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ABSTRACT

Understanding how humans move is a key factor for the de-
sign and evaluation of networking protocols and mobility
management solutions in mobile networks. This is particu-
larly true for mobile scenarios in which conventional single-
hop access to the infrastructure is not always possible, and
multi-hop wireless forwarding is a must. We specifically fo-
cus on one of the most recent mobile networking paradigms,
i.e., opportunistic networks. In this paradigm the commu-
nication takes place directly between the personal devices
(e.g., smartphones and PDAs) that the users carry with
them during their daily activities, without any assumption
about pre-existing infrastructures. Among all mobility char-
acteristics that may affect the performance of opportunistic
networks, the users’ travelling patterns have recently gained
a lot of attention due to their impact on the spreading of
both viruses and messages in such a network. In this paper
we consider a social-based mobility model (HCMM) and we
extend this model to account for the typical travelling be-
haviour of users. To the best of our knowledge, the resulting
mobility model is the first model in which movements driven
by social relations also match statistical features of travel-
ling patterns as measured in reality. Finally, we evaluate our
proposal through simulations over a wide range of scenar-
ios, emphasizing the effect of finite sampling on the obtained
results.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless Com-
munication; C.4 [Performance of Systems]: Modeling
techniques
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1. INTRODUCTION
One of the most intriguing direction of current network-

ing research is that of pervasive (or ubiquitous) comput-
ing. A future is imagined where user devices will be small,
lightweight, powerful and self-configuring. The conventional
Internet will be a part of a larger network, in which mobility
will be commonplace. Access to the Internet from mobile de-
vices will not be limited to conventional single hop solutions
(such as WiFi Access Points or cellular networks), but will
also be enabled by “spontaneous” networking paradigms, in
which ad hoc networks will be formed by mobile users’ de-
vices. This idea of transparent ubiquitous technology relies
on a communication paradigm that is necessarily ubiquitous
as well. This extends conventional strategies involving ca-
ble deployment or set up of an infrastructure only. The
new keywords are wireless and infrastructureless. In such
a network, the concept of a user docked to its desk while
using his personal computer is not the only paradigm any-
more. In a pervasive environment, devices like smartphones
or PDA are indeed carry-on personal computers that are
always with their owners during their daily activities and
move with them.

The work on infrastructureless wireless networks started
with Mobile Ad hoc Networks (MANETs). Traditional MA-
NETs dealt with mobility, but never leveraged it: mobility
was an accident rather than a feature. In MANETs the
communication takes place directly between the nodes par-
ticipating to the networks, without the need for an infras-
tructure, but they required the nodes to be connected with a
multi-hop path at the time the communication takes place.
In some cases, this is simply not possible. In a sparse envi-
ronment, for example, nodes can be connected to different
subnetworks which get in touch only sporadically. The mes-
sages having the source and destination nodes in different
subnetworks, and generated when the two nodes are not in
touch, will never be delivered. Opportunistic and Delay Tol-
erant networks (DTN) try to address this problem. Specif-
ically, they study networking solutions for real ubiquitous
environments. In opportunistic networks multi hop paths
are built opportunistically, and each node carrying a mes-
sage exploits other peers it gets directly in touch to forward
the message for the intended destination.

As opportunistic networks exploit mobility of users as a
key feature, a solid understanding of users mobility patterns
is a requirement in ubiquitous networking environments,
both for mobility management solutions and for the design
and evaluation of networking protocols. This holds true for
at least two main reasons. First, having an accurate knowl-
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edge on the characteristics of human mobility is a prerequi-
site to design protocols for environments where the commu-
nication takes place between moving entities. Second, when
these protocols have been developed, they must be tested on
the scenario for which they were intended. This implies that
realistic mobility models must be available for plugging them
into simulators and, therefore, using them for evaluating the
performance of networking protocols. Many characteristics
of mobility have caught the interest of researcher on net-
working, above all the contact and inter-contact times, that
directly impact on the performance of, e.g., routing proto-
cols. However, recently also the distances travelled by users
have gained a lot of attention, due to the seminal work of
[10]. In this paper we focus on this metric.

In regard to the former aspect, i.e., understanding how
humans move, many papers in the last few years have tried
to statistically describe the features of mobility from dif-
ferent points of view. In particular, there has been a long
discussion on the nature of contact and inter-contact times
[8] [16] [9] [20]. The contact time (CT) corresponds to the
duration of a contact between two users: depending on the
scenario considered, it can be the duration either of a blue-
tooth association or of the staying under the coverage of the
same Access Point or of the calls between the users of the
same mobile phone company. The inter-contact time (ICT)
is the time elapsed between two consecutive contacts (again
the exact semantic depends on the scenario under study).
There is no final agreement on the distribution that better
approximates the shape of CTs and ICTs. However, mod-
eling them with a power law with exponential cut-off seems
to be the most popular approach. While CTs and ICTs
are important, e.g., for the delay of messages, the travelling
patterns of the users of a network can seriously determine
the way in which, e.g., viruses or messages spread through-
out the network. We refer to Section 2 for a more detailed
overview of the literature on this subject. In the case of
distances (also referred to as jump size), there is a general
agreement on the fact that their distribution can be well
approximated with a power law with exponential cut-off [6]
[10] [19].

In regard to the second aspect, i.e., the definition of mo-
bility models for network evaluations, there have been many
proposals in the last years. One the most interesting cat-
egory of mobility models are social-aware mobility models.
This models have identified in the social relationships be-
tween the users the driver of users’ movements [13][5]. Often
these models employ concepts from social network theory to
formalize the relations between nodes [18][3]. The opposite
approach to social-aware mobility is location-aware mobil-
ity. Here the idea is that nodes move across specific loca-
tions, that can be more or less attractive to the nodes in
the network [14]. In [3] we claimed that, in a realistic mo-
bility model, social attraction and location attraction must
go together. Therefore we extended an existing social-based
model (CMM [18]) to include the attraction towards popu-
lar locations. The resulting mobility model (HCMM) is the
object of the work presented in this paper. The evaluation
of both CMM and HCMM has focused on the inter-contact
times generated by the model (for an extensive comparison,
please refer to [3]). In this paper, we analyze the HCMM
model from the point of view of the generated distance distri-
bution. In particular, we show (Section 3) that the HCMM
as-it-is is not able to reproduce important statistical fea-

tures of the jump size distribution. Therefore, in Section 4
we modify the standard HCMM to include such a feature. In
Section 5 we propose a mathematical model that describes
the jump size distribution, for both the standard and the
modified HCMM. Finally, in Section 6 we evaluate through
simulation the modified HCMM, showing that realistic jump
sizes are now produced.

The main contributions of this paper are:

• the definition of a new mobility model that merges
sociality with realistic travelling patterns

• the definition of a mathematical model for the distri-
bution of distances under this mobility model

• the analysis of the statistical features of the new mo-
bility model.

2. RELATEDWORK
Understanding how people move has been the goal of

many works. Pedestrian motion and traffic dynamics have
been described [11] in terms of the self-organizing behaviour
shown by the participating entities, often referred to also
as collective or swarm intelligence. The complexity of these
systems is the result of the interaction among the single enti-
ties that behave according to very simple rules. Example of
these applications are the emergency of phantom traffic jams
on highways [11] or trail formations in city parks [12]. Know-
ing traffic dynamics can allow more efficient transportation
and prevention systems, with the result of less time wasted
stuck in a traffic jams, increased driving safety (accidents
are more likely to occur when sudden traffic jams creates),
reduced pollution, and so on. Pedestrian mobility behavior
is a valuable piece of information for urban planning or for
coping with panic situations.

Recently the interest in understanding human mobility
patterns has gained new popularity, triggered by studies on
biological and mobile epidemics. At the beginning, air trans-
portation and long-distance traffic were studied. However,
human mobility is more complex than that, and can involve
long and short distances, different types of transportation
media, etc. This complexity has been a great obstacle to
quantitatively assess the properties of human travelling. The
first comprehensive study was presented in [6], where the
path of banknotes has been used as an alias for the path
of the humans carrying such banknotes. They found that
the distance travelled by banknotes had a power law decay,
thus implying that the corresponding trajectories are Lévy
flights, whose superdiffusive spread is attenuated by long pe-
riods of rest. It has been argued, however, as banknotes go
from one person to another, that the recorded paths were
not directly related to actual human movements but were
rather a convolution of some unknown human mobility pat-
tern.

The dispute has been settled by [10], where traces related
to mobile phone users are used. In this case, there is a
more direct correspondence between the recorded paths and
the user itself, because mobile phones are carried during the
everyday routine. The observed distribution of distances be-
tween users’ positions at consecutive calls are well described
by a truncated power law, corresponding to a truncated Lévy
flight.

The fact that human movements are associated with Lévy
flights is confirmed also by [19]. Here authors analyse GPS
traces related to different settings (college campuses, city,
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theme park, state fair) and in all cases the power law ten-
dency is detected. Very interesting also the observation
about the reason for the power law: it is not due to ge-
ographical constraints, but its generated by human inten-
tions, as already suggested in [1]. Along with the power law
tendency, authors of [19] also highlight the effect of a limited
area truncating the tail of the power law. This evidence in
favor of power law distributed distances travelled by human
is the starting point of our work.

In [17], the same authors propose a mobility model, called
SLAW (Self-similar Least Action Walk), that generates trun-
cated power law jump sizes. To the best of our knowledge,
SLAW is the only mobility model, together with the mod-
ified HCMM that we propose in this paper, that tries to
map realistic travelling patterns in addition to realistic inter-
contact times. But, unlike HCMM, SLAW does not include
any concept of socialization between nodes. This model in-
cludes also other aspects of real human mobility, such as
truncate power law inter-contact times and the fact that
people are attracted by popular locations.

3. HCMM
The Home Cell Mobility Model (HCMM) [3] merges two

fundamental aspects of human mobility: social and location
attraction. The main idea behind this model is that users
move towards other people with whom they share social re-
lations, or, even better, towards places where these people
are supposed to be. Nodes (representing users) move in an
m × n grid. They are organized into social communities,
and each community is initially assigned to one of the cells
of the grid. HCMM, as the name suggests, uses the concept
of home cell. Each user is supposed to belong to a main
social community (at any given point in time), and the user
home cell is the cell within which the members of its social
community preferentially move. Users sometimes also move
to other communities in different cells, due to social relations
with communities other than their main one.

In more detail, HCMM is inspired by the well known Cave-
man model [21], and works as follows. Given an initial num-
ber of communities C, each node is assigned to one of these
communities, until all communities have the same number of
members (referred to as n in the following of the paper). The
social relationships between nodes are represented through
a weighted graph. A link between two nodes x and y implies
that the two nodes are “friend” (i.e., share a social relation)
and the weight wxy of the link gives the strength of the
friendship. At the beginning, all the nodes belonging to the
same community are connected with a social link. Each of
these links is then uniformly rewired to the nodes of other
communities with a probability pr, called rewiring probabil-

ity. This is the method for creating external relationships,
i.e., relationships between nodes belonging to different com-
munities and thus to different home cells. The friendship
between nodes is then used to trigger nodes’ movements.
In HCMM the endpoint of a movement is called goal. The
selection of the goal for the next movement consist of two
phases: i) the selection of the next goal cell ii) the selection
of a random point inside that cell, iii) the selection of the
speed uniformly at random over [vmin, vmax]. Let us con-
sider the case of a node x roaming withing its home cell.
x will remain inside the home cell for the next movement
with a probability proportional to the social attraction of
the home cell. Otherwise x will move towards another cell
cj with a probability proportional to the social attraction

exerted by cell cj . The social attraction (SAci) exerted by
a generic cell ci is computed as the sum of the weights of
the social links between node x and all nodes that have ci

as their home cell:

SAci =
n
∑

y=1
y∈ci

wxy, ∀i = 1, · · · , C. (1)

This maps the idea of the home cells being a proxy for the
friend nodes of the same community. A generic cell ci is
then selected as next goal cell for node x with a probability
CAci equal to

CAci = SAci/
C
∑

j=1

SAcj . (2)

When x is located in an external cell, the selection of the
next goal is performed as follows. With a probability pe, x
remains in the external cell for the next movement, it goes
back to the home cell with probability 1 − pe. Once the
next goal cell is selected, one point inside that cell is chosen
uniformly at random, and the node starts to move towards
the goal. The whole process is summarized in Figure 1 using
a Markov Chain .

ONMLHIJKHi
CAci 00

CAc1
,,

CAcC−1

!!

ONMLHIJKc1 pe
oo

1−pell

...

ONMLHIJKcC−1

1−pe

aa

pe
oo

Figure 1: Markov chain for standard HCMM

Analyzing HCMM from the point of view of jump sizes,
we can identify two main kinds of movements: movements
within the same cell (or local) and movements from one cell
to another (or external). External movements are gener-
ally longer than local movements, because they are not con-
fined to a single cell. External movements are determined
by the number of external links: the more the social links to-
wards nodes belonging to different communities, the higher
the number of external movements, because nodes tend to
be more attracted outside the home cell. The number of
external links is determined by the rewiring process. This
process is uniform across different communities, because the
nodes towards which a link is rewired is selected uniformly
at random. In addition, having communities the same num-
ber of members, all the nodes start with the same number
of links, and these links have the same probability of being
rewired. These two considerations imply that, on average,
all the cells have the same probability of being selected as
goals for external movements. Therefore, in HCMM, there
is no preferential selection of short paths (closer cells) over
long paths (distant cells), and, as a consequence, no trun-
cated power law jump size can appear. This argument will
be formalized in Section 5 using an analytical model. How-
ever, this result is in contrast with what has been shown
in [10] about real mobility. Therefore, in the next Section,
we propose a modification to the standard HCMM to better
reflect real mobility. We anticipate that this modification
preserves the property of the original HCMM (shown in [3])
of producing truncated power law contact and inter-contact
times. For reasons of space, this is shown in [4].

4. MODIFIED HCMM
In the standard HCMM the problem is that, being the

rewiring process uniformly distributed between communi-
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ties, there is no preferential selection of short distances. In-
stead, in [10] it is clearly shown that people tend to travel
preferentially over short trips and this is at basis of the
characteristic distribution of jump sizes. Therefore, we have
modified the standard HCMM to include preferential selec-
tion of short distances.

After the completion of a trip within its home cell ci, a
node can perform either another trip within the home cell
(with probability proportional to the social attraction of the
home cell, that is computed as in standard HCMM) or a trip
towards an external cell with the complementary probabil-
ity. When an external trip is drawn, the external goal cell is
selected differently from the standard HCMM. In fact, each
cell cj is selected with a probability inversely proportional
to the power of the average distance dcicj between the home
cell of the node and the cell itself (Equation (3)). With
this modification to the original HCMM algorithm, short
distances are preferred over long ones. Note that, as in star-
dard HCMM, only cells for which the social attractivity is
greater than zero are selected. For what concerns the other
movement dynamics, they remain the same as in standard
HCMM.

CAcj =







(1 − CAci)
d−α

cicj
∑C−1

z=1 d
−α
cicz

if SAj > 0

0 otherwise
, j 6= i

(3)

5. MODELLING MOVEMENTS IN HCMM
In this Section we propose a model for the distribution of

jump sizes, P (d), that is applicable to both the standard and
the modified HCMM. The assumption of the model is that
the initial placement of communities on the grid is given and
no more than one community can be assigned to the same
cell. We consider a m×n grid scenario with C communities,
each having assigned n nodes. The rewiring probability is
denoted with pr and the probability of having two consecu-
tive trips within an external cell with pe.

In HCMM, for all external trips the home cell is either
the source or the destination of the movement. Therefore,
the possible distances travelled by each node depend on the
distance between their home cell and the other cells of teh
scenario. Given this fact, all nodes belonging to the same
home cell “see” the other cells at the same distance. Sepa-
rating the contributions Pi(d) of the different home cells, we
can write P (d) as

P (d) =
1

C

C
∑

i=1

Pi(d). (4)

Let us assume that the home cell of community i is cell ci.
All the formulas given hereafter refer to a tagged home cell
ci and are valid for all its nodes. In addition, as in HCMM
nodes cannot move towards empty cells, we simply discard
such cells from the model.

In HCMM, as in many grid-based mobility models, nodes
travel from one random point in a cell to another random
point in another cell. The distance between a random point
associated with ci and a random point within another cell cj

follows a distribution Pcicj (d) that can be computed exactly
but not in a closed form (see [4] for more details). When the
starting and destination points are within the same cell, the
distribution followed by the distance is the same as that of
a node moving according to the Random Waypoint mobility
model [15] and has already been computed in [2]. Being all
cells statistically equivalent, the distribution of the move-
ments within a cell is the same for all cells and equal to

Pint(d). The distributions for external and internal move-
ments taken together can describe exhaustively all the pos-
sible paths that a node can travel. We can then express the
distribution of movements of nodes belonging to community
ci as the composition of the distributions Pcicj (d) of exter-
nal movements (for any j 6= i) and the distribution Pint(d)
of the movement within the same cell. In HCMM, however,
not all paths are allowed: only cells to which friend nodes be-
long can be selected as the goal of a movement. In addition,
in the modified version of HCMM, short paths are preferred
over longer ones. Therefore we have to weight Pcicj (d) and
Pint(d) with the probabilities pij and pint of actually having
that component according to HCMM rules. Equation (5)
shows the formula for Pi(d).

Pi(d) =

C
∑

j=1
j 6=i

pij ∗ Pcicj (d) + pint ∗ Pint(d) (5)

In order to compute the probabilities pij , first we need
to compute the social attraction SA and the cell attraction
CA. Let us assume an unweighted social graph: if a link
between two nodes exists, then its weight is 1, otherwise
it is 0. Recall that the social attraction SAcj exerted by
a cell cj on a generic node x is given by the sum of the
weights of the social links between node x and the nodes
having cj as their home cells. These social links are the
result of the rewiring process. The rewiring process follows
a Binomial distribution with probability of success equal to
pr over a sequence of n − 1 experiments, corresponding to
the n − 1 links that a node initially has with nodes in the
same community. Each set of rewired links for a node x is
a realization of B(n − 1, p). Using directly this distribution
would further complicate the analysis. Therefore, for the
sake of tractability, in this paper we focus on the average
case. This choice introduces some approximations into the
obtained results. In particular, the smaller n, the greater the
error. The average number of external links of each node in
community ci is therefore

ne = (n − 1) ∗ pr. (6)

Conversely, on average each node will have n−ne links with
other nodes of the same community. As the rewiring process
is uniformly distributed among all communities, the number
of links between each node in ci and a generic community
cj is given by

n
cj
e = nc

e =
(n − 1) ∗ pr

C − 1
, (7)

where we dropped the index j because the formula does not
depend on the community j chosen. Please note that so
far there have been no differences between the standard and
the modified HCMM. If all weights are either 0 or 1, using
Equation (7) we can write the social attraction SA exerted
by a cell cj on a generic node x as

SAcj =

n
∑

y=1
y∈ci

wxy ∼ nc
e. (8)

Following the same line of reasoning, the social attraction of
the home cell ci, that is determined by the links with nodes
sharing the same home cell, can be written as

SAci ∼ n − ne. (9)

The cell attraction of cell cj is equal to SAcj /
∑C

z=1 SAcz

(Equation (2)). After substituting Equations (8) and (9) in
the formula, we obtain

CAcj =
nc

e

(C − 1)nc
e + (n − ne)

=
pr(n − 1)

n(C − 1)
. (10)
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Similarly, for the home cell the cell attraction is given by

CAci =
n − ne

(C − 1)nc
e + (n − ne)

=
n − pr(n − 1)

n
. (11)

We can now go on completing the analysis of Equation
(5). Let us firstly focus on external movements. i.e., on
pij . In Equation (5) pij gives the probability of a move-
ment from the home cell to another cell cj or vice versa. It
can be expressed in terms of the transition probabilities of
the Markov chain corresponding to the standard or modified
HCMM. In particular, we are interested in the probability
P (cj |ci) of selecting cj as the next goal cell given that the
node is currently in its home cell ci, and to the probability
P (ci|cj) of returning to the home cell ci given that the node
is currently in cj . These probabilities must be multiplied
by the probability P (ci) that a node is currently in its home
cell and the probability P (cj) that a node is currently in cell
cj , respectively:

pij = P (cj |ci) ∗ P (ci) + P (ci|cj) ∗ P (cj). (12)

For both standard and modified HCMM, P (ci|cj) = 1 − pe.
P (ci) and P (cj) corresponds to the steady state probabilities
for the standard and modified HCMM Markov chains, i.e.,

P (ci) =
1 − pe

(1 − pe) + (1 − P (ci|ci))
(13)

P (cj) =
P (cj |ci)

(1 − pe) + (1 − P (ci|ci))
. (14)

For both models P (ci|ci) = CAci . If we substitute Equation
(11) into this formula, we can rewrite Equations (13) and
(14) as

P (ci) =
1 − pe

(1 − pe) + (n−1)pr

n

(15)

P (cj) =
P (cj |ci)

(1 − pe) + (n−1)pr

n

. (16)

Now the only component missing is P (cj |ci). In stardard
HCMM P (cj |ci) is equal to the cell attraction of cj . By
simply plugging Equation (10), we obtain

Pstd(cj |ci) =
pr(n − 1)

n(C − 1)
. (17)

Equation (17) is of absolute importance for our analysis. It
says that Pstd(cj |ci) does not depend on the distance: i.e.,
in the average case, movements towards near cells are as
likely as movements towards distant cells. This is in contrast
with what has been shown about human mobility in [10]. It
confirms the argument given in 3 about the reason why we
decided to modify the original HCMM to include preferential
selection of distances.

In the case of modified HCMM, P (cj |ci) depends on the
average distance between cj and the home cell ci according
to the following equation:

Pmod(cj |ci) = (1 − CAi)
d−α

cicj
∑C−1

z=1 d−α
cicz

= ne

d−α
cicj

∑C−1
z=1 d−α

cicz

.

(18)

For the sake of readability, let us refer to
d−α

cicj
∑C−1

z=1 d
−α
cicz

as wα
cicj

.

By simple substitutions into Equation (12) we get the prob-
ability of having a movement between ci and cj :

pstd
ij =

2(n − 1) (1 − pe) pr

(C − 1) (n (1 − pe) + (n − 1)pr)
(19)

pmod
ij =

2(n − 1)n (1 − pe) prw
α
cicj

n (1 − pe) + (n − 1)pr

. (20)

Note again that pstd
ij does not depend on j (the target com-

munity), while pmod
ij does. With regard to Equation (5), now

that we have computed pij , only pint is left. The procedure
is similar to what we have described above. The probability
pint of having a movement inside a cell is equal to the prob-
ability that the next movement will be within the home cell
ci given that the node is currently in ci, plus the probabil-
ity that the next movement will be within cj given that the
node is currently in cj (Equation (21)).

pint = P (ci|ci) ∗ P (ci) +

C−1
∑

i=1

P (cj |cj) ∗ P (cj) (21)

P (ci) and P (cj) are given by Equations (15) - (16). P (ci|ci)
and P (cj |cj) are the same for standard and modified HCMM

and equal to P (ci|ci) = CAi ∼ n−pr(n−1)
n

and P (cj |cj) = pe.
After some substitutions we get

pint =
n − pr(n − 1)

n
∗ 1 − pe

(1 − pe) + (n−1)pr

n

+

+

C−1
∑

i=1

pe ∗
P (cj |ci)

(1 − pe) + (n−1)pr

n

. (22)

Being P (cj |ci) different for the standard and modified HCMM,
we can rewrite pint as

pstd
int = −1 + 2pe +

2n (1 − pe)
2

n(1 − pe) + (n − 1)pr

(23)

pmod
int =

(1 − pe) (−n + (n − 1)pr)

n (1 + pe) + (−1 + n)pr

+

+

C−1
∑

i=1

(n − 1)peprw
α
cicj

1 − pe + (n−1)pr

n

. (24)

Finally we can compute the expression for P (di) for stan-
dard HCMM, as

Pstd(di) =
C
∑

j=1
j 6=i

2(n − 1) (1 − pe) pr

(C − 1) (n (1 − pe) + (n − 1)pr)
∗ Pcicj

(d) +

+ −1 + 2pe +
2n (1 − pe) 2

n(1 − pe) + (n − 1)pr

∗ Pint(d) (25)

and for modified HCMM as

Pmod(di) =

C
∑

j=1
j 6=i

2(n − 1)n (1 − pe) prwα
cicj

n (1 − pe) + (n − 1)pr

∗ Pcicj
(d) +

+

(

(1 − pe) (−n + (n − 1)pr)

n (1 + pe) + (−1 + n)pr

+

+

C−1
∑

i=1

(n − 1)peprwα
cicj

1 − pe +
(n−1)pr

n

)

∗ Pint(d). (26)

For Pint(d) the formula given in [2] can be used, assuming
that each cell has size a × b:

Pint(d) =
4l

a2b2
∗







































π
2 ab − ad − bd + 1

2 d2 for 0 ≤ d ≤ b

ab arcsin b
d

+ a ∗
√

d2 − b2+
− 1

2 b2 − al for b ≤ d ≤ a

ab arcsin b
d

+ a ∗
√

d2 − b2+
− 1

2 b2 − ab arccos a
d
+

+b
√

d2 − a2 − 1
2 a2 − 1

2 d2 for a ≤ d ≤
√

a2 + b2

0 otherwise.
(27)

Instead, there is no closed form for Pcicj (d) for generic ci

and cj . This implies that also for Pi(d) only numerical so-
lutions are available.

5.1 Model validation
In this Section we compare the distribution given by Equa-

tions (25) - (26) with the empirical distributions obtained
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through simulation. We consider a 10 × 10 grid on which 4
communities are placed, each having 50 nodes. We set the
rewiring probability to 0.1, vmin and vmax to 9 and 10, re-
spectively, and we let the simulation run for 500000 seconds
to ensure stationarity. As the model requires as input the
initial positions of communities, let us consider the scenario
in which communities are placed, respectively, in positions
(10, 1), (7, 4),(3, 4), and (1, 10) on a 10 × 10 grid.

First we focus on standard HCMM. Analytical and sim-
ulative results are shown in Figure 2, where the empirical
probability distribution is obtained using the Kernel den-
sity estimation method. The two densities, analytical and
simulative, are very close to each other, thus showing that
the analytical model is accurate. Note also that the first
bell-shaped curve is associated with the shortest path that
a node can travel, i.e., to local movements within a cell.
In this case, local movements are statistically predominant
across all movements of a node. The other bell curves are
due to external movements. As only cells where friend com-
munities are placed can be visited by a given node, not all
possible travel distances on a m × n grid are represented
in the plot, but just those at which a friend community is
placed. Note also that all bell-shaped curves, apart from the
bigger one, are at about the same height. Again, this con-
firms the fact that the standard HCMM has no mechanism
for prioritizing the choice of the distances.
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Figure 2: Simulation vs analysis - Standard HCMM

Figure 3 shows also analytical against simulative results
for the modified HCMM. Again, the two curves overlap al-
most perfectly. Note that in this case, long distances are
rarely selected and short ones are preferred.
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Figure 3: Simulation vs analysis - Modified HCMM

6. MOBILITY PATTERN EVALUATION
In Section 4 we have extended the HCMM protocol to

account for realistic travelling patterns. In this Section we
evaluate the proposed model through simulation. In partic-
ular, we are interested in evaluating if prioritizing the dis-
tances chosen by the nodes is enough for obtaining that the
jump size follows a truncated power law distribution. Let us
first highlight a general property of HCMM (as well as any
other models over finite physical spaces). In HCMM exter-
nal movements are bounded by the size of the scenario, while
local movements are bounded by the size of the cells. In ad-
dition, in HCMM nodes are bounded to move where other
friend nodes are (or are suppose to be). This implies that
not all cells, but only the ones where friend nodes are, can
be selected. This choice is actually a sort of sub-sampling:
not all the distances can be chosen, on the contrary, their
set heavily depends on the social configuration of the mo-
bility model. In the remaining of the Section we show how
a power law behaviour emerges, or not, depending on the
configuration of the mobility model. In particular, there is
a power law behaviour when the density of the scenario,
both in terms of communities and external social links, are
sufficient to explore “enough” distances.

Our reference scenario is a 1000×1000 m2 square, divided
into a 10 × 10 grid. The number of groups, the number of
nodes, and the rewiring probability are varied in each set of
simulations. The exponent α that we use for Equation (3) is
3. The same results hold true for different values of α. We
analyse the probability density function (PDF) and the com-
plementary cumulative distribution function (CCDF) for the
distances measured when the mobility model is in its steady
state, and aggregated over all nodes.

6.1 Everybody is a friend
We start with a dense scenario, where all cells have a com-

munity assigned to them. These 100 communities have 10
nodes each. In addition each node is friend of all commu-
nities (we force the rewiring process to guarantee such con-
dition). In this case, there is no subsampling effects on the
characteristics distances: i) all cell combinations are possi-
ble (i.e., every characteristic distance is represented) ii) each
node has a non-zero probability of visiting all the cells of the
grid. In Figure 4, the continuos black line shows the empir-
ical CCDF of the jump size obtained, the others are the
Maximum Likelihood Estimantion fitting for the exponen-
tial, power law and power law with exponential cut-off case.
The first part of the CCDF is very accurately fitted with
the power law (with or without cut-off) distribution. On
the tail, the CDF dicreases very rapidly and it is delimited
by the tail of the power law with cut-off and the exponen-
tial distribution. We can conjecture that, in its final part,
the jump size distribution has an exponential decay. Analo-
gously to what found in [7], this behaviour can be due to the
bounded domain over which the simulation is performed. No
distance can be present that goes beyond the boundaries of
the scenario (here 100

√
2) and this is a good explanation for

the rapid decay of the tail. This results are also consistent
with [10], where a power law with an exponential decay was
suggested as a very good approximation of human travelling
patterns.

Now we evaluate the effect of removing some groups from
the grid. In this case, some distances related to unoccupied
cells are not selected. Therefore, the power law selection of
the modified HCMM model will consider only a subset of
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Figure 4: MLE fitting - 100 communities

all the possible distances, thus creating what we have called
subsampling effect. And this effect indeed appears in Figure
6, where we can see the evolution from a straight line plus
cut-off to a non-straight, bumpy curve. The bumps are due
to the distances that are not present, and therefore create
suddent, short jumps on the distribution. The absence of
some distances is more evident in the probability density
function Figure 5. While with many groups, there is a con-
stantly descreasing curve that is the result of the mixture
in Equation (4), with few groups we can clearly distinguish
the single bell-shaped curves corresponding to the available
distances.
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Figure 5: Kernel density estimate with varying num-
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6.2 Reduced number of friends
In the previous set of simulations, each node had as many

friends as the number of available groups. By reducing the
number of occupied cells, we have reduced the set of possible
distances a node can travel. This results in the presence
of bumps in the CCDF of jump sizes. In the next set of
simulations we reduce the average number of external friends
that a node can have by setting the rewiring probability
to 0.1. In this case, there is a further subsampling on the
possible set of distances travelled by the users: not all the
cells in which there is a group can be selected, but only those
in which the node has at least one friend.

Having a look at the PDF of jump sizes in Figure 7, we
can see that even in the case of 100 communities, the single
humps are clearly visible. Each hump corresponds to the
bell-shaped curve associated with a characteristic distance
for which there is at least one friend.
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Figure 7: Kernel density estimate of jump size with

rewiring 0.1

The CCDF of the jump size (Figure 8) is obviously af-
fected by the subsampling as well. The straight lines in the
head of the distributions are not visible anymore, neither
with many or few groups, and bumps are present. We can
conclude that, when the rewiring is low, i.e., when the num-
ber of external links is low and there are only few external
cells towards which a node can move, the bounded domain
predominates over the power law behaviour.

A reduction in the set of characteristic distances can be
obtained also by fixing the number of groups and varying the
rewiring parameter. When the number of groups is equal to
the number of cells, variations in the value of the rewiring pa-
rameter directly control the subsampling that is performed.
This is shown in Figure 9, where we go from a non power
law behaviour with low rewiring (high subsampling) to clear
power law heads with rewiring 0.9.

We have seen that the distribution of jump sizes heavily
depends on the number of external friends of nodes. While
the rewiring parameter constitutes an fundamental knob to
control such a number, it is not the only factor. In fact, the
rewiring probability says that x percent of the existing links
will be rewired. In the presence of low density groups (few
members per group), the number of available links between
the nodes of the same community are low, and so will be
the number of links rewired . The more the nodes, the less
the subsampling, the clearer the power law behaviour: this
effect is clearly shown in Figure 10.

Concluding, in this Section we have shown the plugging
a preferential selection of distances in the mobility models
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Figure 9: CCDF of jump size with varying rewiring

is a good method for obtaining jump sizes that follows a
truncated power law. However, this is true only when the
scenario is dense enough, in terms of both external links and
number of communities. Otherwise, the subsampling effect
due to the bounded domain distorts the power law shape
giving way to bumpy curves that are no more power laws.

7. CONCLUSIONS AND FURTHERWORK
In this paper we have extended an existing social-aware

mobility model to include realistic jump sizes. We have eval-
uated the generated distance distribution of the proposed
model, showing that, under some conditions on the mobility
setting, it is able to reproduce the realistic distribution of
distances. In addition, we have proposed a model for the
distance distribution, that we have validated against simu-
lative results.

Still there are some open research directions. We plan
to explore other ways for generating power law distributed
jump size, e.g., using a non uniform rewiring process. In ad-
dition, the application of the proposed mathematical model
to mobility models other than HCMM or the use of this
model for computing other properties of grid-framed mobil-
ity seem a very promising research direction.
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