
Performance Evaluation of Service Execution in
Opportunistic Computing∗

Andrea Passarella, Marco Conti,
Elonora Borgia

IIT-CNR
Via G. Moruzzi, 1
56124 Pisa, Italy

{a.passarella,m.conti,e.borgia}@iit.cnr.it

Mohan Kumar
University of Texas at Arlington

Arlington, TX 76019, USA
mkumar@uta.edu

ABSTRACT
Opportunistic computing has emerged as a new paradigm in
computing, leveraging the advances in pervasive computing
and opportunistic networking. Nodes in an opportunistic
network avail of each others’ connectivity and mobility to
overcome network partitions. In opportunistic computing,
this concept is generalised, as nodes avail of any resource
available in the environment. Here we focus on computa-
tional resources, assuming mobile nodes opportunistically
invoke services on each other. Specifically, resources are ab-
stracted as services contributed by providers and invoked
by seekers. In this paper, we present an analytical model
that depicts the service invocation process between seekers
and providers. Specifically, we derive the optimal number
of replicas to be spawned on encountered nodes, in order
to minimise the execution time and optimise the computa-
tional and bandwidth resources used. Performance results
show that a policy operating in the optimal configuration
largely outperforms policies that do not consider resource
constraints.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols

General Terms
Performance, Design, Algorithms

Keywords
Opportunistic networks, service provisioning, performance
evaluation, analytical modelling

∗This work was partially funded by the European Commis-
sion under the SCAMPI (258414) FIRE Project and by the
US National Science Foundations award CNS-0834493.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’10, October 17–21, 2010, Bodrum, Turkey.
Copyright 2010 ACM 978-1-4503-0274-6/10/10 ...$10.00.

1. INTRODUCTION
Opportunistic computing [5] is a recently proposed mo-

bile computing paradigm, blending the areas of pervasive
computing and opportunistic networking. In opportunistic
networks, nodes exploit opportunistic contacts to forward
messages and distribute content through encountered peers,
and contribute and avail of each others’ resources in terms
of connectivity and temporary buffers. Opportunistic com-
puting generalises this concept, considering the possibility
for nodes to opportunistically avail of each others’ general
resources, including, but not limiting to, connectivity and
storage. In the context of pervasive computing, resources
may include heterogeneous hardware components, software
processes, multimedia content, sensors and sensory data.
While not all resources can be available on any single de-
vice, they can be collectively available to anyone through
the deployment of effective middleware schemes for oppor-
tunistic computing. The opportunistic computing paradigm
enables several interesting applications that are already be-
ing investigated in the areas of participatory sensing, perva-
sive healthcare, intelligent transportation systems, and crisis
management, as discussed in [5, 7].

In this view, it is natural to abstract resources as ser-
vices that are contributed by providers and invoked by seek-
ers. While service-oriented computing has long been in-
vestigated in the conventional Internet, in single hop wire-
less networks (e.g., WLANs or cellular networks) and in
conventional MANET (e.g., [6]), it is definitely a novel re-
search area in opportunistic networks. Intermittent connec-
tivity and severely unstable topologies typical of opportunis-
tic networks make conventional service-oriented approaches
too cumbersome to be used. Indeed, research on opportunis-
tic networks has mainly focused on routing issues (e.g., [2,
11]), mobility analysis (e.g., [4]) and data-centric architec-
tures (e.g., [3]).

To the best of our knowledge, this paper is one of the
first attempts to tackle key research challenges posed by the
opportunistic computing concept. Specifically, we develop a
detailed analytical model of the service invocation process
between seekers and providers. As better described in Sec-
tion 2, we assume the service invocation and provisioning is
carried out as follows: Whenever a seeker has a request for
a service execution, it waits to encounter possible providers.
When a provider is met, a service execution may be spawned,
according to the replication policy used by the seeker. Ser-
vice results are gathered by the seeker from the first provider
encountered which has completed the service execution. The

goal of the model is to identify the optimal operating point
of the replication policy, in which the expected service time
(i.e., the time interval between when a request is generated
at the seeker and when the seeker receives the output results)
is minimised, subject to the available providers’ resources
in terms of computation and bandwidth. The model pre-
sented in this paper significantly extends an initial model
we have described in [10]. Unlike the model in [10] here
we consider i) limited bandwidth, ii) heterogeneous mobil-
ity processes of different nodes, iii) heterogeneous providers
computation capabilities, and iv) varying seekers generation
rates. Modelling resource limitations (particularly in terms
of bandwidth) is very challenging in opportunistic networks,
and indeed it is common practice to assume unlimited band-
width scenarios, to simplify the analysis (see, e.g., [11]).

The model, described in Section 3, is validated against
simulation results to assess its accuracy, and then used to
characterise the performance of the optimal, resource aware,
replication policy (Section 4). Specifically, comparison of
the optimal policy with resource-blind policies clearly shows
that the latter leads to saturation or under utilisation of
available resources. The performance analysis also charac-
terises the behaviour of the optimal policy as a function of
the overall load in terms of service requests. We find that
the optimal policy is able to tolerate increasing loads by lim-
iting the corresponding increase of service time, up to the
point where the resources become inevitably saturated. Be-
yond this point, no alternative policy can perform better,
as in these cases the only solution would be to drop some
service requests without even attempting to serve them. In-
vestigating such “back-pressure” policies is out of the scope
of this paper, and subject of future work.

2. SERVICE INVOCATION IN OPPORTUNIS-
TIC COMPUTING ENVIRONMENTS

Whenever a seeker needing a service encounters a service
provider, the service may be spawned on the latter. The
execution process entails three stages, i.e., uploading the in-
put parameters, executing the service, and downloading the
output results. This process may take several contact times.
While this process is ongoing, the seeker may encounter a
different provider, and therefore an opportunity arises to
spawn an additional service execution in parallel. Whether
a new parallel execution is spawned or not, when an oppor-
tunity arises, depends on the replication policy implemented
by the seeker. A service is complete when the seeker down-
loads the output results from any of the providers running
in parallel.

Developing this service provisioning model in an efficient
manner requires investigations into several challenging re-
search questions. In opportunistic computing environments
it is particularly important to optimise the use of the re-
sources, which are typically contributed by mobile users’
devices. In a resource unlimited environment the best op-
tion would be to replicate service executions onto all en-
countered providers. Spawning more replicas in parallel on
multiple providers may appear to reduce expected service
execution time (the time required by the seeker to receive
results), as results can be collected from any of the providers.
However, when resource constraints are considered, uncon-
trolled replication may lead to resource saturation and thus

Figure 1: Scheme of the replication process

to exponential increase of the expected service time, as we
demonstrate in the remainder of this paper.

The goal of this paper is therefore to characterise through
an analytical model the expected service time as a func-
tion of the number of spawned replicas, considering two key
resource limitations: the computational capabilities of the
providers, and the bandwidth limitations between provider-
seeker pairs. The model allows us to derive the optimal
operating point for the replication policy, i.e., the number
of replicas that should be spawned to minimise the expected
service execution time. This also corresponds to the optimal
use of the computational and bandwidth resources.

3. ANALYTICAL MODEL
In the model we consider a specific service Sj available on

Mj providers, and analyse the service execution time as a
function of the number of replicas to be spawned by seekers,
referred to as m (≤ Mj). We focus on a tagged seeker,
and derive the expected service time when m executions
are spawned on different providers, hereafter referred to as
E [Rj(m)]. The optimal operating point is the value of m
that minimises E[Rj(m)].

The rationale of the model derivation is captured in Fig-
ure 1 (to simplify the notation, we omit index j in the figure).
We assume that each service Sj ’s seeker issues requests ac-
cording to a Poisson process with rate λj , and that there are
kj such seekers. The total request rate for service Sj is λjkj .
Each of the m replicas is represented with an horizontal pipe
in Figure 1.

Each pipe consists of three stages. The first stage repre-
sents the time required to complete the i-th upload of the
input parameters, and is referred to as Bji. The second stage
represents the time required to execute the request after it
is spawned, and is referred to as Dji. The third stage repre-
sents the time required by the seeker to complete the down-
load of the output results, and is referred to as θji. The delay
on the i-th pipe is thus Rji = Bji +Dji +θji, and the service
time experienced by a seeker is Rj(m) = mini=1,...,m{Rji}.

The offered load on the second stage of pipe i (λ′
ji), can be

evaluated as follows. The total offered load for service Sj is
λjkjm. This rate is split among Mj providers. By denoting
with fji the percentage of executions of service Sj spawned
on provider i, the offered load on the second stage of pipe i
is λjkjmfji.

Bandwidth limitations affect the delays of the first and
third stage, while computational limitations affect the de-
lay of the second stage. A contact event might not be long

enough to upload all service Sj ’s input parameters and/or
download all output results. In such cases, uploads/downloads
are resumed at the next contact opportunity with the same
provider.

Hereafter, we separately analyse the delays of the three
stages, and then derive the service time Rj(m). In general,
the distributions of the random variables (r.v.) Rji are fairly
complex, and therefore it is possible to provide a closed form
expression for their minimum Rj(m) only under particular
assumptions. Specifically, we will fully describe the case in
which the r.v. Rji are assumed to be exponential. Although
in the following we are able to provide a more precise char-
acterisation of some Rji components, note that, under the
assumption that the r.v. Rji are exponential, it is sufficient
to derive the average values of the delays of the stages in
order to fully characterise Rji.

First, we present a general concept used extensively in the
analysis. Whenever a new request for service Sj is issued by
the seeker, the seeker has to spawn m replicas. The exe-
cution of a replica on a provider actually starts when the
corresponding input parameters are completely uploaded on
the provider. Therefore, the m replicas are spawned on the
first m providers (out of Mj) on which input parameters are
completely received. As uploads may require several contacts
to complete, the providers on which the replicas are executed
are not necessarily the first m providers encountered by the
seeker after the request is generated. Therefore, pipe i corre-
sponds to the provider on which the i-th upload completes,
starting from the point in time when the request is issued
at the seeker. In other words, if the set of r.v. {βl}l=1,...,M

denotes the time intervals needed by the seeker to upload
the input parameters on providers starting from the point
in time when the request is generated, pipe i corresponds to
provider l̂ iff βl̂ is the i-th shorter time in the set {βl}.

For ease of notation in the analysis, without loss of gener-
ality, we omit the subscript when representing a service. As
a final remark, due to space reasons, we provide hereafter
a concise description of the analytical details, preferring to
focus more on the rationale behind, and the meaning of the
analytical derivations. The detailed proofs of the lemmas
and theorems are omitted, and can be found in [9].

3.1 Model of the contact process between nodes
Before analysing the delay of the three stages of the pipes

we provide a general result, which is instrumental to the
following parts of the analysis. We focus on a tagged node,
and analyse the time it requires to encounter any node in a
given subset of the network, starting from a random point
in time. We denote as success the event by which the tagged
node finds any node belonging to the subset, and as T the
time for success, starting from a random point in time. This
general result is used to model the time required: i) by a
seeker to meet possible providers; ii) by a tagged provider
to meet one of the seekers; and iii) by a tagged provider to
meet a particular seeker after one of its services has been
executed.

We assume that inter-contact times (contact times) be-
tween the tagged node and any other nodes in the subset
can be divided in two classes: The first class includes inter-
contact (contact) times after which a success occurs, the sec-
ond class inter-contact (contact) times after which a failure
occurs. We assume that inter-contact (contact) times within
each class are independent and identically distributed (iid),

t

random point

in time

!init

success

success failures

T

t1
(f) tI-1

(f)

T(f)

tI
(s)

L

contact

inter-contact

Figure 2: Scheme of the general contact process

among nodes.
that contact and inter-contact times are mutually indepen-
dent, and that the next contact of the tagged node is in-
dependent of the previous contacts. Inter-contact (contact)
times of different classes may have different, arbitrary distri-
butions. This is a more general setting with respect to typ-
ical opportunistic networks modelling assumptions, where
inter-contact (contact) times are assumed iid and following
an exponential distribution, at least in the tail (e.g., [11]).

In general, we can represent the process as in Figure 2.
To derive E[T] we condition on the specific point in the
mobility process of the tagged node from where we start
measuring T (remember that T starts at a random point in
time), and apply the law of total probability. The starting
point of T may fall i) during a contact time with one of the
sought nodes; ii) during a contact time with a node not in the
sought subset; iii) during an inter-contact time after which a
success occurs; iv) during an inter-contact time after which

a failure occurs. These events will be denoted by C(s), C(f),

IC(s) and IC(f), and their probabilities by p
(s)
c , p

(f)
c , p

(s)
ic

and p
(f)
ic , respectively. Those probabilities can be derived

with routine analysis as shown in [9], and are functions of
the average inter-contact and contact times of the two classes
(success, failure), throughout referred to as E[c(s)], E[c(f)],

E[t(s)], and E[t(f)], respectively, and of the probability that
an inter-contact time results in (a contact time is) a success,
ps. As in case i) T is clearly 0, E[T] can be written as

E [T] = p
(f)
c E

h

T |C
(f)

i

+ p
(s)
ic

E
h

T |IC
(s)

i

+ p
(f)
ic

E
h

T |IC
(f)

i

. (1)

The expression of E
h

T |IC(s)
i

can be derived by noting

that in case iii), T is the residual inter-contact time after

which a success occurs (denoted as t
(s)
+):

E
h

T |IC(s)
i

= E
h

t
(s)
+

i

=
E

h

t(s)
i

2
+

V ar
h

t(s)
i

2E [t(s)]
.

In the remaining cases ii) and iv), we have to account for
an initial component ∆init,k, representing the time between
the start of T and the end of the following contact time.
After ∆init,k there is a random number I−1 (possibly equal
to 0) of inter-contact and contact times after which a failure
occurs, and a final inter-contact time after which success
occurs. As proved in [9], we obtain:

E[T |IC
(f)

] = E[t
(f)
+] +

E[t(f)] + E[c(f)]

ps

− E[t
(f)

] + E[t
(s)

]

E[T |C
(f)

] = E[c
(f)
+] +

„

1

ps

− 1

«

“

E[t
(f)

] + E[c
(f)

]
”

+ E[t
(s)

].

In the following analysis, in addition to T , we will also
need the time to success starting from the end of a contact,
referred to as L. It is easy to see that E[L] can be written

!" #" $" %&"
… …

Figure 3: Embedded process for input parameters

upload.
as follows:

E[L] =

„

1

ps

− 1

«

“

E[t(f)] + E[c(f)]
”

+ E[t(s)]. (2)

Note that E[T] and E[L] depend only on the average inter-
contact and contact times, and on the probability of an inter-
contact time resulting in (a contact time being) a success
(ps), i.e., on the properties of the mobility process and on
the probability of encountering one of the sought nodes.

3.2 Analysis of the first stage
In order to model the delay of the first stages {Bi}i=1,...,m

,
we first analyse the time required by the tagged seeker to
upload the input parameters to any individual provider from
the point in time when the request is generated. Recall
that these time intervals are denoted as {βl}l=1,...,M

. As

discussed earlier, Bi is the i-th shortest element in {βl}.
The figure βl can be modelled as an M/G/1 queue. Re-

quests are generated at the seeker according to a Poisson
process with rate λ. The service time of the queue (β̂l) in-
cludes the time to meet provider l enough times to upload
the input parameters of the service. Therefore, it accounts
both for the inter-contact process between the seeker and the
provider, and the bandwidth constraints. Let us denote by
Tl and Ll the time required by the seeker to meet provider
l, respectively, starting from an arbitrary point in time or
from the end of a contact (as shown in Section 3.1), and by
ql the number of contact times needed to complete the input
parameters upload. Then, E[βl] is provided in Lemma 1.

Lemma 1. The average delay to complete the upload of
the input parameters on provider l is

E [βl] =
E

h

β̂l

i

1 − λE
h

β̂l

i . (3)

where E[β̂l] is

E
h

β̂l

i

=
E [Tl] − E [Ll] + E [ql]

“

E [Ll] + E
h

c(s)
i”

M
m

− λ (E [Ll] − E [Tl])
. (4)

The figure ql accounts for the bandwidth limitations, and
is derived as follows. Let us denote with in the r.v. repre-
senting the size of the input parameters to be uploaded. We
consider an embedded Markov process, whose state is the
number of bytes already uploaded to provider l, and whose
transitions occur upon each contact between the seeker and
the provider (see Figure 3).

Assuming that uploads always start at the beginning of a
contact, the chain always starts in state 0 at the beginning
of the first contact. Upon a contact, the chain moves from
the state s to the state s+h if h bytes can be uploaded, i.e.,

with a probability equal to p
“

h ≤ b · c(s) < h + 1
”

where b

is the bandwidth available during a contact. The number of
contacts required to complete the upload process is thus the
hitting time on state in, starting from state 0.

The line of reasoning for completing the analysis of Bi is
as follows. Conditioning on the fact that the i-th ordered
shortest times in the set {βl} is known, say {βk1, . . . βki},
then Bi+1 is the minimum over the rest of the variables in
{βl}. Assuming that the random variables (r.v.) βl are
exponential and independent, we can provide closed form
expressions both for the probability of the set {βk1, . . . βki}
being the i-th shortest r.v. in {βl}, and for the distribution
(and average value) of Bi+1. This is derived in Lemma 2
and Theorem 1. As a matter of notation, in the following
φl = 1/E[βl].

Lemma 2. The probability of the set {βk1, . . . βki} being
the i-th ordered shortest variables in the set {βl}l=1,...,M

is

P (βk1, . . . , βki) =

Qi
p=1 φkp

P

M
p=1 φp

P

M
p=1
p6=k1

φp . . .
P

M
p=1
p6=k1,...,k(i−1)

φp

(5)

Theorem 1. The time required by a seeker to complete
the upload of the input parameters on provider i + 1 (i =
0, . . . , m − 1) is distributed as follows:

Bi+1 ∼

M
X

k1=1

. . .

M
X

ki=1
ki6=k1,...,k(i−1)

P (βk1, . . . , βki) exp

0

B

B

@

M
X

p=1
i6=k1,...,ki

φp

1

C

C

A

and its average value is:

E [Bi+1] =

M
X

k1=1

. . .

M
X

ki=1
ki6=ki,...,k(i−1)

P (βk1, . . . , βki)
PM

p=1
p 6=k1,...,ki

φp

. (6)

Note that the above expression greatly simplifies when the
r.v. βl are also identically distributed, with rate φ. In this
case, Bi+1 is exponential with rate (M − i)φ. This is a very
intuitive result, as Bi+1 becomes the minimum over M − i
iid exponential random variables with rate φ.

3.3 Analysis of the second stage
As shown in Figure 1 we model the computation process

at each provider with a queue. The service time of the queue
represents the computation time at the provider’s CPU. We
assume that the computation time at providers is exponen-
tially distributed with rate µl, l = 1, . . . , M . Considering
a random computation time allows us to account for vari-
ations in providers capabilities, and variations in computa-
tion times of different requests for the service. We assume
to know that the generic provider l corresponds to pipe i,
and derive the conditioned average delay. By computing the
probability of this event, we can apply the law of total prob-
ability, and derive the average value of the second stages.

Focusing on a particular provider l, it is possible to model
the second stage as a batch arrival system (see, e.g., [12]):
A batch of requests arrive at the provider when it meets a
seeker, and the size of the batch is the number of (sets of)
input parameters for requests queued at the seeker whose
upload completes during the contact. As a matter of nota-
tion, we describe the second stage as an M[X]/M/1 system,
where X is the r.v. denoting the size of the batch. Lemma 3
provides the average delay of the second stage of pipe i, as-
suming provider l corresponds to it, denoted by E[Di|l]. In

the formula we use the component E[L
(P)
l], denoting the av-

erage time for the provider l to meet any seeker starting from

the end of a contact. E[L
(P)
l] can be computed as shown in

Section 3.1.

Lemma 3. The average delay of the second stage of pipe
i, assuming provider l corresponds to it is

E[Di|l] =
E[X2

l] + 2E[Xl]

2µlE[Xl](1 − ρl)
, (7)

where Xl is the size of the batches arriving at provider l.
Furthermore, the utilisation of the providers is

ρl =
λX,lE[Xl]

µl

=
E[Xl]

µl(E[L
(P)
l] + E[c(s)])

, (8)

where λX,l is the rate of batch arrivals at provider l.

The result in Lemma 3 confirms our initial intuition about
the possibility of saturation of the service provisioning sys-
tem. The utilisation of providers increases with the batch
size and with the number of seekers “using” the provider
(which clearly means an increase of λX,l). When the utilisa-
tion approaches 1, the average delay on the providers tends
to infinity.

The probability that provider l corresponds to pipe i is the
probability that the time to complete the upload of the input
parameters on provider l is the i-th shortest time in the set
{βl}l

, i.e., P (Bi = βl). The analysis of this figure is similar
to that related to Lemma 2. Specifically, by exploiting the
result of Lemma 2 and recalling that φl is equal to 1/E[βl],
we obtain the result in the following Lemma.

Lemma 4. The probability of provider l corresponding to
pipe i + 1 (i = 0, . . . , m − 1) is

P (Bi+1 = βl) =

M
X

k1=1
k1 6=l

. . .

M
X

ki=1
ki6=k1,...,k(i−1),l

P (βk1, . . . , βki)φl
P

M
s=1
s 6=k1,...,ki

φs

. (9)

Based on Lemmas 3 and 4 it is straightforward to derive
the expression of E[Di].

Theorem 2. The average delay to complete the service
computation of the i-th replica is

E[Di] =
M

X

l=1

E [Di|l] P (Bi = βl), (10)

where E [Di|l] and P (Bi = βl) are as in Equations 7 and 9.

3.4 Analysis of the third stage
The delay of the third stage is the time interval from the

end of the execution of a request at the provider, until the
point in time when the output results are completely down-
loaded to the seeker. In general, when a request execution
for a particular seeker completes at the provider, output re-
sults from previously completed requests for the same seeker
might still be waiting to be downloaded. Therefore, we must
model the third stage with a queue. The analysis of the third
stage is conceptually similar to that of the first stage, albeit
for the fact that the roles of the provider and seeker are
switched. We model the third stage with an M/G/1 queue,
and the service time of the queue is the time for the provider
to download the output parameters to the seeker.

We derive θi first conditioning on a particular provider l
corresponding to pipe i, and then applying the law of total
probability. As a matter of notation, we denote with θi

the delay of the third stage of pipe i, with θ̂i the service
time of the queue representing the stage, and with θi|l and

θ̂i|l the same figures conditioned to the fact that the pipe
corresponds to provider l. Recalling that we denote by λ′

i the
total offered load on pipe i, and by k the number of seekers,
Lemma 5 provides the closed form expression for the average
delay conditioned to provider l. In the Lemma we denote by
Tl and Ll the time required by provider l to meet the seeker
(as can be derived by exploiting the analysis in Section 3.1),
and by ql the number of contact events required to download
the output results.

Lemma 5. The average delay of the third stage of pipe i
conditioned to the fact that provider l corresponds to the pipe
is

E [θi|l] =
E

h

θ̂i|l
i

1 −
λ′

i

k
E

h

θ̂i|l
i , (11)

where E
h

θ̂i|l
i

is:

E
h

θ̂i|l
i

=
E [Tl] − E [Ll] + E [ql]

“

E [Ll] + E
h

c(s)
i”

m −
λ′

i
k

(E [Ll] − E [Tl])

.

Based on Lemmas 5 and 4 it is straightforward to derive
the expression of E[θi].

Theorem 3. The average delay for the seeker to down-
load the output results of the i-th replica (i = 1, . . . , m) is

E [θi] =
M

X

l=1

E [θi|l] P (Bi = βl), (12)

where E [θi|l] and P (Bi = βl) are as in Equations 11 and 9,
respectively.

3.5 Optimal replication
The expected service execution time experienced by the

seeker (R(m)) is the minimum delay over the m pipes. As
analytical expressions for the minimum of a generic set of
r.v. are not available, we approximate R(m) assuming that
the r.v. Ri are exponentially distributed with rate γi =
(E[Bi] + E[Di] + E[θi])

−1. R(m) is then also exponentially
distributed, with rate Γ(m) =

Pm

i=1 γi, and average value

E[R(m)] = Γ(m)−1.
In the general case, E[R(m)] can be computed numeri-

cally, while closed formulas can be found under additional
assumptions. In the following of the section we derive a
closed formula of E[R(m)] under the assumption that the

r.v. β̂l, Di|l and θi|l do not depend on the particular provider.
Under these assumptions, the expressions of the average de-
lay of the three stages in Equations 6, 10, 12 become sim-
pler. As far as the second stage is concerned, with respect to
Equation 10 all the dependencies on the particular provider
disappear. As we discussed in Section 3.2, the average de-
lay of the first stage on pipe i becomes the minimum over
M−i+1 exponentially distributed r.v. with rate φ = 1/E[β].
Recalling the expression of E[βl] in Equation 3 we obtain

E [Bi] =
E [β]

M − i + 1
=

1

M − i + 1
·

mK1

M − mλ(K1 + K2)
,

where K1 is E[T] − E[L] + E[q](E[L] + E[c(s)]), and K2 is
E[L] − E[T]. Note that K1 and K2 do not depend either
on the particular pipe i nor on the number of replicas m.
Finally, after similar routine manipulations, noting that the
offered load λ′ becomes equal to λkm

M
, the average delay of

the third stage becomes

E [θ] =
K1

m − λm
M

(K1 + K2)
.

The only term that depends on the particular pipe i is the
delay of the first stage, due to the fact that the pipe corre-
sponds to the i-th provider on which the seeker completes
the upload of the input parameters.

Finally, we are in a position to derive a closed form ex-
pression for the expected service time E[R(m)] = 1/Γ(m),
as in Theorem 4.

Theorem 4. The average time for the seeker to avail of
service Sj is

E[R(m)] =
(E[D] + E[θ])2

m(E[D] + E[θ]) − E[β] ln Q−1
Q−m−1

, (13)

where Q is equal to E[β]
ED+Eθ

+ M + 1.

The optimal replication level mopt can be found by min-
imising Equation 13. This requires specifying the specific
dependence of ED on m. Once this is done, mopt can be ei-
ther found analytically or numerically. The result provided
by Theorem 4 is therefore general enough to be customised
to the features of any specific scenario.

4. PERFORMANCE RESULTS
In this section we analyse the expected service (execu-

tion) time of a replication policy which exploits the analyti-
cal model of Section 3 (optimal policy). Specifically, various
facets of such a policy are analysed. First, it is compared
with two resource-unaware policies, which replicate requests
on the first encountered node only (single policy), and on all
encountered nodes (greedy policy), respectively. Note that
the performance in terms of expected service time of these
two policies can also be found by using the analysis pre-
sented before, as they correspond to E[R(1)] and E[R(M)],
respectively. Comparing the three policies highlights the ad-
vantage of considering resource limitations. Then, a sensi-
tiveness analysis of the optimal policy is presented. We con-
sider the impact of i) the probability of nodes being providers

(p(p)) or seekers (p(s)); ii) the number of nodes in the net-
work (N); iii) the request generation rate at seekers (λ); and
iv) the average service computation time at providers (1/µ).
Comparison of these policies in terms of performance figures
other than the service time are available in [9, 10].

In order to validate the analytical model, we also devel-
oped a simulation model based on the OMNeT++ simulator
(http://www.omnetpp.org/). In the simulated environment
the nodes move in a square, according to the Random Way-
Point (RWP) mobility model, with the modifications de-
scribed in [8] to guarantee stationarity (the nodes’ average
speed is 1.5 m/s, representative of walking speeds). The
value of the allowed replications (m) is an input parameter
of the simulation runs, and we repeated the simulation runs
with increasing values of m. At the end of each run for a
given value of m, we computed the corresponding average

Table 1: Default analysis parameters
1/µ 30s
λ 0.005 req/s
N 100

tx range 20m
bandwidth 5.5Mbps

input param 100KB
output param 1MB

Area 1000m x 1000m
avg speed 1.5m/s

p(s) 0.1,0.2,0.5,0.8

p(p) 0.1,0.2,0.5,0.8

service time (with 95% confidence intervals). We identify
the optimal case as the value of m achieving the minimum
average service time.

Results presented hereafter show a very good agreement
between simulation and analysis. The analytical model is
thus able to well predict the trends of behaviour of the var-
ious policies under investigation. The analytical model pro-
vides a much more flexible tool than the simulation model.
The inherent complexity of the simulation model (mainly,
the number of events that are generated) makes it prac-
tically impossible to explore the policies behaviour over a
large range of key parameters, while this becomes possible
analytically. This is the case, for example, of the sensitive-
ness analysis with respect to the request generation rate λ
and service computation time 1/µ, for which the simulation
model becomes too complex (in terms of execution time and
memory space), while the analytical model allows us to com-
pletely investigate the optimal policy’s behavior.

Unless otherwise stated, the key parameters’ values are
set as in Table 1. These settings represent typical oppor-
tunistic networking environments, in which the network is
sparse (average inter-contact times of about 10 minutes and
contact times of about 15s). Note that the bandwidth value
is a conservative estimate, as it is the typical throughput
measured at the application level with 802.11b technologies
operating at a nominal rate of 11Mbps [1]. For the purpose
of our study, the bandwidth parameter is also able to hide
all the specificities of the physical communications (interfer-
ence, channel model, . . .), which are therefore not explicitly
taken into account.

4.1 Resource-aware vs naïve policies
In this section, we compare the performance of the optimal

(resource aware) policy against that of the single and greedy
policies, which do not take resource constraints into account.
Table 2 compares the average service time for an increasing
percentage of seekers, and a representative percentage of
providers (p(p) = 0.5, similar results are obtained for the

other values of p(p), as well). Results are shown, for each
policy, both for the analytical and the simulation model.

For a small number of seekers (i.e., p(s) ≤ 0.2), the opti-
mal and greedy policies basically coincide, as for such a small
percentage of seekers the “overall computational capacity”
of the system is large enough to afford greedy replication.
However, when the number of seekers increases beyond this
point, the greedy policy saturates the system. In these cases,
the expected service time is infinite. Simulation results are
the average over completed executions, which gives an in-
dication of the exponential increase of the simulated delay.
On the contrary, beyond p(s) = 0.2 the optimal policy pro-
gressively reduces the number of spawned replicas, and sig-
nificantly outperforms both the single and the greedy policy.

Table 2: Policies comparison, p(p)=0.5
p(s) optimal(an) optimal(sim) single(an) single(sim) greedy(an) greedy(sim)
0.1 9886.32 8899.77±135.025 45914.6 44933±1313.36 9888.7 8904.68±137.857
0.2 10030.6 9567.35±108.429 45920.6 46236.7±1007.69 10072.9 9931.05±102.3
0.5 11883.7 12431.5±127.545 45940.8 44559.5±621.437 ∞ 69154.4±801.452
0.8 15381.7 16945.1±133.773 45965.8 45031.6±509.473 ∞ 167508±1501.26

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.2 0.4 0.6 0.8 1

se
rv

ic
e

tim
e

(s
)

providers percentage (pp)

expected service time (ps=0.1, 0.8)

ps=0.8
ps=0.1

Figure 4: Sensitiveness on the number of providers

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.2 0.4 0.6 0.8 1

se
rv

ic
e

tim
e

(s
)

seekers percentage (ps)

expected service time (pp=0.1, 0.8)

pp=0.8
pp=0.1

Figure 5: Sensitiveness on the number of seekers

Also note that the optimal policy results in just a slight in-
crease of the expected service time as the number of seekers
increases.

These results clearly indicate the significant performance
gain that a resource-aware policy achieves with respect to
resource-unaware policies. From now on, we therefore fo-
cus on assessing the performance of the optimal policy with
respect to a number of parameters. Furthermore, as the an-
alytical model shows to predict very well the trend of simu-
lation results, in the rest of the analysis we use the analytical
model only. Additional validation results are available in [9,
10].

4.2 Sensitiveness on the seekers and providers
population

Figures 4 and 5 show the expected service time as a func-
tion of the percentage of providers and seekers, respectively.
In each plot, two curves are shown, for the minimum and
maximum values of the other parameter (p(s) and p(p), re-
spectively).

The expected service time increases when either less providers
are available, or more seekers are present. In some configu-
rations, this may result in saturation (e.g., p(s) = 0.8, p(p) =
0.1). For a given percentage of seekers (providers) the ser-
vice time decreases (increases) as the percentage of providers
(seekers) increases. Unless for particularly congested set-
tings (very low percentage of providers or very high percent-
age of seekers), using the optimal policy results in a graceful
degradation of the performance, as the expected service time
gracefully increases (e.g., see the curve for a varying num-

ber of providers and p(s) = 0.1, or the curve for a varying
number of seekers and p(p) = 0.8).

4.3 Sensitiveness on the network size
To keep a scenario representative of opportunistic net-

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120

se
rv

ic
e

tim
e

(s
)

network size (N)

expected service time (pp=0.5)

ps=0.1
ps=0.8

Figure 6: Impact of the network size

working environments, we scale up the size of the simulation
area with N to keep the node density constant (this indeed
results in invariant average contact and inter-contact times).
Specifically we consider the cases N = 20, 50, 80, 100. Fig-
ure 6 shows the expected service time for the two extreme
values of p(s) and a representative percentage of providers
(p(p) = 0.5).

The expected service time linearly increases with the net-
work size. The main reason behind this behaviour is due to
the delay for downloading the output results to the seeker
(i.e., the delay of the third stage). Intuitively, after a provider
has completed the execution, it must encounter a single
tagged seeker to download the output parameters. The
probability of this event can be shown to be proportional
to 1/N , which results in a linear increase of this part of the
service delay with N . More in detail, it is possible to write
the expected delay on pipe i as the sum of two components,
one independent of N , and another one linear with N , i.e.,
ERi = EWi + NEYi. EYi is dominated by the delay of
the third stage, and can thus be approximated by Eθ. As-
suming, again, that the r.v. Ri are exponential, the optimal
service time R(mopt) is also an exponential r.v. with rate
γR =

Pmopt

j=1
1

EWi+NEθ
. Finally, it can also be shown that,

unless when the system is extremely close to the saturation
of the second stage, the factor NEθ dominates over EWi.
After simple manipulations, we find that the expected op-
timal service time is approximately equal to Eθ N

mopt
. This

confirms the linear dependence of ER(mopt) with N found
in Figure 6(b). It also justifies the fact that the slope of the

line increases with p(s), because, for a given value of p(p),
mopt decreases with the percentage of seekers.

4.4 Sensitiveness on the load on providers
The final aspect we analyse is the sensitiveness of the opti-

mal policy with the load on providers. This can be shown by
varying either the seekers’ request rate λ (Figure 7), or the
average providers’ computation time 1/µ (Figure 8). Specifi-
cally, we scale the value of λ logarithmically from 0.001 req/s
up to 0.1 req/s, while we scale the value of 1/µ by doubling
it from 15s up to 240s. We show results for the lowest per-
centage of seekers (p(s) = 0.1), i.e., we do not further congest
the system with a high number of seekers, to better isolate
the dependence on λ and µ.

Both plots essentially highlight the same feature. The
service time increases with the load of the servers, be it due
to an increase of the seekers’ request rate, or an increase

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.001 0.01 0.1

se
rv

ic
e

tim
e

(s
)

λ (req/s)

expected service time (ps=0.1)

pp=0.1
pp=0.2
pp=0.5
pp=0.8

Figure 7: Sensitiveness on λ

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250

se
rv

ic
e

tim
e

(s
)

1/µ (s)

expected service time (ps=0.1)

pp=0.1
pp=0.2
pp=0.5
pp=0.8

Figure 8: Sensitiveness on µ
of the computation time for generating the service results.
The service time increase is moderate when the percentage
of providers is high enough (e.g., for p(p) = 0.8), meaning
that the total“service capacity”of the system is high enough
to tolerate increases of the offered load. For lower numbers
of providers, the increase of the service time becomes more
evident. For a very low percentage of providers (p(p) = 0.1)
even the optimal policy can work only up to a certain load,
while the system inevitably becomes saturated beyond this
limit. This is shown in the plots by the fact that the curves
stop for λ > 0.02 req/s and 1/µ > 120s, respectively.

5. CONCLUSIONS
In this paper we have derived a complete analytical model

for service invocation and provisioning in opportunistic com-
puting environments. The model takes into consideration a
very general scenario, featuring different mobility patterns,
and, very importantly, resource constraints both in terms of
computation and bandwidth capabilities.

Employing the proposed model, it is possible to analyse
the performance of optimal service invocation, in terms of
expected service time (the time required by seekers to receive
output results). In this paper, we have highlighted several
features. First of all, we have shown that considering re-
source constraints in service invocation policies is a must to
optimise the performance. Näıve, resource-unaware policies
either easily saturate the available resources, or significantly
under-utilise them, while the optimal, resource-aware policy
always optimises their use. Second, we have shown that the
optimal policy is able to automatically counteract increased
demand on resources, which may arise due a reduced number
of providers, an increased number of seekers, an increased
load in terms of request rate or service computation time.
In all of these cases, the optimal policy results in a graceful
degradation of the system performance, until a point where
the overall service capacity of the system is too low to cope
with the total offered load. Finally, we have highlighted an
intrinsic increase of the service time with the network size,
which is an inevitable side effect of finding a particular user
in larger populations.

To the best of our knowledge, this paper is one of the
first considering the challenging problem of service provi-

sioning in opportunistic networks. Despite the significant
contributions of this paper, there are several avenues for fu-
ture research. Among the most interesting ones, we men-
tion the design of distributed algorithms that implement
when possible, or approximate otherwise, the optimal pol-
icy found by analysis. Characterising the impact of oppor-
tunistic multi-hop forwarding or requests upload and results
download is another interesting extension. Finally, it will
also be important to understand how the opportunistic com-
puting paradigm can work when services available on dif-
ferent nodes can be composed together in order to provide
richer functionality.

6. REFERENCES
[1] G. Anastasi, E. Borgia, M. Conti, E. Gregori, and

A. Passarella. Understanding the real behavior of
Mote and 802.11 ad hoc networks: an experimental
approach. Pervasive and Mobile Computing,
1(2):237–256, 2005.

[2] C. Boldrini, M. Conti, and A. Passarella. Exploiting
users’ social relations to forward data in opportunistic
networks: The hibop solution. Pervasive and Mobile
Computing, 4(5):633 – 657, 2008.

[3] C. Boldrini, M. Conti, and A. Passarella. Design and
performance evaluation of contentplace, a social-aware
data dissemination system for opportunistic networks.
Computer Networks, 54(4):589 – 604, 2010. Advances
in Wireless and Mobile Networks.

[4] A. Chaintreau, P. Hui, C. Diot, R. Gass, and J. Scott.
Impact of human mobility on opportunistic forwarding
algorithms. IEEE Trans. Mob. Comp., 6(6):606–620,
2007.

[5] M. Conti and M. Kumar. Opportunities in
opportunistic computing. Computer, 43(1):42–50, Jan.
2010.

[6] S. Kalasapur, M. Kumar, and B. A. Shirazi. Dynamic
Service Composition in Pervasive Computing. IEEE
TPDS, 18(7):907 – 918, 2007.

[7] H. Lu, N. D. Lane, S. B. Eisenman, and A. T.
Campbell. Bubble-sensing: Binding sensing tasks to
the physical world. Pervasive and Mobile Computing,
6(1):58 – 71, 2010.

[8] W. Navidi and T. Camp. Stationary distributions for
the random waypoint mobility model. IEEE
Transactions on Mobile Computing, 3(1):99–108, 2004.

[9] A. Passarella, M. Kumar, M. Conti, and E. Borgia.
Exploiting opportunistic contacts for service
provisioning in bandwidth limited opportunistic
networks. In IIT-CNR TR 18-2010, available at
http: // bruno1. iit. cnr. it/ ~andrea/ tr/

services-tr-bw. pdf , 2010.

[10] A. Passarella, M. Kumar, M. Conti, and E. Borgia.
Minimum-Delay Service Provisioning in Opportunistic
Networks. In IIT-CNR TR 19-2010, available at
http: // bruno1. iit. cnr. it/ ~andrea/ tr/

services-tr. pdf , 2010.

[11] T. Spyropoulos, K. Psounis, and C. Raghavendra.
Efficient Routing in Intermittently Connected Mobile
Networks: The Multiple-copy Case. IEEE Trans. on
Net., 2008.

[12] H. Takagi. Queuing Analysis Volume I: Vacation and
Priority Systems, Part I. North-Holland, 1991.

