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Abstract—The performance of vehicular Internet access
using roadside 802.11-based APs has been extensively studied
in the literature. However, much less attention has been
dedicated to analysing the maximum achievable throughput
when multiple vehicles simultaneously share the bandwidth of
the same roadside AP in a given mobility scenario. To fill such
a gap, in this paper we develop an analytical framework to
quantify the total amount of data transferred by a vehicle that
drives through the coverage area of a roadside 802.11-based
AP. The distinctive aspects of our analysis are the following:
(i) it considers heterogeneous vehicular environments where
vehicles may have different mobility characteristics; and (ii) it
accurately takes into account critical traffic parameters, such
as road capacity and vehicle density, when modelling MAC-
layer capacity. Our model is able to accurately characterize
the unfairness that may arise due to differences in the relative
speed of vehicles. In addition, our analysis and the supporting
simulation results are useful to explain the complex relation-
ship that exists between the upload capacity per vehicle, the
macroscopic characteristics of the traffic stream, the vehicular
mobility model, and the 802.11 channel access rules.

Keywords-Vehicular Internet access, 802.11 MAC protocol,
performance analysis, vehicular mobility models.

I. INTRODUCTION

Over the past few years we have seen an impressive

proliferation of large-scale 802.11-based networks. Thus,

the idea of using roadside 802.11 access points (APs) to

provide network coverage to highly mobile users travelling

in cars, has gained significant momentum. Furthermore, the

availability of vehicle-to-infrastructure (V2I) communication

capabilities can pave the way to novel types of applications

for vehicles, involving both data downloads to moving

vehicles (e.g., enhanced local maps with traffic and touristic

information), and data uploads from moving vehicles (e.g.,

measurements collected by on-board sensors, video clips

taken from on-board cameras during the trip, etc.) [1]–[4].

Prior papers have experimentally investigated the perfor-

mance of vehicular Internet access using roadside 802.11-

based APs, and whether or not this performance would be

adequate for certain applications [1], [5]–[7]. These studies

have demonstrated the feasibility of using IEEE 802.11

technologies to support connectivity at typical vehicular

speeds, with acceptable durations of AP associations and

reasonable data transfers. However, much less attention has

been dedicated to evaluating the impact on the network

performance of the contention due to multiple vehicles

simultaneously accessing a roadside AP in a given mobility

scenario. Thus, key open questions addressed in this paper

are the following: what is the theoretically achievable net-
work throughput of a single roadside AP in a given mobility
scenario? what is the effect of macroscopic vehicular traffic
parameters, such as vehicle density, road capacity, absolute

and relative vehicles’ speeds, on the upload capacity per
vehicle? To better understand the importance of these ques-

tions, let us consider the fairness problem which may affect

V2I communications when vehicles having different speeds

communicate with the same roadside AP [8]. Intuitively,

the duration of the connectivity with the AP depends on

the vehicle speed. However, the total amount of data that

the moving vehicle can transfer to the roadside AP is not

necessarily an increasing function of the vehicle’s sojourn

time in the AP’s coverage area, because it may be affected

by other factors, such as the mobility patterns of other

contending vehicles.

It is worth pointing out that the performance analysis of

the IEEE 802.11 MAC protocol has received a significant

attention in the past decade, and remarkably accurate models

are available to evaluate throughput and delay performance

of single-cell WLANs under stationary conditions [9]–[12].

However, as a matter of fact, the vehicular environment

poses new challenges due to its unique characteristics,

which are not addressed by existing models. For instance,

high-speed mobility may cause frequent variations of node

density under the AP’s coverage area, which affect the

shared channel capacity. In addition, the dependence of

vehicular mobility on macroscopic traffic characteristics,

such as vehicle density or road capacity, further complicates

the analysis of the channel access dynamics. To the best

our knowledge, [13] is one of the first papers developing

analytical models to quantify the impact of parameters such

as road traffic density and vehicle speed on the download

performance of moving vehicles connected to a roadside

access point. However, the analysis in [13] does not directly

apply to 802.11-based APs because it is developed for a
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collision-free MAC protocol. The model in [14] is the closest

to our work because it analyses the impact of vehicle density

and speed on the performance of V2I communications using

802.11-like technologies. However, authors in [14] consider

only homogeneous vehicular environments, and they do not

accurately model the impact of road capacity on the network

performance.
To address the above issues, in this paper we develop an

analytical framework to quantify the total amount of data

transferred by a vehicle that drives through the coverage area

of a roadside 802.11-based AP. The distinctive aspects of our

analysis are the following: (i) it considers heterogeneous
vehicular environments where vehicles may have different
mobility characteristics, which allows us to precisely char-

acterize the unfairness that may arise due to differences in

the relative speeds of vehicles; and (ii) it accurately takes
into account critical traffic parameters, such as road capacity

and vehicle density, when modelling MAC-layer capacity.
For the purpose of evaluation, in this study we describe

the vehicular movements using two speed models commonly

adopted for uninterrupted traffic flows (i.e., in the absence

of external factors, such as traffic lights, stop signs or

intersections, which can perturb the traffic stream), namely

the Constant Speed Motion (CSM) model and the Fluid

Traffic Motion (FTM) model [15], [16]. Then, under general

assumptions on the distribution of inter-vehicle distances,

and using standard renewal theory, we obtain the distribution

of the number of vehicles that are simultaneously located in

the road segment covered by the AP’s wireless signal. Such

distribution is the keystone of our analytical framework,

because it allows us to precisely describe the dynamics of

the channel access, and to derive closed-form expressions

for various performance metrics, such as network throughput

and upload capacity per vehicle.
Key findings and insights of our analysis, which are

validated through ns-2 simulations, can be summarized as

follows:

• The 802.11 MAC-layer capacity smoothly decreases

when increasing the vehicle density. Only under low

vehicle densities the average network throughput shows

significant variations.

• The total amount of data transferred by a vehicle that

drives through the coverage area of a roadside 802.11-

based AP according to the CSM model is a monotonically

decreasing function of the vehicle density. On the other

hand, for vehicles moving according to the FTM model

this metric shows a convex-like dependency on the vehicle

density1.

• The ratio between the total amount of data transferred

by two vehicles moving with different relative speeds

depends on the average speeds of the two vehicles, but

it can be independent of the vehicle density2.

1The latter result is also noted in [14].
2Proposition 4 derives under which conditions this statement holds.
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Figure 1. Network topology

As a final remark, we observe that the proposed model can

provide the analytical basis to explore enhancements of the

standard 802.11 MAC protocol in vehicular environments,

as well as to guide the planning and dimensioning of the

network roadside infrastructure [17].

The remaining of this paper is organized as follows. In

Section II we describe the system model used in our analysis.

In Section III, we present the mathematical development of

our model. Analytical predictions and simulation results are

compared in Section IV. Section V concludes the paper with

final remarks.

II. SYSTEM MODEL

In this study we consider a single roadside AP deployed
along an unidirectional, straight road segment (for instance

a highway segment), as illustrated in Fig. 1. Vehicles are

randomly spread along this road segment and they move ac-

cording to a vehicular mobility model that will be explained

later in this section. The vehicles can communicate with the

roadside AP only if their distance is below or equal to the

maximum transmission range rtx. Thus, the AP’s wireless

transmissions can cover at most an area of the road segment

of length Δ = 2 ×
√

r2
tx − d2

c , where dc is the distance

between the roadside AP and the middle of the road. The

nodes share the channel bandwidth using an 802.11-based

MAC protocol. Throughout this paper, to simplify the model

presentation, we assume ideal channel conditions, i.e., there

are not channel errors and hidden terminals, packet capture

is not allowed, and the radio transmissions take place at a

fixed data rate.

To model vehicular traffic several approaches have been

proposed in the literature, and [18] provides a comprehensive

survey for the interested reader. In brief, on one end of

the spectrum we have traffic stream models that observe

the vehicular mobility from a macroscopic point of view.

Such models describe the vehicle movements taking into

consideration cumulative traffic stream characteristics (e.g.,

speed, flow density, minimum inter-vehicle distance, etc.)

and their relationships to each other. Thus, those models

are mainly used to analyse high-level traffic dynamics on

separate road segments. On the other end of the spectrum we

have microscopic traffic models that consider the movements

of each individual vehicle separately, and they characterize

a vehicle behaviour through its mobility parameters (e.g.,

acceleration rate, desired speed, etc.), and the rules of the

drivers’ behaviours (e.g., car following rules, lane changing

rules, etc.). Since in this study we consider uninterrupted
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traffic flows, traffic stream models are adequate to capture

the evolution of the traffic flow under the AP’s coverage

area.

Let us denote with q the vehicle intensity, that is the

average number of vehicles that passes a fixed roadside ob-

servation point (e.g., the leftmost edge of the AP’s coverage

area) per unit time. Moreover, let λ be the vehicle density,

that is the average number of vehicles per unit distance along

the road segment. Then, a fundamental relationship in the

traffic stream models connects vehicle density and vehicle

intensity to the average vehicle speed v as follows [15]:

q = λ · v . (1)

In practice, the vehicle density cannot be unlimited due to

the physical characteristics of the vehicle (i.e., its length),

the road conditions and the safety rules. Thus, let δjam be

the road capacity per unit distance, i.e., the minimum al-

lowable inter-vehicle distance. Consequently, the maximum

allowable traffic density λjam, or jam density, is given by

λjam =1/δjam. Typically, in traffic stream models the traffic

comes at a complete stop when the jam state is reached. Note

that the road capacity (or equivalently the jam density) is a

critical parameter in the computation of the average number

of contending vehicles under the AP’s coverage area, as

shown in Section III. In particular, the maximum number

of vehicles, say ωM , that can be accommodated in the AP’s

coverage area is given by

ωM = Δ/δjam . (2)

Different empirical studies provide slightly different esti-

mates, but a reasonable setting is λjam =0.12 veh/m, which

corresponds to δjam =5 m [13].

To complete the description of the vehicular mobility

model, we have to specify the relationship between the

vehicle speed and the other system parameters. For the

purpose of evaluation, in this study we consider two of

the most common mobility models for uninterrupted traffic

flows, namely the Fluid Traffic Motion model and the

Constant Speed Motion model [18], [19]. We review such

models in the following.

• Fluid Traffic Motion (FTM) model [15]: This is a mobil-

ity model that captures the dependency between the speed

of a generic vehicle and the average vehicle density in the

considered road segment by assuming a linear relationship

as follows

v(t) = max
{

vmin, vmax

(
1 − λ

λjam

)}
, (3)

where vmin is the minimum allowed/desired speed, and

vmax is the maximum allowed/desired speed. According

to equation (3), when the number of vehicles in the road

segment increases all the vehicles slow down (due to the

interactions among the vehicles) up to a lower bound on

the speed when the vehicle density reaches the jam state.

• Constant Speed Motion (CSM) model [20]: This is a

typical example of stochastic model that sets the speed of

all the vehicles in the considered road segment as follows

v(t) = vmin + (vmax − vmin) · η , (4)

where η is a uniformly distributed random variable in

[0, 1].
In both FTM and CSM models the vehicle speed is in-
dependent of the observation time t, and it is equal for
all the vehicles in the same road segment. This is an

important property for our analysis because it implies that:

(i) the sojourn time of each vehicle under the AP’s coverage

area is fixed, and (ii) the inter-vehicle distances maintain

substantially constant throughout the traffic flow3.

As noted previously traffic stream models are commonly

used to mimic large-scale traffic phenomena. However, to

analyse the impact of different vehicular mobility patterns

on the access performance of a roadside AP it is necessary

to introduce the concept of heterogeneous traffic streams.

More precisely, in our work we make the general assumption

that there are kv different types of vehicles (e.g., passenger

cars, trucks, buses, etc.) in the traffic stream. Without loss

of generality, we can assume that the fraction of vehicles

of type i (i = 1, ..., kv) within the overall traffic stream is

a known value equal to α(i). Intuitively, if λ is the average

vehicle density for the whole traffic flow, then the average

density of vehicles of type i is given by

λ(i) = α(i) · λ . (5)

In principle, vehicles of different type may follow different

speed models. Nevertheless, for simplicity we assume that

all vehicles follows the same speed model (in our case,

either FTM or CSM), but with different speed parameters

(e.g., minimum and/or maximum allowed speeds). On the

other hand, the co-existence in the same road segment of

vehicles with different speeds can considerably complicate

the analysis because the distance between two consecutive

vehicles cannot be assumed constant4. To cope with this

difficulty, we further extend the description of vehicles’

interactions by adding overtaking capabilities to vehicles.

More precisely, we assume that a vehicle moves to an adja-

cent lane to overtake the front vehicle if the distance between

itself and the front vehicle reduces below δjam. Then, the

vehicle goes back to the previous line as soon as its distance

from the overtaken vehicle is higher than δjam. Without

loss of generality, we assume that the change of lines

occurs instantly without acceleration and/or deceleration.

Such overtaking behaviour guarantees that the road capacity

constraint is not violated. Furthermore, it is easy to note that

the distance between consecutive vehicles of the same type

3This condition guarantees that the distribution of the inter-vehicle
distances is not perturbed by the vehicle movements.

4For instance, if the front vehicle moves at a lower velocity than the
back vehicle, the distance between them reduces as time passes by.
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is constant because they move with identical speed. Thus,

the analysis of each traffic sub-stream composed of vehicles

of the same type is substantially unaffected by the presence

of the other traffic sub-streams.

Under the above system model, and assuming that the

vehicles operate in saturated conditions (i.e., each vehicle

has a non-empty transmission buffer when passing through

the AP’s coverage area) in the following section we model

the throughput performance of IEEE 802.11-based V2I

communications.

III. THROUGHPUT AND FAIRNESS ANALYSIS

A. Distribution of the number of contending vehicles under
the AP’s coverage area

The first step of our analysis is to derive the distribution of

the number of contending vehicles under the AP’s coverage

area. We start by deriving such distribution in the case of an

homogeneous vehicular environment with a single vehicle

type i. Afterwards, we will generalize our results to an

arbitrary number of vehicle types.

Let λ(i) be the average number of vehicles that enter

the AP’s coverage area per unit time (i.e., that pass the

leftmost edge of the AP’s coverage area per unit time).

Then, let X
(i)
n denote the distance between the n-th and

the (n + 1)-th vehicle of type i that entered the AP’s

coverage area. In traffic stream models {X(i)
n , n = 1, 2, ...}

is typically assumed to be a sequence of non-negative

i.i.d. random variables with cumulative distribution function

F (i)(d) = P{X(i)
n ≤ d}. Note that the i.i.d. property of

the inter-vehicle distances has been also recently confirmed

in [21]. Furthermore, previous studies on vehicular mobility

traces have indicated that the distance between consecutive

vehicles that pass a fixed roadside observation point closely

follows an exponential distribution [13], [15]. However, as

noted in the previous section, the road-capacity constraint

imposes a lower bound on the inter-vehicle distance, say

x
(i)
m . Formally, these features of the X

(i)
n r.v. can be analyt-

ically described using a shifted exponential distribution as

follows

F (i)(d) =

{
1 − e−λ(i)(d−x(i)

m ) d > x
(i)
m

0 d ≤ x
(i)
m

. (6)

Letting S
(i)
n =

∑n
k=0 X

(i)
k , it follows that Sn represents the

distance between the first vehicle and the n-th vehicle that

entered the AP’s coverage area. Now, the number N (i)(d) of

vehicles of type i that are distributed over the first d meters

of the AP’s coverage area is given by

N (i)(d) = sup{n : S(i)
n ≤ d} . (7)

It is well known that, under the assumption that X
(i)
n are

i.i.d. random variables, the counting process N (i)(d) is a

renewal process, which is completely defined by the distri-

bution of the distance between vehicles [22]. Specifically,

let F
(i)
k (d) be the k-fold convolution of F (i)(d), defined as

F (i)
n (d) =

d∫
−∞

F
(i)
k−1(d − y)dF (i)(y) , (8)

for k≥1, while F
(i)
0 (d)=F (i)(d). Then, the distribution of

the renewal process N (i)(d) is given by [22]

P{N (i)(d) = n} = F (i)
n (d) − F

(i)
n+1(d) . (9)

From the knowledge of the P{N (i)(d) = n} distribution, it

is straightforward to derive the probability π(i)(n) of having

n vehicles of type i under the AP’s coverage area as follows

π(i)(n) = P{N (i)(Δ) = n} . (10)

However, before deriving a closed form expression for the

P{N (i)(d) = n} quantity in case of inter-vehicle distances

distributed as defined in (6), the following proposition de-

rives the k-fold convolution F
(i)
k (d).

Proposition 1: The k-fold convolution of F (i)(d) as de-

fined in (6) for k ≥ 1 is given by5

F
(i)
k (d) = 1 −

k∑
l=0

(λ(i))l

l!

(
d − kx(i)

m

)l

e−λ(i)(d−kx(i)
m ) .

(11)

Proof: Due to space constraints the proof is reported in

our technical report [24].

By exploiting Proposition 1, we can now derive the

probability π(i)(n) as defined in (10). Without loss of

generality we assume that Δ = ω(i)x
(i)
m , with ω(i) ∈ N.

Thus, ω(i) represents the maximum number of vehicles of

type i that can be accommodated in the AP’s coverage

given the minimum inter-vehicle distance constraint x
(i)
m .

The following proposition derive the closed-form expression

for π(i)(n).
Proposition 2: Under the assumption that the AP’s cov-

erage area is Δ=ω(i)x
(i)
m , with ω(i)∈N, and that the inter-

vehicle distance follows the distribution defined in (6), the

probability π(i)(n) that there are n vehicles of type i under

the AP’s coverage area is given by

π(i)(n) =
n∑

k=0

(λ(i))k

k!

[
(ω(i)−n−1)x(i)

m

]k
e−λ(i)[(ω(i)−n−1)x(i)

m ]

−
n−1∑
k=0

(λ(i))k

k!

[
(ω(i)−n)x(i)

m

]k
e−λ(i)[(ω(i)−n)x(i)

m ] ,

n<ω(i)−1
(12a)

5It is worth pointing out that closed-form expressions for the k-fold
convolution do not exist for many distributions arising in practice. However,
several numerical methods and/or bounds are available for evaluating Fn(·)
under general distributions [23].
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π(i)(n) = 1 −
n−1∑
k=0

(λ(i))k

k!
(x(i)

m )ke−λ(i)x(i)
m , n=ω(i)−1

(12b)

π(i)(n) = 0 , n ≥ ω(i)

(12c)

Proof: Expression (12a) is obtained by substituting (11)

in (9). Expression (12b) is obtained by noting that

F
(i)
(n+1)(d)=0 if d≥(n+1)x(i)

m . Similarly, expression (12c)

is obtained noting that F
(i)
(n)(d)=0 if d≥nx

(i)
m .

So far we have focused on a single type of vehicles. In

the remaining of this section we generalize the result of

Proposition 2 for the case of multiple types of vehicles.

To this end, let n = {n(1), n(2), ..., n(kv)} be a vector,

whose component n(i) denotes the number of vehicles of

category i in the AP’s coverage area, with kv being the

total number of vehicle categories in the system. As before,

let {X(i)
n , n = 1, 2, ...} be a sequence of non-negative

i.i.d. random variables with cumulative distribution function

F (i)(d), where X
(i)
n denotes the distance between the n-

th and the (n + 1)-th vehicle of type i that entered the

AP’s coverage area. Furthermore, let us assume that X
(i)
n

is distributed according to a shifted exponential distribution

with parameters λ(i) and x
(i)
m . Finally, let π(n) be the joint

distribution probability that the number of vehicles located

under the AP’s coverage area is n(1) for vehicles of type 1,

n(2) for vehicles of type 2, ..., n(kv) for vehicles of type kv .

Based on the mobility models and overtaking rules described

in Section II, we can conclude that the X
(1)
n , X

(w)
n , ..., X

(kv)
n

are independent processes. Owing to this independency

property, we conjecture that it is reasonable to approxi-
mate the joint probability π(n) with the product of the

probabilities π(i)(n(i)) of the individual counting processes

N (1)(Δ), N (2)(Δ), ..., N (kv)(Δ). In other words, π(n) can

be computed as follows

π(n) =
kv∏
i=1

π(i)(n(i)) , 0≤n(i)≤ω(i) , (13)

where π(i)(n(i)) is given by Proposition 2. It is useful to

recall that the superimposition of Poisson processes is also a

Poisson process. This is not generally true for the superpim-

position of arbitrary renewal processes [22]. In other words,

we cannot be sure that the renewal property is preserved

when renewal processes are added together. However, it is

easy to note that the π(i)(n(i)) distribution closely approx-

imates a Poisson distribution for low vehicle densities (i.e.,

λ(i) >> 1/x
(i)
m ). Thus, we expect that our approximation is

accurate, especially in low congested regimes. In following

sections we investigate through simulations the accuracy of

formula (13).

Now, let us denote with Ωn the set of all feasible vectors

n such that n =
∑kv

i=1 n(i). Formally, we have that

Ωn = {n :
kv∑
i=1

n(i) =n, 0≤n(i)≤ω(i)} . (14)

Using standard probabilistic arguments, the probability πn

of having n generic vehicles under the AP’s coverage area

can be calculated as

πn =
∑

n∈Ωn

π(n) , (15)

and the average number of contending vehicles under the

AP’s coverage area at an arbitrary time is E[n]=
∑ωM

n=0 πn ·
n.

To gain a deeper insight into the rationale behind approx-

imation (13), let us introduce the auxiliary random process

X̃ defined as

X̃n = min{X(1)
n , X(2)

n , ..., X(kv)
n } . (16)

In other words, X̃ is a random process representing the

minimum of the inter-vehicle distances. Thus, X̃ can be in-

terpreted as an upper bound for the aggregate vehicle arrival

process. The following proposition derives the distribution

for the process X̃
Proposition 3: Under the assumption that

X
(1)
n , X

(2)
n , ..., X

(kv)
n are independent random variables

following a shifted exponential distribution (6) with

parameters λ(1), λ(2), ..., λ(kv) and x
(1)
m , x

(2)
m , ..., x

(kv)
m ,

respectively, the X̃n process also follows a shifted

exponential distribution with parameters

λ̃ =
kv∑
i=1

λ(i) , x̃m =
kv∑
i=1

α(i)x(i)
m , (17)

where α(i) = λ(i)/λ̃
Proof: Due to space constraints the proof is reported in

our technical report [24].

From Proposition 3 it follows that the process X̃ is stochas-

tically equivalent to a traffic stream with overall arrival

rate equal to the weighted sum of the arrival rates of the

individual traffic sub-streams X
(i)
n .

B. Network and per-vehicle performance

Our analysis is developed under the following simplifying

assumptions:

A1: There are not association and synchronization delays

between the vehicles and the roadside AP.

A2: The frame service time is shorter than the inter-time

between arrivals/departures of vehicles into/from the

AP’s coverage area. This implies that the number

of contending vehicles is constant during the frame

transmission6.

6Note that the frame transmission time is of the order of a few
milliseconds, thus this approximation is reasonable.
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A3: To compute the transmission probability of a generic

vehicle we use the decoupling approximation as in [9]–

[11]. More precisely, let τn be the probability that a

vehicle transmits a packet at the beginning of an empty

time slot under the assumption that there are other (n−
1) vehicles contending for the channel access. Then,

τn is a function of the backoff parameters and the n
value, but it does not depend on the state of the other

contending vehicles.

Under assumption A3 above, several authors have inde-

pendently derived the expression of τn for the 802.11-

based backoff mechanism under saturation conditions. In

our analysis, we use the expression given in [11], which

jointly accounts for the maximum retransmission limit and

the maximum contention window size:

τn =
2qn(1−pr+1

n )
qn(1−pr+1

n )+CW0[1−pn−p(2pn)m(1+pr−m
n qn)]

,

(18)

where

pn =1−(1−pn)n−1 (19)

is the conditional collision probability, qn =1 − 2pn, CW0

is the minimum contention window, r is the maximum retry

limit, and m is the number of retransmissions at which the

contention window reaches its maximum value (m ≤ r)7.

For instance, following the IEEE 802.11a/b/g standard, we

have that CW0 =32 slots, m=5 and r=7.

Let Sn be the average network throughput given n con-
tending vehicles, i.e., the total amount of data transferred

by the moving vehicles to the roadside AP per unit time

conditioned to having n vehicles in the AP’s coverage area.

It is a well-established result that, once the τn value is

known, the saturation throughput for 802.11-based networks

can be computed as [25], [26]

Sn =
τ s
nτ tr

n E[P ]
(1 − τ tr

n )σ + τ s
nτ tr

n Ts + (1 − τ s
n)τ tr

n Tc
, (20)

where τ tr
n = 1 − (1 − τn)n is the probability that a generic

slot is not idle, τ s
n = nτn(1− τn)n−1/τ tr

n is the probability

that a transmission is successful, 1− τ s
n is the probability of

collision, E[P ] is the average payload size, Ts and Tc are the

average duration, including MAC overheads, of a successful

transmission and a collision, respectively. Then, the overall

network throughput can be straightforwardly computed as

E[S] =

ωM∑
n=1

πn · Sn

1 − π0
, (21)

where ωM is the maximum capacity of the road segment

covered by the AP’s wireless signal as defined in (2), namely,

ωM = Δ/δjam, and 1 − π0 is the normalization factor

7Note that (18) and (19) represent a non linear system in the two
unknowns τn and pn, which can be efficiently solved using standard
numerical techniques.

needed to take into account that Sn is conditioned to have

at least a vehicle in the AP’s coverage area (i.e., n > 0).

To evaluate the service level that can be provided to

individual vehicles, it is useful to quantify the total amount

of data that a vehicle can transfer to the roadside AP

when driving through the AP’s coverage area. The vehicular

mobility model comes into play in the computation of such

metric, because the total amount of data transferred by a

vehicle must be a function of the vehicle’s sojourn time

under the AP’s coverage area. More precisely, let γ
(i)
n be

the overall amount of data transferred by a vehicle of type i
when driving through the AP’s coverage area, given that the

total number of contending vehicles is n. To derive γ
(i)
n it

is useful to introduce sn, defined as the average throughput
per vehicle given that there are n contending vehicles under

the AP’s coverage area. Under the assumption that all the

vehicles use the same backoff parameters, it holds that the

vehicles have the same number of opportunities per unit time

to access the wireless channel [11]. Given the fair sharing

of transmission attempts, it holds that sn = Sn/n. It is now

straightforward to obtain that γ
(i)
n = sn · μ(i), where μ(i) is

the average sojourn time under the AP’s coverage area for

vehicles of type i. More precisely, let v(i) be the average

speed for vehicles of type i. Then, μ(i) can be computed as

μ(i) =
Δ
v(i)

. (22)

It is easy to observe that for the FTM model, v(i) is given

directly by formula (3), while for the CSM model it holds

that v(i) =(v(i)
max+v

(i)
min)/2. Now, the overall amount of data

transferred by a vehicle of type i is given by

E[γ(i)] =

ωM∑
n=1

∑
n∈Ωn

π(i)(n(i)) · sn · μ(i)

1 − π0
, (23)

where n(i) is the i-th component of vector n.

Finally, an important performance metric for the vehicular

environment under investigation is the fairness in terms

of equality of the uploaded data per vehicle. We have

previously observed that the 802.11 DCF access scheme

is intrinsically fair from the point of view of channel

access opportunities and throughput performance. However,

this does not imply that all vehicles, irrespective of their

mobility characteristics, are able to upload the same amount

of data when driving through the AP’s coverage area. To

characterize the impact of the vehicular mobility model on

the system fairness, we introduce the normalized upload
capacity r(i) for type-i vehicles as follows

r(i) =
E[γ(i)]

kv∑
j=1

E[γ(j)]
. (24)

Intuitively, formula (24) quantifies the fraction of channel

resources that each vehicle of type i is able to “consume”
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during its connection with the AP. Note that
∑kv

i=1 r(i) =
1. The following proposition derives a simple closed-form

expression for the r(i) quantity in the special case of equally

distributed traffic sub-streams.

Proposition 4: In the case that π(i)(n(i))=π(j)(n(j)) for

n(i) = n(j), i �= j, it holds that

r(i) =
kv∏

k=1
k �=i

v(k)

/
kv∑

j=1

kv∏
k=1
k �=j

v(k) . (25)

Proof: Formula (25) is straightforwardly obtained after

standard algebraic manipulations by substituting expres-

sion (22) into (23), and noting that E[γ(i)] reduces to c/v(i),

where c is a constant independent of i .

Proposition 4 points out that, under equally distributed traffic

sub-streams, the normalized upload capacity per vehicle is

independent of the vehicle density, and it depends only on

the average relative speeds of vehicles. Such unexpected

result will be validated through simulations. Finally, in the

case that all the vehicles move with the same average speed

v, Formula (25) simplifies to

r(i) =
(kv − 1)v

kv(kv − 1)v
=

1
kv

, (26)

which implies that the system is fair, because each category

of vehicles can upload the same amount of data during its

sojourn time in the AP’s coverage area.

IV. MODEL VALIDATION

To validate our analytical model, we have conducted a wide

range of simulations using the ns-2.34 simulator. In the

following, we first describe the simulation setup. Afterwards,

we compare the analytical and simulation results for the

performance metrics defined in Section III.

A. Simulation setup

We simulate a two-lane unidirectional, straight road segment

of length Δ. One lane is the main lane for the traffic flow,

while the adjacent lane is used only for the overtaking of

slower front vehicles, as explained in Section II. A fixed

roadside AP is located along the road at a distance dc from

the middle of the road. Vehicles enter/leave the system from

the borders of the topology, and inter-vehicle distances are

distributed according to the shifted exponential distribution

defined in (6). The road capacity is λjam =0.12 veh/m [13].

Vehicles compete for the channel access using IEEE

802.11 DCF with RTS/CTS disabled. Unless otherwise

stated, the packet payload size is constant and equal to

1000 bytes, and the data transmission rate is fixed and set

to 11 Mbps. For the purpose of evaluation, we consider

default 802.11b MAC and PHY parameters as used in ns-

2, however the same methodology can be applied to the

IEEE 802.11p/WAVE standard. Finally, the AP’s coverage

area Δ is computed as Δ=2×
√

r2
tx−d2

c . In our simulations

Table I
PARAMETER SETTINGS FOR MOBILITY MODELS AND VEHICLE

CATEGORIES.

Model Scenario Veh. Type i
Mobility parameters

v
(i)
max v

(i)
min x

(i)
m

[m/s] [m/s] [m]

CSM
K1 1 25 5 5

K2
1 25 5 5

2 18.75 5 5

FTM
K1 1 25 0 5

K2
1 25 0 5

2 18.75 0 5

dc = 50 m and the largest Δ we have considered is

Δ = 500 m. This Δ value corresponds to a transmission

range of about 255 meters using the free-space propagation

model, which is in line with the ranges observed in field

measurements [1], [5], [6].

The parameter settings used in the simulations for the

CSM and FTM models are reported in Tab. I. The selected

parameters are derived from real-world values, as observed

in [19]. In the following tests, we have considered two

vehicular network scenarios. The first scenario, which is

denoted by K1, involves a single category of vehicles, and

it is used to validate our analysis in homogeneous mobility

conditions. The second scenario, which is denoted by K2,

involves two categories of vehicles, where type-2 vehicles

have a maximum speed that is 75% of the maximum speed

of type-1 vehicles (see Tab. I for the exact values). This

second case is used to validate our analysis in heterogeneous

mobility conditions. Due to space limitations we do not

show results with a larger number of vehicle types and/or

more variegated mobility conditions. However, the observed

behaviours would be relatively similar.

All following simulations use a 2000-seconds warm-up

period and all the quantities of interest are measured over

the next 18000 seconds, which corresponds to five hours of

simulated vehicular mobility. Note that a sufficiently long

simulation duration is necessary to converge to steady-state

regimes, especially in highly congested scenarios. Confi-

dence intervals at 95% are estimated by replicating ten times

each simulation run with different random seeds.

B. Roads with one type of vehicles

First of all, we evaluate the ability of our model to correctly

characterize the number of contending vehicles under the

AP’s coverage area, both in terms of average values and

distribution functions. To this end, Fig. 2 shows the average

number of contending vehicles under the AP’s coverage area

as predicted by our analysis and measured in the simulations

versus the vehicle density. The maximum vehicle density we

have tested is 0.12 veh/m, because this corresponds to the

limiting road capacity. The shown results are obtained for

Δ = 500 meters and Δ = 350 meters. The plots demon-

strate that our model captures with remarkably precision

the average number of contending vehicles under the AP’s
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Figure 2. Scenario K1 – Average number of contending vehicles under
the AP’s coverage area vs. vehicle density: analysis and simulation.
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Figure 3. Scenario K1 – π(n) distribution for three representative vehicle
densities and Δ = 500 m: analysis and simulation.

coverage area, correctly taking into account the impact of

road capacity constraint on this metric. Intuitively, when

compared with Δ = 500 m, an AP’s coverage area of

350 m presents a fewer number of contending vehicles.

A second important finding is that this metric does not

depend on the considered speed model8 but only on the

distribution of inter-vehicle distances. Note that the results

shown in Fig. 2 have been obtained using the FTM model,

whereas results for the CSM model are not reported in the

graphs because they are practically overlapping. To gain a

deeper insight in the average behaviours shown in Fig. 2,

Fig. 3 depicts the distribution of the number of contending

vehicles under the AP’s coverage area as derived from the

simulation traces and formula (10), for low, mid and high

vehicle densities, in the case Δ = 500 m. The figure shows

that the model predictions match very well the simulation

results independently of the vehicle density.

In the following we verify the ability of our model to

correctly estimate both aggregate and per-vehicle throughput

performance. To this end, in Fig. 4 we report the network

throughput E[S] estimated by our formula (21) and obtained

in the simulations for Δ=500 meters and Δ=350 meters,

assuming that the vehicles move according to the FTM

model. For the sake of clarity, since the curves for the

8Note that this conclusion is valid for constant-speed mobility models,
such as CSM and FTM models. We believe that alternative speed models,
such as car-following models, may induce more complex behaviours for
the E[n] metric.
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Figure 4. Scenario K1 – Network throughput vs. vehicle density: analysis
and simulation.

considered Δ values are very close to each other, the

confidence intervals are not reported, but they are tight.

The plots indicate that the analysis can reasonably well

approximate the observed network throughput. The slight

throughput overestimation provided by the analysis can be

explained by noting that formula (20) would be valid only

in stationary regimes. However, a moving vehicle entering

the AP’s coverage area will take some time before reaching

a steady state behaviour, and our model cannot capture such

transient conditions. Nevertheless, the impact of transient

behaviours on the throughput performance appears limited

and it does not significantly affect the accuracy of our

analytical model. Moreover, from the shown results we

can observe that at very low vehicle densities (in our case

λ < 0.005) the network throughput is quite low. This can

be explained by noting that at those vehicle densities the

average number of vehicles under the AP’s coverage area

is as low as 1 or 2 stations. It is well known that the

throughput of the 802.11 DCF access method highly depends

on the value of the minimum contention window (32 slots for

802.11a/b/g standard), which may penalize the throughput in

the case of small number of contending stations [9]. Another

interesting result is that there is a region around low vehicle

densities where the network throughput is maximized. Then,

if we increase the vehicle density beyond this optimal value,

the network throughput start degrading because the number

of vehicles in the AP’s coverage area increases as well;

thus, the channel becomes more congested and the higher

number of collisions among vehicles reduces the MAC

protocol efficiency. However, the throughput degradation is

quite smooth, and even when the vehicle density approaches

the jam density, the network throughput is still reasonably

good. Finally, when compared with Δ = 500 m, the MAC-

layer capacity with Δ = 350 m is smaller for low vehicles

densities and bigger in the other cases. This suggests that

the optimal network performance depends on both vehicle

density and AP’s coverage range.

Fig. 5 shows the analytical and simulation results for the

total amount of data transferred by a vehicle that drives

through the AP’s coverage according to the CSM model

or the FTM model, versus the vehicle density. From Fig. 5,
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Figure 5. Scenario K1 – Total amount of data transferred by a vehicle
vs. vehicle density for Δ = 500 m: analysis and simulation.

we draw the two following interesting observations. First,

when vehicles move according to the CSM model, E[γ] is

a monotonically decreasing function of the vehicle density.

This can be explained by noting that, under the CSM

model, the vehicle’s sojourn time is independent of the

vehicle density. On the other hand, in most situations the

higher the vehicle density, the lower the average throughput

per vehicle 9. Thus, the vehicle can transfer to the AP a

lower amount of data if we increase the vehicle density.

Secondly, when vehicles move according to the FTM model,

the amount of data they are able to transfer to the AP

when passing through the AP’s coverage area is a complex

function of the vehicle density, with a convex-like and

symmetrical shape. In particular, when the vehicle density

is low, the vehicle speed approaches its maximum and the

sojourn time is minimum. However, the average number of

contending vehicles under the AP’s coverage area is also

very small and they are able to transmit very fast to the AP.

This explains the large amount of uploaded data per vehicle.

As the vehicle density increases, the vehicle speed decreases

and the duration of the vehicle sojourn time increases as

well. However, this increase is balanced by the increase in

the channel contention level, which substantially reduces the

throughput per vehicle. For these reasons there is a large

operating region where the total amount of data transferred

by a vehicle is mostly constant. Finally, when the vehicle

density approaches the jam density, the vehicles gradually

stop and the very long (asymptotically infinite) sojourn time

dominates over the throughput reduction. This explains the

new rapid increase in the amount of data transferred by each

vehicle.

C. Roads with two types of vehicles

In this section we validate our analytical model in the case

of vehicular environments with two categories of vehicles.

To avoid any bias between the two traffic sub-streams and to

better highlight eventual unfairness problems, all the results

shown in the following are obtained in the case λ(1) =λ(2)

(i.e., α(1) =α(2) =0.5). In other words, in the overall traffic

9The only exception to this behaviour is for a small operating region at
very low vehicle densities, as shown in Fig. 4
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Figure 6. Scenario K2 – Average number of contending vehicles under the
AP’s coverage area versus the total vehicle density: analysis and simulation.
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Figure 7. Scenario K2 – Network throughput vs. total vehicle density:
analysis and simulation.

flow vehicles of type 1 and vehicles of type 2 are equally
distributed (i.e., π(1)(n(1))=π(2)(n(2)) for n(1) =n(2)). The

other mobility parameters used in the simulations are listed

in Tab. I. For the sake of figure clarity, we report only results

for Δ=500 meters.

Fig. 6 shows the average total number of vehicles and the

average number of type-1 vehicles under the AP’s coverage

area as predicted by our analysis and measured in the sim-

ulation tests, versus the total vehicle density λ=λ(1)+λ(2).

The shown results demonstrate that our model can describe

with high accuracy the average contention levels in the AP’s

coverage area. Moreover, since λ(1) =λ(2), type-1 and type-

2 vehicles contribute equally to the contention in the AP’s

coverage area. Note that the results shown in Fig. 6 have

been obtained using the FTM model, whereas results for the

CSM model are not reported in the graphs because they are

practically overlapping. Due to space limitations we do not

report figures on the distribution π(n), which also confirm

the behaviours shown in Fig. 3.

Fig. 7 shows the average network throughput versus

the total vehicle density. Interestingly, we can observe a

performance trend very similar to the one shown in Fig. 4.

This confirms that the MAC-layer capacity mainly depends

on the total number of vehicles that simultaneously contend

for the channel access and it is not affected by the differences

in the relative speed of the vehicles. We do not report figures

on the E[γ(i)] values because the trend of the plots are

qualitatively the same as in Fig. 5, and we prefer to focus on
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the more interesting results related to system fairness. To this

end, Fig. 8 shows the normalized upload capacity r(1) versus

the total vehicle density for both CSM and FTM models.

Note that r(2) = 1−r(1), thus it is not reported in the figure.

The shown results confirm the findings of Proposition 4,

i.e., that the normalized upload capacity does not depend

on the vehicle density under the condition that vehicles

of type 1 and vehicles of type 2 are equally distributed

in the overall traffic flow. Furthermore, using formula (25)

and the values reported in Tab I, it is easy to derive that

r
(1)
FSM ≈ 0.428 and that r

(1)
CSM ≈ 0.441. Such analytical

predictions are in very good accordance with the results

shown in Fig. 8. Finally, it is worth mentioning that knowing

the fairness properties of the system, and how they depend

on the vehicular parameters, the AP could manipulate the

backoff parameters used by different categories of vehicles

to enforce fairness. We leave the design of such adaptive

strategies for our future work.

V. CONCLUSIONS

In this paper, we have proposed a new model to evaluate

the throughput performance of multiple vehicles sharing

the wireless resources of one 802.11-based AP in a given

mobility scenario. Our model is able to precisely capture the

impact of road capacity, vehicle density, and differences in

the relative speed of vehicles on the throughput performance

of V2I communications. Some key findings from our results

are that: (i) the MAC-layer capacity smoothly degrades

increasing the vehicle density, and (ii) heterogeneous ve-

hicular environments may suffer from unfairness. Our future

work will focus on extending this analytical framework to-

wards three main directions: 1) range-dependent packet loss

rates, 2) bursty traffic sources, and 3) car-following traffic

models. Furthermore, we will investigate how to exploit our

model to optimally adapt the 802.11 MAC parameters to

vehicular mobility patterns.
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