
ContentPlace: Social-aware Data Dissemination in
Opportunistic Networks

∗

Chiara Boldrini
IIT-CNR

Via G. Moruzzi 1
56124, Pisa, Italy

chiara.boldrini@iit.cnr.it

Marco Conti
IIT-CNR

Via G. Moruzzi 1
56124, Pisa, Italy

marco.conti@iit.cnr.it

Andrea Passarella
IIT-CNR

Via G. Moruzzi 1
56124, Pisa, Italy

andrea.passarella@iit.cnr.it

ABSTRACT

This paper deals with data dissemination in resource−con-
strained opportunistic networks, i.e., multi-hop ad hoc net-
works in which simultaneous paths between endpoints are
not available, in general, for end-to-end communication. One
of the main challenges is to make content available in those
regions of the network where interested users are present,
without overusing available resources (e.g., by avoiding flood-
ing). These regions should be identified dynamically, only
by exploiting local information exchanged by nodes upon
encountering other peers. To this end, exploiting informa-
tion about social users’ behaviour turns out to be very effi-
cient. In this paper we propose and evaluate ContentPlace,
a system that exploits dynamically learnt information about
users’ social relationships to decide where to place data ob-
jects in order to optimise content availability. We define a
number of social-oriented policies in the general Content-
Place framework, and compare them also with other refer-
ence policies proposed in the literature.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols

General Terms

Algorithms, Design, Performance

Keywords

opportunistic networks, data dissemination, social-oriented
networking, performance evaluation

1. INTRODUCTION
Opportunistic networks [14] are a very promising network-

ing scenario originated from the legacy MANET paradigm.

∗This work was partially funded by the European Com-
mission under the HAGGLE (027918) and SOCIALNETS
(217141) FET Projects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’08, October 27–31, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-235-1/08/10 ...$5.00.

As in MANETs, in opportunistic networks nodes build a
self-organising ad hoc network without requiring any pre-
existing infrastructure. However, unlike MANETs, oppor-
tunistic networks do not assume that the topology of the
network is stable enough to provide an Internet-like routing
substrate and enables communications even in presence of
prolonged partitions and disconnections. To this end, mo-
bility is seen as a resource to bridge disconnections, rather
than a problem to deal with. According to the store-carry-
and-forward paradigm, nodes opportunistically exploit any
contact 1 with other peers to exchange messages, if the peer
is deemed a good candidate to bring the message closer to
the appropriate destination(s).

In opportunistic networks data-centric approaches are very
promising. Users interested in data objects (files, clips, ad-
vertisements, news, . . .) might be completely unaware of
other users that generate the content they wish to get, and,
vice versa, users generating content might ignore who is in-
terested in their data. The network might be so unstable
that content producers and consumers might never be con-
nected together. Therefore, it is important to disseminate
content in the network so as to reach possibly interested
users. This should be achieved by network protocols them-
selves, as applications might be unable to identify such users
as in the case of the conventional Internet. At the same time,
as opportunistic networks work on resource constrained mo-
bile devices, the content dissemination process should be
aware of resource consumption. These requirements call for
distributed, resource-aware content dissemination systems.

In the area of opportunistic networks, knowledge about
the social behaviour of users is proving to be an extremely
valuable piece of information to design efficient and resource-
saving networking systems (see, e.g., HiBOp [5] for a routing
solution, and the work in [20] for a social-oriented pub/sub
system). As users are mobile, and carry devices with them,
users’ social behaviour is a valid indicator of users’ mobil-
ity patterns and is thus an important context information
to predict future contacts between users. In this paper, we
apply this general idea to the content dissemination prob-
lem, by designing and evaluating social-oriented dissemina-
tion policies within the ContentPlace framework.

In ContentPlace, each user advertises the data objects
they are interested in upon making contact with other nodes.
Also, they exchange short summaries of the data objects
they are currently carrying with. This local information is
exploited to implement a totally decentralized decision pro-

1In opportunistic networks, contact means direct one-hop
communication between a couple of nodes.

cess about which data objects should be cached (see Sec-
tion 3 for more details). Basically, a node assigns to each
data object a utility value, computed according to the needs
of the social communities the node is in touch with (different
solutions are proposed in Section 4). If the utility is high
enough, the data object is fetched. In Section 5 we compare
the proposed social-oriented policies against each others, and
against well-known non-social policies. Our main results can
be summarised as follows. In general, social-oriented poli-
cies do provide significant benefits over non-social policies.
In addition, the social-oriented policies that perform best
are the ones that learn and exploit the nodes’ social roles in
the network.

2. RELATED WORK
Content dissemination systems have been proposed with

regard to legacy Internet networks [1], and also with respect
to conventional MANETs [18, 6]. In general, these systems
assume that network paths are rather stable, and in some
cases generate a significant amount of traffic to maintain
knowledge of other nodes’ caches. Therefore, they are not
suitable to opportunistic networks.

With regard to opportunistic networks, content dissem-
ination has been the subject of a few recent papers. To
the best of our knowledge, the closest approaches to Con-
tentPlace have been designed within the PodNet [13] and
Haggle [20] projects. As described in detail in Section 5,
we use an application and evaluation scenario similar to
that defined for PodNet: users advertise the data objects
they are interested into, and, when two nodes meet, they
decide which data object to exchange based on the informa-
tion gathered about users’ interests. While the work in [13]
proposes and compares simple heuristics for data object ex-
changes, ContentPlace elaborates a more complete social-
oriented framework. We actually compare ContentPlace
with the best heuristics identified in [13], showing the advan-
tage of the social-aware dimension. The work in [20] identi-
fies social communities, and“hubs”within communities (i.e.,
nodes with the highest number of social links inside the com-
munity). An overlay network is then built between hubs,
that act as the broker overlay of a standard pub/sub topic-
based system. ContentPlace assumes the same community-
detection mechanisms of [20] but does not rely on any over-
lay infrastructure, which, in opportunistic networks, might
be costly to maintain and rather unstable. Note that sim-
ilar remarks hold also with respect to solutions for delay-
tolerant networks based on strong predictability of the fu-
ture topological structure, such as the multicasting approach
proposed in [21].

ContentPlace takes inspiration from the vast literature on
utility-based Web caching [1], which has been also applied
to both MANETs and WLANs (e.g., [19, 15]). Utility-based
routing for opportunistic networks has been proposed in [2].
ContentPlace inherits the general framework of this body
of work, as the ContentPlace utility function is an instance
of the general form proposed in the literature. The closest
work in this area is [2], which however is focused on unicast
routing, and thus addresses a different problem. Another
novelty of ContentPlace is the fact that its utility function is
defined based on the social behaviour of the users. Utility-
based content replication systems have been recently pro-
posed for wired networks [7, 11]. However, these solutions
relies on Internet overlays, and are not directly applicable
to opportunistic networks.

This paper follows up a preliminary design and evaluation
of ContentPlace that we have presented in [4]. While [4]
focuses on the definition of the formal ContentPlace utility-
based framework, and provides an initial evaluation in a sim-
plified scenario, in this paper we explore much more in detail
the social -oriented aspects of ContentPlace (Section 4). Fur-
thermore, the performance evaluation part of this paper is
totally devoted to analyse these fundamental aspects of Con-
tentPlace, by taking into account more complex users social
behaviours. This further differentiates this paper from [4].

3. CONTENTPLACE GENERAL DESIGN
This section provides necessary background information

required to present the main contribution of this paper by
recalling the target application scenario and the main design
features of the ContentPlace system.

3.1 Application scenario
The application scenario we target is similar to the one

used in PodNet [13], named “podcasting for ad hoc net-
works”. As in the typical opportunistic networking paradigm,
we consider a number of mobile users whose devices can-
not be encompassed by a conventional MANET. Instead,
communication is achieved by opportunistically exploiting
pair-wise contacts between users to exchange messages, and
bringing them towards eventual destinations. Sporadic con-
tacts of users with point of access to the Internet (e.g., WiFi
hotspots) are possible although not necessary. In podcasting
applications, data objects (e.g., MP3 files, advertisements,
software updates, . . .) are organised in different channels

to which users can subscribe. We assume that the chan-
nel(s) of a data object is decided by the source of the object
at the generation time. Data objects might be generated
from within the Internet, and “enter” the opportunistic net-
work upon sporadic contacts of users with Internet Access
Points. Or, data objects may be generated dynamically by
the users of the opportunistic network according to the Web
2.0 model (e.g., users may wish to share pictures taken with
their mobile phones). ContentPlace is responsible for the
two main tasks of content dissemination, i.e., i) managing
subscriptions to channels, and ii) bringing data objects to
subscribed users (content distribution).

3.2 ContentPlace framework
At the high level, the rationale of ContentPlace is as fol-

lows. Since stable network structures cannot be assumed,
ContentPlace only exploits direct interactions between nodes
(contacts) to gather information about the users’ subscrip-
tions and current data objects availability. Each node uses
this knowledge to decide which data objects “seen” on other
nodes should be locally replicated, according to a replica-

tion policy. The main challenge of ContentPlace is defining
a local replication policy (i.e., a policy that does not require
precise information about the global state of the network)
that achieves a global performance target (such as, for ex-
ample, maximising the hit rate, the per-user fairness, the
network efficiency).

More in detail, ContentPlace subscription management
works as follows. Nodes just advertise the set of channels
the local user is subscribed to upon encountering another
node. As will be clear in the following, no per-node state
is necessary, and thus unsubscription messages are not re-
quired. As far as content distribution is concerned, the core
of ContentPlace is the definition of the replication policy,

which can be summarised as follows. ContentPlace defines
a utility function by means of which each node can associate
a utility value to any data object. When a node encounters
a peer, it computes the utility values of all the data objects
stored in the local and in the peer’s cache2. Then, it selects
the set of data objects that maximises the local utility of its
cache, without violating the considered resource constraints
(e.g., max cache size, available bandwidth, available energy,
. . .). The node fetches the selected objects that are in the
peer’s cache, and discards the locally stored objects that are
not in the selected set anymore. Finally, a user receives a
data object it is subscribed to when it is found in an encoun-
tered node’s cache. As discussed in more detail in [4], the
set of objects to store in the local cache upon each contact
can be found by solving the following multi-constrained 0-1
knapsack problem:







max
∑

k
Ukxk

s.t.
∑

k
cjkxk ≤ 1 j = 1, . . . , m

xk ∈ {0, 1} ∀k
, (1)

where k denotes the k-th object that the node can select,
Uk its utility, cjk the percentage consumption of resource j
related to fetching and storing object k, m the number of
considered resources, and xk the problem’s variables. When
the number of managed resource (m) is not big (which is
quite reasonable), solving such problems is very fast from a
computational standpoint [12]. Such a solution is therefore
suitable to be implemented in resource constrained mobile
devices.

It is clear that the core of the content distribution mech-
anism is the definition of the utility function. In the follow-
ing sections, we discuss how information about the social
behaviour of users can be leveraged to this end.

3.2.1 Utility function
To have a suitable representation of the users’ social be-

haviour, we take inspiration from the caveman model pro-
posed by Watts [17], which is a reference point in the field
of social behaviour modelling. We assume that users can
be grouped in communities. Users belonging to the same
community have strong social relationships with each other.
In general, users can belong to more than one community
(a working community, a family community, etc.), each of
which is a “home” community for that user. Users can
also have relationships outside their home communities (“ac-
quainted”communities). We assume that people movements
are governed by their social relationships, and by the fact
that communities are also bound to particular places (i.e.,
the community of office colleagues is bound to the office lo-
cation). Therefore, users will spend their time in the places
their home communities are bound to, and will also visit
places of acquainted communities.

Different communities will have, in general, different in-
terests. Therefore, the utility of the same data object will be
different for different communities. Based on this remark,
the utility of a data object computed by a node is made up
of one component for each community its user has relation-
ships with, be it either a home or an acquainted community.
Formally, the utility function is defined as follows3 :

2Hereafter, we use the term cache to denote a memory buffer
that a node contributes to the ContentPlace system.
3For easy of reading, with respect to Equation 1 we drop
here the k index, as this does not impact the clarity of the
discussion.

U = ωlul +
∑

i6=l

ωiui =
∑

i

ωiui , (2)

where ui is the i-th component and ωi measures the so-
cial strength of the relationship between the user and the
i-th community. Finally, in Equation 2 we stretch a bit the
concept of community, and represent the local user just as
another community the user is in touch with (i.e., the utility
for the local user is represented by ul). Note that the defini-
tion of the weights ωi defines the social-oriented behaviour
of ContentPlace. As the main focus of this paper is on this
aspect, we now briefly describe the definition of the utility
components, and discuss in detail the definition of weights
in Section 4.

3.2.2 Utility components
ContentPlace uses the same definition for all utility com-

ponents. In this paper we consider a simplified version of
the general function defined by ContentPlace, and we also
assume that i) the cache space is the only considered re-
source, and ii) data objects never expire. See [4] and the
associated report for the discussion of more general cases.
Inspired by the Web-caching literature [1], the utility of a
data object for a community is the product of the object’s
access probability from the community members (pac) by
its cost c, divided by the object’s size. The cost is mea-
sured as a monotonically decreasing function of the object’s
availability in the community (denoted as pav), as the more
the object is spread, the less it is costly to find it, the less
the utility of further replicating it. Dividing by the object’s
size is also common in the Web-caching literature, as it also
allows very simple approximations of the multi-constrained
knapsack problem defined by Equation 1. Specifically, we
use the following definition:

u =
pac · fc(pav)

s
=

pac · e
−λpav

s
, (3)

In Equation 3 we use an exponential function as cost func-
tion, which achieves a fairer behaviour with respect to a
(more intuitive) linear decay, as shown in [4].

4. CONTENTPLACE SOCIAL DESIGN
The use of the social weights in Equation 2 permits full

flexibility in the ContentPlace design. Specifically, it allows
us to define and compare different social-oriented policies,
as well as, in the limiting case, non-social policies such as a
greedy behaviour. Although clearly not exhaustive, the set
of social-oriented policies we compare covers a fairly large
spectrum of possible (reasonable) definitions. Overall, the
global goal we wish to achieve is to optimise the hit rate
for all users in all communities. Different policies clearly
give different importance to the utility components. The
comparison we carry out shows which are the components
that provide the best behaviour with respect to the desired
global target.

4.1 Policies definition
We consider the following policies:

Most Frequently Visited (MFV) Each community is giv-
en a weight proportional to the time spent by the user
in that community. Specifically, if ti is the time spent
by the user in the i-th community since the system
start-up, then wi is equal to ti/

∑

i
ti. With this pol-

icy, dissemination decisions of a user favour the com-
munities the user is more likely to get in touch with.

Most Likely Next (MLN) The weight of the i-th com-
munity is equal to the probability of visiting the i-th

community, conditioned to the fact that the user is in
the current community. Hereafter, this probability is
referred to as P (ci|CC), where C denotes the current
community. The weight of the current community is
set to 0. With this strategy, users favour the commu-
nities they will be visiting next, but do not contribute
to data dissemination within their current community.

Future (F) As in MLN, the weight of the current com-
munity is set to 0. However, the weight of all other
communities is set as in MFV, i.e., is proportional to
the average time spent by the node in that community.
With respect to MLN, with F we consider not only the
most likely community for the next visit, but all the
communities the user is in touch with.

Present (P) The weight of the current community is set to
1, and the weights of all other communities are set to 0.
With this strategy, users always behave as members of
the community they are currently in, and do not favour
any other community.

Uniform Social (US) All the communities the user gets
in touch with are given equal weight. Therefore, wi is
equal to 1 for the home and the acquainted communi-
ties.

Clearly, it would be possible to consider a number of addi-
tional strategies, by modifying the definition of the weights.
The strategies we have selected are representative of several
reference behaviours. In the US policy all communities a
user is in touch with are given the same importance. In
MFV the importance of a community is proportional to the
time spent by the user in the community. P and MLN can
be seen as opposite extreme customisations of MFV. In P
only the current community is given importance. This is a
MFV customisation which looks exclusively at the current
“role” of the user, as a member of the current community,
without any “look-ahead” behaviour. In MLN the current
community is not given any importance, and only future
communities are considered. MLN is thus a customisation
of MFV with an extreme “look-akead” behaviour. Finally, F
is an intermediate policy between MFV and MLN. It keeps
the“look-ahead”behaviour of MLN, because it does not con-
sider the current community. However, as in MLN, it con-
siders all the other communities the user is in touch with,
and not only the most likely one for the next visit.

Finally, for comparison purposes, we consider two non-
social policies as well, and specifically a greedy and a uniform
policy. In the greedy policy all weights but the one of the
local user are set to 0. In the uniform policy all the weights
are equal. As a minor, but important, remark, note that
in this case a lot of data objects ends up having the same
utility. In this case, a node breaks ties by choosing data
objects according to a uniform distribution.

4.2 Social parameter estimation
The ContentPlace social-oriented policies require online,

dynamic estimation of the utility components’ parameters,
as well as an estimation of the parameters required to com-
pute the components’ weights. In this section we describe
how this can be achieved by avoiding any form of (con-
trolled) flooding, such as that implemented by Epidemic
Routing [16], which easily saturate networking resources [10].
Clearly, this choice calls for a trade-off between estimation
accuracy and network overhead.

A necessary pre-requisite to estimate the parameters is to
detect the communities in the network, and to enable nodes

to understand in which community they are currently roam-
ing. Fortunately, there are promising results about auto-
nomic community detection in opportunistic networks Con-
tentPlace can rely on, such as [8, 9]. These mechanisms allow
nodes of an opportunistic network to i) be aware of the com-
munities they belong to and have acquaintance with, and ii)
be aware of the community in which they are currently in
at any given point in time. We assume that one of these
mechanisms is in operation.

4.2.1 Estimation of the social weights
The communities’ weights defined in Section 4 can be eas-

ily computed thanks to the community detection features
and, in some cases, by measuring the time spent by nodes
in the different communities, and monitoring transitions be-
tween communities. Specifically, the strategies P, US and
MLN just require community detection. This trivially holds
true for P and US. MLN requires an estimate of the condi-
tional probability of moving to future communities, starting
from a given current community, i.e., P (ci|CC) where CC is
the current community. This is equivalent to estimating the
transition probabilities of a Markov process whose states are
the different communities the user can visit. These probabil-
ities can be estimated on line, by monitoring the transitions
between communities during the user’s movements. Finally,
MFV and F can be implemented by measuring the time
spent by the user in each community. In MFV, the weight
ωi is equal to ti/

∑

i
ti, where ti is the time spent by the user

in community i. In F, the weights are defined as in MFV,
unless for the weight of the current community, which is set
to 0.

4.2.2 Estimation of the utility parameters

Gathering context information to compute utility compo-
nents requires some more steps. According to Equations 2
and 3 to compute utility components for a given data object
a node requires the size of the object (s), and estimates of
the access probability (pac) and the availability of that ob-
ject (pav) in all the individual communities. Theoretically,
to achieve the maximum precision of parameter estimation,
nodes should advertise all information for all data objects
they become aware of, and for all communities they happen
to visit. Clearly, this would result in a very detailed compu-
tation of utility values, but in a huge networking overhead.
Instead, we chose to exploit nodes’ movements to save on
network overhead, which is one of the basic principles of op-
portunistic networks. Basically, when two nodes meet they
exchange a summary of data objects in their caches. From
these snapshots, each node is able to compute, for each ob-
ject, a fresh sample of the local availability p̂av,l, as the
fraction of time during which the object has been seen on
neighbours caches. This newly computed value is then used
to update pav,l according to a standard smoothed average
pav,l ← αpav,l + (1 − α)p̂av,l. For what concerns pac,l, we
assume that pac,l is equal to 1 for those objects the user is
interested into, and equal to 0 for the others.4.

The estimation of the utility parameters for a generic com-
munity i, different from the local one, steams from the fact

4A more precise estimation of the access probability of the
local user to a data object would require a refined model
of the user behaviour as far as data access is concerned.
However, this is an orthogonal problem with respect to the
ContentPlace algorithms, and therefore we choose this sim-
plified representation of users’ access pattern.

that,in ContentPlace, together with the summary vector de-
scribing its cache, each node also advertises the set of data
objects its local user is interested into, and an estimate of the
availability of the object for its local user, i.e., pav,l. Then,
every time period T , each node compute a fresh sample for
pac,i and pav,i as the arithmetic mean of the values adver-
tised by the neighbours during T . Then these values are
used to update pac,i and pav,i, using the standard smoothed
average as seen above. For a more detailed explanation see
[4].

Finally, note that the size s of a data object (for which a
utility value is required) is easily derived from the summary
vectors advertised by the neighbours.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the social-

oriented policies described in Section 4. To this aim, we de-
veloped a custom simulator that is extended from the one in
[5] and uses the same assumptions for lower communication
layers. As we discuss in the following, the simulation sce-
nario we consider has been chosen as it is able to highlight
general features of the social-oriented policies. Note that
in [4] we have already presented results showing the impact
of system parameters such as the cache size and the num-
ber of nodes, which are not evaluated here. The main focus
of this analysis is to understand the impact of the different
social-oriented policies. We also include in the comparison
the two non-social policies, i.e., the greedy and the uniform
policies. Uniform has been identified as the best heuristic
(from a number of standpoints) in [13]. Furthermore, greedy
and uniform have shown to achieve boundary performance
result in [4]. Specifically, uniform is the best possible policy
in terms of fairness, while greedy the best in terms of hit
rate, in a scenario with a single homogeneous community.

We hereafter describe the default scenario for our simu-
lations. The default scenario is composed of 45 nodes, di-
vided into 3 communities, moving according to the HCMM
model [3] in a 4x4 grid (1000m wide). HCMM is a mo-
bility model inspired by the Watt’s caveman model, that
has shown to reproduce statistical figures of real user move-
ment patterns, such as inter-contact times and contact du-
ration [3]. In HCMM, each group represent a social com-
munity, and nodes within the same group have social rela-
tionships among themselves. Also nodes belonging to dif-
ferent communities can have social relations: according to
the rewiring probability (pr), each link towards a friend is
rewired to a node belonging to a different community. So-
cial links in HCMM are used to drive movements: each node
moves towards a given community with a probability propor-
tional to the number of links he has towards the community.
Thus, the rewiring parameter allows us to control the degree
of interactions between nodes of different communities. In
our simulations, each group is initially assigned to a cell (its
home-cell) avoiding that two groups are physically adjacent
(no edge contacts between groups) or in the same cell. This
allows to eliminate physical shortcuts between groups, which
would bias the evaluation of the ability of policies to bring
data objects from one community to the others. Therefore,
nodes can exchange data only due to social mobility of nodes
and not due to random colocation. The rest of HCMM pa-
rameters are as in Table 1. We consider as many channels
as the number of groups (ngr). Each group is the source for
1/ngr of the objects belonging to each channel, i.e., 1/ngr-th

Node Speed uniform in [1,1.86] m/s
Transmission Range 20m

Sampling period 5s
Cost function parameter (λ) 15

Smoothed average parameter (α) 0.9

Table 1: Configuration Parameters

of the objects of each channel are generated (at the begin-
ning of the simulation) in each group. Note that a data
object is always available from the node that generated it.
To not interfere with the data dissemination performance
figures, nodes generating data objects make them available
through a separate buffer with respect to the cache. There-
fore, for any node, the only way to obtain objects not gen-
erated in the local group is to get in touch directly (i.e., the
node itself moves in a different group) or indirectly (i.e., one
of the nodes of the local community goes out and then comes
back, with the desired message in its cache) with an external
community. To have an integer number of objects generated
in each group, we consider 99 data objects per channel. Each
node can subscribe just to one channel. When not otherwise
stated, nodes’ interests are distributed according to a Zipf’s
law (with parameter 1) within each group. Unless otherwise
stated, we consider 3 channels. The popularity of channels
is rotated in each group, such that each channel is the most
popular in one group, the second-most popular in another
group, and the least popular in the last group. Cache space
on a node can accommodate exactly all messages belonging
to an individual channel. An analysis with varying cache
sizes has been presented in [4]. The cache size we choose is
a good trade off between seeing the impact of dissemination
policies, and avoiding data object disappearance due to low
utility on too many caches.

Nodes’ requests for messages follow a Poisson process with
parameter λ = 200 (on average 3 requests every 10 minutes
for each node). Nodes can request data only for the channel
they subscribe. Within the channel, the data object they
request is select according to a uniform distribution. Re-
quests are valid until the simulation ends. As we show in
the following, the delay distribution highlights that our sim-
ulation length is long enough to reasonably approximate an
infinite requests validity timeout. As requests are buffered at
issuing node only, and do not occupy cache space, having in-
finite validity does not impact on the system’s performance.
Instead, it allows us to derive a complete analysis of the
system’s performance for increasing validity timeouts.

All policies are evaluated in terms of the quality of service
(QoS) perceived by the users and the resource consump-
tion. The QoS is measured in terms of hit rate, latency,
system utility and fairness level. The hit rate is given by
the number of successful requests divided by the number
of overall requests. Note that, unless otherwise stated, we
show hit rate related to infinite timeout values. As not all
policies reach 100% hit rate even in this case, this index
allows us to show the fraction of requests that cannot be
served by the policies. We then separately investigate the
hit rate index as a function of the validity timeout. The
latency in satisfying the requests has been computed as the
difference between the time at which the request is satisfied
and and the time at which the request was generated. The
system utility is computed as the sum of the channel hit
rate weighted with the access probability of each channel,
i.e., SU =

∑

i
pac,ihri. The fairness of each policy has been

computed according to the traditional Jain’s fairness index
(using the hit rate as a measure of the service level obtained

by each channel). Resource consumption has been measured
in terms of the traffic generated in the network, i.e., the av-
erage number of data transmitted by all nodes during the
simulations. This includes data exchanged for context cre-
ation, buffer state messages, request messages and data ob-
jects themselves. Simulations run for 50000s. Exchanges of
data objects upon nodes’ contacts start after an initial tran-
sitory required by parameter estimators to reach the steady
state. Results shown in the following section have a 95%
confidence interval, obtained through standard independent
replication techniques.

5.1 Analysis in the default scenario
Our first experiment is based on a configuration in which

the rewiring probability is the same for all nodes, and equal
to 5%. This means that the average number of social links
across communities is the same for all the three communities.
Although the probability of rewiring is not particularly high,
it is already sufficient to mix communities enough to let data
objects circulate across all communities, independently on
the data dissemination policy. Indeed results (not shown
here) show that all policies achieve 100% hit rate.

Based on the results of this set of experiments, we con-
sider a less mixed mobility pattern, as follows. Each pair
of communities is connected through just one node. Specif-
ically Community 1 (C1) has two nodes (“travellers”) with
relationships outside C1, one with Community 2 (C2), the
other with Community 3 (C3). Hereafter, we show the per-
formance figures related to nodes in C1. The same remarks
can be done for nodes in the other communities, as well.
Note that, from Equation 2, it is clear that the channel the
traveller nodes are subscribed to (which affects the ul com-
ponent) impacts on the data dissemination process. For this
reason, we replicate the experiments by varying the channel
travellers are subscribed to.

Figure 1(a) show the hit rate for C1, when travellers are
subscribed to channel 1. Specifically, the group of boxes
related to channel i show the hit rate achieved by nodes
whose home community is C1 and are subscribed to channel
i. Experiments with travellers subscribed to the other chan-
nels provide similar results for all policies but the greedy,
that achieves 100% hit rate only for the channel the trav-
ellers are subscribed to. Recall that these plots are related
to an infinite validity timeout. When shorter timeouts are
used, the misbehaviours of Present, MFV and Uniform So-
cial we discuss hereafter become more serious. Also, the
performance difference between MLN and Future (which al-
ready in this case appear as the best policies) and the other
policies increase. We will analyse these aspects in detail in
Section 5.2. As a preliminary remark note that, since data
objects are always available at generating nodes, a hit rate
of 33.33% is always guaranteed. We can identify four dif-
ferent behaviours. With the greedy policy, travellers store
only messages to which they are directly interested. This
results in a 100% hit rate on the subscribed channel and a
33.33% hit rate on the other channels (there is hit only on
the 1/3 of data generated locally). As expected, the greedy
policy is able to improve the hit rate of the nodes interested
in the same objects the travellers are interested, and is not
able to disseminate other objects. With the uniform policy,
the hit rate of all channels improves and reaches about 80%.
The set of social policies MFV, Present and Uniform Social
all show a similar behaviour: they tend to be slightly un-
favourable towards the most popular channel. This is due to

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
v
e

ra
g

e
 H

it
ra

te

Channel

Future
greedy

MFV

MLN
Present

unif

UnifSoc
33.33%
66.66%

(a) Hit rate

 0

 0.2

 0.4

 0.6

 0.8

 1

PoliciesA
v
e
ra

g
e
 S

y
s
te

m
 U

ti
lit

y

Future
greedy

MFV
MLN

Present
unif

UnifSoc

(b) System Utility

 0

 0.2

 0.4

 0.6

 0.8

 1

Policies

A
v
e
ra

g
e
 F

a
ir
n
e
s
s

Future
greedy

MFV
MLN

Present
unif

UnifSoc

(c) Fairness

Figure 1: QoS - Travellers subscribed to ch. 1

the fact that nodes within the same group tend to synchro-
nise their behaviour: when nodes realise that certain objects
are poorly available, they all fetch them as soon as they be-
come available. This results in the objects becoming highly
available, and being dropped simultaneously by all nodes. A
detailed analysis of the logs confirms this behaviour. Finally,
MLN and Future policies have a very good hit rate in all
cases. The key of these policies is that nodes do not consider
the community in which they currently roam, but just future
communities. It is easy to see that this results in static nodes
(i.e. nodes without social relationships outside their home
community) behaving greedily, and in travellers working to
help communities they will visit in the future. This clearly
avoids the problems related to the synchronisation effect of
the other policies. Results related to the other communities
(not shown here) highlight that these policies guarantee the
same hit rates shown in Figure 1(a). This is quite important.
For example it shows that nodes subscribed to channel 3 in
C2 are able to get not only the locally generated objects,
and not only the objects carried generated in C1 (directly
carried by the traveller of C1 visiting C2), but even those
objects generated in C3 that are firstly brought in C1 by
the traveller of C1 visiting C3. The identification of these
“social” paths is something that is peculiar of the Content-
Place MLN and Future policies. We can anticipate that this
type of “collective” social behaviour, in which just travellers
adopt a social-oriented strategy turns out to be the best so-
lution. The above remarks are confirmed when considering
the system utility and fairness indices, as well (Figures 1(b)
and 1(c)): Future and MLN are the best policies, although
uniform closely approximate their performance. Note that
the greedy policy is the only one achieving low fairness. Fig-
ures 1(b) and 1(c) are related to the case when the travellers
are subscribed to channel 1. Similar results are obtained in
the other cases, as well.

Table 2 shows the bandwidth overhead for each protocol.
The Uniform policy, although closely approximates MLN
and Future in terms of hit rate and fairness, significantly
overuses network resources. This is because nodes contin-
uously exchange data objects as a consequence of the tie
breaking policy (see, Section 4.1). It is easy to show that this

Bandwidth Overhead [MB]

Greedy 68.89 ± 0.28 MFV 16497.79 ± 660.57
Future 508.32 ± 21.84 UnifSoc 16749.46 ± 430.16
MLN 509.05 ± 21.61 Unif 71974.40 ± 1316.68

Present 15500.51 ± 881.80

Table 2: Resource Consumption - Travellers sub-
scribed to ch. 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

P
(d

e
la

y
 >

 x
)

Delay [s]

Future
greedy

MFV
unif

Figure 2: Delay CCDF for requests on channel 1 -
Travellers subscribed to ch. 1

is the only way for uniform to make objects circulate. Fur-
thermore, MFV, Present and Uniform Social pay for their
synchronisation problem also with regard to the bandwidth
overhead. Instead, MLN and Future have a very good per-
formance also with respect to network overhead, while the
performance of the Greedy policy is paid in term of hit rate.

Finally, Figure 2 shows the CCDF of the delay for satisfied

requests on channel 1, when the travellers are subscribed to
channel 1. For the sake of readability, we only show the
greedy, uniform, Future and MFV policies. The Present
and Uniform Social policies are basically equivalent to MFV,
while Future and MLN are overlapped. We show this plot
only, as plots for the other cases are qualitatively similar.
Clearly, greedy achieves the best performance in this case.
The other social-oriented policies other than MLN and Fu-
ture suffer quite high delay. This is a side effect of the un-
wanted synchronisation issue that we have discussed above.
Requests for data objects that have disappeared need long
time to be satisfied. MFV and Future clearly outperform
uniform also from this standpoint. Note that the maximum
delay is in the order of 20000s. This confirms that simulation
runs of 50000s are reasonably long to consider the request
timeouts as infinite.

In this section we have presented the policies behaviours
with respect to all performance figures. In the following,
we concentrate on the hit rate index only to highlight the
policies different behaviour in different scenarios. The com-
parison with respect to the other performance figures is qual-
itatively similar to the one presented in this section.

5.2 Reduced requests’ validity timeouts
In this section we analyse the hit rate index as a function

of the requests’ timeout. Figures 3(a) and 3(b) show the hit
rate for increasing requests’ timeout. Again, we only present
results related to the Greedy, MFV, Uniform and Future
policies. Both plots are related to the case when travellers
are subscribed to channel 1. Figure 3(a) shows the hit rate
for requests on channel 1, while Figure 3(b) shows the hit
rate for requests on channel 3. Thus, we consider requests
on the most and least popular channels, respectively. Note
that the hit rate in the greedy policy do not change with
the validity timeout. Recall that requests start after an ini-
tial transient in which the policies reach stability. Thus, the
greedy policy has already moved all the data objects it is
able to move across communities. Uniform and the social
policies increase the hit rate when the validity timeout in-
creases. The dynamic is slower with respect to the greedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

H
it
 r

a
te

Request Validity [s]

Future
greedy

MFV
unif

(a) Requests on ch. 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

H
it
 r

a
te

Request Validity [s]

Future
greedy

MFV
unif

(b) Requests on ch. 3

Figure 3: Hit rate with varying timeouts - Travellers
subscribed to ch. 1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
v
e
ra

g
e
 H

it
ra

te

Channel

Future
greedy

MFV

MLN
Present

unif

UnifSoc
33.33%
66.66%

(a) Travellers subscribed to ch.1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
v
e
ra

g
e
 H

it
ra

te

Channel

Future
greedy

MFV

MLN
Present

unif

UnifSoc
33.33%
66.66%

(b) Travellers subscribed to ch.3

Figure 4: Hit rate with uniform subscriptions

policy, but they are definitely able to provide higher per-
formance to channels that travellers are not subscribed to
(see Figure 3(b)). In that case, as expected, the greedy pol-
icy is not able to bring any new data objects in addition to
those already generated in the community. Finally, again
the MLN and Future policies confirm to be the best policies
among the one investigated, for all the validity timeouts.

5.3 Uniform Zipf subscriptions
In this section we modify the default scenario by consid-

ering a different distribution for subscriptions to channels.
Specifically, we continue to use a Zipf distribution with pa-
rameter 1, but we do not rotate the most popular channels
among communities. Channel 1 is always the most popular,
channel 2 the second most-popular, channel 3 the least pop-
ular. Results have been derived in this case with a limited
validity timeout equal to the expected time for a traveller
to return in C1, which is about 250s. Figures 4(a) and 4(b)
show the average hit rate and the system utility when the
travellers are subscribed to channel 1 and 3, respectively,
i.e. to the most and least popular channels. The main re-
sults we have found in this scenario is that the most popular
channel receives the worst service for social-oriented policies
other than MFN and Future. The channel travellers are sub-
scribed to does not have a significant impact, as is clear by
comparing the plots. This is a side effect of the synchroni-
sation effect suffered by these policies. Since data objects of
channel 1 are the most requested in all communities, they
spread aggressively once available, and get easily dropped
short afterwards, thus resulting in a high probability of being
available just for limited amount of time (unless, of course
for data objects generated within each community).

5.4 Large number of travellers
In Section 5.1 we have suggested that policies, like Future

and MLN, in which static users are greedy and travellers take
care of moving data objects between communities result in
the best social-oriented solutions. To further explore this
claim, in this section we increase the number of travellers
in C1 to 7. All of them are subscribed to channel 1, such
that the set of static nodes subscribed to channel 1 in C1 is
reduced to one node only. Figure 5 shows the hit rate related
to C1. Also in this case, the validity timeout was set to the

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
v
e

ra
g

e
 H

it
ra

te

Channel

Future
greedy

MFV

MLN
Present

unif

UnifSoc
33.33%
66.66%

Figure 5: Hit rate - 7 travellers subscribed to ch. 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

H
it
 r

a
te

Request Validity [s]

Future MLN

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

H
it
 r

a
te

Request Validity [s]

Future MLN

(b)

Figure 6: Hit rate for (a) C1 and (b) C3

average time for the travellers to get back in C1. The main
result in this scenario is that the hit rate of social-oriented
policies other than MFN and Future tends to increase with
respect to the case with less travellers. This is not surprising,
as more travellers result in a more mixed scenario which (as
highlighted at the beginning of Section 5.1), results in higher
hit rates, in general. Also note that Future and MLN do
not suffer from an increased number of travellers, because
in C1 there is anyway enough overall cache space to let data
objects of all nodes survive on static nodes.

5.5 Multi-hop social paths
The results presented so far show that in the considered

scenarios MLN and Future are the best policies, and perform
almost the same. However, there are cases in which they
behave differently. Specifically, both MLN and Future fetch
data objects by estimating social paths of travellers. Within
any community, MLN just takes into consideration the next

hop only, i.e., the next community it will visit. Future takes
into consideration all the communities it is likely to visit
in the near future, weighted by the probability of visiting
each. Therefore, MLN might miss to exploit “multi-hop”
social paths across multiple communities. To investigate
this effect, we consider a scenario with one traveller only,
belonging to C1, subscribed to channel 1. It can visit either
C2 or C3 with equal probability when in C1, while always
gets back to C1 after having been in C2 or C3. Furthermore,
all nodes of C1 (C2, C3) are subscribed to channel 1 (2,
3). In this case, it is expected that MLN is not able to
completely serve communities C2 and C3. While in C2 or
C3, it will consider only the interests of users in C1, and thus
it will only bring back data objects of channel 1. It will bring
to C2 (C3) only data objects originated in C1 for channel
2 (3). On the other hand, Future is expected to provide
100% hit rate to all communities. This behaviour is totally
confirmed by the simulation results in Figures 6(a) and 6(b),
that show the hit rate as a function of the requests’ validity
timeout. As expected, both policies are fast in achieving the
maximum hit rate. However, MLN can only serve 66.66%
of the requests for users in C3, as it can only move the data
objects of channel 3 generated in C1. Results similar to
those in Figure 6(b) hold for community C2, as well.

6. CONCLUSIONS
In this paper we have evaluated social-oriented policies

for ContentPlace, a content dissemination system for op-
portunistic networks. We have also compared them with
uniform and greedy policies, that are considered as valid
candidates in the literature. We have identified the social-
oriented policies that provide best results in the Most Likely
Next and Future policies. Both policies fetch data objects
by considering their utility only for the communities the user
will visit in the near future. While MLN considers the most
likely community only, Future considers all possible future
communities. These policies also significantly outperform
the uniform and the greedy policy. Finally, we have also
shown cases in which MLN overlooks possible long multi-
hop “social paths” across communities, while Future does
not.

7. REFERENCES
[1] A. Balamash and M. Krunz. An overview of web caching

replacement algorithms. IEEE Comm. Surv., 6(2):44–56, 2004.

[2] A. Balasubramanian, B. N. Levine, and A. Venkataramani.
Dtn routing as a resource allocation problem. In Proc. of ACM
SIGCOMM, 2007.

[3] C. Boldrini, M. Conti, and A. Passarella. Users mobility
models for opportunistic networks: the role of physical
locations. In Proc. of IEEE WRECOM, 2007.

[4] C. Boldrini, M. Conti, and A. Passarella. Context and resource
awareness in opportunistic network data dissemination. In
Proc. of IEEE AOC, 2008.

[5] C. Boldrini, M. Conti, and A. Passarella. Exploiting users’
social relations to forward data in opportunistic networks: the
HiBOp solution. Pervasive and Mobile Computing (PMC),
2008.

[6] C.-Y. Chow, H. V. Leong, and A. T. Chan. Grococa:
group-based peer-to-peer cooperative caching in mobile
environment. IEEE JSAC, 25(1):179–191, 2007.

[7] E. Cohen and S. Shenker. Replication strategies in
unstructured peer-to-peer networks. ACM Comput. Commun.
Rev., 32(4):177–190, 2002.

[8] P. Hui and J. Crowcroft. How small labels create big
improvements. In Proc. of IEEE ICMAN, 2007.

[9] P. Hui, E. Yoneki, S.-Y. Chan, and J. Crowcroft. Distributed
community detection in delay tolerant networks. In Proc. of
ACM MobiArch, 2007.

[10] A. Jindal and K. Psounis. Contention-aware analysis of routing
schemes for mobile opportunistic networks. In Proc. of ACM
MobiOpp, 2007.

[11] J. Kangasharju, K. W. Ross, and D. A. Turner. Optimizing file
availability in peer-to-peer content distribution. Proc. of IEEE
INFOCOM, 2007.

[12] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer, 2004.

[13] V. Lenders, G. Karlsson, and M. May. Wireless Ad hoc
Podcasting. In Proc. of IEEE SECON, 2007.

[14] L. Pelusi, A. Passarella, and M. Conti. Opportunistic
Networking: data forwarding in disconnected mobile ad hoc
networks. IEEE Comm. Magazine, 44(11), Nov. 2006.

[15] H. Shen, M. Kumar, S. K. Das, and Z. Wang. Energy-efficient
data caching and prefetching for mobile devices based on
utility. MONET, 10(4):475–486, 2005.

[16] A. Vahdat and D. Becker. Epidemic Routing for Partially
Connected Ad Hoc Networks. Tech. Rep., CS-2000-06, 2000.

[17] D. Watts. Small Worlds: The Dynamics of Networks Between
Order and Randomness. Princeton University Press, 1999.

[18] L. Yin and G. Cao. Supporting cooperative caching in ad hoc
networks. IEEE Trans. Mob. Comp., 5(1):77–89, 2006.

[19] L. Yin, G. Cao, and Y. Cai. A generalized target-driven cache
replacement policy for mobile environments. J. Parallel
Distrib. Comput., 65(5):583–594, 2005.

[20] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A socio-aware
overlay for publish/subscribe communication in delay tolerant
networks. In Proc. of ACM MSWiM, 2007.

[21] W. Zhao, M. Ammar, and E. Zegura. Multicasting in delay
tolerant networks: semantic models and routing algorithms. In
Proc. of ACM WDTN, 2005.

