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Abstract—Opportunistic computing is a new computational
paradigm enabling mobile users to access the heterogeneous
services present in a pervasive mobile environment. With respect
to conventional service-oriented approaches, in opportunistic
computing services are provided by the users’ mobile devices
themselves, and are accessed exploiting opportunistically direct
contacts between devices, i.e. without relying exclusively on fixed
infrastructures such as the cloud. Pair-wise contacts are exploited
to collect information on services and providers available in the
network. A proper support may exploit this information to choose
the most efficient composition of services satisfying a service
request issued either by a user or an application.

This paper defines a support for service selection and com-
position in opportunistic environments based on a mathematical
model able to describe the different phases of the execution of
a service composition. The model enables an estimation of the
execution time of a composition and is exploited by the support
for choosing the best composition among a set of available
alternatives. The paper presents a set of simulations proving the
effectiveness of our approach. The experiments show that our
approach achieves better query resolution time and better load
balancing of the service requests on the providers with respect
to reference alternative approaches.

I. INTRODUCTION

The increasing popularity of mobile devices such as smart
phones and tablet computers, characterized by high computing
power and different interfaces for communication with other
devices opens new applicative scenarios. In this perspective,
opportunistic networks are self-organizing mobile networks
where each user that is part of the network exploits its mobility
and that of others for transferring messages, disseminating
data and accessing/sharing resources [1]. Given the richness
of resources and services offered by current mobile devices,
the opportunistic paradigm has recently been extended to that
of opportunistic computing, where the mobile network users
may mutually exploit the services and resources present on
their devices [2].

The basic idea of opportunistic computing is to allow the
users to take advantage of the resources and services that other
users share, by exploiting the direct physical contacts between
the users, and the resulting possibility to exchange data
through a direct connection between their devices (e.g. through
wifi or Bluetooth). Opportunistic computing is complementary
to conventional service oriented computing approaches. In
opportunistic computing resources available on mobile devices
can be directly shared among users in a very dynamic and sit-
uated way (i.e., following very closely the dynamic process of

users availability and needs), without requiring to go through
any pre-existing infrastructure, either at the networking level
(e.g., cellular networks) or at the computing/service level (e.g.,
the cloud). Therefore, opportunistic computing permits to take
advantage of typically unused resources available on users’
devices, thus augmenting the total ”service capacity” of a
pervasive networking environment. A challenge to realise the
opportunistic computing vision is that in this scenario, the
mobility of devices makes it impossible to create and maintain
a stable network topology, so that the problem of the instability
of the connections has to be considered. Moreover, given the
great heterogeneity of the devices, it is important to define a
support able to manage the on-line selection and composition
of resources and services by exploiting an analysis of the
mobility and of the characteristics of the nodes, to satisfy
a request submitted by a user or by an application. Thanks
to such a support, opportunistic computing can provide, de-
spite intermittent connectivity, a functioning and dynamic
distributed computing environment, taking advantage of any
resources available in the environment.

This paper proposes a system for the selection and com-
position of services in opportunistic computing environments,
realised as a distributed support layer active on users’ devices.
This support layer is responsible for sharing resources on the
devices in the form of services and takes dynamically infor-
mation on resources and services from other participants in the
network. With this knowledge, our system can process service
requests generated either by the user or by the applications
that reside on the device. It proceeds to evaluate the possible
alternatives which can be exploited to resolve these requests
and chooses the most convenient, taking into account both the
mobility of the nodes, the heterogeneity of the participating
devices, and the expected status of their resource usage (e.g.,
the computational load on the devices).

Figure 1 shows a possible toy scenario of our system.
A user (in the following, the seeker, marked as node N1)
asks for a service which consists in the transformation of a
raw video file into a compressed video file and a separate
audio file. The seeker knows three nodes of the network (in
the following, the providers, marked as nodes N2, N3, N4)
which have published, respectively, the services S1, S2, S3. N1

recognizes as viable alternatives the service S1 which offers
the required transformations and the sequential composition of
the services S2, S3. The system we propose is able to choose
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Figure 1. Service composition: an example

the best alternative through the definition of a mathematical
model taking into account both the mobility of the devices and
their computational capabilities in order to derive statistical
measures useful for comparing the alternatives. In particular in
this paper we select the alternative that minimises the expected
completion time, defined as the time when the seeker receives
the service results back when using a chosen alternative.

The paper presents a set of simulation results obtained
exploiting the TheOne simulator [3], which has been proposed
for evaluating opportunistic environments and includes differ-
ent mobility models. We have modified the simulator in order
to make it suitable for the management of service composition.
The simulations highlight the effectiveness of the approach
we propose also in presence of a large amount of requests.
In particular, we compare the proposed system with different
alternatives, including random selection of the alternatives and
selection of the first available alternative. Our system provides
better performance in terms of completion time and is also able
to significantly reduce the load at providers, in particular when
this is most needed, i.e. when seekers generate a high load of
requests. For instance, with respect to the policy selecting the
first available alternative, our system reduces the completion
time up to 86%, and the average load on providers up to 40%.

The paper is organized as follows. Section II describes the
main approaches to service provisioning and composition in
mobile environments. The overall architecture of the system
is defined in Section III and the policy for selection of the
composition is introduced in Sections IV and V. Section VI
discusses the experimental results. Finally, concluding remarks
are reported in Section VII.

II. RELATED WORK

The goal of opportunistic computing is to allow the users
to opportunistically compose the resources in the network.
The sharing of resources in a heterogeneous mobile network
can be used to compose functionalities not available in a
single node of the network thus providing a much more
rich functionality set. Such a vision requires new solutions
for orchestration and management of resources on different
devices [4]. Service composition exploits a mechanism based
on graph theory that allows to collect the knowledge of the
services offered and to represent this knowledge to evaluate
the best alternative to use. Some recent research proposal take
into accounts these aspects. [5] describes a system allowing

service discovery and composition in networks with stable
connectivity. The proposed system includes a mechanism for
modelling services representing their semantics through the
use of ontologies. They define a taxonomy of services through
a list of concepts describing them [6]. A key problem of
service provisioning through direct communication between
nodes in mobile environments concerns the possibility that
possible service providers may not be directly reachable (even
through a multi-hop ad hoc path) when the seeker issues a
request.

In opportunistic computing, instead, the fact that nodes
may not be reachable is considered as the rule, and proposed
mechanisms are designed correspondingly. For example, in
[7] fault tolerance is achieved through a middleware that
exploits information about the devices to create parallel service
compositions, in order to increase the probability for suc-
cessful executions. [8] proposes some heuristics for service
composition taking into account the last time of encounter
between nodes and the reported load at providers.

In [9], [10] the problem is addressed using a stochastic
analysis of the providers in order to find the ones that are
most likely reachable from the seeker during the entire period
necessary to perform the composition. In these works, the loss
of connection is considered as a failure state.

[11] analyses the issue of single service provision in oppor-
tunistic networks. The main aim is to improve the efficiency
of service provision by replicating requests to a set of different
providers. The proper number of requests is computed by
considering information on the mobility of the users and on the
load of the nodes. The optimal number of requests is computed
through an analytical model that minimizes the expected value
of the request resolution time, defined as the time required to
receive the first response from suppliers.

In this paper we propose a system extending previous tech-
niques whose aim is to minimize the time for the provisioning
of a composite service. With respect to [7] and [8] this is based
on an analytical model for computing the expected completion
time of each alternative, rather than on simple heuristics for
selecting the composition (similar in design to the ones we
compare against in simulations). With respect to [11], we
consider here the possibility of composing different services.

III. SYSTEM ARCHITECTURE

The system we propose enables either a user or an applica-
tion of a mobile network to compose local and remote services
to satisfy a user request. Even if a service request may be
satisfied either by an atomic service or by a composition of
services, in the following we will consider the more general
scenario of service composition.

The system is based on a mathematical model which
exploits the local knowledge of the network collected by a
node through its opportunistic contacts with other nodes. The
algorithm to choose, among the alternative compositions, the
one providing the best solution according to a given metrics
is based on this model.



An important characteristic of our approach is that when
evaluating alternative compositions, the system considers also
nodes of the network which are not connected to the seeker
when the service request is generated. This implies that a node,
in its opportunistic contacts, has to collect information related
to the mobility of other nodes and to their computational
load. The trade-off to be considered for choosing the strategy
to spread this information is between the overhead for its
diffusion and the richness of the collected statistics. It is worth
noticing that our approach is independent of the particular
adopted strategy.

Further, the evaluation of the alternatives is dynamic. As
a matter of fact, the seeker may establish new opportunistic
contacts and collect new information from the network before
the node offering the first service in the composition is
contacted. Since this information may alter the classification
computed previously, the compositions must be re-evaluated
whenever fresh information is received from the opportunistic
contacts before contacting the first provider of the best path.
To describe the system behaviour in more details, we show
how a service request is managed and which components are
involved in the resolution of the request.
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Figure 2. Service request resolution

Consider Figure 2. When a node generates a query, it
searches for alternative service compositions satisfying it. To
this end, it builds a graph representing all these compositions.
The formal definition of the graph is given in Section V. The
graph is built by exploiting the information present in the
knowledge base recording the services available in the network
(to the best of the node’s knowledge) and the providers
offering them. The graph is weighted by a set of values
required to evaluate each alternative. While the structure of the
graph is not modified after its construction, the weights paired
with the nodes/arcs of the graph are dynamically updated when
fresh information is collected by new contacts.

The modelling of the different phases to execute a service
composition, i.e. waiting the next provider of the composition,
transfer of data for running the service component, queue
waiting and waiting time at the provider before the execution
an start, is described in Section IV. The evaluation of the
alternatives through the mathematical model can be described
as the application of a set of parameters to a function where
the value of the parameters is taken from the knowledge base
of the node. The result of the evaluation is a set of values that
enable ordering the alternatives by the defined metrics.

When the best alternative is detected, if the chosen provider
cannot be directly contacted, the node waits for a contact with
it. While waiting for this, it may encounter further nodes and
collect new information from them. The task of the events
handling component is to keep monitoring both the network
and the node itself to catch events that may affect either
the resolution of a pending query or, in general, the local
knowledge base. The kind of events to handle depend on the
policies to handle queries and by the information required to
weight the evaluation graph. The event handling component
triggers either the transmission of fresh information on the
network as a response to an event generated by the local node
or the refreshing of the local knowledge base as a response to
the reception of new information received from the network.

IV. MODELLING SERVICE EXECUTION

This section introduces the stochastic model exploited to
estimate the execution time of a single service (component).
Modelling the execution time of a single service is the building
block to evaluate the completion time of a composition.
Starting from this, we will model service composition in
Section V.

We can divide the execution time of a single service (R)
into the following phases:

• Contact of the service provider (W). The time to contact
the node providing the service is determined by the
intercontact time between the seeker and the provider.
This value depends on the their relative mobility.

• Data transfer (Input Time B, Output Time θ). In-
put/output data for the service execution must be trans-
ferred from the seeker to the provider and back. Note
that in an opportunistic network data transfer between
two nodes may be affected by connection disruptions due
to the nodes mobility. This implies that the duration of
contacts affects the number of contact events required to
complete the transfer, while both contact and intercontact
duration affect the time to transfer data.

• Queue waiting time (DQ). Once transferred, requests may
be delayed at the provider due to previous pending exe-
cutions (we model this as a FIFO queue at the provider).
The duration of this delay depends both on the frequency
of the request arrivals to the provider and on the time to
process them.

• Service execution time (DS). The time to execute a
service on the provider depends both on its computational
capabilities and on the type of the service.

Since the execution of previous phases is sequential, we
obtain:

R =W +B +DQ+DS + θ

We will define R as a random variable whose expected
value will be exploited to choose the best alternative. The
random variables corresponding to the different phases will
be introduced in the following sections.



A. Contacting the service provider
We introduce the random variables TCnh,nj

and TICnh,nj

modelling, respectively, the contact and intercontact times be-
tween two nodes nh and nj . For each pair of nodes, we assume
that contact and intercontact times between those nodes are
independent and identically distributed (i.i.d.). We also assume
that contact and intercontact times of different pairs of nods
are independent of each other. Finally, we assume that the
variables TCnh,nj

and TICnh,nj
follow exponential probability

distributions with rates δnh,nj
and δ′nh,nj

. As shown by real
trace analysis presented, for example, in [12], [13], although
controversial, exponential contact and intercontact times is
one of the possibilities, and is a common assumption in the
literature on opportunistic networking and computing (e.g.
[14], [11]). Since a node cannot know beforehand the values
of δnh,nj

and δ′nh,nj
, each node computes an estimate of these

values by averaging the values of contact and intercontact time
with other nodes collected by opportunistic contacts.

The time for node nh to contact the generic service provider
nj , is denoted by the random variable Wnh,nj

. This is equal
to 0 if, at the time when the evaluation is done, nh and nj are
in contact, while it is equal to the residual intercontact time
TICnh,nj

otherwise (and, under our assumption, its expected
value is equal to E[TICnh,nj

] due to the memoryless property
of the distribution).

The expected value of Wnh,nj is recomputed at each
connection/disconnection of the two nodes, changing from
0 to E[TICnh,nj

] when a disconnection occurs or from
E[TICnh,nj

] to 0 in case of a connection establishment.

B. Data transfer time
The estimation of the time to transfer data between two

nodes requires to take into account the network dinamicity,
since disconnections may occur during the transfer process.
If a transfer between two nodes starts at the beginning of a
contact period, it may be interrupted at the end of each contact,
to be resumed when a new contact (between the same nodes) is
established. This means that the total time for the transfer has
to be computed by considering a sequence of time intervals.
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We assume that the data throughput is a constant V > 0
computed by averaging its values measured during the contact
periods.

We denote the random variable modelling the time needed
to transfer the input data from the seeker nh to the provider nj
as Bnh,nj

. The input data transfer is characterized by starting
while a contact is established with the provider and, hereafter,
we refer as Bnh,nj for each data transfer time starting during
a contact period. Bnh,nj

depends on k, the size of data to
transfer, on V and on the number N of contacts required
to transfer data. Figure 3 illustrates through an example the
general data transfer process. If no disconnections would occur
during the whole process, the data transfer time would be
k/V . Otherwise, additional intercontact times must be added,
depending on the encounter pattern between the nodes. Specif-
ically, the number of contact events necessary to complete the
data transfer is equal to n with a probability that the sum of
n contact times between the two nodes is less than k/V , and
the sum of n+ 1 contact times is greater than k/V .

Denoting with TCnh,nj
(i) the length of the i-th contact event

between ni and nj , the probability that N is equal to n is thus:

P{N = n} = P{
n∑

i=1

TCnh,nj
(i) <

k

V
≤

n+1∑
i=1

TCnh,nj
(i)}

If we condition to the number of contact events required to
complete the data transfer, Bnh,nj

can be computed as k/V
(the sum of the contact times during which the data transfer
occur) plus the sum of the n intercontact times occurring
between the required contacts.

Bnh,nj |N=n =
k

V
+

n∑
i=0

TICnh,nj
(i)

Removing the conditioning on n, by exploiting the previous
formulation of P{N = n}, we obtain the formula of the
expected value of Bnh,nj

(the complete derivation is available
in [15] and is omitted here for space reasons):

E[Bnh,nj
] =

k

V
∗

(
1 +

δnh,nj

δ′nh,nj

)
Finally, the random variable θnh,nj modelling the output

data transfer time, can be expressed by taking into account
that the seeker is not capable of forecasting whether the service
execution will end during a contact period. We can exploit the
definition of Bnh,nj

to define θnh,nj
as:

θnh,nj
=

{
Bnh,nj

if nh and nj are in contact
Bnh,nj

+ TICnh,nj
otherwise.

and its expected value is [15]:

E[θnh,nj
] =

k

V
∗

(
1 +

δnh,nj

δ′nh,nj

)
+
δnh,nj

δ′nh,nj

∗ 1

δ′nh,nj
+ δnh,nj

C. Queue waiting time

A provider offering a set of services receives a stream of
requests from the network and enqueues them, waiting for the
execution.

We consider the M [X]/G/1 [16] queueing model, where
nodes generate queries according to a Poisson distribution



with rate λ and send batches of requests to the provider
(upon encountering). Consider the random variable DQnj

modelling the waiting time for a service request in the queue
of provider j in a M [X]/G/1 queue system and the random
variable G modelling the number of queries in a batch received
by the provider. The expected value of the random variable
DQnj

can be computed [16] if we assume that the first two
moments of the general distribution of the service execution
time DSsi,nj (with expected value d and d(2) its second
moment) and of the random variable G (with expected value
g and g(2) its second moment) do exist. These values can be
estimated by monitoring the batches arriving to the provider
and the executed services.

To complete the characterization of DQnj
we extract the

average rate λ of the query batches arrivals to the provider
and compute the average load ρ of the provider as λ ∗ g ∗ d.
Starting from these values, the expected value of DQnj can
be computed, as shown in [16], as:

E[DQnj ] =
λgd(2)

2(1− ρ)
+

g(2)d

2g(1− ρ)

D. Service execution time

The random variable DSsi,nj for the execution of the
service si on a provider nj is influenced both by the device
computational power and by the implementation of the re-
quested service. Each provider estimates the expected value of
the DSsi,nj

by collecting the execution times of that service
and transmits this value in each opportunistic contact.

V. SERVICE COMPOSITION

A service request may be satisfied by a composition of the
services offered by the nodes of the network. In our solution,
the composition is defined by the seeker which exploits its
local knowledge of the services present in the network and of
the providers offering them.

At an abstract level, we define a directed Service Graph
showing the execution dependencies inside a composition.
Each path connecting two vertices of the graph shows a valid
sequence of service executions. Each service sj is identified
in our system as a pair (Ij , Oj) where Ij is the input type
and Oj is the output type of sj and these types are atomic.
For the sake of simplicity, in the following we assume that
these types are codified by integer values, furthermore we will
consider acyclic compositions since they represent the most
frequent situation in real scenarios. For instance, Figure 4
shows a set of services {S1, S2, S3, S4} linked by their type
dependencies together with two special services start and end
representing the start and the end points of the composition to
which are assigned the input, respectively the output type of
the service request. Each other node is paired with a pair of
integers that represents the input, respectively the output type
of the corresponding service.

To evaluate alternative compositions, each service in this
graph has to be paired with the nodes (providers) offering
it. The Composition Graph, shown in Figure 5 is defined by

S1
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S2
2,3 

S4
1,3 

start

0 
end

3

Figure 4. The Service Graph

replacing each vertex of the service graph corresponding to
a service Si by a set of vertexes (Si, Nj) such that node
Nj provides service Si, and the edges of the modified graph
link the same services pairs of the abstract graph. Note that
node N0 corresponds to the seeker, while services start and
end represent, respectively, the service request issued by the
seeker N0 and the reception of the request output by N0.

The Composition Graph can be used to determine, based
on the seeker’s local knowledge, all the compositions which
satisfy the service request, just by identifying the set of paths
from the start to the end service. Each path corresponding
to a sequential composition of services is shown in Figure 5.
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Figure 5. The Composition Graph

To estimate the execution time of different compositions and
choose the best one, the graph is weighted by considering the
local knowledge of the node. Each vertex of the graph is paired
with the average queue waiting time at the corresponding
provider and with the average service execution time of the
corresponding service at that provider, while the edges of the
graph are labelled by considering the average time required
for contacting the next node and for transferring data to it.

The time to transfer intermediate results between providers
may be computed in different ways according to the knowl-
edge of the network collected by the seeker. In the solution re-
quiring the minimal overhead in terms of amount of exchanged
information between nodes, each provider transfers the results
back to the seeker which forwards them to the next provider
of the composition. In the solution that maximises the amount
of knowledge that the seeker can exploit to estimate the best
composition, the intermediate results of the composition are
directly transferred between the providers. In this case the
seeker needs to know the contact and intercontact rates of



any pair of providers involved in the composition. These
values may be epidemically exchanged when nodes come into
contact. Let ni and nj be a pair of nodes establishing a
contact and exchanging their knowledge of the network. ni
needs to get each contact rates δnj ,nh

and intercontact rates
δ′nj ,nh

of each other node nh that is known by nj (so that
its services are also known). This solution may require to
exchange up to n2 elements, where n is the number of nodes in
the network. The trade-off is between the data exchanged and
the possibility to exploit direct data transfer between nodes,
which may result in more efficient solutions, because data has
not to be transferred back to the seeker after each invocation.
As we discuss next, the estimation of the time required for a
specific service composition also depends on which solution
is used.

A. Modelling Service Compositions

Let us consider a vertex (sj , ni) of the Composition Graph:
it represents the execution of the service sj on the provider ni,
while an edge ((sj , ni), (st, nk)) shows that nk waits from ni
the results produced by service sj to start execution of service
st. In the following, without loss of generality, we will assume
that the node corresponding to the seeker is n0. Let us consider
a path p from the vertex (start, n0) to the vertex (sj , ni) of
the composition graph: our goal is to define a random variable
Rp,sj ,ni modelling the time to execute the sequence of services
on the path p, starting from the seeker n0, up to the end of the
execution of service sj inside the provider ni. The expected
value of Rp,end,n0

is an estimation of the time to execute the
composition corresponding to a specific alternative, available
through path p.

The form taken by the random variable Rp,sj ,ni
depends

on the solution adopted to transfer data between the providers
of the composition. Let us introduce the variable θsj ,ni,st,nh

modelling the time required to transfer data from the service
sj of the provider ni to the service st of the provider nh.
In the first scenario, the intermediate results generated are
transmitted to the seeker which, in turn, propagates them to
the next provider of the composition. In this case, we define
the variable θsj ,ni,st,nh

, by distinguishing the first step of the
composition from the other ones. As discussed in section IV,
when considering the first data transfer, the seeker is able to
know whether the contact with the first provider is available,
while this is not possible in the following transfers. Therefore,
if an edge of the graph connects the start service with another
service, we sum up the initial contact waiting time and the data
transfer starting during a contact period. In the other cases, we
sum up the data transfer time between each provider and the
seeker.

The definition of θsj ,ni,st,nh
is therefore the following one:

θsj ,ni,st,nh
=

{
Wni,nh

+Bni,nh
if sj = start.

θni,n0
+ θn0,nh

otherwise.
where Wnt,nk

,Bnt,nk
,θnt,nk

have value 0 if t = k.
In the second scenario the seeker estimates if the lower

execution time is obtained by transmitting the intermediate

Figure 6. Average completion time (general case)
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results directly between the providers or by returning them to
itself. In this case, the random variable θsj ,ni,st,nh

is computed
as in the previous case, by considering that each transfer
between two providers may be realized by relying on the
seeker or by a direct transfer.

θsj ,ni,st,nh =

{
Wni,nh +Bni,nh if sj = start

min(θni,nh , θni,n0 + θn0,nh) if sj 6= start

Let us now compute the random variable Rp,end,n0 express-
ing the execution time of the composition corresponding to the
path p.

Consider a path p in the Composition Graph defined by m
providers n1, ..., nm and m service invocations sn1

, ..., snm
,

where sni
is the service invoked on the node ni of p. and

consider a query submitted by the seeker n0. The random
variable defining the execution time of the path p, is defined by
adding a component for the first composition step, one for the
sequence of service executions up to end of the composition
and a component for the final data transfer to the seeker.
Recalling the notation for the waiting time in the providers’
queues and the execution times at the providers (defined in
Section IV), and the formulas presented in this Section, it is
easy to derive the following expression:

Rp,n0,end = Tfirst + Tp + Tlast
where:
Tfirst =Wn0,n1 +Bn0,n1 +DQn1 +DSsn1

,n1

Tp =

m∑
i=2

(θsni−1
,ni−1,sni

,ni +DQni +DSsni
,ni)

Tlast = θsnm ,nm,n0,end.

The expected value of the execution time may be computed
by assigning a weight to each edge, according to the previous
formula, and then using the shortest path algorithm [17] to
find the best alternative.

VI. SYSTEM EVALUATION

In order to validate the effectiveness of a system where
the choice of the service composition exploits the model
presented above, we developed a set of simulations through
TheOne [3]. The experiments exploit a set of mobility traces



Figure 7. Average completion time (case08)
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Figure 8. Average provider load (general case)
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MEV

generated according to the RandomWayPoint model, modified
as discussed in [18] in order to avoid problems related to the
initial transient phase of the mobility model.1

The main parameters of the simulations are described in
Table I.

Table I
SIMULATION PARAMETERS

Simulation runs 5
Number of nodes 500m× 500m
Total simulation time 70000s
Warm-up time 10000s
Request generation phase 30000s
Connectivity range 90m
Transmission speed 2Mbps
Input/output data size 20KB/2MB
Density of each service 25%
Input type range i ∈ [0, 7]
Requests output type range o ∈ [1, 8], o > i

As previously described, each service is identified by the
type of its input/output which is codified by an integer. In our
simulation an input type i is selected in the integer range [0,7],
while output type o in the range [1,8], with the constraint that

1Note that, although in general other mobility models are considered
more realistic, RWP is still a valid option when users form a unique social
community moving in a common area [19]

i is less than o to avoid cyclic compositions. Each service is
randomly assigned to 25% of nodes.

We consider two different scenarios for service requests. In
the first one, the service requests are generated so that both the
input and the output type of each service is randomly selected.
In the second scenario, referred as (case08), all requests have
input type 0 and output type 8. This represents the case with
the longest possible composition in our scenario.

We compare the following service selection policies:
• Minimum Expected Value (MEV). The choice of the

service composition is selected according to our model.
• Random(RAN). For each request of service, a random

path in the Composition Graph is selected.
• Always First (AFIR). The path on the Service-Node

Graph is selected by the seeker by considering, at each
composition step, if possible, a suitable provider that is
already in contact with it. If no such provider exists, the
seeker waits to encounter such a provider.

• Atomic (ATOM). The seeker waits for a provider that
offers a single service satisfying the request. In this case
service composition is not taken into account at all.

Our experiments measure both the average completion time
of the service requests and the average load on the providers.
Our results are the average of 5 independent simulation runs,
shown with 95% confidence intervals.

TheOne allows us to configure the frequency of requests
creation and their assignment to the seekers. When a new
request is created, it is assigned to a seeker selected at random.
We examine the behaviour of the system in different query
load scenarios, by increasing the number of requests generated
by the system starting with a generation time between requests
uniformly distributed in the range 20-40 seconds, up to a
generation time between requests uniformly distributed in the
range 3-5 seconds.

As we will see in the following section, the effectiveness
of the policy MEV with respect to the AFIR, RAN and ATOM
policy is more remarkable for higher load values.

A. Results

In this section we consider the more general scenario
where the seeker exploits also the information received by the
encountered nodes, like the intercontact times of these nodes
with other ones.

The results presented in Figure 6 and in Figure 7 show how
the performance of MEV remains fairly stable when varying
the number of requests, as opposed to the AFIR and RAN
policies, which have the worst performance and present a
massive degradation in the case of a high frequency of service
requests. ATOM follows the trend of MEV with average times
slightly larger than MEV in the general case, despite it requires
a single service invocation to satisfy the user request. In case
case08 its behaviour is similar to that of other policies different
from MEV.

For what concerns the average load (Figure 8), RAN and
AFIR bring most of the providers to saturation (as the average
load approaches 1). ATOM and MEV result in a significantly



lower average load. Specifically neither of them exceeds 0.6,
and MEV achieves a lower average load. This is remarkable, as
- in general - the total number of generated requests is higher
in MEV, because MEV exploits service composition (while
ATOM does not) and thus generates a number of requests
larger or equal to 1 for each request issued by the applications.
Nevertheless, this result in an average load even lower than
in ATOM, showing that MEV is able to efficiently distribute
the additional load. Simulations in the case08 provide similar
results and are omitted for space reasons (they are available
in [15]).

Overall, by comparing the four policies based on the
two performance figures, we can conclude that MEV largely
outperforms AFIR and RAN. MEV outperforms also ATOM,
though to a lesser extent in the average case. However, as
soon as some specific service becomes very popular (like in
the case08), MEV largely outperforms also ATOM, because it
exploits composition to avoid constantly using only the set of
providers that provide exactly that service (as ATOM does),
thus overloading them.

VII. CONCLUSIONS

In this paper we have presented a system able to select and
compose service requests in an opportunistic environment. We
have defined a mathematical model to evaluate alternatives
known by the seeker where the request is generated. The
simulation results show the effectiveness of our approach. We
plan to extend our proposal in several directions. For instance,
we plan to consider parallel composition of services and multi-
hop service invocation, where also nodes not directly contacted
are considered.
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