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ABSTRACT
Thanks to the diffusion of mobile user devices (e.g. smart-
phones) with rich computing and networking capabilities, we
are witnessing an increasing integration between the cyber
world of devices and the physical world of users. In this per-
spective, a possible evolution of pervasive networking (here-
after referred to as social pervasive networks, SPNs) consists
in closely mapping human social structures in the network of
the devices. Links between devices would correspond to so-
cial relationships between users, and communication events
between devices would correspond to communications be-
tween users. It can be shown that fundamental convergence
properties of SPN forwarding protocols are determined by
the distributions of inter-contact times between the indi-
vidual nodes (i.e. the time elapsed between two successive
communication events between the nodes). Individual pairs
inter-contact times are hard to completely charaterise, while
the distribution of the aggregate inter-contact times is often
a much more convenient figure. However, the aggregate dis-
tribution is not always representative of the individual pairs
distributions. Therefore using it to characterise the proper-
ties of SPN forwarding protocols might not be correct. In
this paper we provide an analytical model based on funda-
mental models of human social networks from the anthropol-
ogy literature, which shows the exact dependence between
the two in heterogeneous SPNs. Moreover, we use the model
to i) study cases in which analysing the aggregate distri-
bution is not enough, and ii) find sufficient conditions that
guarantee that studying the aggregate distribution is enough
to characterise the properties of SPN forwarding protocols.

Categories and Subject Descriptors
C.4 [Performance of Systems]; C.2.1 [Network Archi-
tecture and Design]
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1. INTRODUCTION
Last generation smartphones, tablets and similar perva-

sive devices feature extremely rich networking, computing,
and sensing capabilities. It is nowadays argued in the re-
search community that the penetration of this class of de-
vices in the mass market is - for the first time - providing con-
crete grounds and a real opportunity for a massive deploy-
ment of pervasive networking applications [21]. Moreover,
the fact that pervasive devices are almost constantly car-
ried by users pushes towards the convergence of the “cyber”
world, formed by the users’ networked pervasive devices, and
the “physical” world, formed by the users interacting with
each other. In particular, an emerging design paradigm for
pervasive networks consists in using off-line models and on-
line information about the users’ social behaviour to design,
for example, routing [3, 19], data dissemination [4, 2], and
mobile social networking [24] solutions. According to this
paradigm, the human social plane (i.e., the structure and
properties of social relationships between users) is translated
into the cyber world to optimise the behaviour of pervasive
networking systems.

The networking environment we consider in this paper,
referred to as social pervasive networks (SPN), is a possi-
ble evolution of the pervasive networking paradigm enabled
by this tight integration of the cyber and physical worlds.
Assuming that the diffusion of pervasive technologies will
enable, in principle, communication between any two users
anytime and anywhere, the resulting network might in fact
be formed by edges that correspond to communication chan-
nels activated because of a social relationship between two
users, and only when those users communicate due to their
social relationship. In other words, the network and the
communication events between the devices might closely
map the corresponding human social network and the inter-
action patterns of the users. Multi-hop communications will
still occur in this type of networks, for example to enable
diffusion of information among groups of people that not
necessarily have mutual social relationships. Besides being a
natural design approach, another advantage of such a design
paradigm would be that activated communication channels
will naturally inherit the trust level existing between their



users, which is typically hard to assess in pervasive networks.
Note that there is significant evidence suggesting that hu-
man social networks are almost invariant with respect to
the specific technology that mediates social interactions [28].
Therefore, results in the anthropology domain that describe
the properties of human social networks are already a solid
starting point to investigate the properties of SPNs.

Within this scenario, the specific focus of this paper is
to study some fundamental properties of inter-contact times
between users. In SPNs, contacts are communications be-
tween two users due to a social interaction, and inter-contact
times are time intervals between two consecutive contacts.
Inter-contact times play a fundamental role for SPNs, as
they have shown to do for a related networking environment,
opportunistic networks [27]. In opportunistic networks, face-
to-face contacts between users are exploited to forward mes-
sages. The foundational results presented in [9] highlight the
impact of the distribution of inter-contact times on the con-
vergence of opportunistic network routing protocols. Unlike
in SPN, contacts in opportunistic networks require physical
co-location of users. However, results in [9] hold for any
network where messages can be exchanged only upon con-
tacts between nodes, and therefore they apply also to SPNs.
Specifically, [9] shows that when all inter-contact times be-
tween individual users follow a power law distribution with
shape less than 2, then a large family of forwarding pro-
tocols (termed “näıve” protocols) diverge, i.e., yield infinite
delay. In näıve protocols, nodes do not exploit any infor-
mation describing the status of the network when taking
forwarding decisions, and are only aware of the id of the
destination. These protocols are attractive because they are
very lightweight and simple to implement and analyse, and
have been widely used in the literature [33, 16, 15, 31]. Note
that the algorithm used in [15] to derive fundamental results
on the capacity of opportunistic networks also falls in this
category of forwarding protocols. Näıve forwarding proto-
cols are attractive also for SPNs due to their simplicity and
light cost. For example, they could be used for information
dissemination and gossiping applications, where information
should be spread to a large subset of users who will not nec-
essarily share direct social relationships, and who will thus
require multi-hop communication.

Although results in [9] apply to the distributions of indi-
vidual pairs inter-contact times, it has been common in the
literature [20, 6, 7, 29, 8, 5] to characterise opportunistic
networks through the aggregate distribution of inter-contact
times, i.e., the distribution of all inter-contact times be-
tween any two pairs considered altogether. Actually, using
the aggregate distribution instead of all the distributions of
individual pairs would be very convenient also in SPNs for
a number of reasons:

• From a scalability standpoint, it is much less costly
to compute, distribute, and store the parameters of a
unique distribution than the parameters of all individ-
ual pairs distributions.

• From a statistical accuracy standpoint, much fewer
samples are required to estimate with sufficient accu-
racy a unique aggregate distribution than all individual
pairs distributions.

• From a privacy standpoint, it is much less sensitive to
collect and distribute information about the aggregate

distribution than about each individual pair, as from
the former it is much harder to track individual users’
behaviours.

Unfortunately, the aggregate distribution is in general not
representative of the individual pairs distributions. Theoret-
ically, the only case when it is representative is a completely
homogeneous network, where all pairs inter-contact times
are identically distributed, and thus the aggregate distri-
bution is exactly the same as the distributions of individ-
ual pairs. However, for the reasons highlighted above, it
is sensible to ask whether there are other cases in hetero-
geneous SPNs where studying the aggregate distribution is
sufficient to characterise the convergence properties of for-
warding protocols. To this end, it is necessary to have a
clear understanding of the dependence between the individ-
ual pairs distributions and the aggregate distribution. Re-
cently, [25] has analytically characterised this dependency
for the case of opportunistic networks. In this paper we
focus - instead - on the totally different scenario of SPN,
where contacts do not require users mobility and physical
co-location, but are driven by the structure of human social
networks.

This paper provides the following contributions. We pro-
vide an analytical model showing the dependence between
the inter-contact times distributions of individual pairs and
the aggregate inter-contact time distribution in heteroge-
neous SPNs. Moreover, we highlight several cases of hetero-
geneous networks where considering the aggregate distribu-
tion is not sufficient to draw correct conclusions on the con-
vergence properties of näıve forwarding protocols in SPNs.
Specifically, we show cases where the aggregate distribution
presents a power law, while all individual pairs distributions
present a light tail. We highlight that, under certain condi-
tions, this is also the case of one of the key datasets used in
the anthropology literature to derive structural properties of
human social networks [30]. Finally, we derive sufficient con-
ditions for concluding that studying the aggregate distribu-
tion is sufficient to characterise the convergence properties
of SPN näıve forwarding protocols.

The rest of the paper is organised as follows. In Sec-
tion 2 we review the state-of-the-art relevant for this paper.
Section 3 describes the models of human social networks
available in the anthropology literature as the basis of our
work. Section 4 presents the model showing the dependence
between the inter-contact time distributions of individual
pairs and the aggregate inter-contact time distribution. In
Section 5 we use the model to analyse relevant cases of het-
erogeneous social pervasive networks. Finally, Section 6 con-
cludes the paper.

2. RELATEDWORK
This paper is mainly related to two bodies of work. The

first one consists of the anthropology literature about models
of human social networks. This body of work is described
in detail in Section 3. The second body of work consists
of the literature about the study of inter-contact times in
opportunistic networks.

Results in [9] have demonstrated the fundamental impact
of inter-conctat times on the convergence properties of op-
portunistic network routing protocols. As mentioned al-
ready, authors show that when the inter-contact times of
individual pairs present a power law with shape less than 2,
a large family of routing protocols yield infinite expected de-



lay. [9] also analyses real traces of face-to-face inter-contact
times, both originally presented in the paper and collected
by others [23, 17, 32, 13]. Assuming that the network is ho-
mogeneous, authors focus on the distribution of aggregate
inter-contact times, finding a good fit with a Pareto distri-
bution with shape less than 2. These results challenge the
actual applicability of popular routing protocols.

This view has been softned, to a certain extent, in [20],
where authors have analysed the same traces of [9] (and,
in addition, a proprietary GPS trace), noticing that the ag-
gregate inter-contact times distribution actually presents an
exponential cut-off in the tail. For what concerns the depen-
dence between aggregate inter-contact times and the inter-
contact times of individual pairs, [20] provides an initial
result deriving analytically the dependence between them
when the contact rates between individual pairs are known.
In addition, [20] does not spend too much effort on the issue
of heterogeneity, after noticing that, for a subset of the pairs
in their traces, invidual inter-contact times are power law.

Results in [9, 20] had a very important impact on the sub-
sequent literature, although not much attention has been
put on the critical issue of heterogeneity. The fact that
aggregate inter-contact times in popular traces present a
power law has typically resulted in assuming that all distri-
butions of individual pairs are power law. One of the most
important examples is the area of mobility models. Most
of the recent proposals (e.g., [6, 5, 22, 29]) aim at generat-
ing inter-contact times of individual pairs and/or aggregate
inter-contact times following a power law. Similarly, other
papers try to highlight which characteristics of reference mo-
bility models generate a power law in inter-contact times [7,
8].

Authors of [10] analyse mathematically the dependence
between inter-contact times of individual nodes and aggre-
gate inter-contact times in a more general setting with re-
spect to the model in [20]. They re-analyse the same traces
used in [9, 20] showing that the distributions of inter-contact
times of individual pairs are definitely heterogeneous. They
propose a model to describe how heterogeneity impacts on
the distribution of aggregate inter-contact times. However,
as highlighted in [25], they miss to consider an important
aspect, thus deriving an imprecise model. [25] presents the
most precise model, as far as we know, to describe the de-
pendence between the inter-contact time distributions of in-
dividual pairs and the aggregate inter-contact time distribu-
tion in opportunistic networking environments.

To the best of our knowledge, this is the first paper in
the literature that analyses this dependence in social per-
vasive networks, considering models of interactions between
users derived in the anthropology literature. With respect
to [25], this results in a totally different model for describing
the heterogeneity of inter-contact times of individual pairs.
Moreover, in this paper, in addition to studying cases in
which the aggregate inter-contact times distributions cannot
be used to analyse the convergence of forwarding protocols,
we also provide sufficient conditions under which focusing
only on the aggregate distribution is enough.

3. HUMAN SOCIAL NETWORKS
Before presenting our analysis, it is worth describing our

reference model for the structure of human social networks,
which is based on the concept of ego network. An ego net-
work is the network seen from the standpoint of a single
individual (ego). It includes only other people (alters) the

ego has social relationships with (represented by an edge in
the ego network).

Figure 1: Ego-network’s hierarchical structure.

Ego networks have been extensively studied in the anthro-
pology literature [11, 12, 18, 30, 35], resulting in a detailed
model of their structure (Figure 1). [35] has shown that ego
networks can be represented as a series of concentric lay-
ers centred around the ego. Starting from the inner-most
layer, layers are characterised by a decreasing level of in-
timacy with the ego. On the other hand, the size of the
layers (the number of alters within the layer) increases with
a factor approximately equal to 3. Extensive studies have
identified four layers, i.e. the support clique, the sympathy
group, the band and the active network, with size approxi-
mately equal to 5, 15, 45 and 150 [18, 12, 11]. The size of
the active network (150) is usually referred to as the Dun-
bar’s number, and represents the maximum number of al-
ters an ego can - on average - maintain social relationships
with [18]. This is a limit related to cognitive capabilities of
the human brain [12]. Many more alters can be outside the
active network, corresponding to people known to the ego,
but with whom the ego does not establish any significant
social relation. These alters are usually not represented in
the model. Note that this hierarchical structure depends
very little on the communication means supporting social
relationships [28].

Authors of [18] have also shown that the emotional close-
ness of the ego with a given alter is the key parameter
determining the position of the alter in the layers. More-
over [18, 30] show that there is a strong correlation between
the emotional closeness and the frequency of communication
between the ego and the alter. Therefore, it follows that the
structure of the ego network depicted in Figure 1 naturally
determines the contact rates between the ego and alters in its
social network. Specifically, contacts are more frequent with
alters in the inner-most layer (usually referred to as strong
ties), while the frequency progressively declines for external
layers, resulting in weaker ties. This property is one of the
starting points of the analysis presented in Section 4.

Finally, it is worth pointing out that, for our purposes,
focusing on ego networks is sufficient. In general a social
network contains more information than the set of ego net-
works of its members, as the latter does not capture corre-
lations. However, it is straightforward to note that inter-
contact times between any pair of users can be fully de-
scribed by looking at ego networks only, because they only
depend on the relationship between these two users, which
is captured by the ego-network model.

4. INTER-CONTACT TIMES MODEL
In this section we study, through an analytical model, the

dependence between the distributions of the individual pairs



and aggregate inter-contact times, in a network where con-
tacts can be described with the ego-network model presented
in Section 3.

An important requirement of our model is to represent
heterogeneous networks in which the distributions of inter-
contact times between individual pairs are not iid. We take
heterogeneity into account in the definition of the model
for contact rates (the reciprocal of the average inter-contact
times). We assume that the contact rates are random vari-
ables (r.v.) following a known distribution (hereafter Λp

denotes the contact rate of the generic pair p). In addi-
tion, we assume that individual pairs inter-contact times are
distributed according to a known type of distribution (e.g.,
Pareto, exponential, . . . ). For each pair p, the parameters of
the inter-contact times distribution are a function of Λp, i.e.,
the parameters are set such that the average inter-contact
time is equal to 1/Λp. This allows us to model heteroge-
neous environments in which not all individual inter-contact
times are identically distributed, and to control the type of
heterogeneity through the r.v. describing the contact rates.

Therefore, three distributions play a key role in our anal-
ysis, i.e. i) the distributions of individual pairs inter-contact
times (whose CCDF is hereafter denoted as Fλ(x)), ii) the
distribution of individual pairs contact rates (whose density
is hereafter denoted as f(λ)), and iii) the distribution of
the aggregate inter-contact times (whose CCDF is hereafter
denoted as F(x)).

4.1 Modelling human networks contact pat-
terns

As a first step in the model, we describe how we account
for the human social network structures described in Sec-
tion 3. This is taken into consideration in the definition
of the distribution of the contact rates. Figure 2 provides
a schematic representation of a generic distribution. As, in
any given ego network, contacts with alters in inner shells oc-
cur more frequently than contacts with alters in outer shells,
contact rates with peers in the inner-most shell should be
drawn from the tail of the distribution, while contact rates
with peers in the outer-most shell should be drawn from
the head. Based on this observation, we divide the possible
range of rates in L sectors, where L is the number of layers
of an ego network, and layer 1 denotes the inner-most layer.
The challenge is to meaningfully identify in the contact rate
distribution the boundaries of the sectors corresponding to
each layer or, in other words, to define the sectors of the
contact rate distribution from where to draw contact rate
samples for alters in any given social layer. The average
number of relationships in each layer nl, l = 1, . . . , L, and
the total number of relationships N can be derived from the
results presented in Section 3 [18, 12, 11]. We can thus com-
pute the fraction of relationships in each layer as nl/N (note
that nL = N). If we denote with λ0, . . . , λL the values of λ
that identify the sectors of the contact rates distribution cor-
responding to the layers, the values of λi, i = 1, . . . , L can be
computed as the (1− nl

N
)-th percentiles of the rates distribu-

tion (note that λL and λ0 are the minimum and maximum
possible values of λ, respectively). Therefore, contact rates
with a peer in layer l = 1, . . . , L are drawn from the sec-
tor identified by λl, λl−1. It thus follows that the density of
contact rates for relationships in layer l is as follows

fl(λ) =

j
0 λ < λl ∨ λ > λl−1

Clf(λ) λl ≤ λ ≤ λl−1
(1)

where Cl is a constant such that
R ∞
0

fl(λ)dλ = 1, i.e. Cl =

[G(λl−1) − G(λl)]
−1, G(λ) being the CDF of Λ.

Figure 2: A representative contact rates distribution
in human social networks

Note that we only consider the distribution of contact
rates for alters with a contact rate greater than 0. In prin-
ciple, the distribution of contact rates presents a significant
mass probability in 0, corresponding to the fact that an ego
“knows” alters also outside the active network layer, but re-
lationships are so weak that the contact rate is zero.

4.2 General inter-contact times model
The starting point of our model is a result originally pre-

sented in [20] (and recalled in Lemma 1), which describes
the dependence between the distributions of the individual
pairs and aggregate inter-contact times, when the contact
rates are known a priori. Let us assume that P pairs are
present in the network, that np(T ) contact events between
pair p occur during an observation time T . Let us denote
with N(T ) the total number of contact events over T , with
θp the contact rate of pair p, with θ the total contact rate
(θ =

P
p θp), and with Fp(x) the CCDF of inter-contact

times of pair p. Then, the following lemma holds.

Lemma 1. In a network where P pairs of nodes exist for
which inter-contact times can be observed, the CCDF of the
aggregate inter-contact times is:

F(x) = lim
T→∞

PX
p=1

np(T )

N(T )
Fp(x) =

PX
p=1

θp

θ
Fp(x) (2)

Lemma 1 is rather intuitive. The distribution of aggre-
gate inter-contact times is a mixture of the individual pairs
distributions. Each individual pair “weights” in the mixture
proportionally to the number of inter-contact times that can
be observed in any given interval (or, in other words, pro-
portionally to the contact rate).

In this paper we significantly extend this result, by i) as-
suming that contact rates are random variables, thus un-
known a priori, and ii) exploiting an anthropology model
for describing contacts between humans. Specifically, we
can derive the following Theorem1.

Theorem 1. In a social pervasive network where contact
rates are determined by the hierarchical structure of ego net-
works, the CCDF of the aggregate inter-contact times is:

F(x) =

LX
l=1

plClPL
l=1 plE[Λl]

Z λl−1

λl

λf(λ)Fλ(x)dλ (3)

where pl is the probability that a social relationship of any
given user is in layer l of its ego network, and Λl denotes the
contact rates between an ego and its alters in layer l (i.e.,
its density is as in Equation 1).

1Unless otherwise stated, proofs are provided in the [26].



While in [26] we provide the complete proof of Equation 3,
here we briefly discuss its physical meaning. First of all,
Equation 3 can be seen as the weighted sum of components
related to the individual layers of ego networks. Specifically,
by defining Fl(x) as follows:

Fl(x) =
Cl

E[Λl]

Z λl−1

λl

λf(λ)Fλ(x)dλ (4)

we can write F(x) as

F(x) =
LX

l=1

plE[Λl]PL
l=1 plE[Λl]

Fl(x) (5)

In [26] we show that Fl(x) is actually the CCDF of the
aggregate inter-contact times over layer l only. Equation 5
highlights an intuitive result. Each such component (Fl(x))
“weights” in the aggregate proportionally to the fraction of
pairs falling in the layer (pl), and to the average contact
rates of the layer (i.e., to the average number of inter-contact
events that is generated by a pair in that layer).

Besides a more formal derivation shown in [26], the form
of the individual layer CCDF in Equation 4 has a more
intuitive derivation, starting from the result in Lemma 1.
Specifically, it can be obtained by considering a modified
network in which we assume that all rates λ ∈ [λl, λl−1] are
possibly available (for pairs in layer l), each with a prob-
ability fl(λ)dλ. Fl(x) is thus the aggregate over all the
resulting individual pairs inter-contact times distributions.
As the number of such distributions becomes infinite and is
indexed by Λl (a continuous random variable), the summa-
tion in Equation 2 becomes an integral over λ. Moreover,
the weight of each distribution (θp in Equation 2) becomes
λ·p(λ) = λfl(λ)dλ, while the total rate (θ in Equation 2) be-
comes

R ∞
0

λfl(λ)dλ = E[Λl]. The expression in Equation 4
follows immediately.

5. STUDY OF REPRESENTATIVE SOCIAL
PERVASIVE NETWORKS

The following analysis starts from the result in Theorem 1,
and is divided in two parts. In the first part (Section 5.1) we
show relevant cases where the aggregate inter-contact times
distribution is not representative of the distributions of the
individual pairs, and thus studying all individual pairs dis-
tributions is necessary to characterise the convergence prop-
erties of SPN forwarding protocols. Specifically, we identify
by analysis cases where the individual distributions present
a light tail, while the aggregate turns out to follow a power
law. Interestingly, under the conditions discussed in Sec-
tion 5.1, we show that the human social network used to col-
lect the data at the basis of [30] falls in this category. In the
second part (Section 5.2), we derive analytically sufficient
conditions for concluding that the aggregate inter-contact
times distribution (instead of all the individual pairs distri-
butions) can be used to characterise the convergence prop-
erties of SPN forwarding protocols. Specifically we prove
that it is sufficient that the distribution of even a single pair
follows a power law for the aggregate distribution to also be
power law. We thus conclude that when the aggregate is
not power law, then all individual pairs distributions must
present a light tail, and therefore the network does not satis-
fies the conditions for forwarding protocols divergence found
in [9].

It is important to note that, to carry on our analysis, it is
sufficient to study the aggregate inter-contact times distri-
bution over individual layers only, provided by Equation 4.
It is, in fact, sufficient that one such aggregate presents a
heavy tail for the whole aggregate to be heavy tailed. Thus,
Equation 4 is the key starting point for the following analy-
sis.

5.1 Networks where analysis of individual pairs
distributions is needed

The first network we consider is one where individual pairs
distributions are exponential, and the contact rates follow a
gamma distribution. Being all individual pairs distributions
exponential, this network does not satisfy the conditions for
divergence of forwarding protocols found in [9]. Note that
assuming exponential individual pairs distributions is rele-
vant. At least in the case of face-to-face contacts, real traces
analysis has shown that the distributions of a high fraction
of pairs are exponential [14, 10].

Considering contact rates following a gamma distribution
is motivated by the analysis of the dataset used to derive the
properties of ego networks described in [30], at the basis of
the model described in Section 3. The dataset collects infor-
mation about 251 ego networks. Each relationship in each
ego-network provides a sample of contact rate, for a total of
over 20000 samples. We fit the resulting empirical distribu-
tion to reference distributions (i.e., gamma, exponential and
Pareto) using the Maximum Likelihood (ML) method [34],
and compare the fitted distributions against the data using
the Akaike Information Criterion (AIC, [1]). Figure 3 shows
a visual comparison of the samples obtained from [30] and
the ML fittings of the considered contact rates distributions
(ML estimators of the parameters are provided in Table 1).
As for the gamma and exponential distributions we consider
the standard definitions with shape α and rate b, and with
rate b, respectively. As for the Pareto distribution we con-

sider the CCDF form F (λ) =
“

b
b+λ

”α

, α > 0, λ > 0.

Figure 3: Fitting distributions

The intuition from Figure 3 is that the gamma distribution
is the best fit for our dataset. This is confirmed by the AIC
test, whose values are shown in Table 1. Remember that
in AIC tests the best alternative is the one with the lowest
AIC value [1].

Distribution Best fit parameters AIC value
Gamma α = 0.34, b = 1.63 -50280.62
Exponential b = 4.86 -23505.08
Pareto α = 0.16, b = 5.5x10−5 -31289.34

Table 1: AIC values for the tested distributions.

Lemma 2 and Theorem 2 characterise the distribution of
the aggregate inter-contact times in a network where indi-



vidual pairs follow an exponential distribution, and contact
rates follow a gamma distribution.

Lemma 2. When contact rates follow a gamma distribu-
tion and individual inter-contact times an exponential dis-
tribution, the CCDFs of inter-contact times aggregated over
individual layers (Fl(x)) all decay, for large x, faster than
a power law with exponential cutoff, but the CCDF corre-
sponding to the outer-most layer, which decays as a power
law. Specifically, if the contact rates follow a gamma distri-
bution with shape α and rate b, the following relations hold
true, for large x:(

Fl(x) ≤ Re−λl(b+x)

x
l = 1, . . . , L − 1

FL(x) � K
xα+1

(6)

where R and K do not depend on x.

Theorem 2. In a social pervasive network where indi-
vidual pairs inter-contact times are exponentially distributed
and contact rates follow a gamma distribution, the distri-
bution of the aggregate inter-contact times features a heavy
tail. Specifically, the following relation holds true:

f(λ) = λα−1bαe−bλ

Γ(α)
, Fλ(x) = e−λx

⇒ F(x) � K
xα+1 for large x

where K does not depend on x.

Proof. This follows immediately from Lemma 2, by re-
calling the relationships between Fl(x) and F(x) in Equa-
tion 5, and noting that FL(x) dominates over all the other
components for large x.

To validate the analytical results, we compare the result
of Theorem 2 with simulations. Specifically, we simulate
an ego-network with 150 alters divided in layers according
to the model presented in Section 3. Ego and each alter
meet with exponential inter-contact times, with rates drawn
from a gamma distribution. Sectors of the distribution cor-
responding to the layers are defined as described in Sec-
tion 4.1. Each simulation run reproduces an observation of
the network for a time interval T , defined according to the
following algorithm. For each alter a, we first generate 100
inter-contact times, and then compute the total observation
time after 100 inter-contact times, Ta, as the sum of the
pair inter-contact times. T is defined as the maximum of
Ta, a = 1, ..., 150. To guarantee that all alters are observed
for the same amount of time, we generate additional inter-
contact times for each alter until Ta reaches T . Simulations
have been replicated 20 times with independent seeds, and
confidence intervals (with 99% confidence level) have been
computed.

Figure 4 shows a very good agreement between the ana-
lytical and the simulation models. Recall that the analysis
predicts that the tail of the aggregate inter-contact times
distribution decays as 1

xα+1 where α is the shape parameter
of the contact rates distribution. Figure 4 shows that - as
also found in the analysis - the lower the shape of the con-
tact rates distribution, the heavier the tail of the aggregate
inter-contact times. This results from the fact that lower
shape parameters result in a higher mass of probability of
contact rates around 0, i.e., in an increasing probability of
very long inter-contact times.

Theorem 2 and Lemma 2 provide two interesting insights.
First, the presence of aggregate inter-contact times with a
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Figure 4: Aggregate inter-contact times with
gamma contact rates

heavy tail distribution does not necessarily mean that rout-
ing protocols risk divergence in SPNs, as such a heavy tail
can emerge starting from exponentially distributed individ-
ual pairs. Therefore, when the contact rates follow a gamma
distribution, looking at the distribution of aggregate inter-
contact times is not sufficient to check whether routing pro-
tocols may diverge or not. Instead, the distributions of indi-
vidual pairs inter-contact times must be analysed. Second,
the power law of F(x) appears because of the power law of
the inter-contact times aggregated over the outer-most lay-
ers, FL(x). Due to the shape of the gamma distribution, in
the outer-most layers contact rates can be arbitrarily close
to 0, thus resulting in arbitrarily large inter-contact times.
Intuitively, this suggests a more general behaviour: When-
ever the distribution of the contact rates is such that rates
arbitrarily close to 0 can be drawn, the distribution of the
aggregate inter-contact times presents a heavy tail.

The case of contact rates following a gamma distribution
is not the only one in which these two properties hold true.
Actually, the case where rates follow a Pareto distribution
also present similar properties (still assuming that individ-
ual inter-contact times follow an exponential distribution).
Lemma 3 and Theorem 3 analyse this case.

Lemma 3. When contact rates follow a Pareto distribu-

tion whose CCDF is in the form F (λ) =
“

b
b+λ

”α

, λ > 0

and individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers (Fl(x))
all decay, for large x, at least as fast as a power law with ex-
ponential cutoff, but the CCDF corresponding to the outer-
most layer, which decays as a power law. Specifically, the
following relations hold true for large x:(

Fl(x) ≤ Re−λlx

x
+ Qe

−λl−1x

x
l = 1, . . . , L − 1

FL(x) � K
x2

(7)

where R, Q and K do not depend on x.

Theorem 3. When contact rates follow a Pareto distri-

bution whose CCDF is in the form F (λ) =
“

b
b+λ

”α

, λ > 0

and individual inter-contact times are exponential, the CCDF
of the aggregate inter-contact times decays, for large x, as a
power law with shape equal to 2. Specifically, the following
relation holds true

F (λ) =
“

b
b+λ

”α

, Fλ(x) = e−λx

⇒ F(x) � K
x2 for large x

where K does not depend on x.

Proof. This comes immediately from Lemma 3 by notic-
ing that the slowest decaying component of F(x) is the one
corresponding to the outer-most layer, and using the corre-
sponding expression from Equation 7.



Also in this case, we validate the results by comparing
analysis and simulation. Figure 5 shows that also in this case
the analytical results capture very well the shape of the tail
of the aggregate inter-contact times distribution obtained
in simulation. Note that, as predicted by the model, the
aggregate distribution decays as a power law with shape
equal to 2, irrespective of the parameters of the contact rates
distribution.
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Figure 5: Aggregate inter-contact times with Pareto
contact rates.

As anticipated, also in this case considering the aggregate
inter-contact times distribution is not sufficient to charac-
terise the convergence of forwarding protocols. Note that,
also in this scenario, contact rates can be arbitrarily close
to 0. This confirms the intuition that when contact rates
present this property, the aggregate distribution of inter-
contact times presents a heavy tail.

5.2 The effect of individual power-law inter-
contact times distributions

In this section we study analytically the effect of even
a single heavy tail individual inter-contact times distribu-
tion on the distribution of the aggregate inter-contact times.
Specifically, we assume that the inter-contact times distri-
bution of a given pair p presents a heavy tail, i.e. we assume
that Fp(x) is as follows:

Fp(x) � x−η for large x

For the rest of the individual pairs distributions we consider
the same assumptions used in Section 4, and, in addition,
we assume that they are not power law. In other words,
the distribution of pair p is the only one in the network
presenting a heavy tail. Finally, we assume that the number
of pairs is finite. Then, the following lemma holds true.

Lemma 4. In a network with a finite number of pairs,
where there exists one pair whose individual inter-contact
times distribution follows, for large x, a power law with shape
η, the distribution of the aggregate inter-contact times, for
large x, follows a power law at least as heavy as x−η, i.e.

∃ p s.t. Fp(x) � x−η for large x ⇒
F(x) ≥ Cx−η for large x and for some constant C > 0

Figure 6 provides a concrete example of the result in Lemma 4.
Specifically, we first consider an ego-network such that the
distribution of the aggregate inter-contact times does not
present a heavy tail. As shown in [26], this can be obtained,
for example, by using exponentially distributed inter-contact
times, and sampling the contact rates from a slightly differ-
ent Pareto distribution with respect to the one considered in
Section 5.1. Specifically, it is necessary to consider a CCDF
in the form F (λ) =

`
b
λ

´α
, α > 0, λ > b. In this case, the tail

of the resulting aggregate distribution presents a power law
with an exponential cut-off. In the Figure, the percentiles

obtained by simulation are marked with white squares, and
the corresponding analytical curve (derived in [26]) is plot-
ted with a solid line. Then, we added to the same ego net-
work one more alter, whose inter-contact times with the ego
follow a Pareto distribution with shape η = 1.1 (while the
scale parameter, defining the minimum inter-contact time,
is set to 1 day, as this was also the minimum inter-contact
time found in the traces used in Section 5.1). In the figure,
percentiles obtained by simulation are marked with dark di-
amonds, while the corresponding analytical curve predicted
by Lemma 4 is plotted with a dashed curve. According
to Lemma 4, i) the existence of even a single pair whose
inter-contact times are power law implies that the tail of
the aggregate distribution is also heavy, and ii) the tail of
the resulting aggregate distribution can be lower bounded by
a power law with shape equal to η = 1.1. Figure 6 confirms
both results obtained in Lemma 4.
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Figure 6: Aggregate inter-contact times with and
without a single Pareto ICT pair.

Lemma 4 allows us to immediately identify the cases where
considering the aggregate inter-contact times distribution is
sufficient to characterise the convergence properties of for-
warding protocols in SPNs. Specifically, the following theo-
rem holds true.

Theorem 4. In a network with a finite number of pairs,
if the distribution of the aggregate inter-contact times does
not present a heavy tail, then no individual inter-contact
times distribution can present a heavy tail.

Proof. This comes straightforwardly from Lemma 4. If
even a single individual inter-contact times would present
a heavy tail, then the aggregate distribution would also
present a heavy tail.

In practical terms, Theorem 4 tells that when the ag-
gregate inter-contact times distribution does not present a
heavy tail, it is not necessary to study all the distributions
of individual inter-contact times to check the conditions on
the convergence of forwarding protocols found in [9], because
no individual inter-contact times distribution can follow a
power law. This result is dual to those found in Section 5.1,
which tell that, instead, when the aggregate distribution
presents a heavy tail, a detailed analysis of the individual
pairs distributions is necessary.

6. CONCLUSION
In this paper we studied fundamental properties of inter-

contact times in social pervasive networks, basing our analy-
sis on reference models of human social networks available in
the anthropology literature. Social pervasive networks are
a possible evolution of current pervasive networks, where
the communication network maps directly the human social
network of users, and communication between devices oc-
curs when users communicate as an effect of their social tie.



In social pervasive networks, forwarding actions occur upon
such contact events between users. In this scenario, it is
fundamental to characterise the properties of inter-contact
times between individual users (i.e., the time between two
consecutive contact events), as this has been shown to play
a key role in determining convergence properties of forward-
ing algorithms when forwarding occurs upon contacts only.
A complete characterisation of all individual inter-contact
times distribution might be impractical to achieve. From
this standpoint, using the aggregate distribution of inter-
contact times would be much more convenient. Unfortu-
nately, in general the aggregate distribution is not repre-
sentative of the distributions of individual pairs. A clear
understanding of the dependence between the two is thus
needed.

In this paper we provided a mathematical model based on
models of human social networks available in the anthropol-
ogy literature to formally characterise the dependence be-
tween the individual pairs distributions and the distribution
of aggregate inter-contact times. The model highlights the
importance of the network heterogeneity (captured through
the distribution of contact rate) in determining the shape
of the aggregate distribution. We have used the model to
study relevant networks in which, unfortunately, focusing on
the aggregate distribution is not enough, and all individual
pairs distributions must be analysed to characterise the con-
vergence properties of forwarding algorithms. Interestingly,
the model allowed us to also find sufficient conditions to be
sure that considering the aggregate distribution is enough.

Beyond the specific applications presented, the contribu-
tion of the paper consists in providing a clear understand-
ing of the dependence between the different distributions of
inter-contact times in SPNs, and a practical tool to under-
stand which statistics must be used to correctly study the
convergence properties of SPN forwarding protocols.
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