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Abstract. The opportunistic data dissemination problem for mobile de-
vices is an open topic that has attracted many investigations so far. At
the best of our knowledge, none of these approaches takes into account
the semantic side of the data shared in an opportunistic network. In this
paper, we present an algorithm that, starting from the semantic data
annotations given by the users themselves, builds a semantic network
representation of the information. Exploiting this description, we detail
how two different semantic networks can interact upon contact, in order
to spread and receive useful information. In order to provide a perfor-
mance evaluation of such a solution, we show a preliminary set of results
obtained in a simulated scenario.

1 Introduction

The increasing, pervasive presence of devices interacting among themselves and
their users is leading to a complex and vast information environment, where in-
formation flows from the physical world to the cyber one, and vice-versa. Users
mobile devices, sensor networks, and all the devices spread in the environment
with data generation capabilities (e.g., in Internet of Things applications) will
constantly generate huge amounts of data thus generating a very rich information
landscape. This scenario is known as the Cyber–Physical World (CPW) conver-
gence [1]. Mobile devices will act in the CPW convergence scenario as proxies
of their human users. They will be in charge of discovering and evaluating the
relevance for their human users of the huge amount of information available in
the cyber world. This has to be done quickly and using limited resources, as de-
vices will be constantly face large amounts of data items. This situation resemble
what the human brain does when it has to assess the relevance of the information
coming from the surrounding environment. Since devices will act as the avatars
of their owners, considering the way the human brain deals with huge amounts
of data in a short time is a sensible point for designing effective and efficient
information dissemination schemes in the CPW convergence scenario .

Opportunistic networking [2] is one of the key paradigms to support direct
communication between devices in scenarios like the CPW convergence. In this
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paradigm, nodes are mobile, and forwarding of messages occurs based on the
store, carry and forward concept. In this paper we present a data dissemination
algorithm for opportunistic networks inspired by real human communication
schemes. It exploits the semantic representation of data (e.g., tags and other
metadata associated to data items) in order to assess the relevance of informa-
tion to be exchanged among mobile nodes upon contact. A dissemination scheme
for spreading the actual content associated with semantic data can be built on
top of such an algorithm, as we point out later in Sec. 3. The focus of this pa-
per is to define and give an initial performance evaluation of a semantic data
dissemination mechanism, in order to study the viability of this approach before
exploiting it to design effective and efficient content dissemination schemes in op-
portunistic networks. In this proposal, the data stored in a device is semantically
represented using an approach based on semantic networks. A semantic network
is a graph, where vertices are the semantic concepts (e.g., the tags associated
to data items) and edges represent the connections that exist among them (e.g.,
the logical link between two tags). We describe how semantic networks can be
used to determine the relevance of information to be exchanged upon physical
contact among nodes. Essentially, similar to a real human communication, the
selection of information starts from a set of semantic concepts in common be-
tween the two nodes. The relevance for one node of the rest of the information
available in the other node’s semantic network can then be assessed based on
the links between the semantic concepts in the semantic network. Similarly to
a human dialogue, information logically closer to a set of common concepts is
exchanged first, and the longer the discussion (i.e. the duration of the physical
contact among nodes), the greater the amount of information exchanged. Once
an encounter finishes, new semantic concepts are passed from one node to the
another, and new connections among new and old concepts can be established,
thus increasing the knowledge of each node.

The rest of this paper is organized as follows. In Sec. 2 we review the relevant
literature for the opportunistic data dissemination problem. In Sec. 3 we give a
general overview of the concepts behind the solution we propose, while in Sec. 3.1,
Sec. 3.2 and Sec. 3.3 we describe how semantic networks can be constructed and
interact. Sec. 4 presents some preliminary simulation results obtained with this
solution. Finally, Sec. 5 concludes the paper.

2 Related Work

The data dissemination problem in opportunistic networks has been faced by
many solutions in literature. PodNet [3] is one of the first works on this subject.
The authors of PodNet propose four different strategies to weight the relevance of
data to be exchanged on the basis of the estimated popularity of the general topic
(channel) the data belongs to. More refined approaches try to take advantage
of the information about users’ social relationships to drive the dissemination
process. For instance, in [4], the authors propose to build a pub/sub overlay in
an opportunistic network. The most “socially-connected” nodes, i.e., those nodes
that are expected to be most available and easily reachable in the network, take
the role of brokers, as in more traditional pub/sub systems. They are in charge to
collect information from their social groups, spread this data among them, and
eventually deliver it toward interested peers. Also the authors of ContentPlace [5]
propose to drive the data dissemination process using the social structure of the
network of users. Specifically, each node tries to fetch from other encountered



peers those data items that are likely of interest to other users it has social
relationships with (and which, therefore, are expected to be in touch with them
in the near future). In [6, 7], the authors define a data dissemination scheme that
directly embodies and exploits the very same cognitive rules (cognitive heuristics)
used by the human brain to assert the relevance of information. This solution
proves to be as effective as another scheme like ContentPlace in disseminating
the information, while requiring much less overhead.

With respect to all these approaches, in this paper we take a different di-
rection. None of the approaches above take into consideration the semantic di-
mension of data. In the following we define how a semantic representation of
information can be used to determine the relevance of information to be ex-
change in an opportunistic network scenario, and we validate this proposal with
preliminary simulation results.

3 Data Dissemination using Semantic Networks

In order to semantically represent the information carried by each user, we ex-
ploit an approach based on semantic networks. A semantic network is a graph
where vertices are semantic concepts and edges connect semantically related con-
cepts. In order to derive this representation, we consider that each user has a
collection of data elements, like pictures, blog posts, status updates, geospatial
data, etc. Some of these data items could be difficult to analyze semantically.
Anyway, we could take advantage of the fact that many of these data items are
usually associated with tags, as happens in many real-world social networks like
Twitter, Flickr, Instagram, etc. Thus, a simple and, at the same time, effective
way of creating a semantic network is to use data tagging, as depicted in Fig. 1.
Tags can then become the nodes of a user semantic network, while edges can be
derived from the associations the user has done when tagging their own data.
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Fig. 1. Creation of a Semantic Network by data tagging.

Note that not all the information belonging to a user may by represented in
the user’s semantic network. It seems reasonable that only information that is
assumed to be relevant for the user at a given time is mapped in her semantic
network. In order to select this information, we can act in a similar way like
the human brain does, exploting an approach built on models of the human
forgetting process. Thus, we can assume that information that has not been used
for a long time is forgotten, while information that is frequently accessed is harder
to forget. Rather than a limit, forgetting is a mechanism that could aid some
human cognitive processes (e.g. [8]) by letting them keep and consider only the
most relevant data. To model a forgetting process into our system, we propose
to introduce a special “forgetting” function similar to an experimental curve
that has been first obtained by H. Ebbinghaus in 1885 [9] and then confirmed
and refined by numerous subsequent studies (Fig. 2). This curve reflects the



exponential decline of individual human memory retention with time. The rate
of forgetting depends on the repetition rate of incoming information.
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To model this process, we propose to introduce a special 
"forgetting" function similar to an experimental curve that 
has been obtained first by H. Ebbinghaus at 1885 and then 
confirmed and refined by numerous subsequent studies 
(Figure 3). 

This curve reflects the exponential decline of individual 
human memory retention with time. The rate of forgetting 
depends on repetition rate of incoming information. 

An algorithm of forgetting is presented at Figure 4. 

Using such mechanism in the semantic model looks rea-
sonable, because transferring only the actual and poten-
tially interesting information will save limited network 
resources. 

The example 1 is an illustration of the mechanisms de-
scribed above. 

Thus, the semantic network of each user is dynamic; it is 
constructed from the individual information by tagging, 
taking into account the relationships between data ele-
ments, and frequency and/or duration of accessing them.!!
Example 1. 

Each user has a collection of data elements (e.g pictures, blog posts, 
status updates etc.) associated with tags. These elements have been 
created and/or modified at different points in time. When a data element 
is created or requested, links between associated tags are set to the 
maximum weight. If the user did not access this content for a long time, 
the weight of links between associated tags decreases, up to their com-
plete disappearance (we can vary the time threshold before it happens). 
In that case the actual user’s content does not disappear, but it no longer 
reflected in the semantic network – therefore, transfer of this content to 
other users does not occur. When a data element is accessed again, the 
associated tags reappear in the semantic network with the maximum 
weight. 
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2.3. Interaction between users and reconstruction of 
the semantic networks 

Data is transmitted from one person to another by merg-
ing of semantic networks when they are interacting; thus 
the data transfer can be done through chain of users tem-
porarily storing data for each other. 

Consider how the semantic network is changing in inter-
action with another network. This process in our model is 
similar to real human communication, where people meet, 
connect, exchange ideas and conceptions, and as a result 
of such interaction their own systems of knowledge are 
being restructured. 

Any user is able to communicate with all users within the 
reach. However, in real world people usually talk with 
those who share at least some common interests. Similar 
to that, in opportunistic networks information might be 
transmitted only to those users who have any intersection 
in their individual semantic networks. 

We can organize this process as follows. During the ini-
tial connection between users (devices) in the opportunis-
tic network, we ask for a set of tags of all available users. 
After exchanging the tag sets, we find out which users 
have the same tags and only the associated data elements 
will participate in subsequent data transfer (Figure 5).  

Specific algorithms of data transfer will be discussed later 
at the p.3.4. 
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Figure 3. A typical representation of the forgetting curve Fig. 2. Example of a forgetting curve

Given the description above, the semantic network of each user is dynamic;
it is constructed from the individual information by tagging, taking into account
the relationships between tags defined by the user herself, and frequency and/or
duration of accessing them.

Using this description, in the following sections we first describe how each
device can build its own semantic network from the data it owns. Next, we
exploit the semantic network associated to data items in order to define a data
dissemination scheme in an opportunistic network scenario, where information is
exchanged only upon physical contact between nodes. The algorithm we describe
deals with semantic data only. Anyway, it can be easily used as the basis for
designing the dissemination of the actual content the semantic data is related
to, as we stated in the Introduction. The semantic data exchanged with another
node can be used to sort the content items in order to select which of them
can be transferred to the encountered peer. For istance, a simple way to do this
can be to give precedence to those items with the largest intersection between
the semantic concepts associated to them and the set of semantic concepts that
are going to be exchanged with the other peer. In this paper, we describe how
semantic data can be spread in an opportunistc network scenario, leaving the
design of an effective and efficient content dissemination mechanism based on
this scheme as a future research direction.

3.1 Semantic Network Creation

We define the semantic network of each user as a dynamic weighted graph G =
{V,E, f(e, t)} : t ∈ T , where t is the time, V is the set of vertices in the graph,
E is the set of edges and f(e, t) is a weighting function for each e ∈ E that
reproduces the human forgetting process in our system. In addition, each edge
eij between two vertices i and j has an associated “popularity” ptij that measures
the number of times eij was present in exchanges with other nodes’ semantic
networks in the encounters happened till time t.

In the context of an active user participation to the creation of content, we
assume that each data item owned by a user is associated with a set of tags,
defined by the user herself. In the graph G that represents the user’s semantic
network, tags are the vertices, while edges connecting tags are created using



the following strategy. Firstly, for each data item, its tags are linked together
in order to form a completely connected component. Then, each set of vertices
carrying the same label (i.e. they where created from tags having the same name)
is considered. These are vertices belonging to different components and they
are merged together, forming a single vertex with their same label. This single
vertex inherits all the edges pointing to the original vertices in their respective
components.

As an example of this process, consider the example given in Fig. 3. The
user has two different pictures and their associated tags. For the two pictures,
two completely connected components are created. Then, the components are
merged using the common vertex “lake” as the pivot of this process.
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has been obtained first by H. Ebbinghaus at 1885 and then 
confirmed and refined by numerous subsequent studies 
(Figure 3). 

This curve reflects the exponential decline of individual 
human memory retention with time. The rate of forgetting 
depends on repetition rate of incoming information. 

An algorithm of forgetting is presented at Figure 4. 

Using such mechanism in the semantic model looks rea-
sonable, because transferring only the actual and poten-
tially interesting information will save limited network 
resources. 

The example 1 is an illustration of the mechanisms de-
scribed above. 

Thus, the semantic network of each user is dynamic; it is 
constructed from the individual information by tagging, 
taking into account the relationships between data ele-
ments, and frequency and/or duration of accessing them.!!
Example 1. 

Each user has a collection of data elements (e.g pictures, blog posts, 
status updates etc.) associated with tags. These elements have been 
created and/or modified at different points in time. When a data element 
is created or requested, links between associated tags are set to the 
maximum weight. If the user did not access this content for a long time, 
the weight of links between associated tags decreases, up to their com-
plete disappearance (we can vary the time threshold before it happens). 
In that case the actual user’s content does not disappear, but it no longer 
reflected in the semantic network – therefore, transfer of this content to 
other users does not occur. When a data element is accessed again, the 
associated tags reappear in the semantic network with the maximum 
weight. 
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Figure 3. A typical representation of the forgetting curve 

Fig. 3. Creation process of a user Semantic Network.

3.2 Forgetting Mechanism

Let us now define the forgetting function f(e, t) as a function that is able to
assign a weight to any edge e at a time t. If f(e, t) ≤ fmin, where fmin is a
limiting threshold value, then the edge e does not exist in the semantic network
at time t. Initially, at time t0 = 0, for any e ∈ E, we have that: f(e, t0) = 1.
Subsequently, for any edge eij and time t > t0, in each interval (t∗, t) , where
t∗ is the last time this edge was used in exchanges with other peers (i.e. its last
“activation”):

f(eij , t) = αe−βij(t−t∗)

where α is a normalizing coefficient and βij is the “speed of forgetting”, i.e. the
weakening of the connection (taken in accordance with the experimental curve
obtained by H. Ebbinghaus [9]). Obviously, βij depends on the total number
of previous connections. Then the “popular” connections are “being forgotten”
more slowly in the situation when there are no subsequent connections. So, we
can define this parameter as follows: βij = β

ptij
, where β is a speed coefficient

and ptij is the “popularity” of eij at time t, i.e. the number of times eij has been
used in the encounters happened before t. Fig. 4 shows one of the side effects
of the forgetting process. Not only edges, but even vertices can be forgotten. In
fact, if the deletion of an edge e implies that a vertex v at one of e’s endpoints
is no longer connected to any other vertex in the network, then v is also deleted
from the semantic network. After that, in order for it to reappear in the semantic
network, it should be received during successive encounters with other nodes,
using the data exchange scheme detailed in the following section.

3.3 Interaction Between Semantic Networks

In a real human communication, a dialogue begins with some concepts that
are in common between both parties. Similarly to this behaviour, we let the
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To model this process, we propose to introduce a special 
"forgetting" function similar to an experimental curve that 
has been obtained first by H. Ebbinghaus at 1885 and then 
confirmed and refined by numerous subsequent studies 
(Figure 3). 

This curve reflects the exponential decline of individual 
human memory retention with time. The rate of forgetting 
depends on repetition rate of incoming information. 

An algorithm of forgetting is presented at Figure 4. 

Using such mechanism in the semantic model looks rea-
sonable, because transferring only the actual and poten-
tially interesting information will save limited network 
resources. 

The example 1 is an illustration of the mechanisms de-
scribed above. 

Thus, the semantic network of each user is dynamic; it is 
constructed from the individual information by tagging, 
taking into account the relationships between data ele-
ments, and frequency and/or duration of accessing them.!!
Example 1. 

Each user has a collection of data elements (e.g pictures, blog posts, 
status updates etc.) associated with tags. These elements have been 
created and/or modified at different points in time. When a data element 
is created or requested, links between associated tags are set to the 
maximum weight. If the user did not access this content for a long time, 
the weight of links between associated tags decreases, up to their com-
plete disappearance (we can vary the time threshold before it happens). 
In that case the actual user’s content does not disappear, but it no longer 
reflected in the semantic network – therefore, transfer of this content to 
other users does not occur. When a data element is accessed again, the 
associated tags reappear in the semantic network with the maximum 
weight. 
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2.3. Interaction between users and reconstruction of 
the semantic networks 

Data is transmitted from one person to another by merg-
ing of semantic networks when they are interacting; thus 
the data transfer can be done through chain of users tem-
porarily storing data for each other. 

Consider how the semantic network is changing in inter-
action with another network. This process in our model is 
similar to real human communication, where people meet, 
connect, exchange ideas and conceptions, and as a result 
of such interaction their own systems of knowledge are 
being restructured. 

Any user is able to communicate with all users within the 
reach. However, in real world people usually talk with 
those who share at least some common interests. Similar 
to that, in opportunistic networks information might be 
transmitted only to those users who have any intersection 
in their individual semantic networks. 

We can organize this process as follows. During the ini-
tial connection between users (devices) in the opportunis-
tic network, we ask for a set of tags of all available users. 
After exchanging the tag sets, we find out which users 
have the same tags and only the associated data elements 
will participate in subsequent data transfer (Figure 5).  

Specific algorithms of data transfer will be discussed later 
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Figure 3. A typical representation of the forgetting curve 
Fig. 4. Effects of the forgetting process

interaction between two semantic networks start with one or few key concepts
(vertices) that belong to both semantic networks. Starting from these key ver-
tices, each device is able to compute which are the vertices and edges from its
own semantic network that are to be communicated and transferred to the other
party. Precisely, looking from the viewpoint of a device, let its semantic network
G = (V,E, f(e, t)) be the donor network, while the other party semantic network
G′ = (V ′, E′, f ′(e′, t)) is termed the recipient network. During the interaction
between these two networks, concepts of the donor network are included in the
recipient network and new connections between concepts are formed. As a result
we obtain a new (updated) recipient semantic network G∗ = (V ∗, E∗, f∗(e∗, t)).
Being |V | = n and |V ′| = m, we have that |V ∗| = l ≤ n+m.

In order to determine which vertices and edges from the donor network are
exchanged during a communication, a node computes a contributed network C =
(V̄ , Ē, f̄(ē, t)), which will contain the data that will be transmitted. Once the
contributed network is received, it is merged with the recipient network in order
to create the updated recipient network. In the following, we describe how a
node computes the contributed network and how this is finally merged with
the recipient network. Hereafter, when we say that an edge is included in the
contributed network, we imply that the vertices at both the endpoints of that
edge are also included, in case the contributed network does not already contain
them.

Supposing that the interaction starts at time t, the pseudo-code used for
initializing the contributed network is presented in Alg.1. As already stated, we
assume that a data exchange between two nodes starts from a set of shared
semantic concepts, i.e. a set of vertices K = {vk : vk ∈ V ∩ V ′} (lines 1–6 of the
pseudo-code). Note that in case K = ∅, nothing is passed from one node to the
other. Vertices and the corresponding edges that connect them directly (one-hop
distance) with key nodes are included instantly in the contributed network (lines
7–12). This process is analogue to the idea of “gestalt”, when the understanding
is not limited to a single concept, but brings a system of linked concepts i.e.
a part of the semantic network. Note that the weights of edges included in the
contributed network are set to the maximum in both the donor and contributed
networks (lines 10–11), as the exchange of this data leads to a sort of “activa-
tion” of the corresponding edge in memory, thus inducing the forgetting process
to “restart”. In order to compute which of the remaining vertices and edges of
the donor network should be included in the contributed network, we proceed
as detailed in Alg. 2. Edges will be subject to a “warming” process, that will
mainly depend on the duration of the contact and the proximity of an edge’s
endpoints to a key vertex. Thus, vertices and edges will be included in the con-
tributed network by levels, as shown in Fig. 5. The proximity value is computed
as the minimum number of hops needed to the reach any of the key vertices in
the donor network. Edges that connect vertices that are closer to a key node



Algorithm 1 Contributed Network Creation at time t

1: Let G = (V,E, f(e, t)) be the donor network;
2: Let C = (V̄ , Ē, f̄(ē, t)) be the contributed network;
3: Let K be the set of key vertices, K ⊆ V
4: for each k ∈ K do
5: V̄ ∪ = k
6: end for
7: for each v ∈ V and each k ∈ K such that ∃ekv ∈ E do
8: V̄ ∪ = v
9: Ē∪ = ekv

10: Set f(ekv, t) = 1 in G
11: Set f̄(ekv, t) = 1 in C
12: end for

Fig. 5. Selection of vertices from the donor network using proximity levels

will be “warmed up” faster than those linking vertices located far away. More-
over, the longer will last an interaction between two nodes, the easier an edge
will be “warmed”. This process mimics what happens in a human communica-
tion process, where, starting from a set of common concepts, other semantically
connected notions could be included in the dialogue. The longer the discussion
takes, the more concepts are exchanged. When the interaction is terminated, the
contributed network has only those edges (and related vertices) that exceed a
“warm” activation threshold. Thus, only that information is transferred to the
recipient network.

In detail, supposing that a connection starts at time t and ends at time t∗,
edge warming is computed using the following formula:

w(eij , ∆t) =
γstep

1 + e−p
t∗
ij

(1− e−τ∆t)

where eij ∈ E is an edge of the donor network, ∆t is the duration of the connec-

tion, i.e. ∆t = t∗− t, pt∗ij is the popularity of eij at time t∗ and τ is a normalizing
factor. The coefficient γstep is used to weight the proximity of eij to any key
vertex. We can define this value as γstep = γ

n , where n is the the number of
hops in the shortest path to the nearest key vertex and γ is a normalizing factor.
Being wmin the minimum warm threshold, the contributed network will contain
an edge eij iff w(eij , ∆t) ≥ wmin (lines 10–17). Moreover, in order to limit the
amount of information exchanged during an encounter, we consider that, apart
from its warm weight, an edge eij is included in the contributed network iff it
is within h hops from any key vertex in the donor network (line 8).



Algorithm 2 Contributed Network computation at the end of an encounter

1: Let G = (V,E, f(e, t)) be the donor network;
2: Let C = (V̄ , Ē, f̄(ē, t)) be the already initialized contributed network;
3: Let K be the set of key vertices, K ⊆ V
4: Let A = (V ∩ V̄ )−K
5: Let h be the depth limit
6: Let wmin be the weight threshold
7: Let depth = 2
8: while depth ≤ h do
9: Let B = ∅

10: for each v ∈ (V − V̄ ) such that ∃eav ∈ E, a ∈ A do
11: if w(eav, t

∗) ≥ wmin then
12: V̄ ∪ = v
13: Ē∪ = ea,v
14: Set f(eav, t) = 1 in G
15: Set f̄(eav, t) = w(eav,∆t) in C
16: B∪ = v
17: end if
18: end for
19: A = B
20: depth = depth+ 1
21: end while

At the end of the interaction, the contributed network is transferred from
the donor node to the recipient one. The contributed network is merged with
the recipient network using Alg. 3. Edges and vertices that do not exist in the
recipient network are added (lines 5–14). In case an edge of the contributed
network already exists in the recipient one (line 16), its weight is set to the
maximum between the weigth already assigned to it in the recipient network
and the weight passed by the contributed network.

4 Simulation Results

In order to evaluate the proposed algorithm, we simulated its behaviour in the
following scenario. We consider 99 mobile nodes that move in a 1000mx1000m
area. In order to simulate real user movement patterns, nodes move according
to the HCMM model [10]. This is a mobility model that integrates temporal,
social and spatial notions in order to obtain an accurate representation of real
user movements. Specifically, in HCMM the simulation space is divided in cells
representing different social communities. Nodes move between social commu-
nities, and nodes movements are driven by social links between them. In this
preliminary study, we consider that there exists only one social community, i.e.
the simulation space consists of one cell that covers all the simulation area.
Data assigned to these nodes is selected from the CoPhIR dataset [11]. This is a
dataset containing more than 100 million images taken from Flickr. Along with
other data, for each image it is possible to know the user that generated it and
the associated tags. In order to create a useful dataset to test our solution, we
selected images with at least 5 tags each. This number was chosen considering
that the overall mean number of tags per image in the dataset is 5.02. Then, we
extracted those users that have at least 10 such images in their collections. Fi-



Algorithm 3 Merging of contributed and recipient networks

1: Let G′ = (V ′, E′, f ′(e′, t) be the recipient network;
2: Let C = (V̄ , Ē, f̄(ē, t)) be the contributed network;
3: Let G∗ = (V ∗, E∗, f∗(e∗, t)) be the updated recipient network;
4: G∗ = G′;
5: for each ēij ∈ Ē do
6: if ēij /∈ E∗ then
7: if v̄i /∈ V ∗ then
8: V ∗∪ = v̄i
9: end if

10: if v̄j /∈ V ∗ then
11: V ∗∪ = v̄j
12: end if
13: E∗∪ = ēij
14: Set f∗(ēij , t) = f̄(ēij , t)
15: else
16: Set f∗(ēij , t) = max(f∗(ēij , t), f̄(ēij , t));
17: end if
18: end for

nally, from this set of users, we randomly chose the 99 users that we used in the
simulation. For each of these users, a corresponding semantic network is created,
according to the description given in Sec. 3.1. We then study the transient state
of the interaction between these users, by repeating 10 different tests obtained
by producing 10 different mobility traces using the HCMM model. Results re-
ported in the following simulations are the average of all the performed tests.
Each simulation experiment runs for 5000 sec.

Fig. 6(a) (log-scale on the x axis) shows the evolution over time of the tags
Hit Ratio for three different settings of the forget function. The overall Hit Ratio
is defined as the mean of the per tag hit ratio. This latter quantity is computed
as the mean number of nodes having a given tag in their semantic networks at
a given time. We set the parameters of the forget function in order to have the
less popular edges be deleted after 50, 100 and 250 sec of inactivity, respectively.
In this scenario, vertices at more than 3 hops from a key vertex are not ex-
changed during contacts. The first thing to note is that tags are not spread to
any node in all the cases we present. This is consistent with the view that each
user is probably not interested in every semantic concept available. Rather, she is
more interested in fetching the concepts more pertinent with her own knowledge.
Anyway, as one could expect, the forget function plays a key role in the data
dissemination process. The longer we let the edges (and related vertices) stay in
their semantic networks before being forgotten, the higher will be the final diffu-
sion of the corresponding tags in the network. Since there are great variations in
the Hit Ratio values, a proper tuning of the forget function parameters implies
a trade-off between the willingness to let the concepts permeate the network
and the need to limit the associated resource consumption (storage, bandwidth,
etc.). In all the reported results, the Hit Ratio reaches a stabilization value. This
is due to the fact that (i) useful information has been already shared among
potentially interested nodes; (ii) the meeting rate of this data is faster than the
forget process, i.e. data is seen again before the associated forget function value
falls below the forgetting threshold. In Fig. 6(b) we report the impact on the
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Fig. 6. Hit Ratios for different settings of (a) the forget function and (b) parameter h

Hit Ratio of the proximity level limit h for the exchange of vertices and related
edges. In this case we fixed the forget function parameters in order to let the
least popular edges disappear after 100 sec. of inactivity. Results are obtained for
h = 2, 3 and 5. We can see that allowing to include in the contributed networks a
larger (i.e. more distant from key vertices) portion of the donor networks result
in a larger diffusion of semantic concepts (i.e. an higher Hit Ratio). Anyway,
the Hit Ratio is less sensitive to changing in the h value rather than to changes
in the forget function parameters. Thus, although different values of h lead to
different Hit Ratios, tuning of this parameter is less critical than that of the
forget function, since it leads to relatively small differences in the final Hit Ratio
values.

In the next sets of results, we study some of the general properties of the
semantic networks as they result at the end of the simulation. Main parame-
ters are: h = 3; the forget function deletes the least popular edges after 100
sec. The left side of Fig. 7 shows the evolution over time of the mean number
of different connected components that form each semantic network. Each se-
mantic network is not a complete graph. Rather it is a set of different weakly
connected components. On one hand, these different sets of semantic concepts
(i.e. vertices) may be thought to represent different, semantically uncorrelated
groups of topics the user is interested in. Anyway, these sets could also be dis-
connected one from the others since the user lacks the knowledge needed to put
them together. We can see that, as time passes, the mean number of different
connected components rapidly falls down, as an effect of the data dissemination
process. Since new vertices and new connections between old and new vertices
are created, some sets of previously disconnected nodes start to merge, until the
process stabilizes. Moreover, from the right side of Fig. 7, we can deduce that, on
average, the biggest connected component of each semantic network acts as an
attractor of other previously disconnected components. In fact, in parallel with
the reduction of the number of disconnected components, the average relative
size of the biggest connected component rapidly increase. Once the number of
disconnected components stabilizes, the size of the biggest connected component
comprises almost all the vertices of a semantic network. Indeed, less then 1% of
all the vertices are in the other components. Finally, Fig. 8 plots the degree dis-
tribution at the beginning and end of the simulation. The figures uses a log-scale
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Fig. 7. Evolution of (a) the number of distinct connected components and (b) the size
of the biggest connected component

on the y axis only, in order to let the differences between the two distributions
be more visible. It is possible to note that, at the end of the simulation, the
algorithm preserves the same slope of the nodes degree distribution that was
present before the simulation starts. Anyway, there is an increased probability
to find nodes with high degree, as shown by the CCDF of the final degree distri-
bution. Node with an intial higher degree have more chances to be involved in an
exchange than nodes with lower degrees. Moreover, the forget process cuts less
popular edges, thus further reducing the degree of less spread vertices. Edges
attached to high-degree nodes take advantage of the nodes’ probability to be
exchanged in order to avoid to be forgotten. Eventually, this mechanism favours
the increase of the degree of already well-connected nodes.
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Fig. 8. Nodes’ degree distribution before and at the end of the simulation

5 Conclusions

The semantic information associated with data items could be a powerful tool in
a data dissemination scheme in order to assert the relevance and relationship of
already owned information and newly discovered knowledge. Exploiting the data



semantic tagging done by the users themselves, we defined a semantic-based data
dissemination algorithm for opportunistic networks. We show how each device
is able to give a semantic network representation of its own data and how this
representation can be used to select the information to be exchanged by users
upon physical contact. In a first set of preliminary simulation results based on
this approach, we studied the impact of various parameters on both the data
dissemination process and the evolution and final properties of the users’ seman-
tic networks. Future research directions encompass the definition of a content
dissemination scheme based on this solution, an even more formal mathematical
description of this proposal, a more comprehensive study via simulation of the
performances and properties of the algorithm and its application to different
scenarios, where other factors, like social relationships among users, should be
taken into account.
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