
Distributed protocols for Ego Betweenness
Centrality computation in DOSNs

Barbara Guidi
Department of Computer Science,

University of Pisa, Italy
Email: guidi@di.unipi.it

Marco Conti
IIT-CNR

via G. Moruzzi, 1
56124 Pisa, Italy

Email: m.conti@iit.cnr.it

Andrea Passarella
IIT-CNR

via G. Moruzzi, 1
56124 Pisa, Italy

Email: a.passarella@iit.cnr.it

Laura Ricci
Department of Computer Science,

University of Pisa, Italy
Email: ricci@di.unipi.it

Abstract—Online Social Networks (OSNs) tipically exploit a
logically centralized infrastructure which has several drawbacks
including scalability, privacy, and dependence on a provider.
In contrast to centralized OSNs, a Distributed Online Social
Network helps to lower the cost of the provider drastically, and
allows better control of user privacy. A distributed approach
introduces new problems to address, as data availability or
information diffusion, which require the definition of methods for
the analysis of the social graph. This paper focuses the problem
of the evaluation of the centrality of a nodes in a Distributed
Online Social Network and proposes a distributed approach for
the computation of the Ego Betweenness Centrality, which is an
ego-centric method to approximate the Betweenness Centrality.
We propose a set of algorithms to compute the betweenness
centrality in static and dynamic graphs, which can be directed or
undirected. We propose both a broadcast and a gossip protocol to
compute the Ego Betweenness Centrality. A set of experimental
results proving the effectiveness of our approach are presented.

Keywords—Ego Betweenness Centrality, P2P, DOSN, Social
Network Analysis.

I. INTRODUCTION

Online Social Networks (OSNs) have become a common
ground where people are generating and consuming huge
amount of information. The currently popular OSNs are cen-
tralized which means they are based on centralized servers
storing all the information. In this way, users have less control
over their own data and their data is scattered over the internet
in different OSN providers which usually do not support data
interoperability. Centralized social networking services present
several problems that include both technical and social issues
that emerge as a consequence of the centralized management
of the services.
A current trend for developing Online Social Network services
is towards the decentralization of the OSN infrastructure. A
Distributed Online Social Network (DOSN) [1] is an Online
Social Network implemented on a distributed information
management platform, such as a network of trusted servers,
P2P systems or opportunistic networks.
Decentralizing the existing functionalities of Online Social
Networks requires finding ways for providing robustness
against churn, distributing storage of data, propagating updates,
defining an overlay topology and a protocol enabling searching
and addressing, etc. The problem of dynamism is related
to social and infrastructure dynamism. The social dynamism
is present in social relationships due both to the relations
updates between users and to the varying number of users

of the DOSN. The infrastructure dynamism is related to
the underlying overlay network. Nodes may join/leave the
underlying network, so that the corresponding user has a state
that indicates its availability (online/offline). Nodes should be
connected according to their social connections in order to
cluster friends in the overlay network. This should facilitate
operations as information diffusion or data storage and each
update of profile from one user must be diffused to all its social
connections. In term of node availability, information diffusion,
but also network analysis, a centrality metric is needed. The
centrality of a node in a network is a measure of the structural
importance of the node. A central node, typically, has a
stronger capability of connecting to other network nodes. There
are several ways to measure centrality. The three most widely
used centrality indexes are the degree centrality, closeness
centrality and betweenness centrality [2]. The Betweenness
Centrality index is the most complex and best measure suited
for describing network communication based on shortest paths
and predicting the congestion of a network. The computation
of the Betweenness Centrality is a high time consuming task
and, considering a distributed network, such as a P2P network,
where nodes have a local knowledge of the network, it is not
easily applicable. A more computationally efficient approach
is compute the betweenness on the ego network as opposed
to the global network topology. An ego network is a network
consisting of a single actor (ego) together with the actors it is
connected to (alters) and all the links among those alters [3].
A betweenness centrality based on an ego-centric approach,
known as Ego Betweenness Centrality can be considers a good
solution to evaluate centrality in a DOSN.
In this paper we consider the problem of computing the Ego
Betweenness Centrality in Distributed Online Social Networks,
and we propose two distributed protocols for the computation
of Ego Betweenness Centrality. Furthermore, we evaluate the
Ego Betweenness Centrality on undirected graphs by using
the method proposed in [4], and we study the Ego Between-
ness Centrality for directed graphs. The rest of the paper is
structured as follows. We discuss the related work in Section
II, the overall scenario in Section III, and the concept of the
Ego Betweenness Computation in undirected and directed in
graph in the sections IV and V. We provide two distributed
protocols for the EBC computation in Section VI. In Section
VII we present the evaluation of our proposal. We report some
conclusions in Section VIII.

II. RELATED WORK

Centrality is a fundamental concept in social network
analysis to study different properties of the networks. Free-
man [2] provides three basic concepts for centrality: degree,
closeness and betweenness. The betweenness centrality is one
of the most used centrality metrics. A more computationally
efficient approach is to compute the betweenness on the ego
networks. In Social Networks, an ego network is defined as
a network of a single actor together with the actors it is
directly connected to. The concept of Betweenness Centrality
of an ego network was first introduced by [2]. [4] presents
an efficient centralized and simple algorithm for calculating
the betweenness score. The simulation study indicates that the
local ego betweenness is highly correlated with the between-
ness of the actor in the complete network. A similar analysis
is shown in [5]. Classic betweenness centrality algorithms are
inefficient in a distributed environment, and in most cases they
are inapplicable because they require a complete knowledge
of the network. [6] and [7] present egocentric betweenness
centrality as the basis for a distributed routing protocol in
a delay tolerant network. [8] proposes a framework for the
decentralized calculation of different centrality indices which
can be applied to many complex networks, such as wireless
multi-hop ad-hoc communication networks, router networks,
and P2P networks.

A. Centrality Indexes

The centrality indexes compute the importance (as central-
ity) of a node into a network, such as Distributed Online Social
Networks. In the context of social network analysis several
centrality indexes have been proposed.

The Degree Centrality index provides information about the
number of links of each node, and it is computed as defined
by the Equation (1), where δ(v) is the degree of the node v.

CD(v) =
δ(v)

|V | − 1
(1)

From the point of view of a DOSN, the Degree Centrality can
be seen as the number of social relationships of a node.

The Closeness Centrality [9] provides information about
the diffusion of information, from a node to all the other
nodes in the network. Closeness Centrality is computed by the
Equation (2), where d(v, t) id the minimum distance between
the node v and the node t.

CC(v) =

∑
t∈V d(v, t)

|V | − 1
(2)

Since in a DOSN the information is principally directed to
2-hops nodes, this measure is not very relevant for DOSNs.
This index can be used when the information have to be
diffused among all nodes in the network.

The Betweenness Centrality (BC) is one of the most
famous centrality indexes. It has been introduced in [10] and
[2], and it is used to evaluate the influence of a node on the
flow of information in a social network context. The BC of a
node v evaluates the number of shortest paths σs,t(v) between
a couple of nodes s and t that pass through v (Equation (3)). A
node with a high betweenness centrality value is more likely

to be located on the shortest paths between multiple node pairs
in the network, and thus more information must travel through
that node.

C(v) =
∑
v 6=s,t

σs,t(v)

σs,t
(3)

Since the BC requires the shortest paths computation for
each couple of nodes, it requires a computation cost equals to
O(nm), where n is the number of nodes in the graph, and m
is the number of edges of the graph. Furthermore, the principal
models for the BC computation consider a static graph. If the
size of the graph varies, then the BC value has to be computed
again. In a DOSN, this index is very important and it can be
used to know which nodes are central in term of the network
topology. It follows that it may well be useful to calculate the
betweenness centrality in a distributed way.

III. SCENARIO

In a general DOSN peers are connected according to their
social links, which can represent social relationships or other
social aspects depending on the DOSN model. In order to
create a distributed network, an interconnecting network has to
be created, known as overlay network. The overlay network is a
layer on top of the physical network connections, which creates
transparent services to handle the virtual topology of the net-
work. Overlay networks offer services for the communication
and connection handling between the peers in the network,
including peers that are not directly connected to the peer. In
particular we talk about a friend-to-friend (or F2F) computer
network, which is a type of P2P network in which users only
make direct connections with people they know. In this kind
of environment, the overlay network is called social overlay:
peers are connected to known peers, and an edge between a
pair of nodes indicates that a tie exists between two adjacent
nodes. Social overlays are expected to improve:

• privacy, non-friends do not see the information dis-
seminated,

• locality, due to network homophily,

• cooperation, due to friendship.

Each peer p knows its social relationships and it maintains a
view which contains the descriptors of all the nodes which are
directly connected to p.

IV. EGO BETWEENNESS CENTRALITY COMPUTATION IN
UNDIRECTED GRAPHS

The Ego Betweenness Centrality is the value of the Be-
tweenness Centrality computed using only the nodes and the
links in the ego-network of a node. The computation of the
Ego Betweenness Centrality for an undirected graph has been
proposed in [4]. Given An the adjacency matrix of the ego
network of n, EN(n), the EBC is the sum of the reciprocal
values A2

n(i, j) such that An(i, j) = 0, as defined in (4).

EBC(n) =
∑

An(i,j)=0,j>i

1

A2
n(i, j)

(4)

The correlation between BC and EBC has not a theoretical
link [4]. However, it has been verified on random networks and
real networks composed by a little amount of nodes. and we
have computed the correlation through experimental results.

A

B

C

D E F

G

H

I
L

M
N

Fig. 1. An example of network graph

Figure 1 shows a simple graph, where the nodes E and
F are very important because they have a high BC and
EBC values because of the link between them permits the
information diffusion within the two independent communities
composed respectively by {A,B,C,D,E} e {F,G,H,I,L,M,N}.

A

B

C

D

E

Fig. 2. Ego Network of the node E

Figures 2 shows the ego network of the node E. The alter
D is able to communicate directly with {A,B,C}. The same for
the node B. Nodes A and C are able to communicate through
E (path A-E-C), or through B (path A-B-C), or through D
(path A-D-C). Consider the adjacency matrix of the node E:

AE =

E A B C D

E 0 1 1 1 1
A 1 0 1 0 1
B 1 1 0 1 1
C 1 0 1 0 1
D 1 1 1 1 0

 (5)

and its square:

A2
E =

E A B C D

E 4 2 3 2 3
A 2 3 2 3 2
B 3 2 4 2 3
C 2 3 2 3 2
D 3 2 3 2 4

 (6)

The matrix A2
E(i, j) provides the number of geodesics of

length 2 between the nodes i and j. The adjacency matrix is
symmetric (due to the undirected graph) and the computation
considers only the nodes i e j such that AE(i, j) = 0 which
are above the diagonal. The node E has an ego betweenness
centrality EBC(E) = 1

3 , since it contributes to one path out
of three possible paths between A and C.

The BC computation requires the solution of the shortest
paths problem between a node and all the other nodes in
the network. This problem can be computed in O(nm). [11]
shows an approximation method to compute the BC, and the
computation complexity is O(

√
nm). The EBC computation

requires a computation complexity equal to O(n3) for a square
matrix of nxn dimension, where n is the number of nodes
contained into the ego network.

V. EGO BETWEENNESS CENTRALITY COMPUTATION IN A
DIRECTED GRAPH

In some scenario, the communications are not bidirectional
and the resulting graph is a directed graph. For example,
Twitter social graph is a directed graph, while Facebook social
graph is an undirected graph. The EBC is proposed and
evaluated for undirected graph in [4]. We have analysed the
computation of the BC on a directed graph as proposed in [12],
and we propose a method to compute the EBC on a directed
graph with an ego-centric approach. The proposed protocols
can be used with both type of graphs. The Betweenness
Centrality, as proposed in [2], may be normalised by dividing
through the number of pairs of vertices not including v,
which for directed graphs is (n − 1)(n − 2) [12], and for
undirected graphs is (n − 1)(n − 2)/2. The computation of
the EBC on a directed graph requires some modifications to
the basic algorithm. The adjacency matrix shown in (5), is
not symmetric, and the computation does not consider only
the nodes i e j such that AE(i, j) = 0 which are above the
diagonal, but also the the nodes i e j such that AE(i, j) = 0
which are under the diagonal. Furthermore, in A2[j, k] we have
the number of oriented path starting in j and terminating in
k. Nodes j and k are alters of the ego node i (A[i, k] = 1
and A[i, j] = 1). If A[j, i] = 1 and A[j, k] = 0, then
exists a minimal oriented path from j to k passing through
the ego node i. We define the computation of the EBC on
directed graph by adding the following step: given the oriented
adjacency matrix A for the ego node with ID equals to k, an
oriented path between i and j passing through the ego node
has to exists and this implies that A[i][k] = 1.

VI. DISTRIBUTED PROTOCOLS FOR EBC COMPUTATION

We propose two protocols to compute the EBC on a generic
ego network social overlay. The proposed protocols provide
a simple mechanism to compute the EBC by building the
adjacency matrix of each ego node. The two protocols differ
from each other in the update phase of the adjacency matrix.
The first protocol is Ego-BC broadcast (EBC Broadcast),
and each node maintains the adjacency matrix up-to-date by
doing communications with all the nodes in its ego network.
The second protocol called Ego-BC Gossip (EBC Gossip)
maintains the adjacency matrix up-to-date through specific
gossip techniques [13]. Both protocols can be used both with
a directed and with an undirected graph.
For each node v, we define N(v) as the set of nodes into its
the ego network, and Ev the set of edges between the node v
and the set of nodes into the ego network.

A. EBC Broadcast Protocol

In a DOSN, peers can be mobile devices or PC. By
considering a mobile device, it is connected to the network

with a stable or unstable Internet connection. This kind of
protocol can be used when a peer uses an unstable connection
or in case of opportunistic communications. Each node, in a
single step, sends to its neighbouring nodes information about
its EBC. The protocol is structured according to the following
steps:

• Connection, when a node v and a node n join to
the overlay, they exchange their neighbourhood N(n)
and N(v). Furthermore, the nodes v e n inform their
neighbours N(v) e N(n) about the updates into their
ego network. This phase is described by the algorithm
1. In this phase, each ego node v exchanges O(|N(v|)
messages, which are the only essential messages to
notify the exchanges into the ego network.

Algorithm 1 The node v is connecting to alter
function CONNECT(alter)

send MessageUpdate(N(v),v) to alter;
send MessageUpdate(alter,v) to N(v);
N(v)=N(v) U alter;

end function

• Disconnection, when a node v voluntary leaves the
system, it sends a notification message (disconnect)
to its neighbours in N(v).

Each node v has a handler for receiving messages, which
specifies the steps executed by v for each message. When an
ego node v receives a disconnect message from the node
n, it updates its local data structures and communicates to
neighbouring nodes the removal of the node n from its ego
network through the MessageDelete message. Each ego node
v exchanges only O(|N(v)|) messages, where |N(v)| is the
number of neighbouring nodes. When the node v receives
messages containing updates about the ego network of its
neighbours, it updates its local data structures.

When a node v login into the system, it executes one
or more connect procedure calls taking into account the
active nodes of its ego network. Each instance of the protocol
communicates only the occurred changes in its ego network,
instantly or at a frequency that is considered appropriate.

B. EBC Gossip Protocol

The reference model of this protocol is SIR (Susceptible,
Infected, Removed) [13]. The protocol is a notify-pull protocol.

The protocol exploits two types of messages:

• UpdateRequest. It is a request message sent from
the node a to the node b to ask information about
neighbouring nodes N(b) of node b.

• UpdateReply. It is the response message sent from
node b to the node a containing information about
neighbouring nodes N(b) of the node b

In the pull phase, nodes send update requests to neighbor-
ing nodes of which they do not yet know the ego network.
A node can finish the pull phase when it has received all the
information about the ego networks of its neighbors.

Let Kv the set of the alters of which the ego node v wants
to know the ego network, the algorithm VI-B defines the pull
phase, which is periodically executed (every ∆1 time unit) for
each node, until Kv = ∅.

The handler OnUpdateRequest manages the update re-
quests received from the other nodes in the network. When
the node v receives a update request (UpdateRequest) from a
node n, it replies with a UpdateMessage message informing
all nodes about its ego network.

The handler OnUpdateReply manages the UpdateReply
messages. The function update executes the update of the local
data structures as described into the received message.

Given a node v, it is able to know all the information about
the neighbouring nodes N(v) ego networks, after a certain
number of cycles.

Algorithm 2 Pull
while Kv 6= ∅ do

select random alter n ∈ Kv;
Send UpdateRequest to n;
Kv = Kv − {n};
wait ∆1;

end while

The notify phase, described by the algorithm VI-B permits
to communicate all the changes occurring into the ego network
of the node v to all the nodes n which have the node v as
an alter node. Let Ev

o the set of nodes that need to know
the notification of the update o relative to the ego network
of the node v. The notification phase is periodically executed,
each ∆2 time units, and it terminates when all the updates
are notified. The selection of the node n to which have to
be sent the updates can be random or based on the number
of updates to notify. Furthermore, it is possible to reduce the
number of exchanged messages with the aggregation of the all
notifications o (the set {o | n ∈ Ev

o}) into a single message.

Algorithm 3 Notify
function NOTIFY

while (∃ o : Ev
o 6= ∅) do

select n ∈ Ev
o ;

Send UpdateMessage({o | n ∈ Ev
o}) to n;

for {o | n ∈ Ev
o} do

Ev
o = Ev

o − {n};
end for
wait ∆2;

end while
end function

The two phases of the protocol can be separated and
executed with different frequency depending of the dynamics
of the network.

Let us now show how algorithms and are exploited to
implement the basic operations of a peer participating to a
social overlay:

• Join the network. When a node joins the network for
the first time, it executes one or more Pull phases
(Algorithm VI-B).

• Add a new link. When a new link between two nodes
a and b is created, the two nodes update the list of
nodes for which is unknown the neighbouring nodes
Ka = Ka ∪ b e Kb = Kb ∪ a. So that, it is executed
a Pull phase (Algorithm VI-B) to request the update.
Furthermore, the nodes a and b add a new entry into
their lists of updates to report Ea

ob
e Eb

oa (they notify
the presence of a new link to their neighbouring nodes
(Algorithm VI-B)).

• Remove a link. When a node v removes a link to
its alter a ∈ N(v), it notifies the removal to its
neighbouring nodes by inserting into its updates list
the notification oa relative to the removal of the node
a, Ev

oa . (Algorithm VI-B).

• Updating of link properties. When a node v updates
its links properties p, it notifies the changes to its
neighbouring nodes by inserting into the updates list
Ev the entry relative to p (Algorithm VI-B).

The Pull phase for a generic node v, explained by the algorithm
VI-B, terminates after O(|N(v)|)∆1 gossip cycles and it
requires a request message (UpdateRequest) and a response
message (UpdateMessage) for each cycle. The Notify phase
requires a single message for each gossip cycle ∆2 and the
termination depends by the temporal characteristics of the
system.

VII. EXPERIMENTAL RESULTS

The proposed protocols have been implemented using the
P2P Peersim simulator [14], which is written in java. The used
dataset is obtained by a Facebook Regional Network1 and it
is composed by:

• A Social Graph: an undirected graph which defines
the whole network structure. An edge is a relatioships
between two Facebook users.

• Four Interaction Graphs: directed graphs which define
the interaction between users within different time
windows: last month, last 6 months, last year, 2004-
2008. The Interaction graph contains an edge for each
interaction (Post or Photo Comment) between two
users happened in the considered time window.

The Social Graph has been used to evaluate the EBC com-
putation on undirected graphs and the Interaction Graph to
evaluate the EBC on directed graphs. If a user j has done an
interaction, i.e. a comment, to a user i, a link from j to i is
created in the Interaction Graph.

Table I shows some characteristics of the Social Graph
computed in [15].

Nodes 3,097,165
Edges 23,667,394
Average Degree 15.283
Average Clustering Coefficient 0.098
Assortativity 0.048

TABLE I. SOCIAL GRAPH

1online available http://current.cs.ucsb.edu/facebook/

In a dynamic environment, nodes can be online and/or
offline. We have evaluated the computation of the EBC for
two different scenarios:

• static network. The computation analyzes all the social
relationships, independently from the online/offline
status of each nodes. Each node is considered online
and the static EBC (StaticEBC) evaluates the social
importance of each node according to its social rela-
tionships, independently from the network configura-
tion.

• dynamic network. The computation analyzes the im-
portance of a node with respect to its online/offline
status. The dynamic EBC (DynamicEBC) does not
consider the offline nodes. To simulate node churn,
we have used a well-known churn model [16].

We have evaluated the correlation between the BC and the
EBC on the social graph and on the interaction graphs by using
the Pearson correlation. We have evaluated our protocols and
the correlation between EBC and BC on directed/undirected
graphs by extracting different networks randomly chosen from
the data set and by varying the number of nodes.

Fig. 3. Normalized values for BC and EBC for a random network extracted
from the data set and composed by 1595 nodes

Figure 3 shows the correlation between BC and EBC for an
undirected graph containing 1595 nodes, and figure 4 shows
the correlation for a directed graph containing 5000 nodes.
There is a strong correlation between the two metrics, and
they are the same for nodes with centrality equals to 0.

We have evaluated the average number of messages sent for
each protocol by varying the number of nodes in the network
on 10 iterations (Table II). The number of messages sent by
the broadcast protocol are on average about three times the
number of messages sent by the gossip protocol. The broadcast

#Nodes EBC Gossip Protocol EBC Broadcast Protocol
1000 29646 64580
2000 62581 160006
3000 121220 358254
4000 100824 249187
5000 241339 776880

TABLE II. NUMBER OF MESSAGES OF THE BOTH PROTOCOLS BY
VARYING THE NUMBER OF NODES

protocol has been introduced to provide a fast message delivery
between nodes, but this implies a larger number of messages.

Fig. 4. Normalized values for BC and EBC for a random network extracted
from the data set and composed by 5000 nodes

The gossip protocol provides message delivery with a small
number of messages, and it can be used to prevent the network
congestion or in case of devices with low capabilities.

A. EBC in a dynamic environment

In a distributed environment, peers can be online or offline.
The status of peers changes the underlying graph on which
the EBC is calculated. Each time the ego network of a
peer is changed, the EBC has to be computed again. We
have evaluated how often this computation is required by
considering a network of 1000 peers and by executing ten
experiments. The simulation is organized on 150 time instants,
where a time instant t ∈ [0, 149] corresponds to a minute
(in according to the churn model [16]). We have evaluated
the average number of time instant after that a peer has to
recalculate the EBC.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F(
x)

Average Time Interval Computation EBC

Fig. 5. Evaluation of how often the EBC computation is required in a network
of 1000 nodes and 150 time instants.

Figure 5 shows, for each experiment, on the x-axis the time
instants x, while on the y-axis the cumulative function of the
number of nodes which have to recalculate the EBC at a time
instant less or equals to x. The results show that about 50%
of nodes recalculate the EBC after an average number of time
instants less than 90 and 140. Furthermore, the majority of
nodes performs the calculation of the EBC after at least 60
cycles of simulation.

VIII. CONCLUSION AND FUTURE WORKS

In this work, we have evaluated a distributed computation
of the EBC on undirected graphs, and we have studied the
computation of the EBC on directed graph. Furthermore,
we have provided two distributed protocols which can be
used on directed and undirected graphs. The experimental
results show the strong correlation between BC and EBC
on directed/undirected graphs extracted from the Facebook
regional data set. Furthermore, we have evaluated by using
a well-known churn model how many times a node has to
recalculate its ego betweenness. In ongoing and future work,
we anticipate that our focus will be on optimizing the EBC
recalculation in dynamic environment and the study of the EBC
computation in a specific social overlay by using a weighted
version of the social graph.

REFERENCES

[1] A. Datta, S. Buchegger, L. Vu, T. Strufe, and K. Rzadca, “Decentralized
online social networks.” in Handbook of Social Network Technologies,
B. Furht, Ed. Springer, 2010, pp. 349–378.

[2] Freeman, Linton C., “A Set of Measures of Centrality Based on
Betweenness,” Sociometry, 1977.

[3] L. C. Freeman, “Centered graphs and the structure of ego networks.”
Mathematical Social Sciences, vol. 3, no. 3, pp. 291–304, 1982.

[4] M. G. Everett and S. P. Borgatti, “Ego network betweenness.” vol. 27,
no. 1, 2005, pp. 31–38.

[5] P. V. Marsden, “Egocentric and sociocentric measures of network
centrality.” Social Networks, vol. 24, no. 4, pp. 407–422, 2002.

[6] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in Proceedings of the 8th ACM
international symposium on Mobile ad hoc networking and computing,
ser. MobiHoc ’07. ACM, 2007, pp. 32–40.

[7] E. M. Daly and M. Haahr, “Social network analysis for information flow
in disconnected delay-tolerant manets,” IEEE Transactions on Mobile
Computing, vol. 8, no. 5, pp. 606–621, May 2009.

[8] K. Lehmann and M. Kaufmann, Decentralized Algorithms for Evalu-
ating Centrality in Complex Networks, ser. WSI: Wilhelm-Schickard-
Institut für Informatik. WSI, 2003.

[9] Gert Sabidussi, “The centrality index of a graph,” Psychometrika,
vol. 31, no. 4, pp. 581–603, 1966.

[10] J. M. Anthonisse, The rush in a directed graph. SMC, 1971.
[11] S. Y. Chan, I. X. Leung, and P. Liò, “Fast centrality approximation

in modular networks,” in Proceedings of the 1st ACM international
workshop on Complex Networks in Information and Knowledge Man-
agement, ser. CNIKM ’09. ACM, 2009, pp. 31–38.

[12] D. R. White and S. P. Borgatti, “Betweenness centrality measures for
directed graphs,” Social Networks, vol. 16, no. 4, pp. 335–346, 1994.

[13] Márk Jelasity, “Gossip,” in Self-organising Software, ser. Natural Com-
puting Series, G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageor-
gos, Eds. Springer-Verlag, 2011, vol. 12, pp. 139–162.

[14] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator.” in
Peer-to-Peer Computing, H. Schulzrinne, K. Aberer, and A. Datta, Eds.
IEEE, 2009, pp. 99–100.

[15] V. Arnaboldi, M. Conti, A. Passarella, and F. Pezzoni, “Analysis of ego
network structure in online social networks,” in SocialCom/PASSAT.
IEEE Computer Society, 2012, pp. 31–40.

[16] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling heteroge-
neous user churn and local resilience of unstructured p2p networks.”
in Proceedings of the Proceedings of the 2006 IEEE International
Conference on Network Protocols. IEEE Computer Society, 2006,
pp. 32–41.

