
XScribe: a Stateless, Cross-Layer Approach to
P2P Multicast in Multi-Hop Ad hoc Networks

Andrea Passarella
IIT-CNR

Via G. Moruzzi, 1
56124 Pisa, Italy

andrea.passarella@iit.cnr.it

Franca Delmastro
IIT-CNR

Via G. Moruzzi, 1
56124 Pisa, Italy

franca.delmastro@iit.cnr.it

Marco Conti
IIT-CNR

Via G. Moruzzi, 1
56124 Pisa, Italy

marco.conti@iit.cnr.it

ABSTRACT
Using p2p systems on multi-hop ad hoc networks is an amaz-
ingly interesting challenge. While the features of p2p sys-
tems designed for Internet are particularly suitable for ad
hoc networking environments, the very assumptions behind
their design are usually at odds with the ad hoc network
distinctive features. It is thus challenging to port p2p fea-
tures to ad hoc networks in an efficient way. In this work we
focus on p2p multicasting, and design a Scribe cross-layer
replacement, suitable for ad hoc networks (XScribe). We
discuss the main XScribe features, and evaluate its perfor-
mance on a real multi-hop ad hoc network. Results show
that XScribe drastically improves the Scribe performance
in terms of packet loss and delay. At the same time, they
also indicate XScribe limitations, and suggest directions to
further improve its design.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols

General Terms
Design, Experimentation, Performance

Keywords
multi-hop ad hoc networks, p2p systems, multicast, cross-
layer

1. INTRODUCTION
Multi-hop ad hoc networks and traditional p2p systems

designed for the Internet share a number of common fea-
tures. Both are completely self-organising, decentralised and
self-healing. Both allow users to join and leave dynamically,
with possibly high churn rates. Both are good platforms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiShare’06, September 25, 2006, Los Angeles, California USA.
Copyright 2006 ACM 1-59593-558-4/06/0009 ...$5.00.

to host “p2p” applications in which nodes communicate di-
rectly with each other without any centralised service. It
is thus extremely interesting to understand how features
of legacy p2p systems can be ported to ad hoc networks.
One of the big concerns is how to port them efficiently, be-
cause the typical trade-offs of legacy p2p systems are at odds
with those of ad hoc network protocols. Usually, legacy p2p
systems trade increased bandwidth consumption for higher
scalability in terms of number of nodes, mainly because these
systems should support even thousands of users. However,
such large ad hoc networks are quite unlikely [13, 12]. At
the same time, bandwidth is a scarce resource in ad hoc
networking environments that has to be used sparingly.

In this paper we focus on p2p multicast, and consider a
legacy solution made up of Pastry [16] and Scribe [5]. Pastry
implements a Distributed Hash Table (DHT), while Scribe
builds multicast trees on top of the DHT. Being mainly de-
signed for handling exact-match queries, a structured over-
lay like Pastry is the most natural support for a p2p mul-
ticast protocol, in which single nodes have to send data to
a well-defined set of receivers. In comparison to unstruc-
tured and hybrid overlays, structured overlays are usually
considered i) less efficient in terms of management, ii) not
able to exploit nodes’ heterogeneity, and iii) not able to sup-
port content-based queries. However, the discussion on these
points is still open. For example, [4] shows that it is possible
to address points i)-iii) by still using Pastry, and by achiev-
ing performance at least comparable to that provided by
unstructured overlay networks. Thus, even though concep-
tually interesting, porting our analysis of p2p multicast pro-
tocols to unstructured and hybrid overlays is not the most
compelling issue.

We consider p2p multicast protocols instead of standard
layer-3 multicast solutions. P2p multicast protocols exploit
the indirection level provided by overlay networks, and run
on the view of the network provided by the overlay. How-
ever, the literature on multicast on ad hoc networks takes
into consideration both p2p and layer-3 approaches, and no
clear winner has been identified yet [17]. In the field of ad
hoc networks, there is actually an increasing trend towards
blending together features usually implemented at the p2p
and routing levels (e.g., [3, 7, 9]). Thus, we are working to-
wards a multicast system within an integrated routing layer
also including p2p features. Results of these work, and the
new p2p multicast protocol we propose, can be seen as an
helpful intermediate step towards this goal.

After recalling the main features of the solution based on
Pastry and Scribe (Sections 2 and 3.1), we highlight the in-

efficiencies of such a p2p system when used as-it-is on ad
hoc networks (Section 3.1.1). Based on these remarks, we
propose a new solution that leverages cross-layer interac-
tions between the p2p and the routing levels to optimise the
p2p system implementation (see Figure 1). Specifically, we
replace Pastry with CrossROAD [9] (Section 2), and Scribe
with XScribe (Section 3.2). Both CrossROAD and XScribe
provide to upper layers the same API defined by Pastry
and Scribe, respectively, such that applications can be used
unmodified on top of any of the two architectures. While
CrossROAD has already proved to outperform Pastry on
ad hoc networks (e.g., [2]), the main focus of this paper is
the design and evaluation of XScribe. The main advantages
of XScribe are: i) managing group membership with mini-
mal overhead by exploiting the periodic traffic of a proac-
tive routing protocol; and ii) delivering multicast data to in-
tended receivers without requiring any networking structure
(such as trees or meshes) built and maintained exclusively
for multicasting purposes. In this sense, XScribe can be seen
as a stateless, cross-layer, p2p multicast protocol.

In Section 4 we evaluate the XScribe performance in com-
parison with Scribe, in terms of packet loss and delay. We
report results from experiments run on a real multi-hop
ad hoc network, implementing both p2p solutions. Results
show that XScribe is actually able to drastically improve
the performance achieved by Scribe. In the majority of the
cases, it is able to halve the packet loss and the delay at
the same time. Despite its good performance, results also
suggest XScribe limitations and ways to further improve it.
We elaborate on these points both while discussing results,
and while drawing conclusions in Section 5.

1.1 Related work
Pastry & Scribe is one of the platforms for p2p multicast

designed for the wired Internet. Specifically, overlay net-
works similar to Pastry are also provided by CAN, Chord,
Bamboo. Most of them can easily host p2p multicast pro-
tocols. However, we focused on Pastry and Scribe since
they have shown to outperform these alternative approaches
(see [6] and references herein).

Multicasting in ad hoc networks has received significant
attention in the last few years. A number of solutions have
been proposed, either implemented at the routing level (e.g.,
MAODV, ODRMP), or at the p2p (application) level (e.g.,
ALMA, PAST-DM). A good survey of them is provided
in [17]. The closest approach to XScribe is the family of
stateless protocols, such as DDM [14] and RDG [15]. With
respect to these protocols, XScribe works at the p2p level,
and leverages cross-layer interactions with a proactive rout-
ing protocol to improve the efficiency of the group-membership
management.

This paper complements our previous work on p2p sys-
tems for multi-hop ad hoc networks. Specifically, in [10] we
showed the advantage of replacing Pastry with CrossROAD,
and using Scribe directly on top of it. In [11] we extensively
evaluated the performance of Pastry and Scribe in ad hoc
networks. In this paper we make a step further, and show
how cross-layering can be leveraged to design a Scribe re-
placement optimised for ad hoc networks.

2. DHT: PASTRY VS. CROSSROAD
Pastry defines a DHT in a logical circular address space.

The logical address of a node is the hashed value of its IP

TCP/UDP

legacy
scribe

OLSR OLSR

TCP

crossroad

xscribe

N
eS

t

pastry

cross layer

Figure 1: Network architectures.

address. A key is associated to each message sent on the
overlay. Pastry delivers the message to the node whose log-
ical id is the closest one to the hashed key. For the sake
of scalability, each node keeps a partial view of the overlay
network, i.e., it just knows about a limited set of nodes. The
nodes that are kept in the set guarantee the forwarding cor-
rectness, i.e., that messages sent from anywhere eventually
reach the correct destination.

The main costs of Pastry in terms of networking over-
head are due to i) the overlay creation and management
that require periodic communication between nodes, and ii)
the multi-hop middleware routing caused by the incomplete
knowledge of the overlay, which possibly results in significant
path stretches. These costs are well justified in large-scale
wired networks, where the ability to scale to large number
of nodes (possibly thousands) is correctly traded for addi-
tional bandwidth consumption (brought by points i) and ii)
above). However, the cost of this trade-off is turned upside-
down in multi-hop ad hoc networks. On the one hand, both
theoretical [13] and experimental [12] papers show that large
scale multi-hop ad hoc networks are not very likely due to
intrinsic limitations of the wireless medium, and of the cur-
rent wireless technologies. On the other hand, bandwidth is
a very scarce resource on multi-hop ad hoc networks.

Based on these remarks, CrossROAD provides the same
DHT features by taking a cross-layer optimised approach.
Specifically, CrossROAD relies on a proactive routing pro-
tocol. A node wishing to join a CrossROAD overlay em-
beds few bytes into periodic routing packets, announcing
its presence. This information eventually reaches all the
other nodes in the network. Therefore, any node in the
overlay knows the IP addresses of all the other nodes that
compose the same overlay. The overlay creation can be
done autonomously at each node by simply hashing these
IP addresses. CrossROAD drastically reduces the band-
width overhead with respect to Pastry [1, 2], because the
cost of building the network is negligible. Furthermore, mes-
sages always travel just one-hop on the overlay (provided the
overlay view is consistent at all nodes). In addition, experi-
mental results [1] showed that the overhead of the proactive
routing protocol (OLSR in the particular case) is completely
affordable. More details about CrossROAD operations can
be found in [9]. As a final remark, note that all cross-layer
interactions in our architecture are handled by the Network
Status (NeSt) module [8], that allows to implement efficient
cross-layer interactions without loosing the portability and
maintainability of legacy layered stacks.

3. MULTICAST SYSTEMS
3.1 Scribe

Scribe is a p2p shared-tree multicast protocol. It identifies
each tree with a topic, and defines a root node for each topic
as the node in the overlay whose address is the closest one

A

1. E:route(t,subs)
 B is next hop
2. B:route(t,subs)
 enroll E
 C:I’m the root!

3. B:enroll D
 discard msgD

3

E

B

C

2

1
F

multicast topic: t

(a)

3
3

1
2
3

2
C

E

B

2. C:route(
1. D:route(t,msg)

 <children>,msg)
3. B,F:route(

A
F

D

 <children>,msg)

(b)

Figure 2: Scribe tree construction (a), and data de-
livery (b)

to the hashed topic. For example, in Figure 2 the root is
node C. Each node willing to join the tree sends a subscribe
message specifying the topic as the key. An intermediate
node (in the overlay path between the subscribing node and
the root) that receives such a message, either subscribes
itself to the same topic if it is not a member of the tree
(e.g., node B after step 1 in Figure 2(a)), or discards the
message otherwise (e.g., node B in step 3 in Figure 2(a)). In
both cases, it enrolls the node from which it has received the
message as a child. Messages to be delivered over the tree are
first sent towards the root of the topic (step 1 in Figure 2(b)),
and subsequently delivered by each parent to its children
(steps 2 and 3 in Figure 2(b)). Parent-child relationships are
periodically refreshed through HeartBeat Messages sent by
each parent to each child (application messages are also used
as implicit HeartBeats). Upon missing a specified number
of HeartBeats, a child assumes that the parent is no longer
in the overlay, and sends a new subscribe message.

3.1.1 Limitations
We identify three main drawbacks in the Scribe design

when Scribe is used on ad hoc networks. First, the data
delivery mechanism is not optimised at all. Messages have
firstly to reach the root, and are then delivered on the tree.
This requires traversing several hops on the overlay net-
work, which may lead to significant path stretches between
a sender and each receiver. Second, Scribe tends to concen-
trate the burden of multicasting on a set of shared resources,
most notably the links of the tree, and the root node. Our
work in [11] shows that as the traffic load generated by mul-
ticast applications increases, the root node becomes over-
loaded, and the whole multicast group becomes unable to
work properly. Third, the shared tree defined by Scribe has
to be maintained. In wireless networks, where links are typ-
ically unstable, this might be costly, and may lead to tree
partitions and nodes’ isolation [10].

3.2 XScribe
To cope with the problems highlighted in Section 3.1.1,

we propose XScribe, which is a replacement for Scribe op-
timised through cross-layer interactions. XScribe is heavily
inspired by stateless, explicit multicast approaches such as
DDM [14] and RDG [15]. For ease of explanation, we divide
the XScribe operations into data dissemination and mem-
bership management, and discuss each aspect separately.

3.2.1 Data dissemination
As in DDM, in XScribe each sender of a multicast group

is aware of all the other group members. Specifically, in
XScribe each sender keeps a list with the logical addresses
(in the overlay network) of the group members (section 3.2.2
shows how this is achieved). Locally generated messages
are disseminated in the group by sending to each member a
distinct message over the overlay network.

Even though this data-dissemination mechanism can be
further optimised, it addresses all the points we have raised
in Section 3.1.1. Firstly, it avoids possibly long path stretches.
If we pick a particular sender-receiver pair, in XScribe mes-
sages are sent directly to the receiver from the sender, with-
out having to go through an intermediate root node as in
Scribe. Thanks to CrossROAD routing, messages actually
travel along the best possible path between the sender and
the receiver, according to the underlying L3 routing pro-
tocol. Secondly, XScribe does not require any root node,
and it spreads the burden of multicasting more evenly than
Scribe does, since messages are exchanged in a pure peer-to-
peer fashion from producers to consumers. Thirdly, being
completely stateless, it does not require any procedure to
maintain structures exclusively related to multicasting, such
as trees or meshes.

Despite these advantages, it is easy to show that the XScribe
dissemination policy could be further optimised, as discussed
in Section 5. The repeated unicast used by XScribe is defi-
nitely a feature to be improved. However, it is easy to show
that, in small-scale ad hoc networks, Scribe tends to build
two-level trees in which all leaf nodes are direct children
of the root node1. Thus, data dissemination from the root
node occurs via repeated unicast in Scribe too. Despite this
sub-optimal behavior, the current version of XScribe has the
advantage of being extremely simple and straightforward,
and, as shown in Section 4, it already drastically improves
the performance of the legacy Scribe solution.

3.2.2 Membership management
XScribe uses a cross-layer policy for managing member-

ship, which is inspired by the way CrossROAD works. Also
in this case, the main idea is exploiting the periodic routing
traffic to spread information around.

We assume that multicast groups can be mapped to po-
sitions in a group bitmask. One could envision a number of
ways to define mappings such as, for example, exploiting the
fingerprint of the group id in a Bloom filter. XScribe main-
tains a group bitmask local to each node, which stores the
multicast groups the node is subscribed to. As soon as the
node subscribes to some group (i.e., the bitmask is not com-
pletely cleared), the local bitmask is embedded into periodic
messages generated by the routing protocol, and dissemi-
nated in the network. Further subscriptions/unsubscriptions
are disseminated by setting/clearing the corresponding bit(s)
in the bitmap embedded into routing packets. By inspect-
ing received routing packets each node in the network can
be aware of all members of available multicast groups, which
is the information required by the data dissemination algo-
rithm. A node is assumed to have ceased to be part of the
network when no bitmasks of that node are received for a
specified amount of time. Clearly, nodes that do not run
the XScribe layer will not be able to join multicast groups,
while they will still be able to run other applications based
on CrossROAD.

Essentially, this is the same mechanism CrossROAD uses
to advertise nodes’ presence in the overlay, and is efficient
from a bandwidth overhead standpoint. For example, if the
bitmask size is 128 bits, and the period used by the routing
protocol to send updates is 2 seconds (the default value for
OLSR), the overhead originated by a XScribe node is just

1This is essentially because in small-scale networks nodes
tend to be aware of all the other nodes at the Pastry level.

8 Bps. Furthermore, XScribe information does not need
to be sent in separate frames at the MAC level, and does
not require additional accesses to the shared medium. This
is very important whenever the network starts to be even
slightly congested.

Conceptually, this membership management policy could
be implemented also in layer-3 multicast systems, and does
not necessarily require the presence of a DHT. However, in
this work we have chosen to keep XScribe at the p2p level,
as the original Scribe is, to have a direct comparison among
the two systems. Also note that the policy to manage mem-
bership is one of the main differences between XScribe and
other stateless multicast protocols such as DDM or RDG.
Both DDM and RDG require each receiver to send a join
message to each sender of the group. Furthermore, they re-
quire periodic polling to refresh membership. These aspects
of the protocols are usually neglected in evaluations, but
they may represent a significant overhead.

4. PERFORMANCE EVALUATION
4.1 Evaluation scenario

To compare the legacy and the cross-layer multicast p2p
systems we have run experiments in a real ad hoc network
setup. Specifically, we have implemented CrossROAD and
XScribe, while we have used the Pastry and Scribe imple-
mentations provided by the Rice University (FreePastry).
To have a realistic application environment, we have also
implemented a simple Whiteboard Application (WB), al-
lowing users to share drawings, writings, etc. Specifically,
users run a Whiteboard instance on nodes of the ad hoc
network, select a topic to join to, and start drawing on a
canvas, also receiving drawings of the other users. All the
nodes whose users subscribe to the same topic are joined
together by the p2p multicast protocol. The software im-
plementing the protocol stacks can be downloaded from
http://bruno1.iit.cnr.it/xscribe exp/.

The testbed we have used represents a small-scale multi-
hop ad hoc network, as shown in Figure 4. All nodes were
IBM ThinkPad R50 laptops with integrated 802.11b wireless
card (Intel PRO-Wireless 2200). The OS was linux-2.6.12.3,
loading the ipw2200 driver for the network card. Nodes
A to E ran the whole protocol stacks, including the WB
application, while nodes R1 and R2 just acted as routers.
Multi hopping in our testbed was actually emulated by us-
ing iptables, and we cross-checked that paths were actu-
ally multi-hop by inspecting packet traces collected during
the experiments. Although not able to completely capture
all effects of wireless links’ intricacies, this setup allowed
us to closely approximate the system behavior in a realistic
multi-hop setting. We did not run experiments in mobile
conditions, so as to decouple the effects of mobility and ar-
chitectural differences. Analysing the system in different
topologies and in mobile scenarios are main subjects of fu-
ture work.

In this particular configuration, nodes were always just
one-hop away from each other also in the Pastry overlay.
This is a favourable condition for Pastry, which actually
makes its behavior closer to the CrossROAD one. Thus, the
performance differences that we highlight in the following
are mainly related to the different design of the multicast
systems.

Users on nodes A to E joined the same topic at the begin-

A

R1

B D

C

F

E

R2

Figure 4: Experiment topology

ning of each trial, and remained subscribed for the whole du-
ration of the trial. In the case of Scribe, node C was the root
of the multicast tree. Finally, in our tests just users at nodes
C and D generated traffic. This configuration minimises the
traffic related to XScribe membership management. There-
fore, in the following we just focus on the performance gains
achieved by improving the data dissemination policy.

To have a controllable and reproducible environment, in
our tests WB was not run by humans, but by simulated
users. Each user alternated between ON and OFF phases.
During ON phases it drew strokes on the canvas, while dur-
ing OFF phases it did nothing but receiving other users’
strokes. Both ON and OFF phase lengths were exponen-
tially distributed. Each trial was composed by 100 active/idle
cycles, and in any configuration each node running WB gen-
erated at least 500 messages2. To make trials start at the
same time at different nodes, we synchronised the nodes be-
fore each trial, and scheduled the trial start at the same
time on each node. In the following, each trial configuration
is identified by the application-load index, measured as the
number of Packets Per Second (pps) generated by each user.
This index is defined as the ratio between the average num-
ber of strokes generated in a cycle, and the average duration
of an active/idle cycle. We have found that this simple index
is sufficient to correctly identify usage cases for our scenario.

We characterise the architectures’ performance at each
node in terms of packet loss and delay statistics. Specifi-
cally, the packet loss at node i is measured as 1 − RiPN

j=1 Sj
,

where Ri is the number of messages received by node i, N
the number of senders, and Sj is the number of messages
transmitted by the j-th sender. Packet delays are measured
by timestamping the transmission time at the sender, and
reception time at the receiver (recall that nodes are syn-
chronised). Finally, for nodes acting as senders, we did not
take into account locally generated packets to compute the
performance figures.

We replicated each configuration several times, obtaining
quite variable results. They are mainly due to the charac-
teristic variability of the wireless medium. In this paper we
show the best results measured in each configuration.

4.2 Packet loss
Figure 3 shows the packet loss experienced by each node

under the two alternative architectures, as a function of the
application load (loads below 20pps resulted in no packet
loss, and are thus omitted). Plots are presented starting
from the center of the topology (node C), towards the edges.
Since both architectures use TCP at the transport layer,
one could expect not to see any packet loss. Actually, both
Pastry and CrossROAD use internal queues (of the same
size) to store messages going to be sent. Packet loss actually

2A distinct message was sent for each stroke. The size of
each message was 1448 bytes.

 0
 10
 20
 30
 40
 50
 60

50403020

pl
os

s
(%

)
load (pps)

Packet Loss of Node C

xscribe
scribe

(a) node C

 0
 10
 20
 30
 40
 50
 60

50403020

pl
os

s
(%

)

load (pps)

Packet Loss of Node D

xscribe
scribe

(b) node D

 0
 10
 20
 30
 40
 50
 60

50403020

pl
os

s
(%

)

load (pps)

Packet Loss of Node E

xscribe
scribe

(c) node E

 0
 10
 20
 30
 40
 50
 60

50403020

pl
os

s
(%

)

load (pps)

Packet Loss of Node A

xscribe
scribe

(d) node A

 0
 10
 20
 30
 40
 50
 60

50403020

pl
os

s
(%

)

load (pps)

Packet Loss of Node B

xscribe
scribe

(e) node B

 0
 10
 20
 30
 40
 50
 60

50403020

pl
os

s
(%

)

load (pps)

Packet Loss of Node F

xscribe
scribe

(f) node F

Figure 3: Packet loss at each node

occurs when these queues fill up, and is thus a side effect of
network congestion3.

Several interesting observations can be drawn from these
plots. In general, it is evident that XScribe drastically re-
duces the packet loss with respect to Scribe. In more details,
at nodes D, A, and B the packet loss is always more than
halved with respect to the Scribe cases. Different observa-
tions should be drawn with respect to node C (the Scribe
root), and node F. As far as node C, the packet loss under
XScribe is reasonably low, and similar to the packet loss of
other nodes in the center of the network. This had to be ex-
pected, as in XScribe node C does not play any special role.
What is surprising is the fact that the root node in the Scribe
case achieves lower packet loss than the same node in the
XScribe case. We are actually working to get more precise
insights on this, but this particular result seems to indicate a
general limitation of XScribe. By looking more carefully at
TCP-connection traces, we have found that some TCP con-
nections might get suddenly “frozen” for some time. These
phenomena are slightly more frequent on XScribe than in
Scribe, and can justify the lower performance in terms of
packet loss experienced by nodes C and F in this particular
case. A possible reason for such freezing events could be
the fact that XScribe tends to generate more TCP connec-
tions than Scribe does. We are actually working to precisely
figure out the effect of unfairness between concurrent TCP
connections on XScribe. However, note that in the majority
of the cases the XScribe disadvantage of generating more
TCP connections is overcome by far by the advantage of its
simpler architectural design.

Overall, XScribe appears to scale better than Scribe with
the traffic load. Therefore, XScribe allows the application to
operate at higher loads than Scribe does, whatever usability
threshold the application might define with respect to the
maximum acceptable packet loss.

3Properly dimensioning the queues to find the right balance
between delay and packet loss depends on the particular ap-
plication demands (actually, in other set of experiments we
have completely removed packet losses by allowing queues
to grow unlimited).

4.3 Delay
Table 1 shows the average values and the 90th percentiles

of delay experienced by each node. Three traffic loads have
been selected, representative for light, medium, and high
loads. Results are almost self-explanatory. When XScribe
is used, the average delay is more than halved, while the
90th percentile is reduced by at least 1.5x. Coupled with the
result related to packet loss, this tells that, in the majority
of the cases, for the same application load XScribe is able
to drastically reduce the packet loss and, at the same time,
reduce the average delay. As far as nodes C and F, we can
see that XScribe outperforms Scribe, which is the opposite
of what measured in terms of packet loss. This highlights
that, apart from the phases during which TCP gets frozen
causing bursts of packet losses, XScribe is more efficient than
Scribe.

As a final remark about delay performance, Figure 5 shows
the average delays between nodes that were physically 1 hop,
2 hops and 3 hops away from each other, for different traffic
loads4. On the one hand, these plots tell which delay a user
might expect, depending on its distance with respect to a
sender. On the other hand, they show the negative effect
of the higher centralisation and the path stretch brought
by the Scribe architecture (recall that in our configuration
nodes are one hop away also in the Pastry overlay). It is
also interesting to note that, in the case of Scribe, these fig-
ures depend on the particular position of the root node in
the network topology. Actually, if the root node is placed
at one edge of the network, the delay performance can be
far worse than that (see [11]). Clearly, XScribe is immune
to this problem.

5. CONCLUSION & PERSPECTIVE
In this work we have presented XScribe, which is a simple

cross-layer replacement for Scribe designed for multi-hop ad
hoc networks. The main ideas behind XScribe are i) exploit-
ing a proactive routing protocol to manage and disseminate
nodes’ membership information in the network, and ii) use
nodes’ membership information to send multicast data with-

4Similar trends also occurred for the 90th percentiles. These
results are omitted here for the sake of space.

 100
 200
 300
 400
 500
 600
 700

321

de
la

y
(m

s)
hops

Average delay (5 pps)

xscribe
scribe

(a) 5 pps

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

321

de
la

y
(m

s)

hops

Average delay (20 pps)

xscribe
scribe

(b) 20 pps

 1000
 2000
 3000
 4000
 5000
 6000
 7000

321

de
la

y
(m

s)

hops

Average delay (50 pps)

xscribe
scribe

(c) 50 pps

Figure 5: Average delay as a function of the hop count

Table 1: Delay statistics at each node (in ms)

node load (pps) average 90th percentile
Scribe XScribe Scribe XScribe

C 5 264 132 622 219
20 714 444 1660 1050
50 2200 1290 3390 2830

D 5 317 77 688 167
20 1650 594 3190 1270
50 4590 1570 6900 3630

E 5 310 123 674 242
20 1350 556 2690 1140
50 4620 1950 6900 4220

A 5 307 120 686 224
20 1420 612 2940 1340
50 4810 1350 7140 2820

B 5 356 28 721 224
20 1480 624 3110 1400
50 4710 1400 7050 3200

F 5 318 164 687 315
20 1610 884 3200 1910
50 4760 2780 7100 6190

out requiring any networking structure specifically devoted
to multicasting (such as a tree or a mesh).

Results presented in this work clearly indicate that data
dissemination is much more efficient when such a solution is
adopted instead of the original Scribe approach. Specifically,
XScribe is able, in the majority of the cases, to halve the
packet loss and the average delay at the same time.

Nevertheless, our results also show limitations of the cur-
rent XScribe design. Data dissemination could be furhter
optimised by exploiting partially shared paths among sets of
multicast receivers (as traditional L3 multicast does). More-
over, the number of TCP connections required by XScribe
tends to be too high for ad hoc networks. This is the price
paid in order to keep the XScribe design straightforward,
and make it operate on top of generic DHTs. A possible di-
rection to address these problems could be exploiting more
information available at the routing layer to further optimise
the XScribe delivery policy. Furthermore, the subject-based
routing features of DHTs could be exploited to reduce the
membership management overhead. We are actually work-
ing to improve XScribe along these directions.

6. ACKNOWLEDGEMENTS
This work has been partly supported by the Italian Min-

istry for Research (MIUR) in the framework of the Project
FIRB-PERF.

7. REFERENCES
[1] E. Borgia, M. Conti, F. Delmastro, and E. Gregori.

Experimental comparison of Routing and Middleware
solutions for Mobile Ad Hoc Networks: Legacy vs
Cross-Layer approach. In Proc. of the ACM SIGCOMM
E-WIND Workshop, Philadelphia, Aug. 2005.

[2] E. Borgia, M. Conti, F. Delmastro, and L. Pelusi. Lessons
from an Ad-Hoc Network Test-Bed: Middleware and
Routing Issues. In Ad Hoc & Sensor Wireless Networks,
An International Journal, Vol.1, Numbres 1-2, 2005.

[3] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, and
A. Rowstron. Virtual ring routing: Network routing
inspired by dhts. In Proc. of ACM SIGCOMM, Pisa, Italy,
September 11-15 2006.

[4] M. Castro, M. Costa, and A. Rowstron. Debunking some
myths about structured and unstructured overlays. In Proc.
of NSDI, May 2-5 2005.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. Scribe: A large-scale and decentralised
application-level multicast infrastructure. IEEE JSAC,
20(8), Oct. 2002.

[6] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of
scalable application-level multicast built using peer-to-peer
overlays. In Proc. of INFOCOM, San Francisco, CA, Apr.
2003.

[7] M. Conti, E. Gregori, and G. Turi. Towards scalable p2p
computing for mobile ad hoc networks. In Proc. of the
second IEEE Annual Coneference on Pervasive Computing
and Communications Workshops, Orlando, Mar. 2004.

[8] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross
layering in mobile ad hoc network design. IEEE Computer,
Feb. 2004.

[9] F. Delmastro. From Pastry to CrossROAD: Cross-layer
Ring Overlay for AD hoc networks. In Proc. of IEEE
PerCom MP2P Workshop, Kauai Island, Hawaii, Mar.
2005.

[10] F. Delmastro and A. Passarella. An experimental study of
p2p group-communication applications in real-world
manets. In Proc. of IEEE ICPS REALMAN 2005
Workshop, Santorini, Greece, July 2005.

[11] F. Delmastro, A. Passarella, and M. Conti. Experimental
analysis of p2p shared-tree multicast on manets: the case of
scribe. In Proc. of the Fifth IFIP Annual Mediterranean
Ad Hoc Networking Workshop (MedHocNet 2006), Lipari,
Italy, June 2006.

[12] P. Gunningberg, H. Lundgren, E. Nordstroem, and
C. Tschudin. Lessons from experimental manet research.
Ad Hoc Networks Journal, 3(2):221–233, Mar. 2005.

[13] P. Gupta and P. Kumar. The capacity of wireless networks.
IEEE Transactions on Information Theory, 46(2):388–404,
Mar. 2000.

[14] L. Ji and M. Corson. Explicit multicasting for mobile ad
hoc networks. Mobile Networks and Applications,
8:525–549, 2003.

[15] J. Luo, P. Eugster, and J.-P. Hubaux. Probabilistic reliable
multicast in ad hoc networks. Ad Hoc Networks, 2:369–386,
2004.

[16] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object localtion and routing for large scale
peer-to-peer systems. LNCS, 2218:329–350, 2001.

[17] S. Yang and J. Wu. New Technologies of Multicasting in
MANETS. Nova Publishers, 2005.

