
ARTICLE IN PRESS

Journal of Network and Computer Applications ] (]]]]) ]]]–]]]
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

n Corr

E-m

Pleas
(201
journal homepage: www.elsevier.com/locate/jnca
Context- and social-aware middleware for opportunistic networks
C. Boldrini, M. Conti, F. Delmastro n, A. Passarella

IIT Institute-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
a r t i c l e i n f o

Article history:

Received 18 November 2009

Received in revised form

11 February 2010

Accepted 18 March 2010

Keywords:

Middleware

Context

Social-awareness

Opportunistic networks

Content sharing
45/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jnca.2010.03.017

esponding author. Tel.: +39 050 3152405; fax

ail address: franca.delmastro@iit.cnr.it (F. Del

e cite this article as: Boldrini C, et al
0), doi:10.1016/j.jnca.2010.03.017
a b s t r a c t

Opportunistic networks are multi-hop ad hoc networks in which nodes opportunistically exploit any

pair-wise contact to share and forward content, without requiring any pre-existing Internet

infrastructure. Opportunistic networks tolerate partitions, long disconnections, and topology instability

in general. In this challenging environment, leveraging users’ mobility represents the most effective

way to deliver content to interested users. In this paper we propose a context- and social-aware

middleware that autonomically learns context and social information on the users of the network, and

that uses this information in order to predict users’ future movements. In order to evaluate the

proposed middleware on a realistic scenario, we have designed and implemented a context- and social-

aware content sharing service, exploiting the functionality of the middleware. Both the middleware and

the content sharing service have been integrated with an existing data-centric architecture (the Haggle

architecture) for opportunistic networks. Finally, we have validated the proposed content sharing

application on a small-scale testbed and, on a larger scale, we have investigated the advantages

provided by context- and social-aware sharing strategies by means of extensive simulations. The main

result of this paper is the definition and implementation of a context- and social-aware middleware

able to share context information with all the interested components improving the efficiency and

performances of services and protocols in opportunistic networks. With respect to content sharing

strategies that do not exploit context and social information, we have obtained up to 200%

improvements in terms of hit rate (probability that users receive the content they request) and 99%

reduction in resource consumption in terms of traffic generated on the network.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Opportunistic networks represent one of the emerging com-
munication paradigms for pervasive and ubiquitous environment
by supporting wireless communications in intermittently con-
nected scenarios. We can foresee in the near future that the
number of mobile devices with networking capabilities carried by
users or available in the environment will be huge. Assuming that
all of them will be covered at any time by high-bandwidth
wireless infrastructure services is questionable. It is likely that the
network will be composed of clouds of wireless devices that
appear, disappear and reconfigure dynamically, while events such
as disconnections of those clouds from the global Internet, their
dynamic reconfiguration and partitions of the network will be the
rule rather than the exception. Some of these clouds can include
devices connected to the legacy Internet (e.g., through WiFi
Access Points), while some others can be (temporarily) discon-
nected from the rest of the network. Most of the time, such clouds
exist because groups of users spend time in the vicinity of each
ll rights reserved.

: +39 050 3152593.

mastro).

. Context- and social-aware
other. Therefore, the existence and evolution of clouds is related
to the existence of social communities of users, that spend time
together because they have either temporary or long-lasting
social relationships (e.g., people shopping in the same mall,
coworkers, or the members of a family).

Opportunistic networks propose an innovative communication
paradigm to cope with this kind of scenarios, by exploiting users’
mobility to create opportunities for communication among nodes
when global connectivity is not available, or communication
through a globally connected network is not the most efficient
solution (e.g., because the communication endpoints are in the
vicinity of each other). From this standpoint, opportunistic
networks complement conventional solutions based on wireless
infrastructures, such as cellular and WiMAX. Opportunistic net-
works represent a natural evolution of Mobile Ad hoc NETworks
(MANETs) (Conti and Giordano, 2007), maintaining the basic
features of cost-efficiency and self-organization, as devices still
self-organize in order to build multi-hop ad hoc networks without
requiring any pre-existing infrastructure. However, they comple-
tely re-design the characteristics of networking protocols pro-
posed in MANETs, making them able to support the absence of a
stable path between pairs of nodes that wish to communicate.
Indeed, while mobility in MANETs is seen as a negative feature
middleware for opportunistic networks. J Network Comput Appl

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2010.03.017
mailto:franca.delmastro@iit.cnr.it
dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]2
which makes the network topology unstable, in opportunistic
networks it is exploited as it generates additional opportunities
for nodes to get in touch and communicate. One of the cases that
best exemplify the bottom-line concept of the opportunistic
networking paradigm is multi-hop forwarding (see, e.g., Hui et al.,
2008; Spyropoulos et al., 2008; Daly and Haahr, 2007; Zhao et al.,
2004; Wang et al., 2007; Balasubramanian et al., 2007). In this
case multi-hop paths are built dynamically, on-the-fly, by
intermediate nodes (i.e., mobile relays) that evaluate all the
current opportunities to forward a message to their neighbors in
order to reach the final destination. Thus, they must be able to
store the messages when no forwarding opportunity exists (e.g.,
no other useful nodes in the transmission range), and send them
as soon as a new opportunity arises. For this reason the
forwarding paradigm is referred to as ‘‘store-carry-and-forward’’
(Fall, 2003).

The opportunistic networking paradigm is suitable to address
several problems other than multi-hop forwarding. The concept of
opportunistic networking is gaining momentum in mobile
content dissemination systems, due to the increasing use of
mobile devices as tools to generate and share content with
(nearby) users. For example, as shown in Fig. 1 users’ devices can
be sources of information relevant to other users (e.g., a picture
generated by a user camera or a local map available on a PDA) and
this information can be distributed to other users via Internet (if
available) and/or through the store-carry-and-forward paradigm
by exploiting the nodes’ mobility.

Recently, the opportunistic networking concept has also been
identified as a key building block of two very interesting
paradigms, namely opportunistic computing (Conti and Kumar,
2010) and people-centric sensing (Campbell et al., 2008). Accord-
ing to the opportunistic computing concept, users shall exploit
resources available on devices spread in the environment
(including mobile devices of other users nearby) to create rich
composite services that could not be built exploiting local
resources only. Opportunistic networking clearly provides the
natural communication paradigm of such an environment. The
concept of people sensing centric starts from the pervasive
availability of smart devices featuring multiple sensors (e.g.,
those available on smartphones such as cameras, microphones,
accelerometers). Based on sensory readings collected from a
multitude of devices, it is possible to infer the status of the users
and their current activities, and exploit this information to create
Internet 

Fig. 1. User-generated content and opportunistic networking.

Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
enhanced mobile social networking services (Miluzzo et al., 2008).
Opportunistic networking techniques can be used as the commu-
nication substrate to collect and share sensory readings in this
case. Other applications areas that will benefit from the
opportunistic networking concepts include pervasive healthcare,
intelligent transportation systems, crisis management (see Conti
and Kumar (2010), Roccetti et al. (2007), and Lee et al. (2009) for
more details and examples).

Irrespective of the particular application area, an important
feature of opportunistic networking solutions is exploiting
context information describing the environment and the users,
and in particular information about the users’ social relationships.
In general, topological information is in fact quite unstable and
not very reliable in this types of networks, and therefore it should
be complemented with context and social information to obtain a
better understanding of the evolution of the contacts among
users, and therefore of the near-future opportunities of commu-
nication (Silvis et al., 2006). It is thus clear that collecting and
managing context information is of paramount importance in this
environment. In particular, a general approach is required, which
could provide context management as a common feature that the
different opportunistic networking services (routing, content
dissemination, etc.) can exploit to optimize their behavior.
Designing and evaluating such a context management solution
for opportunistic network is the main contribution of this paper,
as described in the following section.
1.1. Contribution

The key contribution of this paper lies in investigating some of
the key architectural challenges of building a social- and context-

aware middleware for opportunistic networks. Context manage-
ment is not a new topic in the mobile and distributed networking
area; however, the new challenges set by opportunistic networks
call for novel approaches and architectural solutions. Conven-
tional middleware designs for context management assume that
the mobile network underneath is (to some extent) stable, thanks
to lower-layer protocols (e.g., routing, mobility management, etc.)
that mask mobility, disconnections and instabilities of all kinds.
Middleware architectures for opportunistic networks cannot
build on such assumptions. Information traditionally pertaining
to lower levels of the stack (such as link availability, contact
opportunities, communication costs) becomes fundamental also
for the middleware operations, and lower layers can also benefit
from context information managed by the middleware. The
approach we propose in this paper is that of a clean-slate
architectural design, in which the rigid separation among layers is
replaced by a more fluid (yet modular) infrastructure allowing for
more effective optimizations. As a specific example, we integrate
our context-aware middleware inside the reference architecture
of the European Haggle project,1 which studied one of the most
advanced architectural solutions of this kind. In the paper we
consider, as a realistic scenario of the application of our social-
aware middleware, a content sharing service that exploits user
social relationships to optimize the distribution of data so as to
maximize the probability of delivering content to interested users
(Section 4). Both the middleware and the content sharing service
have been implemented in a real prototype to validate its
integration in the Haggle reference architecture (described in
Section 5). The performance of the middleware and the content
sharing service has been evaluated both through experiments
(Section 6) and by means of simulations (Section 7).
1 http://www.haggleproject.org.

middleware for opportunistic networks. J Network Comput Appl

http://www.haggleproject.org
dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 3
The proposed context-aware middleware platform supports
multiple services, ranging from low level protocols to user-level
applications, as those described in our previous works (Boldrini
et al., 2008a, 2008b). As a field assessment we use our middleware
to provide context-awareness to a content sharing application for
opportunistic networks presented in (Boldrini et al., 2008a). In
this paper we just survey the different strategies proposed in
(Boldrini et al., 2008a) and we use them to highlight the
importance of context-awareness in opportunistic networks and
the need of a general platform for the collection and management
of context information. Differently from our previous works, in
this paper we present a real implementation of our context-aware
middleware and of the content sharing service within one of the
reference networking architectures for opportunistic networks.
We also validate our implementation through a small-scale real
testbed, which also is used to provide preliminary experimental
results for the first time with respect to our previous works on
opportunistic networks. Finally, extensive simulations results are
presented to complement and extend experimental results.
2. Related work

In this paper we present a social- and context-aware middle-
ware for the collection, management and provisioning of context
information in opportunistic networks. This substantially differs
from the standard definition of middleware in distributed systems
(Tanenbaum and Van Steen, 2002). In classical Internet architec-
tures, middleware solutions are represented as an intermediate
layer between transport protocols and applications, and they are
generally aimed at the creation of overlay services that exploit
standard communication protocols residing at lower layers to
optimize upper layer applications, e.g. providing mechanisms for
efficient distribution and recovery of data in highly distributed
environments (e.g., mobile p2p paradigm). Wireless networks for
pervasive environments maintain the need to define similar
services and several solutions have been defined in the last few
years for MANETs (see Chapter 23 in Bellavista and Corradi (2007)
for details). However, these are not suitable for opportunistic
network scenarios mainly due to the main characteristics of
intermittent connectivity and lack of stable paths. In addition in
this case, to improve the overall performances, all the network
components need to be optimized and they can obtain enormous
advantages from the interaction with a middleware platform
dedicated to the management of context information. This
typically calls for innovative solutions also from an architectural
standpoint, as functionalities, traditionally seen as residing at the
middleware layer, should be made available throughout the
whole traditional stack. This results in cross-layer, or even layer-
less architectures allowing all networking functions to exploit
social context information (see some examples in Section 5).

Despite the importance of context information, all the studies
presented so far are based on general descriptions of context
information, without specific references to information models or
software architectures for context management. Actually, in
literature several studies on context-awareness in information
systems have been conducted and several models have been
studied (Strang and Linnhoff-Popien, 2004; Henricksen and
Indulska, 2006; Schmidt, 2006). Initially, the definition of context
mainly dealt with the interaction between the user and the
applications, and all the information related to the status of
entities (i.e., persons, places, objects) involved in that interaction
(Dey, 2001). In the last few years, with the widespread use of
pervasive devices and the emerging of new networking paradigms
able to establish communications anywhere and anytime, the
context definition has evolved, including several other factors
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
(e.g., surrounding environment, interactions between users,
interactions between devices of different users) considerably
increasing its dynamicity and the number of involved entities.
One of the models that better fit the continuously changing
environment of opportunistic networks has been presented in
Henricksen et al. (2002) and subsequently implemented in
Henricksen and Indulska (2006) and is based on the definition
of some general features of context information and their
representation in a software system. Specifically, temporal
constraints, level of accuracy/imperfection of the information,
the levels of abstraction with which the same information can be
represented, and the source of information are essential data to
categorize and define a model of such wide range of data. The
model proposed in Henricksen et al. (2002) provides a formal
basis for representing and managing all these properties following
an object-oriented approach that can result in a entity-relation-
ship (ER) model for distributed environments, able to integrate
the formal description with the qualitative evaluation of the
context information (see Henricksen et al. (2002) and Henricksen
and Indulska (2006) for details). This represents the strength of
this model, compared with several others presented in literature,
based on ontology or markup schemes (see Strang and Linnhoff-
Popien (2004) as a survey on this topic). Thus, we can consider it
as the reference solution for context modeling in the design of our
social- and context-aware middleware for opportunistic net-
works. Before showing in the next section how the specific
categories of context information can be modeled following these
principles, in the following we briefly overview the state-of-the-
art on networking protocols for opportunistic networks, in order
to highlight the importance of context- and social-awareness in
the design and optimization of such protocols. Routing protocols
represent one of the most studied issues in opportunistic
networks. Several solutions have been proposed in literature
and they can be categorized based on the amount of information
they leverage in order to autonomically learn the features of the
network they are immersed in. These protocols can be classified
as context-oblivious protocols, partially context-aware protocols,
and fully context-aware protocols. On the one end of the spectrum,
in pure dissemination schemes, nodes are oblivious to any
available context information. In order to reach the message
destination, they just rely on aggressively spreading the messages
in the network, at the cost of a huge amount of data transmitted
and stored at any node. This is the case of Epidemic Routing
(Vahdat and Becker, 2000), in which copies of the messages to be
delivered are sent to each encountered node during a pair-wise
contact. On the opposite end of the spectrum, fully context-aware
schemes (e.g., HiBOp (Boldrini et al., 2008b), BubbleRap (Hui et al.,
2008)) leverage user-level social and context information, such as
friends, coworkers, hobbies, etc., to selectively identify good next
hops towards the destination of messages. Specifically, in HiBOp,
at each node the context is built by collecting information on the
encountered nodes, the visited places, etc. Then, based on the
knowledge acquired, each node is able to compute its likelihood
of meeting the message destination. To this aim, the most suitable
next-hop is the one whose context is more similar to the context
of the destination of the message. The message is then passed
from node to node, following a path with increasing delivery
probability, until the final destination is reached, or the message
has expired. Between context-oblivious and fully context-aware
routing approaches, we have partially context-aware protocols
(like PROPHET (Lindgren et al., 2003) and Spray&Wait
(Spyropoulos et al., 2007)) which rely on an simplified version
of the context, usually made up of just one or two pieces of
information. Typically, these protocols measure the frequency of
direct contacts between nodes, and for this reason they are also
called mobility-based protocols. In PROPHET, for example, the
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

2 Small-world theories have shown that these ‘‘external’’ links act as shortcuts

between communities, thus enabling communications across the network through

a small average number of hops (6 hops in the ‘‘classical’’ small-world model

derived from the work by Milgram (1967), less than O(log n), where n is the size of

the network, in several types of real networks (Newman, 2003)).

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]4
information on the nodes’ past encounters is used to estimate the
delivery probability, under the assumption that the trend of
future encounters shares strict similarity with what has happened
in the past, ignoring social information about the users. In Boldrini
et al. (2008b) the performances of three protocols representative
of the aforementioned routing approaches (context-oblivious,
partially context-aware, and fully context-aware) have been
compared by means of simulations. Here fully context-aware
protocols proved to be able to drastically reduce resource
consumption in terms of the traffic injected in the network and
the buffer occupation. In certain configurations, this is paid with
an increment in the delivery delay and message loss, which is
however tolerable for typical delay tolerant application.

Recently, content dissemination systems have also been studied
for opportunistic networks. Typically, they are variations of the
publish/subscribe paradigm: publisher nodes generate contents and
inject them into the network, subscriber nodes declare their interest
in receiving certain types of content (e.g., sport news, radio podcast,
blog entries, etc.) and strive to get it in some ways. Usually, nodes can
be publishers and subscribers at the same time. Content distribution
systems can be classified following an approach similar to that used
for routing protocols. Social-oblivious content dissemination protocols
do not use information on the sociality of nodes when deciding how
to spread content items in the network. In this category, again the
simplest approach is just to flood the network with multiple copies of
the same items, which are distributed to any node upon contact,
without taking into account the actual interests of the users (Vahdat
and Becker, 2000). The TACO-DTN protocol (Sollazzo et al., 2007)
relies on the presence of special nodes (infostations) in the network,
that take care of disseminating the content items based on the
interests of the passing-by users. In the PodNet architecture described
in (Lenders et al., 2007) simple heuristics (e.g., random dissemination,
disseminate most popular first, etc.) are proposed for selecting the
subset of contents that two nodes should exchange upon contact.
PodNet policies however do not take into account the social
characteristics of the users of the network, like, for example, the fact
that users tend to group into communities, or the fact that the users’
travelling patterns across different communities can be very different
from user to user. This might lead to suboptimal solutions with
respect to the actual distribution of interests across communities and
calls for advanced solutions that exploit the users’ social dimension.
One of the first social-aware publish/subscribe system proposed in
the literature is the one in Yoneki et al. (2007), where an overlay
structure is built using information on the social relationships among
the users in the network. Specifically, the most central (from the
social network standpoint) nodes are used as broker nodes in the
overlay. Another social-aware content dissemination protocol (Con-
tentPlace) is presented in Boldrini et al. (2008a). Specifically, its
policies will be described in detail in Section 4, since they will be used
as a field test for the context- and social-aware middleware proposed
in this paper. Here we anticipate that ContentPlace drives the content
dissemination process using the knowledge on the distribution of
interests among the visited communities. A similar approach is also
used in SocialCast (Costa et al., 2008).

In opportunistic networks, the problem of content dissemina-
tion shares many similarities with multicasting. Multicasting
involves one-to-many communications in which the source and
destination nodes are known to each other. Recently, the
exploitation of social information has proved very effective also
for the multicast problem. As an example, in Gao et al. (2009),
multicasting is implemented as a multi-copy scheme, where the
selection of the minimum number of relay nodes that guarantees
a predefined delivery ratio is performed using the concept of node
centrality (in the social network) and social community structure.

What emerges from the above overview on the state-of-the-art
on opportunistic networking is the central role of context and
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
social information, used at different levels of the networking
stack, from routing to application. The reason is that, when no
other more traditional network properties (topology, connectiv-
ity, etc.) can be exploited to find the paths from the source to the
destination of a message, predicting the future behavior of the
users of the network by means of context and social information
can be the only way to deliver messages in an opportunistic
network. Thus the presence of a middleware that collects and
provides information on the context and the sociality of users is of
paramount importance for supporting communications in this
environment.
3. Context definition for opportunistic networks

Even though the definition of context should be so general to
include all possible information in a general scenario, the design
of a context-aware middleware platform for opportunistic net-
works requires a detailed definition of the specific involved
information in order to provide an efficient management on
constrained devices, and an effective access to this information by
all the system components that can benefit from their use.

As previously explained, in pervasive and highly mobile
environments the classical definition of network of (mobile)
devices must be extended to the novel concept of several
networks of people, where connections mainly reflect the social
interactions among users that move around cities, places, and
events carrying their mobile devices, and establishing thus
opportunistic communications. In this view, we define the context
as composed of three parts: (i) the user context, (ii) the service

context, and (iii) the device context.

3.1. User context

The user context refers to two separate sets of information. The
first one is mainly related to personal data of the user, like name,
home address, work address, habits, timetables, most visited
places, interests in specific applications or services. The second
one mainly deals with the social characteristics of the user in
terms of social contacts with other people, characterized by
specific interests and preferences and the affiliation to specific
social communities. The elaboration of these two sets of
information and their relationships provide to the system a
snapshot of the current connections among users and a probabil-
istic analysis of their network of contacts in the next future. In
fact, according to social network theory (Watts, 1999), we can
assume that users are grouped in communities, and users of the
same community have strong social links between each other,
usually related, e.g., to common interests, habits, and visited
places. Each user is generally represented as belonging to a
‘‘home’’ community in which she spends more time, and is
characterized by a centrality parameter as the popularity degree
within the community in terms of number of interactions with
the other members. Some nodes can also have social links outside
their ‘‘home’’ community, modeling social relationships with
users of different groups.2 Thus, these users (also defined as
travelers) generally act as bridges between disconnected commu-
nities and can be exploited to move data and information from
one community to the others they are in contact with, exploiting
additional parameters like service and device contexts (defined in
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 5
the following). Another important aspect is how to identify and
detect social communities starting from the analysis of simple
user’s movements and contacts. In the last few years several
algorithms for communities detection have been presented in
literature (Yoneki et al., 2007; Hui et al., 2008; Danon et al., 2005;
Newman, 2004), and they are mainly based on the analysis of
contact duration and number of contacts between pairs of users,
assuming that individuals meet at a higher rate if they have one or
more mutual friends. Thus, adding to this information the
personal and social information of each user, the middleware
extends the notion of community with user’s behavioral model,
thus including the relationship between the presence of a user
inside a community in a certain period of time, and the main
reasons for that (e.g., she is in the gym because it is Friday
afternoon and this is a user’s habit), defining additional relation-
ships in the social graph, both in terms of temporal information
(i.e., how long people are in contact) and the social role of the user
in that community (e.g., friends, family components, colleagues).
The entire graph provides thus a complete analysis of the user
context, allowing probabilistic analysis to predict future contacts
of each single user.

3.2. Service context

The service context strictly depends on the service or applica-
tion currently running on the mobile device and with which the
user directly interacts. In fact, each service category (e.g., content
sharing, chat, data dissemination) is characterized by specific
information that can improve its performance. For example, in
case of content sharing service, the interests of users in sharing
specific file categories, or contents identified by user-defined
attributes, can be used, in addition to previous social context
information, to identify possibly interested users and to select, in
an opportunistic way, the appropriate next-hop to forward a
specific data that have to be delivered to a specific destination.
These pieces of information, even if some of them are directly
requested to the user, e.g., through a graphical interface for the
service configuration, are not related to the personal information
of the user and they are generally represented by the same kind of
information used by traditional p2p systems. Thus, they actually
might not be considered as sensitive data from a privacy
standpoint. However, encryption mechanisms can be included
in the context management system to restrict the access to this
data only to trusted users (e.g., members of the same community).
Currently advanced solutions to cope with security and privacy
issues in this scenario are under investigation (Boldrini et al.,
2008b; Shikfa et al., 2009).

3.3. Device context

The device context is mainly related to physical characteristics
and limitations of mobile devices, in terms of capacity, battery
life, and embedded technologies (e.g., wireless interfaces, cam-
eras, sensors). In fact, current devices are characterized by several
attributes that can be considered as additional context informa-
tion in the management of an opportunistic network. First of all,
information related to the wireless interfaces, currently active on
each device, can further improve the network connectivity,
making the system able to adapt the network configuration of
the single devices to the surrounding wireless capabilities. In
addition, information on the current status of the storage capacity
or battery life of the device can have a strong impact on the
communications and data exchange between nodes. Thus, the
device context mainly deals with resource management issues in
opportunistic networks that, if correctly analyzed and related
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
with the other contexts, can enhance both network’s and
applications’ performances.

Note that all the context information identified by these
categories can be represented through the formal model de-
scribed in Section 2. Specifically, each single entity (e.g., users’
interests, capacity, battery life, user’s personal information) is
characterized by a temporal validity, a level of accuracy, and a
level of abstraction chosen to represent it. For example,
considering a content sharing service, the users’ interests can be
considered valid for a certain period of time; they are completely
accurate, since they are generally selected by the user herself; we
can use the list of genres of files the user prefers to share with her
friends as the level of abstraction to represent their values. As far
as the possible sources of context information in opportunistic
networks, we must consider that the definition of the previous
three different notions of context directly involves different
components of the node architecture (e.g., user’s interaction,
service features and device characteristics), but also the interac-
tion with other nodes of the network in order to have a view of
the context surrounding the local user. To better understand how
the collection and management of context information impacts on
the overall system architecture, we present in the next section an
application scenario that tries to satisfy the need of people to
generate and share contents anytime and anywhere. It applies
main principles of the User-Generated Content model, defined by
the Web 2.0 paradigm, in pervasive and highly mobile environ-
ments and makes them available based on context information.
4. A realistic scenario: social- and context-aware content
sharing service

In this paper we propose a social and context-aware content
sharing service to highlight how using context and, in particular,
social information derived from mobile users and devices allows
us to efficiently provide this service even in intermittent
connectivity scenarios. In this section we describe the design of
the service, how it exploits context information describing social
relationships among users, and how it can interact with a
middleware platform for context management integrated in a
reference architecture for opportunistic networks like that
proposed in the Haggle project.

The main idea of the content sharing service is to exploit
traveler nodes to establish opportunistic communications be-
tween separate communities, making all the users able to share
and disseminate contents even with those users that they will
never get in touch with. Traveler nodes, moving from a cloud to
another, define sporadic ‘‘off-line’’ connections among clouds.
Typically, travelers are users with social relationships with more
communities, and thus they can be exploited as bridges among
clouds, since it is very likely that, upon leaving a community, they
will visit it again after a while. Thus, the traveler node is used as a
sort of data mule that moves from a community to another, selects
interesting content for nodes belonging to different communities
and, if needed, makes its own resources available to download
and subsequently transfer content to the interested users. To this
aim, the service must exploit context information related to both
the local node and all the encountered users belonging to separate
communities. In this way it will be able to define a ranking of the
available content items with respect to a measure of the utility of
that content for the local user and for the others participating in
the same service. The core of the service operation is indeed the
definition of functions to rank content items based on several
parameters (e.g., users’ interests, physical constraints, probability
of encountering a selected user in the next future). Details on the
definition of this metric will be described in the next section.
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]6
Before analyzing formal models and technical details, it is
worth pointing out which type of context information is required
by the content sharing service, with respect to the general
classification provided in Section 3. We start by discussing which
information we need to build the service context. Content items
are generally represented by files stored on users’ mobile devices,
and they can be characterized by a set of attributes defined
autonomously by the service (e.g., genre, type, size) or by the user
to specify additional information related to the content of the file
(e.g., a picture of Paris). The same information can also be used by
users to declare their sharing interests, together with the list of
files they decide to share with the others through the service. This
information basically constitutes our service context. Further
information like user’s habits, personal data, mobility patterns,
and all data related to social behaviors and contacts of the user are
managed independently of the service as user context. As far as
the device context, we decided to consider only the local storage
capacity as physical constraint of the system, in order to simplify
the design and development of the service. The user and service

contexts must be disseminated in the network to make the other
users aware of interests and contents shared by their neighbors,
thus allowing the service to optimize its features exploiting this
information. This is done including this information in beacon
messages exchanged by nodes during the neighbor discovery
procedure. Since the most part of this information requires a
direct interaction with the user, a user-friendly graphical interface
is developed on the mobile device as shown in Fig. 2. After the
user has inserted the needed information, all data is passed to the
middleware platform in charge of storing and elaborating it
before the transmission on the network. Technical details on the
structure of the context information and the interactions between
the middleware and the other network components will be
described in Section 5.1, analyzing the integration of the service in
Haggle architecture.

The user and service context information is the basis to
compute the ranking among content items. As will be clear from
the description in the following section, computing ranking
requires that each node maintains a continuously updated
snapshot of the surrounding users’ context, as well as a historic
profile of the encountered context information. To this aim, two
separate data structures are defined on each node: the current

context (i.e., context information associated with the nodes of the
community the user is currently in touch with), and the context

evolution over time (i.e., information about context of past
Fig. 2. Context-aware con

Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
encountered users as the evolution of social contacts of the local
user). In the next section we describe a content sharing model
that defines the utility of a specific content based on the social
behavior of the involved users.

4.1. A social-oriented utility-based framework

The key element of the optimization of the content sharing
service is a utility-based framework that drives the dissemination
of content in the network. Specifically, the framework allows each
node to rank content items encountered on other peers, and
decide which items should be fetched from encountered peers
because it is (likely) to be interesting to other users that will be
encountered in the near-future with high probability (because
they belong to the same social community). According to the
framework, nodes assign a utility value to each content item, and
then pick items as to maximize the total utility of the data they
will store locally. The core of the framework is thus the definition
of the function that nodes use to assign utility values to content
items. For each node, the utility not only considers the interests of
the local user, but also considers the expected utility of a content
item for the other members of the user social communities. Under
the assumptions that users can belong to one or more social
communities, we can thus define the utility function of content c

as follows:

UðcÞ ¼ ulðcÞþ
X

ia l

oiuiðcÞ ð1Þ

where ul(c) is the utility of a specific content for the local user,
ui(c) is the utility for the ith community the user is in contact
with, and oi is a cooperation index (weight) that defines the
willingness of the user to cooperate with the ith community (i.e.,
to spend its own resources to increase content availability for that
community). In Eq. (1) we have stretched a bit the concept of
community by representing the local user just as another
community the user is in touch with, as such it is associated
with a utility value of its own. We assume that a user is always
willing to cooperate with itself, i.e., to retrieve the content it is
directly interested in. All the other communities can be mapped
into whatsoever aggregation of users, ranging from simple co-
location (e.g., users that are currently in the radio range of each
other) to pure social communities (e.g., community of the family
members or community of friends). Note that the definition of the
weights determines the social behavior of the local user. For the
tent sharing service.

middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 7
reader’s convenience, we discuss the different policies that can be
used by customizing the definition of the weights in a dedicated
Section 4.2.

The utility function is made up of one component for the local
node, and one component for each community available in the
environment. The definition of the utility components is unique.
Specifically, the utility of a content item for a generic community i

is defined as the access probability of the users of community i to
the content item (pac) multiplied by a function fc defining the cost
of accessing the item for those users, divided by the object’s size
(s) (Eq. (2)). This definition of the utility function is consistent
with the forms used in other domains where utility-based
frameworks are applied, such as Web caching (Balamash and
Krunz, 2004):

ui ¼
pi

acfcðpi
avÞ

s
ð2Þ

Generally, we consider the access probability as the probability
that either the local node (in ui(c)) or the nodes of community i (in
ui(c)) will be interested in downloading the specific content. The
cost function fc is considered to be dependent on a single
parameter only, i.e., the availability of the content item in
community i. The function fc is a monotonically decreasing
function of the availability pav (measured as the percentage of
community members already having a copy of the content item).
The rationale of this choice is that the marginal utility of fetching
a content item should monotonically decrease as that item
becomes more and more spread in the community. Specifically,
we use an exponential function as cost function since it achieves a
fairer behavior with respect to a linear decaying function in a
preliminary study that we have performed using the simulation
environment presented in Section 7 (see Boldrini et al. (2008a) for
more details).

4.2. Social-oriented policies

As already anticipated, the oi parameters express the will-
ingness to cooperate with the other nodes of the communities
present in the network. By properly defining oi, we can
implement a number of different policies that exploit users’
social relationships. In this paper we study five such policies. In
the first three, users cooperate with both the community they are
currently in touch with and the communities that they are likely
to meet in the future. In the last two, we decided to explore the
case of traveler users completely projected to the future. In the
latter case, the idea is that cooperation helps when diversity is
high. Therefore, users should proactively download files for nodes
that they will meet in the future (and that have currently a very
different context) instead of allocating their resources also to help
the users, with whom they are currently co-located, to spread
content . In detail, the policies that we consider are defined as
follows:
�

P
(2
Uniform social (US): Under this policy, the weight oi is equal to
1 for all the communities visited by the traveler user. With this
choice, there is no preferential selection of communities: all
are equally served, when possible, by the traveler users,
regardless of the frequency of their meetings.

�
 Present (P): With this policy, users download files that can only

be interesting for the community where they are currently
roaming or for themselves. Therefore, oCC¼1 and oi¼0,
8iaCC, where CC represents the current community. With
this strategy, every time a user changes community, it
becomes an active member of the new community.

�
 Most frequently visited (MFV): The weight oi is assigned to

community i proportionally to the time spent by the local user
lease cite this article as: Boldrini C, et al. Context- and social-aware mi
010), doi:10.1016/j.jnca.2010.03.017
in this community, i.e., oi ¼ ðti=
P

itiÞ. This policy favors the
communities with which the local user is more likely to get in
touch.

�
 Future (F): The weights of all the communities apart from the

current community are set as in MFV. Therefore, with this
strategy users cooperate with the different communities in a
way proportional to the time spent in each of them. However,
here the weight of the current community is set to zero
(wCC¼0) in order to force the traveler users to cooperate only
with the communities that they will meet in the future.

�
 Most likely next (MLN): In this policy we condition the

probability of getting in touch with a generic community i

on the current ‘‘social’’ position of the local user. Translated in
a more formal definition, in this policy oi¼P(ci9CC), where ci is
the ith community, CC corresponds to the current community,
and thus oi represents the probability of visiting community i

at the next step, given that the current community is CC. As in
the future policy, the weight wCC is set to zero, thus excluding
cooperation with the current community.
These social-aware policies will be compared to two non-social
policies: the Greedy policy, under which traveler users are willing
to cooperate with other nodes only for the content in which they
are directly interested, and the Uniform policy, under which
nodes download content uniformly at random.

These social-aware policies require online, dynamic estimation
of the social weights and the utility parameters, which basically
are extracted from information on the users’ contexts. Therefore,
our context- and social-aware middleware can be fully exploited
to enable a content sharing service that relies on these policies. As
far as the parameters of the utility function are concerned, the
middleware implements the collection and estimation of the
access probability and availability of the content for each
community visited by the traveler node. The access probability
is estimated from the interests advertized by users during pair-
wise contacts and stored locally by the middleware. These values
are then aggregated to obtain a statistic for the whole community.
Upon subsequent contacts the access probability is updated
according to the newly advertized values. The process is very
similar for the content availability. When two nodes meet, they
exchange a summary of the content that they currently have in
their buffers. By storing this information, an aggregate measure of
the availability of a given content for each community can be
computed by the middleware platform. The interested reader is
referred to Boldrini et al. (2008a) for more details on the
estimation algorithms. The computation of the social weights
requires a community detection mechanism that makes the
middleware able to recognize the current context of the user.
There are promising results about autonomic community detec-
tion systems (Hui and Crowcroft, 2007; Hui et al., 2007). However,
being this topic orthogonal to our investigation, we simply
assume that one of these mechanisms is in operation in the
reference architecture for opportunistic networks in which the
middleware will be integrated. Using the information provided by
the community detection mechanism, our middleware is then
able to estimate the time spent in each community and therefore
to compute the social weights. More details on the techniques
used for the estimation can be found in Boldrini et al. (2008a).

From the description of this social-aware content sharing
system, it is clear the importance of a middleware that collects
and manages context and social information and is able to
implement a model that reflects the users’ social behavior and the
utility of the information to be shared and disseminated among
users. To make this system a reality, we must integrate our
middleware platform in a software architecture for opportunistic
ddleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]8
networks. For this reason, in the next section we analyze main
features of innovative architectures defined for this new network-
ing paradigm, with particular attention the solution proposed by
the Haggle project.
5. Clean-slate architectures and context management

The novel requirements of opportunistic networks resulted in
the proposal of innovative architectures that may even bring the
cross-layer paradigm to the extreme of layer-less solutions. These
architectures are usually called clean-slate, as they drastically
depart from conventional Internet design paradigms. The reason
is the high degree of instability and dynamism of mobile networks
(which features links instability, long partitions, frequent dis-
connections and high churn rates) coupled with scarce resources
availability (e.g. in terms of bandwidth and capacity) compared
with legacy Internet. Due to the resource limitations, protocols at
all layers (of the traditional Internet architectural model) can be
significantly optimized by exploiting information that would
remain hidden to them in conventional Internet designs. There-
fore, researchers are investigating cross-layer solutions for
opportunistic networks in which protocols can access a large set
of information describing the networking environment and the
current status of the network, without compromising the inherent
modularity of Internet architectures. Examples of such architec-
tural solutions can be found, for example, in the European Projects
ANA,3 BIONETS,4 and Haggle,5 as well as in US Projects such as
Content Centric Networking at PARC (Van Jacobson et al., 2009))
and the Clean-Slate Program at Stanford.6 In this paper we
explicitly focus on the Haggle reference architecture as it explores
a completely layer-less modular architecture for opportunistic
networks. This is particularly suitable for our needs, as we can
integrate our context-aware middleware within this architecture,
and make its functionality available to all the other services, and
specifically to the content sharing service that we use as a
concrete test case.

The FET-SAC Haggle project, funded by the European Commis-
sion, aims at defining a new autonomic architecture for
opportunistic networks and it envisions a data-centric architec-
ture as the most promising approach. The main element of Haggle
architecture is represented by the DataObject, a data structure
aimed at containing any type of data, from messages to be sent on
the network (both application and control messages) to internal
data exchanged by single components. DataObjects are character-
ized by a set of attributes defined as a descriptive XML header
composed of several metadata (i.e., a name-value pair for each
attribute). The content item is then stored as a payload in the data
structure. Thus, the DataObject always assumes the form of a
message, both for internal and external communications; single
Haggle’s components must declare their interest in specific
attributes to be notified of the arrival or generation of the related
DataObject. The active components of Haggle architecture are
defined as Managers and they are in charge of implementing
specific functionality of the network architecture, from forward-
ing protocols, to resource management, connectivity manage-
ment, security and so on. They mainly implement the basic
features needed to communicate and deliver messages on the
network, and they can make use of modules to implement specific
functionalities related to particular algorithms (e.g., the routing
protocol described in Boldrini et al. (2008b) can be seen as a
3 http://www.ana-project.org.
4 http://www.bionets.eu/.
5 http://www.haggleproject.org.
6 http://cleanslate.stanford.edu/index.php.

Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
module of the Forwarding manager). As shown in Fig. 3, Haggle
architecture is originally composed of seven managers, each of
them with a specific role:
�

mi
The Connectivity manager directly interacts with the physical
layer of the architecture to detect all the available network
interfaces and makes the system able to adapt to the current
technology providing useful information on the network
connectivity to the other managers.

�
 The Forwarding manager implements basic features of for-

warding protocols for opportunistic networks, establishing
routes on-the-fly, while data flows from a node to another in
hop-by-hop communications. Specific functionality and opti-
mization of forwarding protocols are then implemented as
modules of the Forwarding manager.

�
 The Data manager is in charge of creating, storing and

recovering DataObjects through the interaction with a central
DataStore.

�
 The Resource manager implements basic mechanisms for local

resource management, in terms of battery lifetime, capacity
and other physical constraints of the local device to further
optimize the node’s behavior considering also its physical
requirements.

�
 The Security manager implements security and privacy

policies for the management and transmission of both
applications and context data.

�
 The Attribute manager stores attributes related to DataObjects

in the DataStore and maintains their relationships to identify
interested managers and modules.

�
 The Protocol manager implements basic functionality of

communication protocols for wireless opportunistic networks,
mainly related to the transport layer. Specific features
depending on the wireless technologies used (e.g., Bluetooth,
WiFi) and the current state of the network are implemented by
its modules.

All the information generated by each manager is organized and
stored in the DataStore in the form of DataObject, specifying four
main entities strictly connected among them:
�
 Interfaces: physical communication interfaces of the local
device.
Fig. 3. Haggle node architecture.

ddleware for opportunistic networks. J Network Comput Appl

http://www.ana-project.org
http://www.bionets.eu/
http://www.haggleproject.org
http://cleanslate.stanford.edu/index.php
dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 9
�

P
(2
Attributes: set of name-value pairs describing data, users and
devices.

�
 Data: virtual representation of persistent DOs such as applica-

tion data; associated metadata is stored in the Attributes set.

�
 Node: virtual representation of a device or a user; this entity is

directly connected with Interfaces entity to retrieve informa-
tion about devices’ physical interfaces, while it is connected
with Attributes for descriptive information about devices and
users.
Therefore, interactions among managers are related to the
generation and update of DataObjects in the DataStore, imple-
menting thus the concept of event-driven and data-centric
architecture. To this aim, all the managers interact with a central
entity: the Haggle Kernel, a minimal event queue that coordinates
actions and communications between managers, and waits for
incoming data. Managers subscribe to events declaring their
interests in specific attributes and values. Events are then triggered
by the kernel upon receiving corresponding DataObjects, both from
the network and internal processing. The DataObject that triggered
the event is handed over to the manager(s) that subscribed to it,
which in turn process the DataObject according to its local policies.
Note that this architecture is very extensible, as new functionalities
can be added by simply defining additional modules for the
managers. Exploiting this modularity, we have integrated the
proposed context- and social-aware middleware as an additional
manager, called Context manager, inside Haggle architecture.
5.1. Integration of the social- and context-aware middleware

with Haggle

The Haggle node architecture natively supports context-
awareness of all involved tasks due to possible interactions of
managers through the generation and access to DataObjects.
However, originally, it does not exist a manager dedicated to the
management of context information. Therefore, we added a
Context manager able to support all the other components (i.e.,
managers, modules and services) in improving their features by
exploiting context information. This is quite natural in a data-
centric architecture and especially in the Haggle architecture,
where each message can carry with it additional information
related to its content and its intended recipients in the form of
metadata. However, the amount of context information that can
be associated with a device, a user, and a service can overload the
DataObject header, and may require also a priori knowledge from
the other managers of specific context information to be able to
declare their interest and be successfully notified. For this reason,
the Context manager defines a ‘‘Context DataObject’’ in which it
stores all the context information that must be exchanged among
neighbors and that can be useful for the internal managers. This
DataObject, collecting all the definitions of context described
above, is spread among 1-hop neighbors through periodical
beaconing, so that each node can maintain both local and
surrounding context information. The Context manager will then
implement probabilistic and qualitative analysis related to the
context information based on explicit requests derived from the
other managers. Based on the results of this analysis the other
managers are able to take decisions in order to optimize their own
performances.

Generally, the Context DataObject is maintained in the
DataStore in the standard format but, since its definition involves
different requirements of management depending on the inter-
ested managers, we must specify how the Context manager
handles the three different context’s components defined above.
lease cite this article as: Boldrini C, et al. Context- and social-aware
010), doi:10.1016/j.jnca.2010.03.017
As far as the service context, a direct interaction with the service
running on the device is required, since it can decide to maintain
this information private to the specific instance of the service (i.e.,
only nodes running the same service can receive this informa-
tion), or to allow even other services or Haggle’s managers to
exploit this information. Thus, the Context manager receives from
the service the definition of its context and includes it in a
DataObject dedicated to the spread of context among neighbors. If
this context is private, only neighbors running the same service
will receive that information, on condition that they have
previously declared their interest in an attribute that generally
defines the service identifier (e.g., content sharing, chat or others).
As far as the device context, its information can be directly
recovered by an interaction with the interested managers (e.g.,
Resource manager for capacity and battery lifetime, while
Connectivity manager for active wireless interfaces), and it is
generally interesting only for the local managers. Instead, the user

context requires a direct interaction with the user to recover his/
her personal data, and the authorization to use it in the system,
while all the information related to its social contacts and
communities are internally computed and evaluated through
statistical analysis based on the exchange of context among
neighbors. Therefore, the Context manager collects all the context
information related to the local node and user and sends them as
a Context DataObject through the periodical beaconing imple-
mented by Haggle. When a neighbor receives that DataObject, the
Context manager recognizes that it contains context information
and appropriately notifies the other interested managers and
services, before storing it in the DataStore. In this way each node
is aware of the user and service contexts of all its neighbors.

This mechanism represents a general platform for context
management integrated with the Haggle architecture on top of
which new improved and optimized solutions for communica-
tions and content distribution in opportunistic networks can be
developed.

In the next sections we validate the integration of the
proposed solution in a real environment using HTC smartphones
as mobile devices. The performance analysis derived from the real
small-scale deployment give us important indications on the
main requirements of the system in a realistic scenario (see
Section 6). Then, to test the properties of the designed solution on
a larger scale and with respect to a larger range of parameters, the
performance evaluation has also been carried out by developing a
simulation model. The main advantage of using simulation
frameworks is the possibility of using a large amount of nodes
and of defining accurately the involved parameters, guaranteeing
the repeatability of the experiments. These conditions cannot be
insurable in real testbeds, also due to the influence of several
external parameters. Through the simulation model we are also
able to investigate which of the proposed social-oriented policies
implemented by the context-aware middleware are the most
effective and efficient when applied to an opportunistic network,
as it will be shown in Section 7.
6. Experimental validation and results

In order to validate the proposed context-aware middleware
integrated with the Haggle architecture, we developed a proto-
type of both the Context manager and the content sharing service,
integrated with a stable release of Haggle software. To easy the
deployment of upper layer services, the Haggle architecture
defines an Application Programming Interface (API), called
libhaggleCS, that allows the interaction of applications and
services with the main functionality of the Haggle managers
(e.g., connectivity, forwarding, resource management and
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]10
communication protocols). A demonstration of the main features
of the system has been presented in the demo session of an
international conference (Conti et al., 2009), directly involving a
limited set of real users (i.e., up to five active smartphones with
which users can interact by selecting their sharing interests).
However, it is really expensive to set up a real testbed for
opportunistic networks involving a large number of users, divided
in a significant number of communities, to effectively validate all
the social-oriented policies presented in the previous section.
Furthermore, in a real testbed it is almost impossible to finely
control the large set and wide range of parameters that can
impact on the performance of our middleware. For these reasons,
in the testbed we present a simplified scenario in which nodes in
the same community are connected in ad hoc mode exploiting the
wireless interface based on the IEEE 802.11 standard, and only the
Most Likely Next (MLN) policy is developed by the Context
manager. In this way, traveler nodes will exploit their own
resources to favor those neighbors that will be most likely
encountered in the next future. This policy will be shown to be
one of the most effective and efficient in Section 7, where we
analyze more complex scenarios with respect to that used for real
experiments. In this case, we consider as the reference scenario
two social communities (X and Y) as shown in Fig. 4.

In the example user C shares social relationships with both
communities and therefore it visits them on a regular basis.
Within the two communities users share some common interests:
on the left side users A and C are interested in mp3 and jpeg files,
while B is interested in jpeg and avi files; on the right side both
users D and E are interested in jpeg and avi. Assuming that all
nodes in each community are able to communicate with each
other, after the neighbor discovery phase each of them knows the
interests and the file list of the others, and thus accordingly
updates its current context. Starting from the configuration in
Fig. 4a, as C belongs to both communities, it is highly probable
that she will move towards the right-hand-side community and
can thus help distributing contents to the interested users of that
community. When she reaches the right-hand-side community,
and context information are exchanged through the 1-hop
discovery process, she is able to select those files that are most
interesting for previously encountered users, A and B, and then
Fig. 4. Social-aware content sha

Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
carry the files to the original community to satisfy their requests.
To validate the software architecture we ran a set of real
experiments in which we measured the average time needed to
exchange a Context DataObject among 1-hop neighbors of the
same community and the average file transfer delay inside the
community varying the size of the content items users want to
share. These measures constitute the building blocks to evaluate
the performance of the systems in more complex scenarios, as
they provide the time required to perform the basic operations of
the Context manager and of the content sharing service.
Specifically, they provide measures of the effective time needed
by the Context manager running on the traveler node to exchange
context information inside the current community and by the
content sharing service to download interesting contents for past
encountered users.

Considering that the average size of a Context DataObject,
including the content-sharing context information (i.e., interests
of the local user and list of shared files), is about 2 KB, we
measured that the average time for two nodes to exchange it
during the 1-hop discovery procedure of Haggle is about 0.5 s.
Fig. 5 shows the time required by two 1-hop neighbors to
exchange a file of variable size (from 28 KB up to 6.5 MB, as
shown in Table 1). We measured the delay both at the level of the
content sharing service (bars tagged as ‘‘Application’’), as well as
the corresponding delay measured from inside the Haggle
architecture (bars tagged as ‘‘Haggle’’). The former is the
amount of time needed by the content sharing service to send a
request to one of its neighbors and receive the selected file, while
the latter is the delay measured by Haggle kernel as the essential
time to successfully complete the sending on the network of the
DataObject containing the entire file. Results are obtained as the
average of 10 experiments, with confidence intervals computed
with a 95% confidence level.

We notice that the average delay increases with the content
size, reaching peaks of more than 73 s in case of 6.5 MB (a
standard dimension for audio files). We can notice that for small
content sizes the transmission delay measured from inside Haggle
is negligible with respect to the transfer delay measured at the
application layer, while it increases when the content size is
greater than 500 KB. The difference between the transfer delays
ring: application scenario.

middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

Fig. 5. Average file transfer delay.

Table 1
List of file IDs and size.

File ID Size (kB)

#1 99.9

#2 6400

#3 475

#4 3112.96

#5 1310.72

#6 28.1

#7 840

#8 916

Fig. 6. Average transfer delay of single and cumulative requests.

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 11
measured at the application layer and those measured by Haggle
is mainly due to the internal management of incoming and
outgoing DataObjects in Haggle kernel. In fact, since the kernel is
implemented as a single event queue in which all generated
DataObjects (both coming from the network or from internal
managers’ communications) are stored before being processed,
the processing time needed by Haggle to satisfy a request depends
on the status of the queue at the moment in which the request is
stored in the queue.

To better investigate this behavior, we executed another set of
experiments in which the traveler node sends a cumulative
downloading request for all the available contents on the
neighbor device. In Fig. 6 the average transfer delay of a
cumulative request for the 8 files of Table 1 ordered in a
random fashion is compared with the sum of the average
transfer delays of each single download request measured in the
previous experiment. In the cumulative request case, all files are
requested simultaneously at the application layer (t¼0 s). Fig. 6
shows the delay for each file received on the traveler node. Note
that, for more than 3 requests, it is more convenient to send a
cumulative request than single separate requests. This is due to
the fact that a cumulative request is stored in the kernel queue as
a set of subsequent single requests, while in case of separate
requests, additional DataObjects, deriving either from the
network or from internal manager communications, can be
inserted in the queue, increasing the processing time of
subsequent requests.

These experimental results highlight that, to develop a generic
context- and social-aware service on top of the Haggle architec-
ture enhanced with the Context manager, we must take into
consideration both the time needed by the system to exchange
context information and notify the upper layer service of the
surrounding context, and the delay for contents’ transfer that
highly depends on their size. Therefore, to develop an efficient
context-aware content sharing service in opportunistic networks,
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
traveler nodes should evaluate the amount of time they spend
inside a given community, as enough time should be allotted for
accommodating the required content transfers. This is concep-
tually depicted in Fig. 7. Specifically, we can estimate that, to
effectively download a set of interesting files from the Y
community, node C should stay inside that community for a
time greater than the sum of the average time needed for context
exchange and the expected transfer delay of the selected files,
using a cumulative request to reduce the processing time of the
single requests.

The 1-hop transmission represents the basic scenario to
exchange and share data, but its complexity further increases in
case two nodes requiring multiple files to each other, generating
thus a full-duplex traffic. Specifically, in this case each device has
to manage both requests coming from the local application to be
sent on the network, and those received from the network as
content sharing requests to be served. This represents a different
traffic pattern that can highlight the system ability to manage
concurrent operations. Specifically, we ran several sets of
experiments, progressively increasing the number of files re-
quested by each node in a multiple request, from 2 up to 5 files
requested in the same order used by the multiple request
executed in the previous experiment. As shown in Fig. 8, the
average transfer delay measured for each single file, mainly
increases with the number of files included in the multiple
request (i.e., the average transfer delay of each file lightly
increases when it belongs to a multiple requests composed of
an increasing number of files), but the measured delays result to
be quite similar to those measured in the case of only one node
sends a cumulative request towards the other node, as
highlighted in Fig. 9. In this case, we considered a multiple
request of five files and we compared the average delay to receive
each file. As far as full-duplex requests, only the last two files
measure an average delay greater than in the case of a cumulative
request. However, there is no significant difference between the
two cases, this demonstrates that the system is able to
concurrently manage full-duplex requests without increasing
the average transfer delays of single files.

In this last set of experiments we analyzed the reference
scenario in which each node sends a cumulative request for
multiple files, since we highlighted before that, for more than
three requests, it is more convenient to send a cumulative request
with respect to send single requests. However, a cumulative
request is served by Haggle as a sequence of separate requests,
and requests that are subsequently inserted in the queue suffer
from the processing time needed to serve the previous ones. To
better investigate this aspect we consider an intermediate
scenario in which single requests are interleaved with a delay of
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

Fig. 7. Sequence diagram of the real scenario.

Fig. 8. Average transfer delay of full-duplex multiple requests.

Fig. 9. Comparison of 2-nodes full-duplex request and 2-node single request of

multiple files.

7 The code of the simulator is available upon request to the authors.

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]12
10 s. This scenario approximates the user behavior when she
becomes incrementally aware of the surrounding context.
Specifically, considering that contacts between moving users of
the same community are asynchronous, and context information
are exchanged asynchronously as well, user’s requests will be
delayed depending on her knowledge of the content availability.
As shown in Fig. 10, the average transfer delay of delayed
requested files, compared with those belonging to a cumulative
request, is slightly improved.

The results presented in this section, even though they are
related to a small-scale testbed, provide an indication to evaluate
the critical time intervals related to the interactions of the
context-aware content sharing service with a middleware plat-
form aimed at the context management integrated with the
Haggle architecture. However, since it is extremely important to
analyze how the overall system can benefit from our middleware
platform in more complex and more complete scenarios, we
analyze in the next section simulation results that mainly address
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
fundamental characteristics of opportunistic networks, like
mobility and scalability.
7. Simulation results

In order to evaluate our content sharing application more
extensively, we have developed a custom event-driven simulator
written in C++.7 In order to reduce the complexity of the system to
a manageable level, we have assumed to have ideal wireless links
with infinite bandwidth and negligible transmission delay. This is
clearly unrealistic, but allows us to isolate the effect of context
and social-awareness from networking effects such as congestion,
transmission errors, etc., and provides a bound on the perfor-
mance of the content sharing service, obtained in optimal
settings.

We consider a reference scenario with three communities. In
each community only a subset of all content items is available.
The traveler nodes of the communities are the ones that, being the
only ones that move outside their initial community, are in charge
of carrying content items from one community to others. These
users, as all the other users, have a limited buffer space and
therefore the selection of the content items to be downloaded and
prefetched is the crucial point in the content sharing process.
Typically, the items in which the traveler users have a direct
interest tend to receive a better service (recall that in the utility
function in Eq. (1) there is a component exclusively dedicated to
the interests of the local user). We decided to study the worst-
case service received by less popular content, i.e., the case in
which traveler users are interested in the most popular content.
Apart from traveler users, users’ interests are distributed within
each community according to a Zipf’s law with parameter a¼1.
Requests for content are generated by all users except the
travelers according to a Poisson process with an average of 3
requests every 10 min. In the following, we focus on a tagged
community and we evaluate the ability of the proposed content
sharing policies to bring data to interested users. Results hold true
regardless of the community chosen as reference. Simulations run
for 50,000 s and exchanges of content items upon nodes’ contacts
start after an initial transitory phase required for the estimates of
pac and pav to reach their steady state. When applicable, results
include their 95% confidence interval.

Nodes move according to the Home-cell Community-based
Mobility Model (HCMM) (Boldrini and Passarella, 2010). This
model is able to reproduce the aggregation into communities
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

Fig. 10. 2-node full-duplex requests: multiple request vs single requests with a

fixed interarrival time.

Fig. 11. Hit rate when the rewiring probability is set to 0.05.

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 13
typical of the human users that make up an opportunistic
network. The HCMM model starts by defining a social graph of
network from the input parameters (e.g., number of nodes,
number of communities, etc.). Specifically, each node is initially
randomly assigned to one of the available communities, and all
the nodes belonging to the same communities are fully connected
with each other, but not with nodes belonging to a different
community. Then, according to the Caveman model presented in
Watts (1999), each of these links is rewired to a node belonging to
different communities with a probability pr, called rewiring

probability. The rewiring probability is the knob to control how
much the nodes that belong to different communities mix
together when they move. In fact, in HCMM nodes move between
communities, and nodes’ movements are driven by social links
between nodes. More specifically, the more the social links
towards a community, the more likely the node will move
towards that community. Thus, when the rewiring probability is
low, the nodes are not much attracted to the outside of their
community, thus they will rarely meet nodes belonging to a
different community. When the rewiring probability is high, the
opposite holds true. The HCMM has been shown in Boldrini and
Passarella (2010) to be able to reproduce realistic features of
human mobility, and thus it can be safely used in place of real
mobility traces, when more flexibility in the definition of network
scenario is needed.

All policies are evaluated in terms of the quality of service
(QoS) perceived by the users and the resource consumption. The
QoS is measured in terms of hit rate, system utility and fairness
level. The hit rate is given by the number of successful requests
divided by the number of overall requests. The system utility is
computed as the sum of the content hit rate (hitratei) weighted
with its popularity (popi), i.e., SU ¼

P
ipopi hitratei. The system

utility goes from 0 to 1 (maximum utility). The fairness of each
policy has been computed according to the traditional Jain’s
fairness index (using the hit rate as a measure of the service level
obtained by each piece of content). Resource consumption has
been measured in terms of the traffic generated in the network,
i.e., the average number of data transmitted by all nodes during
the simulation. This includes data exchanged for context creation,
buffer state messages, request messages and downloaded content
(Fig. 11).

The first scenario we consider comprises 15 nodes per
community, moving according to the HCMM model, with the
rewiring probability set to be 0.05. The rewiring probability is
uniformly applied, thus the average number of social links across
communities is the same for all nodes. Fig. 12 shows the hit rate
experienced by all channels. All the policies presented in Section
4.2 guarantee approximately the same level of hit rate. This is an
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
important result, as it shows that, although the rewiring
probability is not particularly high, it is already sufficient to
make the nodes, and thus the contents, circulate in the network.

In the next set of simulations we consider a less mixed
scenario. Specifically, we consider the minimum level of con-
nectivity that can guarantee a 100% hit rate, i.e., we assume that
there are only two travelers in the network, one connecting the
first and the second community, one connecting the first and the
third community. Fig. 13 shows the system utility provided by
each policy in this scenario. The policies that perform best are the
Future and the Most Likely Next. The common strategy of these
policies is that the traveler users do not cooperate or help
disseminating messages within the community in which they are
currently roaming, but proactively store data that might be of
interest for the communities that they will visit in the future, as
discussed in Section 4.1. The policies in which traveler users
support data dissemination in the current community (MFV,
Present and Uniform Social) see a decrease in the system utility of
around 10%, which results from the synchronization between
users in the same community. In fact, the users belonging to the
same community ‘‘see’’ the same state of the network (in terms of
object availability and access probability) and therefore, more or
less simultaneously, take the same dropping/downloading
decisions. But, if all users drop the same content items at about
the same time, these items temporarily disappear from the local
community and therefore all requests associated with them
cannot be satisfied. The Greedy policy is, overall, the one
performing worse. In fact, the Greedy policy can provide the
nodes of the reference community only with those contents the
traveler users are directly interested in, because they only
download contents that are interesting for them. In this case,
they are interested in the most popular items and thus they can
satisfy the requests only of those nodes that are interested in the
same items. The Uniform policy seems to work quite well from
the system utility standpoint. However, in the following we show
that this good performance is paid in terms of resource
consumption.

Fig. 14 shows on a lin-log scale the traffic generated on average
by the content sharing policies during simulations. The Uniform
policy is the one that uses more resources and it shows a very
high resource consumption. This is due to the fact that, with the
Uniform policy, fetching decisions are taken uniformly at random.
Therefore, also content items that are already well spread in a
community can be exchanged, thus increasing the bandwidth
demand. MFV, Present and Uniform Social are also quite
demanding in terms of traffic due to the synchronization effect
associated with these policies. In fact, after wrong dropping
decisions, nodes must catch up with the content sharing process
by disseminating contents that were already available before, but
that have been dropped in the meanwhile due to synchronization.
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

1

10

102

103

104

105

Greedy

Future
MLN

Present

MFV
UnifSoc

Unif

A
ve

ra
ge

 T
ra

ffi
c 

[M
B

]

Fig. 13. Resource consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

Greedy

Future
MLN

Present

MFV
UnifSoc

Unif

A
ve

ra
ge

 F
ai

rn
es

s

Fig. 14. Fairness level.

Fig. 15. Resource consumption (45 vs 90 nodes).

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]14
The Greedy policy is extremely sparing with resources but this is
paid in terms of system utility, as we have already shown. If we
compare the results of system utility and the resource
consumption, we find that the best trade-off between these two
metrics is provided by the Future and MLN policies. We anticipate
here that the Future and MLN policies will prove as the most
effective and efficient solutions also with respect to metrics that
we analyze in the remaining of this section.

With regard to the fairness provided by the content sharing
policies (Fig. 15), all policies treat different contents equally
except the Greedy policy. The Greedy policy is by definition unfair
because under this policy users consider only their personal
interests when taking downloading decisions. On the opposite,
the Uniform policy is fair by definition, because it selects content
uniformly at random. The social-based policies are fair because
they also take into account the needs of less popular content, even
if at a first stage they preferentially serve requests for more
popular objects, and only once these requests have been satisfied,
i.e., when the availability of these objects is high, less popular
contents are downloaded.

So far we have assumed that the requests of nodes for content
never expire. That is, the Content sharing service had an infinite
time to deliver the content items requested by users. The previous
analysis thus showed the performance bound of the different
policies (in terms of hit rate) when infinite timeouts are allowed.
Tables 2 and 3 show how the hit rate varies if we release this
assumption. Specifically, they show for which timeout value a
given percentile of hit rate can be achieved by the different
policies (therefore, for a given percentile, the lower the timeout
the better the policy performance). We consider the case of both
the most popular and the least popular content. The Greedy policy
completes the dissemination process very quickly (99% hit rate
reached with a very short validity request) for the content (the
most popular) that is interesting for the traveler user, but it
cannot adapt to the needs of users other than the traveler user. In
fact, if we consider contents that are not interesting for the
traveler users (Table 3), the hit rate does not change as the
timeout increases because the dissemination process is
considered to be complete once the content that is interesting
for the traveler user has been disseminated. Other content items
are simply ignored and increasing the request validity does not
help, as shown again in Table 3. All the other policies improve
their performance when the timeout of the request is extended,
but Future and MLN are much quicker than the other social
policies in disseminating contents, both for popular and less
popular content. Therefore, the Future and MLN policies provide
the best service in terms of percentage of reached users for
shorter validity timeouts. Note also that in Tables 2 and 3 there
are cases in which a certain level of hit rate is never reached
 0

 0.2

 0.4

 0.6

 0.8

 1

Greedy

Future
MLN

Present

MFV
UnifSoc

Unif

A
ve

ra
ge

 S
ys

te
m

 U
til

ity

Fig. 12. System utility.

Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
(referred in tables as Z50,000, where 50,000 s is the duration of
our simulation). The duration of the simulation has been chosen
to be large enough with respect to the mobility settings of our
scenario, but obviously it cannot be considered infinite. Thus,
results in Tables 2 and 3 are not an evidence for the inability of
some policies to reach certain levels of hit rate, however they are
a good indication of this behavior.

Summarizing the results obtained so far, in the scenario that
we have considered the best trade-off between QoS perceived by
users and resource consumption is provided by both the Future
and MLN policies. Their advantage over the other social policies is
that they exempt traveler users from cooperating with the nodes
of the local community and allow them to proactively download
content that will be interesting for the nodes that they will meet
in the future. For what concerns non-social policies, the Uniform
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 15
policy wastes a lot of resources and this may not be practical in a
real network. Instead, the Greedy policy is extremely unfair and
can excessively penalize less popular content.

The next set of simulations focuses on the performance of the
content dissemination schemes when the number of the nodes in
the network is increased. Specifically, in the following we
compare the previous scenario with 45 nodes with the case of
90 nodes, divided equally into the three communities. All other
configuration parameters remain the same as above. Tables 4 and
5 show how the hit rate varies for the most and the least popular
channel when we reduce the request validity. For ease of
readability, we have removed MLN, Present, and Uniform Social
from the table. In fact, MLN has shown to be approximately
equivalent to the Future scheme in this scenario, and, similarly,
Present and Uniform Social can be reasonably approximated by
the MFV scheme. In the case of the most popular channel, there
are no significant changes in the hit rate experienced. In fact, with
both 45 and 90 nodes, only the Greedy and the Future policies are
able to reach 99% of hit rate. For the most popular channel the
dissemination process accelerates as the number of nodes
increases in all the non-social cases. Social-aware policies seem
to slightly suffer from the increase in the number of nodes.
Specifically, the performance of the schemes that suffer from the
synchronization effect (here represented by MFV) requires a
request validity around three times larger than the request
validity of the 45 nodes case in order to reach the same level of hit
rate level. The reason is that, with more nodes per community, the
synchronization effect is stronger than before, because the
encounters between nodes are more frequent. The difference in
the performance of the Future scheme with 45 and 90 nodes is
very small, and it is satisfactorily made up for by the hit rate of the
Future policy for the least popular content. In fact, as shown in
Table 5, the only scheme that can guarantee a 99% hit rate is the
Future scheme. With the Greedy scheme, traveler nodes only
retrieve content that is interesting for them, and the least popular
channel (that is not the one to which traveler nodes are
subscribed) is excessively penalized. As a general comment,
please note that content that is not very popular benefits from
an increase in the number of nodes in the network, which, as a
Table 2
Request validity (measured in seconds) and expected hit rate for the most popular con

Hit rate Future Greedy MFV

50-th percentile 0 0 1.1904

75-th percentile 0.0053 0 6.6941

99-th percentile 18.345 0.6153 Z50,000

Table 3
Request validity (measured in seconds) and expected hit rate for the least popular con

Hit rate Future Greedy MFV

50-th percentile 0 Z50,000 0.0201

75-th percentile 0 Z50,000 3.3556

99-th percentile 25.7833 Z50,000 Z50,000

Table 4
Request validity (measured in seconds) and hit rate for the most popular content (45

Hit rate Greedy 45 Greedy 90 Future 45 Fu

50-th percentile 0 0 0 0

75-th percentile 0 0 0 00

99-th percentile 0.61526 0.0357 18.345 21

Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
matter of fact, results in a decrease in the request validity needed
to obtain a certain level of hit rate.

Fig. 15 compares resource consumption in the case of 45 and
90 nodes. The variation in the amount of resources consumed is
the smallest (around 120%) for all the social policies, while it is
approximately 165% for the Greedy scheme and 350% for the
Uniform policy. Besides confirming as the scheme that consumes
more resources, the Uniform policy becomes also the scheme
whose performance significantly worsens with an increased
number of nodes. This set of results confirms that, also in the
case of an increased number of nodes, the Future policy (and thus
the MLN policy, which performed in much the same way in our
simulations) is the one that guarantees a good QoS (small delay,
fair treatment of all contents) while at the same time limiting
resource consumption.

We conclude this evaluation by showing that the Future and
Most Likely Next policies are not equivalent in all scenarios as
they were in the scenario studied so far. By definition, when
taking downloading/dropping decisions, the Most Likely Next
policy takes into account only those communities that are at
‘‘1-hop social distance’’ from the current one (see Section 4.1), i.e.,
those communities that the traveler nodes will visit next. In fact,
the MLN policy computes the social weights by conditioning on
the current community of the traveler user. As an example, if a
user goes to the gym after work, but only after having dropped
suitcase and work-related stuff at home, the MLN policy will not
be able to fetch content from the Work community that might be
of interest for the members of the Gym community, because Work
and Gym are not visited one after the other. On the bright side,
however, this strategy allows the user to exploit its buffer space to
download content interesting for the members of the commu-
nities that it will visit in the very next future. The Future policy, as
the name suggests, considers all the communities that can be
visited by the traveler users, not only the next one. In order to
highlight these different behaviors, we run additional simulations
with a slightly different scenario. We considered three commu-
nities (referred to as C1, C2, C3) and one traveler node that visits
these communities according to the following rule: communities
C2 and C3 can be reached only from community C1. Thus, C2 and
tent.

MLN Present Unif UnifSoc

0 1.4189 0.0459 0.6191

0.0048 7.9033 0.3222 4.4902

18.345 Z50,000 Z50,000 Z50,000

tent.

MLN Present Unif UnifSoc

0 0.0222 0.0333 0.0252

0 7.7419 0.256 3.1328

25.7833 Z50,000 Z50,000 Z50,000

vs 90 nodes).

ture 90 MFV 45 MFV 90 Unif 45 Unif 90

1.1904 3.2405 0.0459 0.0199

53 0 6.6941 20.2406 0.3222 0.0984

.7381 Z50,000 Z50,000 Z50,000 Z50,000

middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

Table 5
Request validity (measured in seconds) and hit rate for the least popular content (45 vs 90 nodes).

Hit rate Greedy 45 Greedy 90 Future 45 Future 90 MFV 45 MFV 90 Unif 45 Unif 90

50-th percentile Z50,000 Z50,000 0 0 0.0201 0 0.0333 0.0163

75-th percentile Z50,000 Z50,000 0 0 3.3556 0.0723 0.256 0.0892

99-th percentile Z50,000 Z50,000 25.7833 10.4624 Z50,000 Z50,000 Z50,000 Z50,000

Table 6
Request validity (measured in seconds) and hit rate for the content at 1-hop

distance.

Hit rate Future MLN

50-th percentile 0 0

75-th percentile 0 0

99-th percentile 1.4768 2.72937

Table 7
Request validity (measured in seconds) and hit rate for the content at 2-hops

distance.

Hit rate Future MLN

50-th percentile 0 0

75-th percentile 0 Z50,000

99-th percentile 32.8666 Z50,000

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]16
C3 can be considered at a 2-hop distance from each other if we
measure hops in terms of communities to be visited when going
from C2 to C3. Using this definition, C1 and C2, and C1 and C3, are
at a 1-hop distance. We assume that contents are initially
allocated evenly to each community (i.e., one third each). From
what we have said so far, we expect that MLN will not be able to
download contents assigned to community C2 and carry them to
community C3, because these two communities are not at 1-hop
distance. Tables 6 and 7 confirm the expected results: while the
MLN policy is able to quickly deliver content among communities
at 1-hop from each other, one third of the content residing in
communities at 2-hops from each other can never be delivered by
the MLN policy, regardless of the settings of the request validity,
while 1-hop content is correctly disseminated. On the contrary,
the Future policy is able to reach 99% hit rate in both cases, if
requests remain valid for enough time.

From our simulations, Future and MLN has both emerged as very
effective and efficient policies. However, we believe that in a real
environment, restricting content sharing to communities that are at
1-hop distance can be too restrictive. Thus, we propose the Future
policy as the policy that can provide very good QoS to users, save
resources in terms of traffic generated across the network, and
exploit multi-hop social paths between communities.
8. Conclusions

In this paper we have proposed a context- and social-aware
middleware that autonomically learns context information and
users’ sociality, and makes this information available to all the
components of the network architecture, from the forwarding
level up to the application level. Our middleware has been
integrated in the Haggle architecture, of which it inherits the
layer-less spirit and the data-centric approach. Due to the
modularity of Haggle architecture, our middleware has been
implemented as an additional manager (i.e., Context manager)
aimed at managing and disseminating context information to
improve network communications, protocols, and services. Then,
on top of this architecture, we have designed and developed a
context-aware content sharing service that exploits the interac-
tion with the Context manager inside Haggle to exploit context
information for healing network partitions among different
communities and intermittent connectivity conditions. To this
aim, we have proposed a variety of policies to evaluate the impact
of users’ behavior on data dissemination among separate com-
munities, ranging from completely social- and context-oblivious
to fully social- and context-aware. The enhanced architecture and
the content-sharing service have been validated on a small-scale
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
using a real testbed, while simulations have been used to provide
a larger scale evaluation, including realistic human mobility.

Our evaluation has shown that social-aware sharing policies
are the most effective and efficient strategies for content
dissemination in opportunistic networks, both from the stand-
point of the QoS perceived by users and the resource consump-
tion. These policies cannot be implemented without a middleware
that takes care of the process of collecting and managing context
and social information. Therefore, the proposed context- and
social-aware middleware becomes the enabling component for
efficient communications in opportunistic networks.
Acknowledgement

This work was partially funded by the IST program of the
European Commission under the HAGGLE (027918) and SOCIAL-
NETS (217141) FET Projects.

References

Balamash A, Krunz M. An overview of web caching replacement algorithms. IEEE
Communications Surveys & Tutorials 2004;6(2):44–56.

Balasubramanian A, Levine B, Venkataramani A. DTN routing as a resource
allocation problem. Applications, Technologies, Architectures, and Protocols
for Computer Communication 2007;37:4.

Bellavista P, Corradi A. The handbook of mobile middleware. Auerbach Publica-
tions; 2007.

Boldrini C, Conti M, Passarella A. ContentPlace: social-aware data dissemination in
opportunistic networks. In: Proceedings of ACM MSWiM 2008. Vancouver,
Canada;2008a. p. 203–10.

Boldrini C, Conti M, Passarella A. Exploiting users social relations to forward data
in opportunistic networks: the HiBOp solution. Pervasive and Mobile
Computing 2008b;4(5):633–57.

Boldrini C, Passarella A. HCMM: modelling spatial and temporal properties of
human mobility driven by users’ social relationships. Computer Communica-
tions 2010; in press. doi: 10.1016/j.comcom.2010.01.013.

Campbell A, Eisenman S, Lane N, Miluzzo E, Peterson R, Hong L, et al. The rise of
people-centric sensing. IEEE Internet Computing 2008;12(4):12–21.

Conti M, Delmastro F, Passarella A. Social-aware content sharing in opportunistic
networks. In: Proceedings of IEEE SECON 2009. Rome, Italy; 2009. p. 1–3.

Conti M, Giordano S. Multihop ad hoc networking: the reality. IEEE Communica-
tions Magazine 2007;45(4):88–95.

Conti M, Kumar M. Opportunities in opportunistic computing. Computer
2010;43(1):42–50.

Costa P, Mascolo C, Musolesi M, Picco GP. Socially-aware routing for publish-
subscribe in delay-tolerant mobile ad hoc networks. IEEE Journal on Selected
Areas in Communications 2008;26(5):748–60.

Daly EM, Haahr M. Social network analysis for routing in disconnected delay-
tolerant MANETs. In: Proceedings of the 8th international symposium on
mobile ad hoc networking & computing; 2007. p. 32–40.

Danon L, Dı́az-Guilera A, Duch J, Arenas A. Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment
2005:P09008.

Dey AK. Understanding and using context. Personal and Ubiquitous Computing
2001;5(1):4–7.
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017


ARTICLE IN PRESS

C. Boldrini et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 17
Fall K. A delay-tolerant network architecture for challenged internets. In:
Proceedings of the 2003 conference on applications, technologies, architec-
tures, and protocols for computer communications. Karlsruhe, Germany; 2003.
p. 27–34. doi:http://doi.acm.org/10.1145/863955.863960.

Gao W, Li Q, Zhao B, Cao G. Multicasting in delay tolerant networks: a social
network perspective. In: Proceedings of the 10th international symposium on
mobile ad hoc networking & computing; 2009. p. 299–308.

Henricksen K, Indulska J, Rakotonirainy A. Modeling context information in
pervasive computing systems. Lecture Notes in Computer Science 2002:
167–80.

Henricksen K, Indulska J. Developing context-aware pervasive computing
applications: models and approach. Pervasive and Mobile Computing
2006;2(1):37–64.

Hui P, Crowcroft J, Yoneki E. Bubble rap: social-based forwarding in delay tolerant
networks. In: Proceedings of the 9th ACM international symposium on mobile
ad hoc networking and computing; 2008. p. 241–50.

Hui P, Crowcroft J. How small labels create big improvements. In: Proceedings of
the 5th IEEE international conference on pervasive computing and commu-
nications workshops; 2007. p. 65–70.

Hui P, Yoneki E, Chan SY, Crowcroft J. Distributed community detection in delay
tolerant networks. In: Proceedings of the 2nd ACM/IEEE international work-
shop on mobility in the evolving internet architecture; 2007. p. 1–8.

Lee U, Magistretti E, Gerla M, Bellavista P, Corradi A. Dissemination and harvesting
of urban data using vehicular sensor platforms. IEEE Transactions on Vehicular
Technology 2009;58(2):882–901.

Lenders V, Karlsson G, May M. Wireless ad hoc podcasting. In: Proceedings of the
4th annual IEEE communications society conference on Sensor, Mesh and Ad
Hoc communications and networks; 2007. p. 273–83.

Lindgren A, Doria A, Schelen O. Probabilistic routing in intermittently connected
networks. In: ACM SIGMOBILE mobile computing and communications
review; 2003. p. 19–20.

Milgram S. The small world problem. Psychology today 1967;2(1):60–7.
Miluzzo E, Lane ND, Fodor K, Peterson R, Lu H, Musolesi M, et al. Sensing meets

mobile social networks: the design, implementation and evaluation of the
CenceMe application. In: Proceedings of the 6th ACM conference on Embedded
network sensor systems; 2008. p. 337–50.

Newman ME. The structure and function of complex networks. Arxiv preprint
cond-mat/0303516 2003.

Newman ME. Detecting community structure in networks. The European Physical
Journal B-Condensed Matter and Complex Systems 2004;38(2):321–30.

Roccetti M, Gerla M, Palazzi C, Ferretti S, Pau G. First responders’ crystal ball: how
to scry the emergency from a remote vehicle. In: Proceedings of the IEEE
international performance, computing, and communications conference,
IPCCC; 2007. p. 556–61.
Please cite this article as: Boldrini C, et al. Context- and social-aware
(2010), doi:10.1016/j.jnca.2010.03.017
Schmidt A. Ontology-based user context management: the challenges of
imperfection and dynamics. In: Proceedings of the international conference
on Ontologies, Databases and Applications of Semantics (ODBASE 2006),
On The Move federated conferences (OTM 2006). Montpellier; 2006.
p. 995–1011.

Shikfa A, Önen M, Molva R. Privacy in context-based and epidemic forwarding. In:
Proceedings of IEEE AOC 2009; 2009. p. 1–7.

Silvis J, Niemeier D, D’Souza R. Social networks and travel behavior: report from an
integrated travel diary. In: Proceedings of the 11th international conference on
travel behaviour research. Kyoto; 2006.

Sollazzo G, Musolesi M, Mascolo C. TACO-DTN: a time-aware content-based
dissemination system for delay tolerant networks. In: Proceedings of the 1st
international MobiSys workshop on Mobile opportunistic networking; 2007.
p. 83–90.

Spyropoulos T, Psounis K, Raghavendra CS. Spray and focus: efficient mobility
assisted routing for heterogeneous and correlated mobility. In: Proceedings of
the 5th IEEE international conference on pervasive computing and commu-
nications workshops; 2007. p. 79–85.

Spyropoulos T, Psounis K, Raghavendra CS. Efficient routing in intermittently
connected mobile networks: the multiple-copy case. IEEE/ACM Transactions
on Networking (TON) 2008;16(1).

Strang T, Linnhoff-Popien C. A context modeling survey. In: Workshop on
advanced context modelling, reasoning and management as part of UbiComp,
2004.

Tanenbaum AS, Van Steen M. Distributed systems principles and paradigms.
Prentice-Hall; 2002.

Vahdat A, Becker D. Epidemic routing for partially connected ad hoc networks.
Technical report CS-2000-06, 2000.

Van Jacobson DK, Briggs TM, Braynard RL. Networking named content. In:
Proceedings of the 5th ACM international conference on emerging networking
experiments and technologies (CoNEXT 2009). Rome, Italy; 2009. p. 1–12.

Wang Y, Lin F, Wu H. Cross-layer protocol design for delay/fault-tolerant mobile
sensor networks. ACM SIGMOBILE Mobile Computing and Communications
Review 2007;11:2.

Watts DJ. Small worlds: the dynamics of networks between order and random-
ness. Princeton: Princeton University Press; 1999.

Yoneki E, Hui P, Chan SY, Crowcroft J. A socio-aware overlay for publish/subscribe
communication in delay tolerant networks. In: Proceedings of the 10th ACM
symposium on modeling, analysis, and simulation of wireless and mobile
systems; 2007. p. 225–34.

Zhao W, Ammar M, Zegura E. A message ferrying approach for data delivery
in sparse mobile ad hoc networks. In: Proceedings of the 5th inter-
national symposium on mobile ad hoc networking & computing; 2004.
p. 187–98.
middleware for opportunistic networks. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2010.03.017

	Context- and social-aware middleware for opportunistic networks
	Introduction
	Contribution

	Related work
	Context definition for opportunistic networks
	User context
	Service context
	Device context

	A realistic scenario: social- and context-aware content sharing service
	A social-oriented utility-based framework
	Social-oriented policies

	Clean-slate architectures and context management
	Integration of the social- and context-aware middleware with Haggle

	Experimental validation and results
	Simulation results
	Conclusions
	Acknowledgement
	References




