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ABSTRACT
When faced with large amounts of data, human brains are
able to swiftly react to stimuli and assert relevance of discov-
ered information, even under uncertainty and partial knowl-
edge. These efficient decision-making abilities rely on so-
called cognitive heuristics, which are rapid, adaptive, light-
weight yet very effective schemes used by the brain to solve
complex problems. In a content-centric future Internet where
users generate and disseminate large amounts of content
through opportunistic networking techniques, individual nodes
should exhibit those properties to support a scalable content
dissemination system. We therefore study whether such
cognitive heuristics can also be used in such a network-
ing environment. To this end, in this paper we develop
an analytical model that describes a content dissemination
mechanism for opportunistic networks based on one such
heuristics, known as the recognition heuristic. Our model
takes into account the different popularities of content types,
and highlights the impact of the shared memory contributed
by individual nodes to make the dissemination process more
efficient. Furthermore, our model allows us to investigate
the performance of the dissemination process for very large
number of nodes, which might be very difficult to carry out
through a simulation-based study.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
Algorithms, Design, Performance

Keywords
Opportunistic Networks; Cognitive heuristics; Recognition
Heuristic; Data Dissemination; Analytical Model

1. INTRODUCTION
In the Future Internet scenario, the active participation of
users in the production and diffusion of content, using mobile
devices in connection with more traditional CDNs and P2P
networks, will create a very large and dynamic information
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environment [14]. A considerable part of these data will also
be very contextualized, i.e. relevant only at specific times
and/or geographic areas, and of interest only for specific
groups of users. Opportunistic networking techniques will
thus become a very important complement to infrastructure-
based networks supporting mobile users (such as cellular
and WiMAX) in order to efficiently disseminate content to
interested users [15]. As mobile devices carried by users will
have an active role in the data dissemination process, and
considering the large volume of dynamic information that
will be produced, devices will be faced with the very chal-
lenging task of determining the relevance of discovered con-
tent and selecting the most interesting data for the user. In
order to be effective, this task should be performed rapidly.
Furthermore, devices will have to make their decisions using
only a partial knowledge of the environment and of the
available content.

One approach to address the aforementioned problems is
to embed autonomic decision-making abilities into mobile
devices. In this paper, we focus on a new (to the best of
our knowledge) direction in the autonomic networking field,
and we exploit results coming from the cognitive psychology
area, by using models of how the human brain assesses the
relevance of information under partial knowledge. In fact,
the human brain is able to achieve effective decision-making
results in front of partial information, and the presence of
noisy data by exploiting cognitive processes known as cog-
nitive heuristics. These heuristics are the key psychological
tools that allow the brain to come up with a highly effec-
tive decision under conditions of uncertainty, limited time,
knowledge, and computational capabilities. Moreover, they
are adaptive tools that are able to refine their effectiveness
through a continuous interaction with the environment. In
the past, cognitive sciences were able to derive accurate
computational models for those cognitive processes. One
of the most simple and effective heuristics is known as the
recognition heuristic. The role of this heuristic is to assert
the relevance of items when choosing among a pair (or a set)
of objects. More specifically, it works by assuming that given
a pair of objects, if one is recognized (i.e. the brain is able
to recall that it already “heard” about that object) and the
other is not, the recognized object has a higher value with
respect to a given (possibly unknown) evaluation criterion.
The simplicity of this heuristic, its effectiveness in decision
making processes, and its adaptivity, make it a suitable
candidate for embedding a human cognitive process into
autonomic, self-aware ICT devices dealing with a content-
centric Internet.

We have designed an algorithm for data dissemination
in opportunistic networking environments that is inspired
by the recognition heuristic. It allows us to simplify and
limit the complexity of the data selection task in an op-
portunistic network, while maintaing a high effectiveness



in the data dissemination process. The full specification of
this algorithm and preliminary results based on simulations
are shown in [2]. In this paper, we first briefly overview
the main features of this algorithm. Then, in Section 5 we
describe our analytical model of the content dissemination
mechanism. This model takes into account the different
popularities of content types, and highlights the impact of
the shared memory contributed by individual nodes to make
the dissemination process more efficient. In Section 6 we
present a comparison between the model predictions and
related simulation results, showing that the model is able to
capture the transient and steady-state behaviors of the data
dissemination process. In particular, the model is able to
estimate the level of replication of data items in the network,
and thus to predict the probability that users will receive the
content they are interested in within a given time from the
instant it was generated in the network. Furthermore, our
model allows us to explore network scenarios with large num-
bers of users and data items, which are generally difficult
to study using simulation tools. Finally, Section 2, 3, and 7
complete the paper by summarizing related work, describing
the main features of the recognition heuristic, and drawing
the main conclusions of this work, respectively.

2. RELATED WORK
Data dissemination algorithms have been proposed for di-
verse families of mobile networks. The techniques proposed
in [18]are representative of a body of work focusing on caching
strategies for well-connected MANETs. On the contrary,
the focus of this paper is on networking environments where
content dissemination is more challenging and such policies
cannot be applied. The first work that investigated the
problem of content dissemination in opportunistic networks
was developed in the PodNet Project [9]. Each node in
the PodNet system is subscribed to a channel and devote
part of its memory space for storing data items belonging
to the channel it is subscribed to, and part for supporting a
collaborative exchange of information. More precisely, when
two nodes meet they exchange their cached data items and
use heuristics based on the popularity of data channels to
decide which fetched data items to store. A main limitation
of PodNet is that it does not exploit any social information
about nodes. More advanced approaches exploit informa-
tion about users social relationships to drive the content
dissemination process [19, 3, 1]. Specifically, the work in [19]
defines a pub/sub overlay over an opportunistic network,
where some nodes act as brokers, dispatching relevant con-
tent toward the most interested other peers. These brokers
are the most “socially-connected” nodes, i.e., those nodes
that are expected to be most available and easily reachable
in the network. SocialCast [3] proposes a first attempt to
exploit social information in dissemination processes. This
is also the goal of the work in [1], where, however, a more
refined and complete approach is used, based on social-aware
dissemination strategies. Content dissemination is driven by
the social structure of the network of users. Nodes evaluates
which data items to store taking into account the social
utility of the items, i.e. how they are likely of interest to
users the node has social relationships with (and which,
therefore, are expected to be in touch in the near future).

With respect to these approaches, in this paper we take
a completely new direction, by borrowing models of human
cognitive processes coming from the cognitive psychology
domain. As this approach is still totally unexplored, in this
paper we limit the set of contextual information that we use
to the very minimum, and, for example, we do not exploit
information about users social structures. This allows us to

obtain initial exploratory results about the feasibility of this
novel approach.

3. THE RECOGNITION HEURISTIC (RH)
Cognitive heuristics can be defined as simple rules used by
the brain for facing situations in which people have to act
quickly, relying on a partial knowledge of all the problem
variables, the evaluation criterion of the different possible
choices is not known, and the problem itself may be ill-
defined in such a way that traditional logic and probability
theory are prevented to find the optimal solution. Then,
cognitive heuristics are able to deal with difficult problems
by answering simpler problems. Early works on cognitive
heuristics put the accent on how these cognitive processes
could lead to systematic errors and cognitive biases. In
contrast with this vision, Gerd Gigerenzer and most of re-
cent psychological literature focus the research attention on
the ability of these “brain tools” to produce very accurate
judgements and the environmental conditions under which
they are more effcient. Although the general concept of
heuristic is similar to that widely used in computer science,
heuristics used by human cognitive processes are formalized
in a different way by cognitive sciences.

One of the simplest cognitive heuristics, which has at-
tracted a broad attention by cognitive science in the last
decade, is the recognition heuristic [6, 4]. The recognition
heuristic is based on a very simple rule. When evaluating
a couple of objects, and one is recognized (i.e. the brain
is able to recall that it already “heard” about that object)
and the other is not, this heuristic infers that the recog-
nized object has a higher value with respect to a given
evaluation criterion. The recognition heuristic is effective
when the recognition of objects is highly correlated with
the ideal evaluation criterion that should be used to select
among the possible choices if complete information would be
available. In this case, the heuristic is said to be ecologically
rational. In fact, the correlation is adaptively derived from
the environment by exploiting the presence in it of some
mediators that carry information (coded in variables) used
by the heuristic itself to approximate the value of the objects
with respect to the criterion.

To better understand how the recognition heuristic works,
the foundational study on recognition heuristic [4] uses, as
an example, the estimation of the university endowments.
To illustrate this example we refer also to Fig. 1, which de-
picts the general elements involved in the recognition heuris-
tic, and the relationships between them. The evaluation
criterion to be used in the example is the value of the en-
dowment. This information is generally not publicly avail-
able. Nevertheless, it is argued that newspapers could act
as mediators, since they periodically publish news related to
the most important universities. Thus, the number of times
a university appears on the newspapers could be a strong
indicator that it has larger endowments than universities
that do not or rarely appear on the media. In other words,
in this case the mediator variable related to the evaluation
criterion is the number of citations. As said before, the
correlation between mediators and the evaluation criterion
is called ecological correlation. When a person has to choose
which university has the biggest endowment between a cou-
ple of institution names, he uses the recognition heuristic
and chooses a recognized name against an unknown one.
Clearly, in this case, newspapers influence the recognition,
since the more they cite an institution, the more likely that
institution name will be remembered and, thus, recognized.
Since the brain evaluates options exploiting the citations on
newspapers instead of the real, unknown criterion, the rela-
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Figure 1: Ecological rationality of the recognition
heuristic

tion between the recognition and the mediators is called sur-
rogate correlation. From this example it is straightforward
to notice that the effectiveness of the recognition heuristic,
i.e. the recognition validity, is continuously reinforced by the
stimuli received from the environment.

The simplicity of the recognition heuristic has made it a
powerful tool in support of decision-making processes. As
such, it has been successfully used in various fields [11],
like financial decision-making processes [12], the forecast of
future purchase activities [7], the results of sport events [17],
or political election outcomes [10].

4. AN RH-BASED DATA DISSEMINATION
SCHEME FOR OPPORTUNISTIC NET-
WORKS

In this study we consider a network scenario where mobile
nodes generate data items and other nodes can be interested
in those items. More precisely, users are interested in data
channels, i.e. high-level topics to which the data items
belong. The goal is to bring all the data items of a given
channel to all the nodes that are interested in it. To this end,
each node contributes a limited amount of storage space
to help the dissemination process, since contacts between
users are the only way to disseminate data items. Ideally,
upon encountering another node, a node should select which
data items to fetch and keep in its storage space, such that
the total utility of its local storage space for the overall
dissemination process is maximized. Solving this problem
exactly would clearly require global knowledge and central
coordination, which is unfeasible in opportunistic networks.
Therefore, the algorithm we have originally proposed in [2]
(and summarized in this section) exploits the recognition
heuristic to efficiently approximate the utility of storing the
data items that can be exchanged during a pair-wise contact
between two nodes. Based on these approximated utility
values, each node stores only the most useful data items, se-
lected among both those already available locally and those
available on the encountered node, until it’s storage space is
full.

With reference to both the description given in Sec. 3 and
the elements reported in Fig. 1, we have that the unknown
criterion to be estimated is then the utility of fetching an
item, with respect to the global information dissemination
process. Since we said that the only way to obtain informa-
tion is through contacts between nodes, each peer considers
the other nodes as the environmental mediators depicted in
Fig. 1. Indeed, they are the only mean by which the infor-
mation needed by the recognition heuristic can be collected.

About the information exchange process, assuming that
each individual node is interested in only one channel, nodes
exchange only minimal information when meeting: the chan-
nel they are interested into and a summary of the data items
they currently store. At each encounter, this information is

used to evaluate the utility of those data items during future
meetings with other nodes. Essentially, a node estimates
how many users are interested in the channels of discovered
items and how those items are spread in the network. At a
very high level, nodes decide which items to store based on
two simple assumptions: i) the more other nodes request a
given channel, the more its data items are relevant, ii) the
less a data item is replicated in the network, the more useful
could be to store a copy of that item. These assumptions
bind the observed information carried by the mediators with
the estimation of the inaccessible evaluation criterion, and,
thus, constitute the surrogate correlation of the recognition
heuristic.

Since in our algorithm there are two types of decisions to
be taken to estimate the utility of the data items to fetch
(i.e., how relevant a channel is, and how relevant a data item
is) we use two distinct recognition heuristics to separately
recognize channels and data items. Intuitively, a node rec-
ognizes a channel as soon as it becomes “enough popular”,
i.e., as soon as that node encounters enough other nodes
that are interested in the same channel. Hence, if a channel
is recognized, it means that several users are interested in it
and, thus, it is worth (for the overall community) to circulate
its data items. Furthermore, a node recognizes a data item
if it is “spread enough”, i.e., as soon as it is encountered on
at least a given number of other nodes. If a data item is not
recognized, it means that only a few users have a copy of it
in their memory, so it should be replicated more broadly to
increase its diffusion. On the basis of these considerations,
a node decides to fetch a data item from the encountered
node if: a) it recognizes the channel the data item belongs
to, and b) is does not recognize the data item itself. Finally,
to recognize a channel (or a data item) each node maintains
a counter that count how many times it encountered a node
that it is interested in that channel (stores that data item).
Then a channel (data item) is recognized if this counter
reaches a given recognition threshold. Furthermore, the
recognition counters is decremented if the channel (data
item) is not seen for a while. The exploitation of such“recog-
nition thresholds”is consistent with the cognitive psychology
research on how the recognition memory works in the brain
(e.g. [16]).

As we have assumed that the shared storage space con-
tributed by the nodes is limited, we have to define an al-
gorithm that exploits the recognition level of channels and
data items to select which items to keep (among the ones
currently already available at the node or available on the
encountered node) in case the storage space is insufficient
to take all available data items. This algorithm thus works
as a replacement algorithm for data items in the nodes stor-
age space. To this end, we use a modified Take-the-Best
algorithm [5], taken from the cognitive psychology litera-
ture. This algorithm ranks two (or more) options using
several steps. On each step a heuristic is applied (e.g. the
recognition heuristic), until it reaches the first (best) step
where the heuristic can discriminate among the options. In
our case, nodes decide which data item to store using a
three-step version of the Take-the-Best algorithm. The first
step applies the recognition heuristic to the channels, the
second one uses the recognition of data items, while the last
step ranks the items according to their recognition value,
as explained below. The steps of the algorithm are shown
in Fig. 2, where B denotes the size of the memory space
dedicated to store data items belonging to channels the node
is not interested in. More precisely, the data items available
on an encountered node (hereafter called “new” items) are
evaluated together with the ones already stored in the node
(hereafter called “old” items). To this end, we first apply the
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Figure 2: Modified Take-the-Best algorithm

recognition heuristic to the channels, i.e. all the items whose
channel is not recognized are discarded. If there is enough
space to store all the remaining items, nothing else happens.
Otherwise, we apply the recognition heuristic to data items,
i.e. non-recognized data items are dropped. In case the
number of remaining items still exceed the size of the node
cache, items are ranked according to their recognition level
using the following two criteria. First of all, data items
with lower recognition values (i.e., whose counter is lower)
are more relevant that the ones with higher recognition lev-
els, because the former ones are considered less widespread
and, thus, more useful to fetch. Secondly, among the data
items with the same recognition value, new ones are more
relevant than old ones. Note that the heuristics applied
in the subsequent steps are of increasing complexity. This
is also a typical cognitive scheme, which tries to use the
lower possible amount of resources to discriminate between
possible choices.

A more detailed description of the recognition algorithms
and of the modified Take-the-Best algorithm is given in [2].

4.1 Node Caches
To implement the above algorithm, each node makes use
of several internal caches. Fig. 3 shows the internal ar-
chitecture of the caches of a single node. With respect to
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Figure 3: Node Architecture

this figure, we have two classes of caches: data caches and
recognition caches. More precisely,

Data caches:

• LI is the cache containing the Local Items, i.e. the
items generated by the node itself

• SC is the Subscribed Channel cache, i.e. the cache
containing the items belonging to the channel the node

is interested to and obtained by encounters with other
peers. Furthermore, we assume that nodes are able to
reserve enough space for the channel they are inter-
ested in. Thus, the SC cache is assumed unlimited.

• OC is the Opportunistic Cache, i.e. the cache contain-
ing the objects obtained through exchanges with other
nodes and belonging to channels the node is not inter-
ested in. This cache is the part of the node’s storage
space contributed for the overall efficiency of the data
dissemination process, beyond the particular interest
of the individual node. Therefore, we assume that it
has a limited size. Its content consists of the items the
node believes to be the most“useful”for a collaborative
information dissemination process. They are selected
using the values contained in the Recognition caches.

Recognition caches:

• CC is the Channel Cache: whenever the node meets
another peer subscribed to a given channel, the channel
ID is put in this cache, along with a counter. The
counter is incremented every time a node subscribed to
the same channel is found. Note that the storage space
required to maintain this information is very limited
compared with the size of data items. Thus, the size
of this cache is assumed unlimited.

• IC is the Item Cache: similarly to the previous cache,
when a new data item is seen in an encountered node,
its ID is put in this cache, along with a counter. The
counter is incremented every time the object is seen
again. We assume that also this cache has no space
limits.

Finally, we remind that the CC and IC caches make use of
two different recognition thresholds, Rc and R, respectively.
Items and channels whose counters exceed the value of the
threshold are marked as recognized. This classification is
used by the OC cache in order to handle its data, using the
modified Take-the-Best algorithm described before.

5. ANALYTICAL MODEL
This section develops the analytical model describing the
temporal evolution of the replication levels for data items
belonging to a tagged cannel c. More precisely, in our model
we use a set of embedded Markov chains to describe the
status of the various caches deployed at the mobile nodes of
the opportunistic network. Since the status of the caches of
a node can change only when it exchanges data items upon
encountering another node, the embedding points for our
analysis are the time instants at which pairs of nodes meet.

Concerning the number of Markov chains needed in our
model and their state space size, we use a distinct Markov



Symbol Definition

N Number of nodes of the network

M Number of items in the network

C Number of channels in the network

a.c Channel to which data item a belongs

rt(a) Fraction of nodes storing a copy of a

Pop(c) Number of nodes subscribed to channel c

ψta[1](ψ
t
a[0]) Prob. that data item a is (is not) in SC at time t

νtc[i] Prob. that channel c has a recognition level i in
CC at time t

υta[i] Prob. that data item a has a recognition level i in
IC at time t

ϕta[i] Prob. that data item a is stored in OC at time t
with a recognition level i

Rc Threshold for channel recognition

R Threshold for data item recognition

Table 1: List of mathematical notations

chain for each channel to describe the evolution of the chan-
nel recognition level in the CC cache of a generic node.
Similarly, we use a separate Markov chain for each channel
to describe whether a generic data item of that channel
is stored in the SC cache. For the IC and OC caches, we
consider a generic data item for each channel, and a Markov
chain describes (i) the evolution of the recognition level
of that data item in IC; and (ii) whether the data item
is stored in OC and in which position, respectively. It is
important to observe that in this study we consider a ho-
mogeneous network scenario, where each node meets the
other nodes in the network with equal probability at an
encounter event1. Therefore, it is sufficient to derive the
steady state probabilities for the aforementioned Markov
chains by considering a single tagged node, since the same
average behavior is observed in all the other nodes. In
conclusion, our model requires to track the evolution of four
Markov chains per channel. As channels (data types) can
be reasonably assumed to be much less than data items, the
complexity of the model is reasonable.

The goal pursued by our analysis is to derive the fraction
of nodes in the network that, at time t, have a copy of a data
item a belonging to channel c either in SC or OC, hereafter
denoted as rt(a). In fact, the knowledge of rt(a) is enough
to fully characterize the dissemination process of the data
items in the opportunistic network. In the following sections,
we will describe how the state probabilities of the Markov
chains describing the cache status are used to derive rt(a)
for each channel. Although the formal definition of the state
spaces of these Markov chains is reported later, for the sake
of presentation clarity in Tab. 1 we list the main notations
used in our analysis.

5.1 Subscribed Channel Cache
Let us consider a generic data item a belonging to the chan-
nel c to which the tagged node is subscribed. Then, in the
Markov chain describing the status of the SC cache, state 1
is used to indicate that a copy of data item a is stored in SC,
while state 0 indicates that SC does not hold a copy of a.
Let us assume that at time t+1 the tagged node encounters
another node, while the previous encounter event occurred
at time t. Intuitively, the probability p0,1 to move from
state 0 to state 1 at time t+1, i.e., the probability that a
copy of data item a is fetched by the tagged node from the

1This condition holds for the stationary regime of several
popular mobility model, such as the Random Waypoint
model [13].

node encountered at time t+1, is given by p0,1 = rt(a). On
the other hand, the probability p0,0 that a data item not
present in SC at time t is also not present at time t+1 can
be computed as p0,0 = 1−p0,1. Since we have assumed that
the SC cache is large enough to contain all the data items
of the channel the tagged node is subscribed to, a data item
cannot be dropped by the SC cache. Formally, this implies
that p1,1 = 1. Now, let ψta = {ψta[0], ψta[1]} be the state
vector of the Markov chain at time t, and let us denote with
P ={pi,j}2, i, j=0, 1, its transition matrix evaluated at time
t+1. Then, we can compute the state vector at time t+1 as
follows

ψt+1
a = ψtaP . (1)

The initialization distribution of the state vector is ψ0
a =

{1, 0}, since the SC is empty at the beginning of the system.

5.2 Channel Recognition
As described in Sec. 4.1, CC stores the number of times each
channel has been seen by the tagged node. Thus, the state
i for the Markov chain used to describe the status of the
CC for the tagged channel c represents its recognition level.
The state 0 represents the condition of channel c not yet
observed. It is important to note that the probability for
a channel to be recognized (i.e. to reach the recognition
threshold) depends only on its popularity Pop(c). Then,
the transition probabilities of this time homogenous Markov
chain are given by

pi,j =



Pop(c)/N if j= i+ 1, i ∈ [0, Rc−1]

αi(1−Pop(c)/N) if j= i− 1, i ∈ [1, Rc]

1−(Pop(c)
N

(1−αi)+αi) if j= i, i ∈ [1, Rc−1]

1−Pop(c)/N if i, j=0

1− (1−Pop(c)/N)αi if i, j=Rc

0 otherwise

,

(2)
where Pop(c)/N is the probability of encountering a node
subscribed to channel c, and α (0 < α < 1) is a discount
parameter. More precisely, if a channel is not observed in
the CC cache of the encountered node, then the tagged node
decreases its recognition level i by one with a probability
that decreases exponentially as i increases. This approach
avoids that a tagged node considers relevant a channel that
is no more popular in the network. On the other and, the
probabilities of remaining in the same recognition state after
the encounter event are simply the complements of the total
probabilities of moving to other states. Special cases are
state i=0, where the recognition level cannot decrease, and
state i=Rc, where the recognition level cannot increase.

Now let νtc = {νtc[0], νtc[1], . . . , νtc[Rc]} be the state vector
at time t and P = {pi,j} the transition probability matrix.
It holds that νt+1

c = νtcP . Since at time t a node has
no information on the channels, we have that the initial
distribution is ν0c = {1, 0, . . . , 0}.

5.3 Item Recognition
Conceptually, the recognition process of data items is similar
to the channel recognition. In fact, IC maintains a list of
the observed data items and their recognition levels, de-
fined as the number of times they have been observed in
encountered nodes. Thus, the state i of the Markov chain
used to describe the status of the IC for the generic data
item belonging to channel c represents its recognition level,
while state 0 represents the condition of data item a not yet

2Note that the pi,j values depend on the parameter t, but
for the sake of notation simplicity we omit it.



observed. Considering that the probability that a tagged
node finds a copy of data item a in the caches of another
node encountered at time t+1 depends only on its replication
level rt(a), the transition probability matrix of this Markov
chain can be calculated as

pi,j =



rt(a) if j = i+1, i ∈ [0, R−1]

γi(1−rt(a)) if j = i−1, i ∈ [1, R]

1−[rt(a)(1−γi) + γi] if j = i, i ∈ [1, R−1]

1−rt(a) if i, j = 0

1−(1−rt(a))γi if i, j = R

0 otherwise

,

(3)
where γ (0 < γ < 1) is the discount factor for the item
recognition level.

Now let υta = {υta[0], υta[1], . . . , υta[Rc]} the state vector at
time t and P = {pi,j} the transition probability matrix.
It holds that υt+1

a = υtaP . Since at time t a node has
not information on the data items, we have that the initial
distribution is υ0

a = {1, 0, . . . , 0}.

5.4 Opportunistic Cache
Differently from the other caches, OC has a limited size
B. As described in Sec. 4.1, only copies of data items
belonging to recognized channels can be stored in the OC
cache. However, given that OC can contain only a subset of
available data items, a replacement policy is needed to drop
less useful data items. We recall that our modified Take-the-
Best replacement policy gives a higher priority to data items
with lower recognition levels. In case of ties, the data items
found in the caches of the encountered node are preferred to
the ones already in the OC cache of the tagged node.

...

OC

0 1 2 R

Figure 4: Queuing network modeling the OC cache.

To tackle the problem of modeling the evolution of OC,
we represent this cache as a queuing network, as shown in
Fig. 4. In this queuing network, a sub-queue i stores all
data items that are in the OC and have the same recognition
level i. The sub-queue 0 is a virtual queue that contains all
the data items that are outside of the OC, independently
of their recognition levels. Then, the ith element (i > 0) in
the state vector ϕta={ϕta[0], ϕta[1], . . . , ϕta[R]} represents the
probability that the generic data item a is in the OC cache
with recognition level i at time t. It is also important to
note that each individual sub-queue has not a fixed size, but
we must ensure that the sum of the numbers of data items
stored in these sub-queues (excluding sub-queue 0) is lower
or equal to B.

It is intuitive to note that modeling the replacement policy
used to manage the OC cache is a hard task. To facilitate the
analysis we split the problem into two simpler sub-problems.
First of all, we model the reordering of the data items stored
in the OC cache due to changes in their recognition levels
after an encounter event. For instance a data item that was
initially stored in sub-queue i should be moved to sub-queue
i+1 if its recognition level is increased upon an encounter
event. Since this process involves only an internal reordering
of stored data items, no data items are dropped. The second
step in the analysis takes into account that new data items

fetched by the caches of the encountered node may enter
the OC of the tagged node at a sub-queue that depends
on their recognition level. Due to cache size constraints,
some of these data items could not be allowed to enter the
OC cache, or some data items already stored in OC could
be removed to let new data items to enter the OC cache.
In addition, in both steps we consider the possibility that
data items in the OC are moved to sub-queue 0 – i.e. are
dropped – if their channel is not recognized anymore after
the encounter occurring at time t+1. In the following we
separately describe these two modeling phases.

Step 1. Let us introduce an auxiliary Markov chain,
whose state vector ϕ′a ={ϕ′a[0], ϕ′a[1], . . . , ϕ′a[R]} represents
the probability that the generic data item a is in the OC
cache with recognition level i after the encounter event, but
before new data items are inserted in the OC. Then, we
have that ϕ′a=ϕtaP

′, where P ′ is the transition probability
matrix of the auxiliary Markov chain modeling the data item
reordering. Since no data items enter OC in this phase, we
have that p′0,0 = 1. However, a data item could be removed
from OC if the channel it belongs to loses its recognition,
which happens with probability (1−νt+1

a [Rc]), or the recog-
nition level of the data items becomes null. In other words

p′i,0 = 1− νt+1
a [Rc], i ∈ [2, R] , (4)

while

p′1,0 = (1− νt+1
a [Rc]) + νt+1

a [Rc]γ(1− rt(a)) . (5)

Formula (5) can be explained by noting that a data item of
a recognized channel can change its recognition level from
one to zero only if it is not in the caches of the encountered
node, and the tagged node applies the discount factor γ to
the data-item recognition level stored in IC (see formula (3)).
Following a similar line of reasoning as in (5) we can compute
the probability that a data item already in the OC moves to
either backwards or forwards sub-queues. More formally we
have that

p′i,i−1 = νt+1
a [Rc]γ

i(1− rt(a)), i ∈ [2, R] , (6)

and

p′i,i+1 = νt+1
a [Rc]rt(a), i ∈ [1, R− 1] . (7)

On the other hand, the probability of remaining in the same
sub-queue after the encounter event at time t+1 is simply
given by the complement of the sum of the probabilities of
moving backwards or forwards and to leave the OC cache.
More formally, it hods that

p′1,1 = 1− (p1,0 + p1,2) (8)

p′i,i = 1− (pi,0 + pi,i−1 + pi,i+1) , i ∈ [2, R− 1] (9)

p′R,R = 1− (pR,0 + pR,R−1) (10)

We now exploit the knowledge of the state vector ϕ′a to
compute the new average number of data items in each sub-
queue i, say B′i, after the internal reordering, which is simply
given by

B′i =

M∑
a=1

ϕ′a[i] . (11)

Step 2: To derive the final status of the OC cache, i.e.
ϕt+1a [i], in this step we first compute the average number
N0,i of new data items that are eligible to enter OC at sub-
queue i. Then, we compute the number Fi of available frees
slot at each sub-queue i of the OC. The Fi value is the key
parameter we need to compute the probability that a new



data item is either discarded or cached, and the probability
that an old data item stored in OC is removed.

To compute the N0,i quantity we should observe that a
new data item not already stored in the OC of the tagged
node is eligible for entering the OC cache in the sub queue i if
and only if it is stored in the caches of the encountered node,
if the channel it belongs to is recognized and its recognition
level before the encounter event was i−1. Formally, this can
be written as follows

N0,i =

M∑
a=1

rt(a)νt+1
a [Rc]υ

t
a[i−1]ϕta[0] . (12)

It is important to remind that N0,i expresses the number
of new data items that can be potentially copied in the OC
cache. However, the actual number of new data items that
are copied in OC will depend on the number of free slots.
More precisely, let us denote with Fi the maximum number
of free slots that new data items can occupy in the sub-queue
i of the OC cache. It holds that

Fi = B −
i−1∑
j=1

Bt+1j , (13)

with F1 = B. Indeed, data items (both new or old) with
recognition level equal to one have the highest precedence
and they can use the entire OC. On the contrary, data items
with recognition level equal to i (i>1) can use only the part
of OC not used by data items with lower recognition levels.
It is also important to point out that in formula (13) we must
use the Bt+1i value because it provide the size of sub-queue i
in OC after completing the internal reordering, the insertion
of new items and the removal of old items. However, it is
quite straightforward to observe that Bt+1i is simply given
by

Bt+1i = min(N0,i +B′i, Fi) . (14)

Formula (14) can be explained by noting that if N0,i+B′i>
Fi, then there are enough free slots in OC for all the new
items that should enter at level i and for the old items that
are already at level i after the reordering. On the other case,
some new items will be discarded and/or some old items will
be dropped till only Fi slots are occupied3. Now, by using
formula (13), (14) and the initial condition F1 =B we can
iteratively compute all remaining Bt+1i and Fi values.

Finally, to compute the state vector ϕt+1
a we introduce an

auxiliary transition probability matrix P such that ϕt+1
a =

ϕ′aP . As observed in formula (12), a new data item is
eligible for entering OC with probability rt(a)νt+1a [Rc]υ

t
a[i−1].

However, that new data item will certainly be fetched by the
tagged node if N0,i ≤ Fi, otherwise only a fraction Fi/N0,i

will be fetched. Thus, the probability p0,i that a new item
effectively enters the OC cache can be expressed as

p0,i =

{
rt(a)νt+1

a [Rc]υ
t
a[i−1] if N0,i ≤ Fi

rt(a)νt+1
a [Rc]υ

t
a[i−1] Fi

N0,i
otherwise ,

(15)

On the other hand, an old data item that was already stored
in the OC cache should be removed if the new data items
have consumed all (or most of the) free slots. More precisely,
we have that

pi,0 =


0 if N0,i +B′i ≤ Fi
1 if N0,i > Fi

1− Fi−N0,i

B′
i

otherwise .

(16)

3Following the same line of reasoning it is easy to compute

the number N̂0,i of new items that will effectively enter the
OC cache at time t+1 as min(N0,i, Fi).

Formula (16) indicates that in case N0,i + B′i ≤ Fi there is
no need of replacing data items because the free slots can
accommodate both new and old data items. On the other
hand if N0,i ≤ Fi a fraction 1 − Fi−N0,i

B′
i

of old data items

has to be removed from the OC cache.

5.5 Item Diffusion
At the beginning of network operations data items are not
replicated, but they are stored in the LI caches of the nodes
that have generated them. Since data items are assumed to
be uniformly distributed over the network nodes, we have
that at the initialization time r0(a) = 1/N . After an en-
counter event occurring at time t the replication of each
data item is given by

rt(a) = r0(a) + (1− r0(a))

[
Pop(a.c)

N
ψta[1]+(

1− Pop(a.c)

N

) R∑
i=1

ϕta[i]

]
(17)

where either the node has generated the data item with
probability r0(a) or it is subscribed to the channel the data
item belongs to and it has a copy of a in its SC cache, or it is
not subscribed to the channel the data item belongs to and
it has a copy of a in one of the sub-queues of its OC cache.

6. PERFORMANCE EVALUATION

6.1 Model Validation
In this section we validate the model accuracy comparing
the analytical results with the results obtained using the
simulator environment presented in [2]. More precisely, we
consider a network composed of 45 nodes, 3 different chan-
nels with 99 data items each (297 data items in total). The
channel popularity follows a zipfian distribution with pa-
rameter 1. In other words, giving a channel j, the proba-
bility of a node to be subscribed to that channel is given
by Pop(j) = N · jβ/

∑M
i=1 i

β , with β = 1. Thus, channel
1 is the most popular, while channel 3 the least popular.
Finally, nodes are assumed to move according to a Ran-
dom Waypoint model in a square area of side 1Km. The
node speed is uniformly sampled in the range [1,1.86] m/s,
which are typical pedestrian speeds [8], and we applied the
techniques described in [13] to make sure that the model
runs in stationary conditions. To better evaluate the impact
of the OC cache on the data dissemination process, in the
following simulations we assume that the content of SC is
not shared during an encounter event. To take into account
this assumption in the model, only formula (17) has to be
changed to remove the ψta[1] term. In the following graphs
average values and 90% confidence intervals are computed
by conducting 100 simulations of each scenario with different
random seeds.

In Fig. 6, 8 and 10 we plot the temporal evolution of the
hit ratio, defined as the fraction of data items of the channel
a node is subscribed to which are stored in SC, using Rc = 5
and R = 5 for all the channels. As the curves indicate, the
larger the OC the shorter the convergence time to hit ratios
equal to one. For instance, all the channels reach a hit ratio
equal to one around 800s when OC size is 3 slots, while
this time is reduced to 200s if the size is 50 slots. Finally,
the comparison between analytical and simulation results
confirm that our model is sufficiently accurate to predict
the temporal evolution of the hit ratios, independently of
channel popularity or OC sizes. In Fig. 5, 7 and 9 we show
the temporal evolution of the data-item replication level
rt(a) for the OC cache, using Rc = 5 and R = 5 for all
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Figure 5: rt(a) for Rc = 5, R = 5 and B = 3.

the channels. For the sake of clarity, the sub-plots in the
bottom rows directly compare the analytical and simulation
results for the same channel, with the most popular channel
in the rightmost sub-plot and the least popular one in the
leftmost sub-plot. Important observations can be derived
from the shown results. First of all, the replication levels
show clear peaks. In addition, the peak recognition value
is reached before for channels with high popularity than for
channels with low popularity. This is due to the fact that
the most popular channel and its data items get recognized
before all the other channels. Thus, the data dissemination
process for the most popular channel can start before than
for other channels. However, after this peak the replication
levels of all the channels decrease. This is a typical behavior
of the recognition heuristic and of the replacement policy
used for the OC cache. Indeed, the more diffused a data
item is (i.e., the more recognized), the less relevant it is for
the dissemination process. This implies that less diffused
items can increment their replication level more easily than
data items of popular channels. This also explains why the
hit ratio of the least popular channel is comparable to the hit
ratio of the most popular channel. The second interesting
observation is that the replication levels converge to steady
values that are almost the same for all the channels. Typ-
ically, this happens when all the data items have reached
the maximum recognition level, i.e. R. In this case, all data
items are considered equivalent for the dissemination process
and they are equally distributed in the OC caches. Finally,
it is important to point out that our model is remarkably
accurate in predicting this stationary behavior of the data-
item replication levels. Furthermore, our model is able to
predict the times at which the replication levels reach their
maximum and minimum values.

6.2 Scalability Analysis
In this section we aim at demonstrating the scalability of
our model. More precisely, an accurate simulation of node
mobility, communication protocols and cache management
policies would be impossible to be executed in feasible time
for large-scale opportunistic networks involving thousands
of nodes and hundreds of channels. In these cases, we ar-
gued that the analysis can help in exploring the behavior
of the system even with large numbers of involved peers
and objects. To validate this statement, we have solved our
model considering a network withN = 1000 nodes, M = 100
channels, and ten objects per-channel (1000 data items in
total). This values have been chosen to better represent a
“long-tail” scenario, where a relatively large number of small
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Figure 6: Hit ratios for Rc = 5, R = 5 and B = 3.
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Figure 7: rt(a) for Rc = 5, R = 5 and B = 10.

groups of users are subscribed to specific channels. Further-
more, channel popularity still follows a zipfian distribution
of parameter 1.

Fig. 11 and 12 show the hit ratios for the most and least
popular channels, respectively, and for various sizes of the
OC cache. As benchmark scheme we consider an epidemic-
based data dissemination protocol, where meeting nodes
only share the data items for the channels they are both
subscribed to. The first important observation is that the
OC cache ensures a substantial performance gain over the
epidemic scheme. In particular, for the least popular channel
the time to reach a hit ratio equal to one is one order of
magnitude shorter when using the OC cache. Nonetheless,
it should to be noticed that, for the most popular channel,
a greater OC does not necessarily imply a performance im-
provement over the epidemic scheme. This is due to the fact
that, with a larger OC, the data items of the most popular
channel quickly reach the maximum recognition thresholdR,
even before they have beed copied in all the nodes subscribed
to their channel. However, when a data item is highly rec-
ognized it is less relevant for the data dissemination process,
and less diffused items have higher priority during item re-
placements in OC. The combination of these behaviors may
negatively affect the effectiveness of the diffusion process for
the high popular channels.

The better understand the impact of channel recognition
thresholds on these behaviors, Fig. 13 show the hit ratios of
the most and least popular channel for an OC size equal to
ten slots and two different channel recognition thresholds.
As expected, the larger the channel recognition threshold,
the slower the data dissemination process. However, while



1 10 100 1000 10000

Time

0

0.2

0.4

0.6

0.8

1

H
it 

R
at

io

MOD. Most Pop. Channel
MOD. Mid Pop. Channel
MOD. Least Pop. Channel
SIM. Most Pop. Channel
SIM. Mid Pop. Channel
SIM. Least Pop. Channel

Figure 8: Hit ratios for Rc = 5, R = 5 and B = 10.
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Figure 9: rt(a) for Rc = 5, R = 5 and B = 50.

for the most popular channel this delay seems to affect all
hit ratio values at the same manner, in the case of the
least popular channel high hit ratio values are more dis-
advantaged than lower ones. We have also investigated a
network scenario where the channel recognition threshold
is set to zero for all the channels. In this case, all the
channels are considered recognized from t = 0 and there
are no differences between the time instants at which the
data dissemination process starts for channels with different
popularities. Then, in Fig. 14 we show the hit ratios of
the most and least popular channel for two different OC
sizes. On the other hand, the size of the OC cache has still
a remarkable impact on the convergence times of the hit
ratios. In the last set of results, shown in Fig. 15, we use
the same parameter setting used for obtaining the results in
Fig. 14, but we increase the number of nodes by ten times
(10000 nodes in total).We can observe that when increasing
the number of nodes the most popular channel does not
experience significant improvements in the convergence time
of the hit ratios. On the other hand, a quite significant
improvement can be observed for the least popular channel
because a larger pool of OC caches ensures that more copies
of the most rare data items are circulating in the network.

7. CONCLUSIONS
In this paper we have developed an analytical model to
describe the performance of a content dissemination mech-
anism for opportunistic networks that relies on a cogni-
tive scheme, known as the recognition heuristic, to decide
whether to store a copy of data items fetched from the caches
of encountered nodes. Our model takes into account the
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Figure 10: Hit ratios for Rc = 5, R = 5 and B = 3.
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Figure 11: Hit ratio of the most popular channel for
varying B values, Rc = 5 and R = 5.

different popularities of content types, and highlights the im-
pact of the shared memory contributed by individual nodes
to make the dissemination process more efficient. In partic-
ular, we have shown that our model is sufficiently accurate
to capture the transient and steady-state behaviors of key
performance indexes of the data dissemination system, such
as data replication levels and hit ratios. Furthermore, the
low computational complexity of our model has allowed us
to explore network scenarios with large numbers of involved
peers and objects, which are problematic to study using only
a simulation-based approach. Future work involve the ex-
tension of our model to consider heterogeneous environments
where there may be nodes with different mobility patterns,
or data items may have different priorities. Furthermore,
we plan to study how to extend the recognition heuristic
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Figure 12: Hit ratio of the least popular channel for
varying B values, Rc = 5 and R = 5.
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to include mediators that take into account social-based
information about the users.
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