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ABSTRACT
Message delivery in opportunistic networks is substantially
affected by the way nodes move. Given that messages are
handed over from node to node upon encounter, the inter-
meeting time, i.e., the time between two consecutive con-
tacts between the same pair of nodes, plays a fundamental
role in the overall delay of messages. A desirable property
of message delay is that its expectation is finite, so that the
performance of the system can be predicted. Unfortunately,
when intermeeting times feature a Pareto distribution, this
property does not always hold. In this paper, assuming het-
erogeneous mobility and Pareto intermeeting times, we pro-
vide a detailed study of the conditions for the expectation of
message delay to converge when social-oblivious forwarding
schemes are used. More specifically, we consider different
classes of social-oblivious schemes, based on the number of
hops allowed, the number of copies generated, and whether
the source and relay nodes keep track of the evolution of the
forwarding process or not. Our main finding is that, as long
as the convergence of the expected delay is concerned, al-
lowing more than two hops does not provide any advantage.
At the same time, we show that using a multi-copy scheme
can, in some cases, improve the convergence of the expected
delay.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—Routing protocols

Keywords
opportunistic networks, forwarding protocol, expected delay
convergence

1. INTRODUCTION
The great popularity of the delay tolerant networking para-

digm is due to its ability to cope with challenged network
conditions, such as high node mobility, variable connectivity,
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and disconnected subnetworks, that would impair communi-
cations in traditional Mobile Ad Hoc Networks. Opportunis-
tic networks are an instance of the delay tolerant paradigm
applied to networks made up of users’ portable devices (such
as smartphones and tablets). In this scenario, user mobility
becomes one of the main drivers to enable message delivery.
In fact, according to the store-carry-and-forward paradigm,
user devices store messages and carry them around while
they move in the network, exchanging them upon encounter
with other nodes, and eventually delivering them to their
destination.

An opportunistic forwarding protocol defines the strategy
according to which messages are exchanged during encoun-
ters. Two main approaches can be identified. On the one
hand, there are social-oblivious protocols, which do not ex-
ploit any information about the users’ context and social
behaviour but just hand over the message to the first node
encountered (avoiding at most those nodes that have al-
ready forwarded the message). The main advantage of these
strategies is that they are intrinsically simple and lightweight
(practically no information to collect, store, or mine). This
simplicity, however, is typically paid in terms of subopti-
mal routing performance. In order to improve message for-
warding, smarter strategies have been proposed that exploit
information on the social context users operate in. These
approaches, referred to as social-aware, typically make use
of information on how users behave or which social rela-
tions they share in order to make predictions on users’ fu-
ture behavior that might be useful for forwarding messages.
Depending on the number of copies generated for the same
message, forwarding protocols can be classified into single-
copy or multi-copy schemes. In the first case, at any time,
in the network there is just one copy of the message to be
delivered, while in the second case more copies are gener-
ated, hoping that at least one of them will eventually reach
the destination. Multi-copy strategies have been shown to
improve the reliability of delivery with respect to single-copy
approaches [13]. Forwarding protocols may also differ in the
number of relays that they exploit. Simpler strategies may
be single hop or two hops strategies (e.g. Direct Transmis-
sion and Two Hop [7]), while others can allow multi-hop
paths to bring the message to the destination.

Modelling the performance of social-oblivious and social-
aware forwarding protocols for opportunistic networks is still
an open research issue. As messages follow multi-hop paths
across the nodes of the network, their delay is the result
of the delay accumulated at each hop along the forwarding
path. Therefore, the time (intermeeting time) between con-



secutive encounters of a pair of nodes is the elementary com-
ponent of the overall delay. Thus, knowing the distribution
of intermeeting times, one could - in principle - model the
distribution of the delay experienced by messages. Unfortu-
nately, there is no agreement on the actual shape featured by
pairwise intermeeting times in real networks. Of the many
hypotheses that have been made [5] [6] [12][10], the most
challenging from the forwarding standpoint is the one pro-
posed by Chaintreau et al. [4]. Chaintreau et al. found
intermeeting times extracted from real mobility traces to
follow a Pareto1 distribution. The problem with Pareto dis-
tributions is that their expectation is finite only for certain
values of their exponent α. More specifically, the expecta-
tion is finite if α > 1, while for α ≤ 1 it diverges to infinity.
Being the delay the result of the composition of the time
intervals between node encounters, depending on the expo-
nent values featured by intermeeting times, the expectation
of the delay might diverge. Clearly, having a finite expected
delay is a key requirement for any communication protocol.

Due to the relevance of the problem, in this paper, consid-
ering heterogeneous mobility patterns, we derive the condi-
tions on the Pareto exponent of pairwise intermeeting times
under which the expectation of the delay under multi-copy
and/or multi-hop social-oblivious protocols is finite. The
starting point of our paper is the work by Chaintreau et
al. [4], where such conditions have been studied for the the
single-copy two-hop scheme and flooding (see Section 2 for
more details) under the assumption of homogeneous mobil-
ity. Homogeneous mobility implies that the intermeeting
times between any pair of nodes have the same statistical
characteristics (e.g., same exponent for Pareto intermeeting
times). Recent works have shown, however, that real net-
works are intrinsically heterogeneous [5]. In this paper, we
investigate whether heterogeneity in contact patterns helps
the convergence of the expected delay of a general class of
social-oblivious forwarding protocols and whether conver-
gence conditions can be improved using multi-copy strate-
gies and/or multi-hop paths.

We anticipate here that longer paths, i.e., with a number
of allowed hops greater than two, do not help the conver-
gence of social-oblivious strategies. The intuitive explana-
tion is that two hops are enough for exploring the forwarding
diversity available in the network. In fact, the relay to which
the source hands over the message under the two-hop scheme
can be any other node in the network, just as in the multi-
hop case in which the number of allowed hop is greater than
two. On the other hand, we find that multi-copy strategies
can achieve a finite expected delay even when single-copy
strategies cannot. This is due to the fact that a parallel
delivery of more than one copy can increase the chances of
finding the destination.

The paper is organised as follows. In Section 2 we briefly
review the state of the art on forwarding protocols for op-
portunistic networks. In Section 3 we describe the network
model we consider and the assumptions we make. Then, in
Section 4 we identify the main techniques that can be ap-
plied to social-oblivious forwarding, thus identifying a set of
representative classes of social-oblivious schemes. For these
classes, we derive in Section 5 the conditions for the expecta-
tion of their delay to be finite. Finally, Section 6 concludes
the paper.

1In the following we use the terms “Pareto” and “power law”
interchangeably.

2. RELATED WORK
As discussed above, forwarding protocols for opportunis-

tic networks can be classified as social-oblivious or social-
aware protocols, depending on whether they use informa-
tion on the way nodes behave in order to make forwarding
decisions. In the following we only consider social-oblivious
schemes, as they are the focus of this work. The simplest
social-oblivious protocol is Direct Transmission [7], in which
the source node is only allowed to deliver the message di-
rectly to the destination, if ever encountered. At the oppo-
site side of the spectrum, with Epidemic routing [14] a new
copy of the message is generated and handed over (both by
the source and intermediate relays) any time a new node is
encountered. In an ideal scenario without resource limita-
tions Epidemic achieves the minimum possible delay, but in
realistic settings it is typically unfeasible due to the huge
amount of resources it consumes [13]. In order to mitigate
the side effects of Epidemic-style forwarding schemes in re-
source constrained environments, controlled flooding solu-
tions have been proposed (e.g., Spray&Wait [13], gossiping
[8]). Another popular social-oblivious forwarding protocol is
the Two Hop scheme [7], in which a message is forwarded by
the source node to the first node encountered, which is then
allowed only to pass the message directly to the destination.
The Two Hop strategy has been shown to guarantee the
maximum throughput capacity in a homogeneous network
[7].

To the best of our knowledge, there is no other contri-
bution besides that of Chaintreau et al. [4] that considers
the problem of the convergence of the expected delay when
intermeeting times feature a Pareto distribution. Our work
differs from that of Chaintreau et al. both in the mobility
settings and in the forwarding schemes considered. More
specifically, we focus on the more realistic case of heteroge-
neous intermeeting times (as opposed to the homogeneous
mobility considered in [4]) and we extend the set of social-
oblivious policies considered. As a check of correctness, in
Section 5 we apply our derivation to the homogeneous case
and, under the same configuration used by Chaintreau et al.
in [4], we obtain the same results.

3. NETWORK MODEL
Our model considers a network with N mobile nodes. We

denote with N the set of all nodes in the network. For the
sake of simplicity, we hereafter assume that messages can be
exchanged only at the beginning of a contact between a pair
of nodes and that the transmission of the relayed messages
can be always completed within the duration of a contact.
In addition, we assume that each message is a bundle [3],
an atomic unit that cannot be fragmented. We also assume
infinite buffer space on nodes. All the above assumptions
allow us to isolate, and thus focus on, the effects of node
mobility from other effects, and are common assumptions in
the literature on opportunistic networks modelling (they are
used in most of the literature reviewed in Section 2).

Given that messages are handed over from node to node
before reaching their destination, the way nodes move heav-
ily affects the delay experienced by messages. As we assume
that the transmission of a message can always be completed
during a pair-wise contact, the actual duration of the con-
tact is not critical. Thus, the main role in the experienced
delay is played by intermeeting times, which are defined as
follows.



Definition 1 (Intermeeting Time).
The intermeeting time Mij between node i and node j is
defined as the time between two consecutive meetings between
the same pair of nodes. If tf is the time at which a contact
between node i and node j has just finished, the intermeeting
time Mij is given by:

Mij = min
t>tf
{t− tf : ||Xi(t)−Xj(t)|| < r} (1)

where Xi(t) and Xj(t) denote the position of i and j at time
t, and r is the transmission range2.

For the sake of tractability, we assume that intermeeting
times between every specific node pair i, j are independent
and identically distributed and that their expectationE[Mij ]
does not vary with time (in other words, we assume a sta-
tionary network). By definition, the rate of encounter be-
tween node i and node j is given by 1

E[Mij ]
.

The message generation process and the mobility process
are independent. Thus, the time at which a new message
is generated can be treated as a random time in the evolu-
tion of the mobility process, and thus the message sees the
network as an observer arriving at a random point in time
would. For this reason, in our analysis we will often use the
concept of residual intermeeting time.

Definition 2 (Residual Intermeeting Time).
Assuming that node i and node j are not in contact at time
to, the residual intermeeting time Rij(t) between them is
given by the time interval between to and the first time node
i and node j come into each other’s range again, i.e.:

Rij = min
t>to
{t− to : ||Xi(t)−Xj(t)|| < r}, (2)

where Xi(t) and Xj(t) denote the position of i and j at time
t, and r is the transmission range.

Under our assumption of Pareto intermeeting times, the
intermeeting time Mij between a generic pair of nodes i and
j is described by the following CCDF:

FMij (t) =

(
tminij

t+ tminij

)αij

(3)

in which we use the definition of the Pareto distribution
which allows for values arbitrarily close to zero, usually de-
noted as American Pareto [11] [1] (as opposed to the Euro-
pean Pareto version). Parameters αij and Tminij are usually
referred to as the shape and scale of the Pareto distribution,
respectively. Note that we do not require intermeeting times
Mij and Mji to be symmetric. Please note also that being
the American Pareto a European Pareto shifted by tminij

to the left, both Pareto definitions share the same require-
ments for their expectation to converge. Thus, the following
remark holds.

Remark 1. The Pareto distributions introduced above are
defined for αij > 0 (due to the required PDF normalization),
and their expectation converges (i.e., is finite) when αij > 1.

2Without loss of generality, here we assume a determinis-
tic unit disk graph model for radio propagation. In other
words, nodes can communicate only if their current distance
is smaller than the transmission range. This is a common as-
sumption in the literature on opportunistic networks. The
proposed framework still applies for every other model of
radio propagation.

N number of nodes in the network
FX complementary cumulative distribution function

(CCDF) of random variable X
X(x) probability density function of random variable X
Mij intermeeting time for the i, j node pair
Rij residual intermeeting time for the i, j node pair
αij exponent (shape) of the Pareto distribution that char-

acterises Mij ; we assume αij > 1, ∀i, j
tmin scale of the Pareto distribution that characterisesMij ;

tmin > 0

Ddi delay of a message generated by node i and addressed
to node d

N set comprising all nodes of the network
Pi set comprising all nodes that can be encountered by

node i
hmax maximum number of hops allowed

Table 1: Notation

As we have already discussed, residual intermeeting times
come into the picture more often than intermeeting times,
because the time of the generation of new messages can be
modelled as a random time with respect to the evolution
of the mobility process. Following a standard approach [1],
from an American Pareto random variable with shape αij
and scale tminij we obtain residuals that feature an Ameri-
can Pareto distribution with shape αij − 1 and scale tminij .
In the case of European Pareto, the residual is not exactly
Pareto distributed but it converges to a Pareto distribu-
tion with shape αij − 1 in the tail [1]. Thus, it shares the
same convergence conditions as the residual of an American
Pareto random variable. For the residual intermeeting time,
the following remark holds.

Remark 2. The Pareto distribution of Rij is defined for
αij > 1 (due to the required PDF normalization), and its
expectation converges when αij > 2.

The notation used throughout the paper is summarised in
Table 1. Similarly to the reference literature [4][9], for ease of
computation in the following we restrict to the case of power
law random variables having the same scale, i.e., tminij =
tmin, ∀i, j ∈ N . In addition, for the sake of comparison with
[4], we also assume that the probability that two nodes meet
is greater than zero for all node pairs. This ensures that, in
principle, all nodes can meet with each others. Therefore,
cases of deadlock (a message reaches a node which is im-
possible to leave due to the total absence of contacts with
either other possible relays or the destination) are not possi-
ble. The only cause of divergent expected delay are therefore
the distributions of intermeeting times.

4. FORWARDING STRATEGIES
In this section we summarise the main variants of op-

portunistic forwarding schemes that will be later evaluated
against each other as far as the convergence of their expected
delay is concerned. We identify three main strategies that
forwarding protocols can adopt in order to improve their for-
warding performance, namely the number of hops allowed,
the number of copies generated, and whether the source and
relay nodes keep track of the evolution of the forwarding
process or not.

First, forwarding strategies can be single-copy or multi-
copy. In the former case, at any point in time there can
be at most one copy of each message circulating in the net-
work. In the latter, multiple copies can travel in parallel,
thus in principle multiplying the opportunities to reach the



destination. These multiple copies can be all created and
handed over by the source node, or also intermediate re-
lays could be allowed to take part into the multiplication
process. Here we only focus on source generation. Other
possible configurations (e.g., intermediate relays allowed to
generate new copies, like in the Spray&Wait case [13]) are
left as future work.

Second, forwarding protocols can be classified based on
the number of hops that they allow messages to traverse.
In principle, this number could also be infinite. However,
being such an approach not feasible in practice, the number
of hops is either limited arbitrarily (e.g., using the TTL field)
or is naturally constrained by the forwarding strategy (e.g.,
if each possible relay can be exploited just once, messages
cannot perform more than N − 1 hops). When the number
of allowed hops is finite, the last relay can only deliver the
message to the destination directly.

Third, the amount of knowledge that each agent in the for-
warding process can rely on (or is willing to collect and store)
is an additional element for classifying forwarding strategies.
Focusing on the source node, there can be social-oblivious
strategies in which the source node does not keep track at
all of how the forwarding process progresses. In this case,
considering the configuration in which the source node can
generate up to m copies of the message, the m copies might
end up being all distributed to the exact same relay, thus
eliminating the potential benefits of multi-copy forwarding.
A memoryful source, instead, is able to guarantee to use
distinct relays. A similar problem holds for intermediate
relays. Memoryless relays can forward the message to the
same next hop more than once, because they are not at all
aware of what happened in the past. On the other hand,
memoryful relays possess this knowledge, and are able to
refuse the custody of messages that they have already re-
layed. Please note that we assume that the source node
can never be handed over messages that it has generated.
This assumption simply takes into account the fact that the
source identity is always enclosed into the message header,
thus this does not require any additional knowledge beside
what is already present in the system.

Table 2 summarizes the feasible combinations (the ones
marked with the checkmarks) of the forwarding characteris-
tics described above when social-oblivious schemes are con-
sidered. These combinations can be found in well known
routing strategies. For example, the 1-hop 1-copy mem-
oryless forwarding corresponds to the Direct Transmission
strategy [7], in which the source node can only deliver the
messages to the destination. The 2-hop 1-copy memoryless
forwarding is equivalent to the Two Hop forwarding intro-
duced in [7]. The 2-hop m-copy memoryful forwarding is
equivalent to the multi-copy version of the Two Hop proto-
col studied in [4]. Please note that relays can be memoryful
only when they have multiple forwarding choices. This is
not the case when the number of hops is limited to either
one (there is no relay in this case) or two (relays can only
deliver the message to the destination).

5. EXPECTED DELAY CONVERGENCE
FOR SOCIAL-OBLIVIOUS SCHEMES

In this section we study under which conditions the ex-
pected delay of the social-oblivious schemes described in Sec-
tion 4 converges for a tagged source-destination pair. Simul-
taneous convergence for all source-destination pairs would

require combining the conditions derived in the paper, but
the problem is not touched upon due to lack of space. Re-
call that according to social-oblivious forwarding a message
is handed over to the first feasible relay encountered. In the
following, we denote with Pi the set of all nodes that can be
encountered by node i (i.e., the probability of an encounter
with node i is strictly greater than zero). Recall, also, that
we assume that αij > 1 for all i, j node pairs, so that the
residual inter-meeting times are defined (see Remark 2). It
is easy to show that, when αij ≤ 1, none of the forward-
ing algorithms considered in this paper are able to achieve
a convergent expected delay. We refer the interested reader
to [2] for the complete proof.

5.1 Single-copy schemes
In a previous work we have studied the single-copy case

for both the 1-hop and 2-hop social oblivious forwarding
protocols. For the readers’ convenience, we hereafter recall
these findings, whose proofs can be found in [2].

Theorem 1 (Single-copy One-Hop Scheme).
In a heterogeneous network where the intermeeting time Mij

between any generic i, j node pair follows a power law distri-
bution with shape αij, when the Single-copy One Hop relay-
ing protocol (also known as Direct Transmission protocol) is
used the expected delay for messages generated by the source
node s for the destination node d converges if and only if
αsd > 2.

Theorem 2 (Single-copy Two-Hop Scheme).
In a heterogeneous network where the intermeeting time Mij

between any generic i, j node pair follows a power law distri-
bution with shape αij, when the single-copy two-hop relaying
protocol is used, the expected delay for messages generated
by the source node s for the destination node d converges if
and only if both the following conditions hold true:

C1
∑
j∈Ps

αsj > 1 + |Ps|, where Ps denotes the set of all
nodes that can be encountered by node s;

C2 αjd > 2, ∀j ∈ Ps − {d}.

According to Theorem 1, the Direct Transmission pro-
tocol yields a convergent expected delay only if the source
node meets the destination with a residual intermeeting time
whose expectation converges. This clearly follows from the
fact that the source node cannot exploit any other relays
for the forwarding of the message. In the case of the two-
hop scheme, the expectation converges even if the source
node is not able to ensure convergence with a direct deliv-
ery. This can happen if the source node is able to hand over
the message to any of the possible relays within a conver-
gent expected time (Condition C1) and if the meeting pro-
cess between this relay and the destination has a residual
whose expectation converges (Condition C2). Please note
that condition C1 alleviates the convergence condition on
the source node at the expense of the additional condition
C2 on intermediate relays.

With Theorem 3 we extend the analysis of single-copy
schemes by studying their n-hop version. Recall that, as
shown in Table 2, with the n-hop single-copy social-oblivious
forwarding we must consider both the memoryless and the
memoryful case for relays. Thus, in the memoryless case,
relays hand over the message to the first encountered node,



1 hop 2 hops n-hop
1 copy m copies 1 copy m copies 1 copy m copies

memoryless X - X X X X
memoryful source - - - X - X
memoryful relays - - - - X X

Table 2: Summary of social-oblivious routing strategies

regardless of whether this node has already relayed the mes-
sage or not. On the other hand, memoryful relays guarantee
that the message is relayed at most once by each node.

Theorem 3 (Single-copy n-Hop Scheme).
In a heterogeneous network where the intermeeting time Mij

between any generic i, j node pair follows a power law dis-
tribution with shape αij, when the single-copy n-hop relay-
ing protocol (both in the memoryless and memoryful case)
is used, the expected delay for messages generated by the
source node s for the destination node d converges if and
only if conditions C1 and C2 in Theorem 2 hold true.

Proof. Here we only provide a sketch for the proof, whose
complete version can be found in the associated technical
report [2]. The proof is composed of three parts. We first
study the delivery from the source node to the relay, then
we concentrate on the delivery from relay to relay along the
multi-hop path, and finally we study the delivery from the
last relay to the destination node.

The source node s can either deliver the message directly
to the destination or hand it over to an intermediate re-
lay. Recall that we model message arrival time as a random
point in time with respect to the evolution of the mobility
process. Thus, the time before the source node releases the
message is distributed as minj∈Ps{Rsj}, which is the time
before the first node (possibly including the destination) is
encountered. It can be showed that minj∈Ps{Rsj} features
a Pareto distribution with shape

∑
j∈Ps

(αsj − 1), which,
according to Remark 2, should be greater than 1 for the ex-
pectation to converge. This implies

∑
j∈Ps

αsj > 1 + |Ps|,
thus obtaining condition C1.

Once the source node has handed over the message, we
know that the message will follow a n-hop path, with n ≤
min{N − 1, hmax} for the memoryful case and n ≤ hmax in
the memoryless case. First, note that any node i ∈ N −
{s, d} has a non negligible probability of being the k-th hop
along the n-th hop path, with k ∈ {1, ..., n − 1}. In fact,
assume for a moment that the message can leave any node
within a finite expected delay (conditions under which this
assumption is true are provided below). Then, given that
we assume αij > 1 for all i, j node pairs, i.e., that nodes can
meet with any other node, at each forwarding step every
node has a non negligible probability of being selected.

Let us now derive the conditions for the expected time be-
fore the message leaves a node to be finite. Before consider-
ing intermediate relays, let us focus on the delivery from the
last relay to the destination node. It is possible to prove that
the delivery from the last relay to the destination shares the
same convergence condition on its expectation as the resid-
ual intermeeting time between the relay and the destination.
From Remark 2 we know that Rjd has finite expectation if
αjd > 2. Given that all nodes have a non negligible proba-
bility of being the (n− 1)-th hop, as we proved above, con-
dition αjd > 2 must be satisfied for all nodes j ∈ N −{s, d}.
Under our assumption of nodes all potentially meeting with
each other, this condition is equivalent to condition C2, as
N − {s, d} = Ps.

In order to complete the proof we should also derive the
conditions under which the delivery from intermediate relay
to intermediate relay achieves finite expected delay. This
derivation is quite involved, thus we left it entirely to the
associated technical report. Note, however, that, given that
conditions C1 and C2 are required for the first and last hop,
the overall convergence conditions for the single-copy n-hop
scheme can at most be equal to those of the single-copy 2-
hop scheme, not better. Specifically, in [2] we derive that
condition C2, that must apply to all nodes in N − {s, d},
guarantees that the conditions derived for intermediate re-
lays are automatically satisfied, both for the memoryless and
the memoryful case. Thus, overall, conditions C1 and C2
guarantee the convergence of the expected delay under then
n-hop single-copy social-oblivious scheme.

Theorem 3 tells us that, when using single-copy social-
oblivious schemes, letting the message traverse more than
two hops does not improve the convergence of the expected
delay. Thus, when convergence is the only goal, network
resources can be saved using the two-hop social-oblivious
scheme without impairing convergence of the expected delay.

5.2 Multi-copy schemes
As discussed in Section 2, when multiple copies of the

same message can travel in parallel, the opportunities to
reach the destination are multiplied. In this section we in-
vestigate whether this also positively affects the convergence
of the expected delay. In the following we present the results
for the convergence of multi-copy/multi-hop schemes, while
a detailed discussion of their advantages and disadvantages
with respect to the single-copy schemes analyzed above will
be provided in Section 5.3. Please also note that hereafter
we only provide an intuitive sketch for the proofs, which can
be found in a detailed version in the associated technical
report [2].

5.2.1 Two-hop forwarding
Recall that, according to the multi-copy version of the

two-hop forwarding scheme, the source node hands over a
copy of the message to the first m encountered nodes, which
will then be only allowed to deliver the message directly to
the destination, if ever met. Moreover, in the memoryless
case, the source node does not keep a record of the relay
nodes used so far, and thus two consecutive encounters with
the same node will end up in the message being copied again
to the same relay. In the memoryful case, a relay node
cannot be used more than once. As we discuss below, these
different capabilities have a great impact on the convergence
of the expected delay.

Theorem 4 (m-copy Memoryless Two-Hop). In a
heterogeneous network where the intermeeting time Mij be-
tween any generic i, j node pair follows a power law dis-
tribution with shape αij, when the memoryless multi-copy
two-hop relaying protocol is used, the expected delay for mes-
sages generated by the source node s for the destination node



d converges if and only if conditions C1 and C2 in Theorem
2 hold true.

Proof. The proof is composed of two parts. First, we
discuss the convergence conditions for the m copies sent by
the source node. The first copy can be studied analogously
to what we did in Theorem 3, thus obtaining condition C1.
For the following copies, we have to consider that relays can
be reused, thus the time before the k-th copy leaves the
source is given by the minimum of both residual intermee-
ting times (for nodes that have not been yet used as relays)
and intermeeting times (for nodes already used as relays),
because the mobility process regenerates upon encounter.
We prove that the fact that the delivery of the k-th copy is
constrained to start after all previous copies have been de-
livered does not affect convergence for the mobility scenario
considered in the paper and, for the sake of clarity, here
we neglect it (it is, however, considered in [2]). Thus, we
have that, every time a new copy is handed over, a residual
intermeeting time in the initial set {Rsj}j∈Ps from which
we take the minimum is substituted with the corresponding
intermeeting time. Given that convergence conditions are
looser for intermeeting times than for residual intermeeting
times (see Remarks 1 and 2), it follows that condition C1,
which is the necessary and sufficient convergence condition
that applies to the case in which there are only residuals, is
also a sufficient condition for the cases in which intermeeting
times and residual intermeeting times are mixed.

The analysis of the second hop (delivery from relays to the
destination) starts from the consideration that, given that
the protocol is memoryless, the number of distinct relays
actually carrying a copy of the message ranges from 1 to m.
The worst case from the convergence standpoint is that in
which all copies have been relayed to the same node. As
this can happen with a non negligible probability, this worst
case would impair convergence and thus we have to avoid it
ensuring that condition C2 holds for all possible relays.

In the following we derive the convergence conditions for
the expected delay under the memoryful m-copy two-hop
scheme. To this aim, in Lemma 1 we prove the existence of
an operating point m∗ for the memoryful m-copy two-hop
scheme such that, when m ≤ m∗, the expected time before
all m copies are delivered to their m relays converges, while
for m > m∗ copies exceeding m∗ never achieve a convergent
expected delay. Please recall that in this paper we assume
αij > 1 for all i, j node pairs.

Lemma 1. In a heterogeneous network where the inter-
meeting times Mij between any generic i, j node pair follow
a power law distribution with shape αij and the memoryful
m-copy two-hop forwarding protocol is in use, there exists a
characteristic value m∗ such that, when m ≤ m∗, the ex-
pected time before all m copies are delivered to their m re-
lays converges, while for m > m∗ copies exceeding m∗ never
achieve a convergent expected delay. The value of m∗ can be
obtained as follows:

m∗ =

{
0 if

∑
j∈Ps

αsj ≤ N
arg maxm{m+

∑N−1
i=m α∗i > 1 +N} o.w.

,

(4)
where α∗i denotes the i-th largest αsj with j ∈ Ps.

Proof. We consider a memoryful source that is deliver-
ing the m initial copies of the message. As the source is
memoryful, after the k-th copy is relayed, the next copy can

be delivered to the subset of nodes that comprises only those
that have not been already used as relay. We prove that the
convergence conditions become stricter as the cardinality of
the set from which we choose the relays decreases. This let
us focus on the delivery of the m-th copy, because that is
the one that sees the smallest set of possible relays, whose
cardinality is N −m. Following the same line of reasoning
discussed in the proof of Theorem 3, we prove that all nodes
have a non negligible probability of being chosen as relays
at each step. Thus the sets of possible relays are given by all
possible combinations of N −m relays taken from the initial
N − 1. The worst combination, as far as the convergence
of the expected delay of the m-th copy is concerned, is that
containing the N −m nodes having the smallest Pareto ex-
ponent αsj , with j ∈ Ps. If we show that the m-th copy is
handed over by the source node in a finite expected time,
then the convergence for all previous copies and all cases
different from the worst one will automatically follow. We
derive that the m-th copy is relayed within a finite expected
time if the sum of the N −m smallest exponents αsj with
j ∈ Ps is greater than 1 +N −m. In order to find the value
m∗ corresponding to the maximum number of copies that
can be sent within a finite expected time, we simply com-
pute the maximum m value such that the above condition
is satisfied.

Finally, in Theorem 5 we provide the convergence con-
ditions for the overall expected delay under the memoryful
m-copy two-hop scheme operating at m ≤ m∗.

Theorem 5 (m-copy Memoryful Two-Hop). In a het-
erogeneous network where the intermeeting times Mij be-
tween any generic i, j node pair follow a power law distri-
bution with shape αij, when the memoryful m-copy two-hop
forwarding protocol operating at m ≤ m∗ is used, the ex-
pected delay for messages generated by the source node s for
the destination node d converges if and only if

∑N−1
j=N−m α

′
j >

1+m, where α′j denotes the j-th largest αjd with j ∈ Ps (thus∑N−1
j=N−m α

′
j is the sum of the m smallest αjd with j ∈ Ps).

Proof. The proof focuses on the second hop, as the de-
livery from source to relay is guaranteed to have finite ex-
pected delay by condition m < m∗. The second hop can be
modelled as a parallel delivery from them relays to the desti-
nation. For each of the relays, the residual intermeeting time
with the destination starts from when the message has been
received by the relay. In the worst case, the set of relays cur-
rently holding a copy of the message is composed by nodes
having the lowest exponent value for the intermeeting time
with the destination. Starting from these considerations and
using Remark 2 and some Pareto properties derived in [2],

we prove condition
∑N−1
j=N−m α

′
j > 1 +m.

As discussed before, Chaintreau et al. [4] studied the m-
copy memoryful two-hop scheme under homogeneous mobil-
ity patterns (corresponding to αij = α,∀i, j). For the sake
of completeness, in Corollary 1 we verify that Theorem 5
confirms and extends the results in [4].

Corollary 1. In a homogeneous network where the inter-
meeting times Mij follow a power law distribution with shape
α for all i, j node pairs, when the m-copy two-hop strategy
(m ≤ m∗) is used, the expected delay for messages generated
by the source node s for the destination node d converges if
and only if



α >
1

N −m + 1. (5)

In addition, m∗ is given by m∗ =
⌊
N − 1

α−1

⌋
.

Please note that the necessary and sufficient condition in
Equation 5 extends the sufficient condition provided by Chain-
treau et al. [4]. In fact, Chaintreau et al., under the as-
sumption N > 2m (which we have relaxed), derive that the
expected delay of the m-copy two-hop scheme (m ≤ m∗)
converges in a homogeneous setting as long as α > 1 + 1

m
.

Exploiting assumption N > 2m, we have that N −m > m,
thus 1

N−m < 1
m

, and 1 + 1
N−m < 1 + 1

m
. Thus, when condi-

tion α > 1 + 1
m

is verified, also Equation 5 holds true.

5.2.2 Multi-hop forwarding
Again we consider a social-oblivious protocol in which the

source node generates m copies of the message and hands
them over to the first m nodes encountered. Once the source
node has handed over the m copies, the message travels
along multi-hop social-oblivious paths until the destination
is found. Based on the type of memory applied to the source
node and to the relays, we consider the following versions of
the n-hop m-copy protocol (corresponding to the last col-
umn of Table 2):

V1 the source node does not keep track of already used
relays nor the intermediate relays do

V2 the source node selects m distinct nodes but the inter-
mediate relays are not aware of already used relays

V3 the source node selects m distinct nodes and the inter-
mediate relays can relay the message only once.

Theorem 6 describes the convergence conditions that apply
in all these cases.

Theorem 6 (m-copy n-Hop). In a heterogeneous net-
work where the intermeeting time Mij between any generic
i, j node pair follows a power law distribution with shape αij,
when either the V1, V2, or V3 social-oblivious m-copy n-hop
protocol is used, the expected delay for messages generated
by the source node s for the destination node d converges if
and only if condition C1 and C2 in Theorem 2 hold true.

Proof. Due to lack of space, here we only discuss the V3
case, as, being it memoryful, it is expected to perform better
than memoryless social-oblivious forwarding. Proofs for V1
and V2 forwarding can be found in [2]. As we did before,
here we only sketch the proof and we refer the reader to the
associated technical report for the rigorous mathematical
derivation.

With V3 forwarding, any time a copy of the message is
handed over (either by the source or by an intermediate
relay) a relay is removed from the set of possible relays. We
identify a worst case (which we show to happen with non
negligible probability) in which the first copy overtakes all
other copies. This is the case in which the source node is not
able to hand over the second copy because the first one has
already used all possible relays. Thus, in the worst case V3
forwarding becomes a single-copy multi-hop forwarding, for
which Theorem 3 holds. Please note that in V3 forwarding
Lemma 1 does not hold due to the overtaking effect.

5.3 Discussion
Table 3 summarises the results derived so far for social-

oblivious forwarding protocols. The first interesting finding
is that n-hop social-oblivious protocols (last two columns of
Table 3) are no more effective in delivering the message with

finite expected delay than the simple 1-copy 2-hop forward-
ing. In fact, both n-hop social-oblivious protocols and the
1-copy 2-hop scheme share the same convergence conditions
(C1 and C2), but the former consumes much more network
resources than the latter. This tells us that, if we are only
interested in the convergence of the expected delay, paths
with more than two hops should be avoided, as two hops en-
sure that the available forwarding diversity between nodes
is explored, while minimizing resource consumption.

With social-oblivious protocols, when the source node meets
the destination with a residual intermeeting time having
αsd > 2, there is no reason to exploit other relays, as this
will only introduce the chance of picking a bad relay. This
is confirmed by the fact that when the number of hops is
allowed to grow, we have to impose on intermediate relays
additional constraints that are not needed by Direct Trans-
mission (see, e.g., condition C2 in Theorem 3 which requires
that the residual intermeeting time between any relay and
the destination achieves a finite expectation).

Different is the situation in which αsd ≤ 2. In this case,
the source node is not able to directly deliver the message
within a finite expected time, and thus exploring more re-
lays is convenient as it allows the source node to exploit
node diversity. In fact, even if the source node cannot reach
destination d directly with a finite expected delay, it may be
able to hand over the message to other nodes within a finite
expected time. If these intermediate relays are all able to
individually deliver the message to the destination within a
finite expected time, then the 1-copy 2-hop strategy guaran-
tees convergences while minimizing resource consumption.

When there exists at least one intermediate relay which
is not able to deliver the message directly to the destination
within a finite expected time, the most effective strategy
is the m-copy 2-hop forwarding. In fact, with m-copy 2-
hop forwarding the source is able to send up to m∗ copies
of the message. In the worst case m∗ = 1, and thus we
find again conditions C1 and C2 that hold for the 1-copy
2-hop strategy. But if the source node can reach operating
point m∗ > 1, conditions on the delivery from the relays to
the destination become less restrictive as condition C4 can
tolerate exponents αjd smaller than 2 (the exact tolerance
depends on the actual value of m∗).

5.4 A case study
In this section we apply the convergence conditions de-

rived above to a toy scenario that we generate in order
to illustrate the main differences among the social-oblivious
strategies as far as the convergence of their expected delay is
concerned. More specifically, we focus on forwarding strate-
gies with different convergence conditions, which, as shown
in Table 3, are 1-hop 1-copy (Direct Transmision), 2-hop 1-
copy, and 2hop m-copy (with memoryful source) schemes.
We consider 10 nodes, and the following set of exponents:

α = {2.1, 2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3},
whose components are denoted as α1, ..., αN−1. We assume
that a generic node i meets all other nodes in a way such that
αi,1 = α1, ..., αi,i−1 = αi−1, αi,i+1 = αi, ..., αi,N = αN−1.
We also set tmin to 1s. Let us consider messages sent by
source node 1 with destination node 10. According to the re-
sults of Section 5.3, in this case the expected delay for the Di-
rect Transmission is not defined, because α1,10 = 1.3, while
it should be greater than 2 for convergence. Analogously,
the convergence condition for the 1-copy 2-hop scheme is



1 hop 2 hops n-hop
1 copy m copies 1 copy m copies 1 copy m copies

memoryless αsd > 2 - [C1,C2] [C1,C2] [C1,C2] [C1,C2]
memoryful source - - - [C3,C4] - [C1,C2]
memoryful relays - - - - [C1,C2] [C1,C2]

Table 3: Summary of convergence conditions for social-oblivious routing strategies (C1 and C2 are defined

in Theorem 2, C3 = m ≤ m∗ and C4 =
∑N−1
j=N−m α

′
j > 1 +m)

 0.001

 0.01

 0.1

 1

 1  100  10000

P
 (

X
 >

 x
)

Delay [s]

1-copy 1-hop
1-copy 2-hop

4-copy 2-hop

Figure 1: Comparison of delay CCDFs for the 1-hop
1-copy, 2-hop 1-copy, and 2-hop m-copy schemes

not satisfied. More specifically, condition C2 is not satis-
fied, because αi,d < 2 for all nodes i. The only scheme able
to achieve a convergent expected delay is the m-copy 2-hop
scheme. In fact, applying Lemma 1 we derive that the source
can send up to m∗ = 4 copies of the message for which the
expectation of the latency is defined. If we assume to send
all these four copies (m = m∗), condition C4 in Table 3 be-
comes

∑9
j=6 αj > 5. Given that the sum of the four smallest

exponent in α is equal to 5.8, condition C4 is satisfied.
In order to complement these results, we ran a set of simu-

lations, using a custom simulator written in C++, in which
node 1 sends messages to node 10 according to a Poisson
process with mean 1 second. In order for the comparison to
be fair, we run 20000s of simulated time and we considered
only the messages generated in the first 10000s in our statis-
tics. The 10000s packet lifetime has been chosen in order
to be significantly greater than the expected delay (∼ 2s)
from node 1 to node 10 when the 4-copy 2-hop scheme is
used. Please recall that the 4-copy 2-hop protocol is the
only social-oblivious scheme to achieve a finite expected de-
lay in this scenario. When applicable, i.e., when the average
value is finite, we also show the 99% confidence intervals.
For the three forwarding strategies discussed above, we plot
the empirical cumulative distribution function in Figure 1.
As expected, in the case of 4-copy 1-hop scheme, the great
majority of messages (∼ 99.9%) is delivered within a short
time (100s) from their generation. For both the 1-hop 1-copy
and the 2-hop 1-copy schemes, instead, after 10000 seconds
there is still a big fraction (around 10%) of messages to be
delivered. These long delays, predicted by our model, are
those that cause the expected delay to diverge.

6. CONCLUSIONS
Assuming heterogenous, Pareto distributed, intermeeting

times, in this paper we have derived the conditions on the
Pareto exponents such that the expected delay of a large
family of forwarding protocols is finite. We have considered
different classes of social-oblivious strategies based on the
number of copies and the number of maximum relays that
are allowed. Our main result is that convergence is not im-
proved by an increased number of allowed hops. Specifically,
there is no advantage, as far as the convergence of the ex-
pected delay is concerned, in using more than two hops. In

addition, when the source node is able to directly deliver the
message to the destination with a finite delay, any additional
relay can only add more restrictive convergence conditions.

As for the comparison of single-copy and multi-copy schemes,
we found that multi-copy strategies can, in some cases, out-
perform single-copy strategies in terms of convergence of
the expected delay. More specifically, a multi-copy two-hop
strategy can prove effective when neither the source node nor
intermediate relays are able to directly deliver the message
to the destination within a finite expected time. The use of
multiple copies, in fact, benefits from the parallel delivery of
the message from different nodes, which may overcome the
individual limitations in achieving a finite expected delay.
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