
modifications of the BitTorrent global architecture, nor
global coordination between (sets of) BitTorrent peers.
Finally, this architecture is also suitable to support
mobile clients accessing the Internet and, more in
general, is a solution to enable asynchronous
BitTorrent downloads, which is something not
supported by the conventional BitTorrent architecture.

2.2. Architecture and Protocols

The proposed architecture falls in the family of
traditional split architectures, e.g. [15]. The
architectural components between a peer and the proxy
are shown in Figure 1. The BT peer at the proxy is a
standard BitTorrent peer. This peer is in charge of
downloading the contents requested by all users behind
the proxy. In the “internal” part of the architecture (i.e.,
between the proxy and the user’s PC), we adopt a
simple client/server scheme implemented by the
Energy-Saving BitTorrent (ESBT) modules at the user
PC and proxy (see Figure 1).

Figure 1. Energy-saving BitTorrent architecture.

The ESBT module at the proxy continuously monitors
incoming requests for new downloads coming from the
clients, hands them over to the ESBT Daemon, which
translates them in download requests issued by the BT
peer running on the BitTorrent overlay network.
Besides requests for new files, clients can also issue
requests for checking the status of previously requested
files, as well as requests to fetch files from the proxy,
when downloads are complete. Between any successive
requests, clients can be turned off.
Finally, clients can also upload content to the proxy,
that has to be shared on the BitTorrent overlay. This is
also an important advantage of our architecture. The
BT peer at the proxy can share all the files that would
be shared by individual BT peers running on the user
PCs. Therefore the BT peer at the proxy is likely to
receive more download bandwidth than any individual
BT peer (in the case no proxy is used). Thus, our
proxy-based architecture can also achieve lower
download times for all users. We provide preliminary
results showing this feature in Section 3.
The proposed architecture requires very simple
networking protocols. When a user wishes to download
a new file, the ESBT client running on the user PC
retrieves the .torrent file from a torrent server in the
Internet, as in the conventional BitTorrent architecture.
Then, it uploads the .torrent file to the ESBT server
running on the proxy. The server hands over this file to
its BT peer to start the download. Upon receiving an
ACK from the server, indicating that the download has
successfully started, the client records that the
download is ongoing, and the user PC can be turned
off. When the client on the user PC is restarted, it
checks which downloads it has previously requested,
for each of them it asks the server for a status update. If
the file’s download is completed, it downloads the file
from the server.

3. Performance Evaluation
To analyze the effectiveness of our proxy-based

BitTorrent architecture we performed several real
experiments. Specifically, the main objective of the
proposed system is to maximize the energy saving, with

respect to the legacy approach, without introducing a
significant degradation of the Quality of Service (in
terms of file download time). In this section, we present
the details of our experimental testbed, the metrics used
to quantify the effectiveness of our approach, and the
experimental results we obtained.

The experimental environment is based on a set of
PCs connected to a Gigabit Ethernet LAN and, through
this network, they are interconnected to the Internet via
a high-speed 100 Mbps link. By exploiting the set of
PCs we implemented two systems: a legacy BitTorrent
system and one based on the BitTorrent proxy we have
developed. All the PCs use Linux Ubuntu 8.04, and the
BitTorrent client is a light command-line client
provided with Rasterbar libtorrent.

By exploiting the two systems, we performed a large
set of experiments to measure their performance when
downloading the same set of files. More precisely, for
each experiment we identified a given number, n, of
files to download and we assigned one download
operation per PC. The same experiment was repeated
several times with the same number n of files but
changing the set of files. To have comparable statistics
we selected files that are approximately of the same
size (they are in the range [3.95 GB, 4.71 GB]), have
similar popularity and, for each file, the initial number
of seeds (i.e., peers that already have the whole file) is
in the range [200, 800]. To have similar experimental
conditions, all the experiments are interleaved, so that
the compared results are obtained with similar
congestion conditions of the Internet, and a similar
number of peers1.

Figure 2. Time that the client is powered ON:
without proxy (top) and with proxy (bottom).

To evaluate the effectiveness of our proxy-based
architecture, we introduce a set of performance indices.
As shown in Figure 2, we denote by

dct and
dpt the file

download time when using the legacy and our proxy-
based architecture, respectively. When using the proxy,
we have to consider two additional delays:

1ct is the

1
 Both the Internet conditions and the number of peers interested to a

file are not under our control. By interleaving the experiments with
and without the proxy we have been able to limit the variability of
these parameters between successive experiments.

time for delegating the download operation to the
proxy, while

2ct is the time taken by the client to fetch

the file from the proxy. According to these definitions,
any PC running the BitTorrent client must be powered
on for at least

21 ccwithP ttt += time units when using the

proxy, and
dcwithoutP tt = when using the legacy

architecture. Since the energy consumption is
proportional to the time the PC running the BitTorrent
client is powered on, for ease of reading hereafter we
assume that we consume an energy unit for each unit of
time the PC is powered on, and hence the total energy
consumption is exactly equal to the total time the PC
must be powered on. We can now introduce the
following energy saving index:

dc

cc

withoutP

withP
saving t

tt

t

t
I 2111

+−=−=

Specifically,
savingI is the percentage of time an

individual PC can be turned off with respect to the
downloading time without using the proxy. As we
assume that the time is proportional to the energy,

savingI also denotes the percentage of energy saving for

the client PC. It refers to the case where the proxy runs
on a PC already continuously powered on for other
purposes. When the proxy runs on a dedicated PC, we
have to introduce a different index taking into account
the energy consumption of the proxy, defined as:

dc

dpcc

withoutP

dpwithP
saving

t

ttt

t

tt
I

++
−=

+
−= 21* 11

It is clear that, as
dcdp tt ≈ 2 holds, 0* <savingI , i.e., the

energy spent when a single PC uses the proxy
architecture is higher than the energy of the legacy
architecture. This is of course expected. However, we
can expect an energy saving if more PCs utilize, at the
same time, the BitTorrent proxy for downloading
several files in parallel. Let us generalize the energy
saving indices

savingI and savingI * to the case when n

PCs, each running a BitTorrent client, download a file
in parallel. By denoting with)(nI saving

 and)(* nI saving

the energy saving indices as a function of the number
of clients n we obtain:

∑

∑

=

=−=
n

i
withoutP

n

i
withP

saving

it

it
nI

1

1

)(

)(
1)(

∑

∑

=

=

+
−=

n

i
withoutP

n

i
withPdp

saving

it

itt
nI

1

1*

)(

)(
1)(

where)(itwithP
 and)(itwithoutP

 is the total time the i-th

client must be powered on, with or without the

2 The experimental results will confirm that the time to download a
file with or without the proxy is almost the same. Indeed, generally,
using the proxy the download delay reduces.

BitTorrent proxy, respectively, and
dpt is the total time

the proxy must be powered on for completing the
download of all n files (which can be approximately
assumed equal to the time to download a single file, as
the downloads are in parallel, and the file sizes and
popularities are similar). By considering the above
indices, in our experimental scenario we get the results
presented in Figure 3.

Figure 3. Energy saving vs. number of clients.

These results show that, if we do not consider the
energy consumption of the BitTorrent proxy, the
percentage of energy saving does not depend on the
number of clients and is approximately 95% for each
client. On the other hand, when we consider the proxy
energy consumption, the percentage energy saving
increases with the number of files to download (as the
proxy cost is subdivided between an increasing number
of files) and asymptotically converges to)(nI saving .

These results can be easily explained. By assuming that
(i) all files have approximately the same download time

dct , (ii) all clients experience the same delay for

uploading the request to the BitTorrent proxy and
downloading the file from the proxy (i.e.,

1ct and
2ct),

and (iii) the interference among clients is negligible
due to the gigabit bandwidth of the LAN, it yields

)1(
)(

1
)(

1)(2121
saving

dc

cc

dc

cc
saving I

t

tt

tn

ttn
nI =+−=

⋅
+⋅−≈

This means that, if the proxy runs on a PC already
continuously powered on for other purposes, the
percentage energy saving does not depend on the
number of files to download. This also suggests that the
absolute energy saving is (approximately) linearly
increasing with the number of clients. To show this we
introduce the)(nEsaving

 and)(* nE saving indices, which

measure the total time the client PCs can be powered
off when using the proxy architecture with respect to
the legacy case (no proxy). As above,)(* nE saving refers

to the case when a dedicated PC is used as proxy.

∑∑
==

−=
n

i
withP

n

i
withoutPsaving ititnE

11

)()()(

 +−= ∑∑
==

n

i
withPdp

n

i
withoutPsaving ittitnE

11

*)()()(

By measuring)(nEsaving
 and)(* nE saving in our

experiments we obtain the results plotted in Figure 4.
These results clearly indicate that in both cases the
overall energy saving increases with the number of files
and the difference between the two curves is only due
to the proxy energy consumption. Again, it is possible
to provide an analytical explanation for the behaviors
presented in Figure 4.

Figure 4. Absolute energy saving at clients

expressed as corresponding time.

Specifically, by following the same arguments used
above, it is easy to observe that)(nEsaving

 increases

almost linearly with the number of files:
)1()]([)(21 savingccdcsaving EntttnnE ⋅≈+−⋅≈

On the other hand, when we include the energy
consumed by the proxy in the total energy
consumption, we have

dpccdcsaving ttttnnE −+−⋅≈)]([)(21
*

Hence by assuming, as before,
dpdc tt ≈ it follows that:

)()()1()(21
* nEttntnnE saving

n
ccdcsaving →+⋅−⋅−≈

Furthermore, by following the same line of reasoning
we have:

)(
)(

1

1)(
1

)(
1)(

21

2121*

nI
t

tt

nt

tt

tn

tttn
nI

saving
dc

ccn

dc

cc

dc

dpcc
saving

=+−→

−+−≈
⋅

++⋅
−≈

The two formulas above indicate that, for large n , the
energy consumption of the BitTorrent proxy can be
neglected. The results presented above clearly show the
effectiveness of the proxy-based architecture from the
energy-saving standpoint. The other aspect that we
need to investigate is the impact of the proxy-based
architecture on the download time. In the previous
analysis we have assumed that the time to download a
file is not significantly affected by the proxy. To
analyze this aspect, in our experiments we also
compare the time to download n files in parallel with,
and without, the proxy. The results of this analysis are
summarized in Figure 5, where we plot the average
download time of a single file, for an increasing
number of parallel downloads (each column represents
the average of several experiments).

Figure 5. Average per-file download time.

We tried to mitigate the network variability by
replicating the experiments several time, but it is very
difficult (if not impossible) to remove the effects of this
variability. In any case, the results reported in the
figure clearly indicate that using the BitTorrent proxy
does not introduce any degradation in the QoS; indeed,
on average, the time to download a file reduces by
exploiting the proxy architecture. This can be
explained by taking into account that the BT peer on
the proxy shares more files on the BT overlay with
respect to any single BT peer in the legacy architecture,
and thus gets higher download bandwidth. To quantify
the average gain we can achieve, we computed the
average download time over all the experiments we
performed. With the BT proxy the average download
time reduces by approximately 22% (6541s vs. 8439s).
We wish to conclude the analysis of the delay with an
interesting observation tightly coupled with the
BitTorrent behavior. Specifically, we analyze how the
availability of a single (popular) file to upload on the
proxy can highly reduce the download time of all files
the proxy is downloading. This effect is well
exemplified by results presented in Figure 6 by
considering the proxy architecture and comparing the
delay to download 4 files in parallel, with or without a
popular file available for other BitTorrent peers on the
proxy.

Figure 6. Effect of popularity on download time.

As it clearly appears from Figure 6, a single popular
file can further reduce (with respect to the gain already

achieved with the proxy) of about 25-30% the
download time of all the other files. In addition to
energy saving, this provides a strong motivation for
exploiting our proposed architecture: a single popular
file shared on the proxy provides a high benefit to
everyone. Therefore, we can expect that a wise policy
to reduce the downloading times is to concentrate both
the files to download and the popular files to upload on
the proxy. However more experimental results are
required to confirm this hypothesis.

4. References
[1] G. Anastasi, M. Conti, E. Gregori, A. Passarella, “Performance
Comparison of Power Saving Strategies for Mobile Web Access”,
Performance Evaluation, Vol. 53, N. 3-4, Aug 2003.
[2] G. Anastasi, M. Conti, A. Passarella, “Power Management in
Mobile and Pervasive Computing Systems”, Algorithms and
Protocols for Wireless and Mobile Networks, Chap 24, Azzedine
Boukerche (Editor), CRC, Oct 2005.
[3] A. R. Bharambe, C. Herley, V. N. Padmanabhan, “Analyzing
and Improving BitTorrent Performance”, Technical Report MSR-TR-
2005-03, Feb 2005.
[4] L.A. Barroso, U. Holzle, “The Case for Energy-Proportional
Computing,” IEEE Computer, Vol. 40, N. 12, 2007.
[5] Christensen K., Gulledge F., “Enabling power management for
network-attached computers”, International Journal of Network
Management, Vol. 8, N. 2, Mar – Apr 1998.
[6] Christensen K., George A. D., “Increasing the Energy Efficiency
of the Internet with a Focus on Edge Devices”, in: The Energy
Efficient Internet Project, University of South Florida and
University of Florida, Florida, 2005 – 2008.
[7] Christensen K., Blanquicet F., “An initial performance
evaluation of Rapid PHY Selection for Energy Efficient Ethernet”,
Proc. IEEE Conference on Local Computer Networks, Oct 2007.
[8] Ken Christensen and Bruce Nordman, “Improving the Energy
Efficiency of Ethernet-Connected Devices: A Proposal for
Proxying”, Ethernet Alliance White Paper, Sept 2007.
http://efficientnetworks.lbl.gov/enet-pubs.html
[9] Greg Goth, “The Net’s Going Green”, IEEE Internet Computing,
Vol. 12, N.1, January -February 2008.
[10] Gunaratne C., Christensen K., “Ethernet Adaptive Link Rate:
System Design and Performance Evaluation”, Proc. IEEE
Conference on Local Computer Networks, Nov 2006.
[10] Gupta M., Grover S., Singh S., “A feasibility study for power
management in LAN switches”, IEEE ICNP, Germany, Oct 2004.
[11] Singh S., Gupta M., “Using low-power modes for energy
conservation in Ethernet LANs”, Proc. INFOCOM 2007, Portland
USA, May 2007.
[12] Karayi S. (NEF), “The PC energy report”, 1E, London, 2007.
www.1e.com/energycampaign/downloads/1E_reportFINAL.pdf
[13] Don Towsley, “The Internet is Flat: A brief history of
networking over the next ten years”, ACM PODC, 2008.
[14] Schulze H., Mochalski K., “The Impact of Peer-To-Peer file
sharing, voice over IP, Skype, Joost, Instant Messaging, One-Click
Hosting and Media Streaming such as YouTube on the Internet”,
IPOQUE – Internet Study 2007, Leipzig, Germany, Sept 2007.
[15] G. Anastasi, M. Conti, W. Lapenna, “A Power Saving Network
Architecture for Accessing the Internet from Mobile Computers:
Design, Implementation and Measurements”, The Computer
Journal, Vol. 46, N. 1, Jan 2003.
[16] C. Gunaratne, K. Christensen, S. Suen, and B. Nordman,
“Reducing the Energy Consumption of Ethernet with an Adaptive
Link Rate”, IEEE Transactions on Computers, V.57, N.4, Apr 2008.

