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Abstract—In a pervasive networking scenario like the Cyber-

Physical World convergence, personal mobile devices must assist

their users in analysing data available in both the physical and

the virtual world, to help them discovering the features of the

environment where they move. Mobile Social Networking applica-

tions are an example of Cyber-Physical applications, supporting

users in their interactions in both worlds (e.g., during physical

encounters, as well as during online interactions). It is very

important, therefore, that nodes autonomously detect latent and

dynamically changing social structures, resulting from common

mobility patterns of users and physical co-location events. To this

end, in this paper we propose a novel dynamic and decentralised

community detection approach, whereby the nodes’ behaviour

is inspired by that of their human users, if they were exposed

to the about physical encounters with other users, and would

have to perform the same detection task. Specifically, we use

cognitive heuristics, which are simple, low resource-demanding,

yet effective, models of the human brain cognitive processes. At

each node, the approach proposed in this paper, starting from

the observed contact patterns with other nodes, estimates the

strength of social relationships and detects social communities

accordingly. An initial simulation evaluation shows that nodes

are able to correctly identify the social communities that exist in

their environment and to efficiently track change of membership

due to modifications of the users’ movement patterns.

I. INTRODUCTION

The ubiquitous and pervasive presence in the physical
world of devices that sense data from the physical environment
and produce and exchange information among themselves is
leading to a complex information scenario. This is known as
the Cyber-Physical World (CPW) convergence scenario [1],
and it is characterised by a mutual and continuous flow of
information between the physical world and the cyber world.
Information spread in one world influences the decision taken
in the other, and vice-versa.

In this context, Mobile Social Networking applications
(MSN) are emerging as one of the most interesting classes of
pervasive applications. MSN applications rely on information
about the users behaviour in order to deliver social oriented
services. Among others, the problem of understanding the
dynamic structure of social relationships induced by nodes’
mobility is particularly important and challenging. These social
relationships and structures are not necessarily the type of
stable social relationships that users establish, for example, in
Online Social Networks. Rather, they capture implicit struc-
tures (possibly unknown to the users themselves) that emerge
from similarity of mobility patterns and regular physical co-
location. Relevant examples of this class of social communities
are groups of people that regularly commute together on a daily
basis, people working in the same area of a city, etc. Recent
results [2], [3] have shown that physical co-location is highly

correlated with the existence of social relationships. Having,
therefore, the possibility to dynamically detect this type of
social structures is one of the enabler for realising pervasive
applications in MSN environments. Opportunistic networks [4]
are considered as one of the natural networking technology
for supporting MSN applications, and we also consider such
a networking environment for our purpose. In opportunistic
networks, nodes detect physical contacts between each other
in order to exchange information for example for the sake of
disseminating data among interested users. Contact detection
provided by opportunistic networks is the key enabler we use
for our community detection algorithm.

Bringing forward the Cyber-Physical convergence view, in
this paper we propose a novel dynamic community detection
algorithm whereby nodes behave exactly as their human users
would, if they were exposed to the same information about
physical contacts and co-location events, and would have to
group the other encountered people into a set of social commu-
nities. In other words, we see users’ mobile devices as proxies
of their human users in the cyber world. To this end, we base
our algorithm on a set of very simple, yet effective rules known
in the cognitive psychology field as cognitive heuristics [5]. In
general, cognitive heuristics are functional models of how the
human brain processes information it is exposed to, and takes
decisions using minimal resources and based on partial and
possibly noisy information. Algorithms derived from cognitive
heuristics have been already successfully exploited to define
data and knowledge dissemination schemes (e.g. [6], [7]) in
opportunistic networks.

In this paper, we exploit cognitive heuristics to allow nodes
to autonomously become aware of the structure of the social
environment they are moving in. Such a mechanism should
not produce a static picture of the social bindings of one node
with the others. Rather, it should allow nodes to be responsive
to the continuous changes in the context they are exploring,
in order to have a time-varying representation of the existing
social groups that form and possibly dissolve over time. To
this end, we exploit the concept of memory activation, which
is the cognitive model describing the process whereby the
brain keeps track of other people we encounter, also taking
into account the frequency with which we meet them. We
couple this mechanism with other cognitive rules by which the
brain groups in the same category people that produce similar
memory activation patterns.

In the next section, we briefly describe some of the
existing approaches for the community detection problem. In
Sec. III we describe how cognitive heuristics can be used to
derive a categorisation of contacts in the physical world into
communities of socially related nodes. In Sec. IV we give



an initial evaluation of the proposed solution in a simulated
environment, while Sec. V concludes the paper.

II. RELATED WORK

There exists a vast literature about the community detection
problem [8]. However, many of the solutions used in complex
networks analysis assume the exploitation of global knowledge
and/or global communication capabilities (e.g. [9], [10], [11],
[12]). Therefore, they are unlikely to fit a dynamic, real-time
scenario as the one envisioned in this paper. On the other hand,
other algorithms assume that each node in the network can rely
only on its own local, limited view to build a picture of the
social network. For example, some proposals make use of the
contact duration between nodes to derive a representation of
the social ties existing among peers in the network ([13], [14],
[15]).

In this paper, we propose to face the problem from a differ-
ent perspective. Specifically, we propose to exploit some of the
cognitive processes that are used by the human brain to rapidly
evaluate its social strength with another interacting person [16],
and take decisions accordingly [17]. Cognitive heuristics have
been used in opportunistic networks to successfully design
effective data and knowledge dissemination schemes [6], [18],
[19], [20], [7]. The main features of cognitive heuristics is that
they usually require only minimal information to be effective.
This is the key advantage of our approach with respect to
other distributed solutions proposed in the literature. In fact,
as shown in detail in the next section, our algorithm requires
that each node keeps track of only the most recent contact
times with other nodes and do not require the exchange of data
between nodes upon contact, in order to compute their social
affinity. Moreover, other approaches in the literature require
that nodes exchange their list of most similar other peers
(e.g. [13]) and/or have to continuously perform much complex
(and computationally intensive) operations (like the operations
over affinity matrices and the computation of eigenvalues)
upon contact in order to derive the right social categorisations
of other encountered nodes. Finally, the cognitive heuristic
rules used in our proposal are designed to rapidly detect and
adapt to changes in the environment, making them a suitable
candidate for a complex task, like the community detection, in
a dynamic scenario, like the CPW convergence scenario.

III. COMMUNITY DETECTION IN OPPNETS USING
COGNITIVE HEURISTICS

Recent results in the cognitive science field highlight the
fact that patterns of encounters between humans can be used
by the brain to predict the probability of future meetings with
other people [16], [21].

Specifically, Pachur et al. [16] , observe that there are three
main factors that influence the response of the memory when
a meeting between persons occur. These are:

• frequency effects, i.e. the rate at which previous en-
counters happened in the past

• recency effects, i.e. the time passed from the last
meeting

• spacing effects, i.e. how previous contacts where dis-
tributed over time, e.g. they all happened in a short
time (massed contacts) or they where separated by
each other by a long amount of time (spaced contacts)

A model that aims at describing the memory response to
the patterns of encounter with other subjects should take into
account all these effects. To this end, Pachur et al. [16] exploit
the fact that humans maintain a declarative memory about
the other people they met in the past. In this memory, for
each social peer i, the brain keeps a record where it stores the
times when previous encounters with i happened. When a new
meeting with i happens, it produces an activation in memory.
This activation measures the strength with which the brain is
able to recall i, and it is derived from the pattern of occurrence
of meetings with i. Activation about i can then be computed
as:
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where t is the time of the new meeting, t1 . . . tk are the
times of the previous encounters with i that the brain is
able to recall, and d is a decay parameter. Note that, using
Equation 1, the relevance of a previous encounter at a time
t
j

decays exponentially over time. This makes the memory
activation value more adaptive and responsive to changes
in the environment, like a change in the relationship with
another person, resulting in a different contact pattern. As a
consequence of this fact, the brain does not need to keep track
of all the previous meetings with other people.

In addition to this, Pachur et al. [16] also observe that
the dynamics of physical contacts between humans seem to
follow general regularities, where frequent contacts occur with
only a very small number of other persons, while with most
people contact is relatively rare. They argue that this is due
to the fact that contact patterns are intrinsically related to the
social ties that exist between individuals. Therefore, the social
distance between two persons is highly associated with their
probability of contact. This correlation has been also observed
in other works in the ICT field [3], [2]. Pachur et al.[16] then
suggest that the human brain can exploit, as a simple cognitive
heuristic, the regularities observed in the contact patterns to
estimate the degree of relationship that could exists with
members of its social network. Specifically, they argue that the
statistical structure of social contacts should be reflected in the
ease with which information about these contacts is retrieved
from memory. Upon contact with another person, the human
memory is activated to a level that depends on the regularities
experienced in other meetings with that person. Since those
patterns are correlated with the social relationship that exists
with that given individual, memory activation, computed as per
Equation 1, can be used as an estimator of the importance of
social ties.

Using all these observations, in this section, we propose
an adaptive scheme that exploits the simple cognitive memory
activation rule, defined in Equation 1, to let nodes in an
opportunistic network infer the social tie between nodes that
meet over time. In order to include a forgetting process in
the memory of a mobile node, given a previous meeting
of node n with a contact i happened at time t

j

, in case
(t�tj)

�d

Pk

j=1
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< ✓
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forget

2 [0, 1], we consider that

the contribution given by the encounter occurred at t
j

is not
more relevant in the memory activation computation. Thus, a
node n can forget about that previous meeting and deletes that
data from its memory.

Starting from the memory activation defined as in Equa-



tion 1, with the forgetting mechanism described above, we
show in the next section how other cognitive strategies can
be used by each node to easily group the other peers into
communities of socially-related entities.

A. Assigning nodes to communities

Using the memory activation value, each node estimates
how strong is the social tie between itself and any other en-
countered peer. We now describe how activation, together with
other cognitive models, can also be used to group encountered
nodes into social communities.

The similarity heuristic [17] is a fast and frugal rule used
by the human brain to evaluate the likelihood that a stimulus
received from the environment belongs to one category rather
than another. This cognitive heuristic assigns membership
to categories by simply exploiting the degree to which the
perceived stimulus is similar to others in that category. Specif-
ically, given an observed data (e.g. the activation in memory
of a social contact), the similarity heuristic compares that data
against a function of the other data currently belonging to that
category (in cognitive terms, a series of subjective hypotheses
about the categories), and assigns the observed data to the most
similar hypothesis.

In order to use the similarity heuristic in our algorithm,
nodes must formulate hypotheses about possible categories to
which other encountered nodes in the environment may belong
to. Hypotheses should be formulated in such a way that the
activation (computed as in Equation 1) of an encountered node
can be compared against them, in order to assign each node
to its most similar category.

To this end, note that an activation in memory reflects both
the social strength with encountered nodes and the regularities
in the contacts with the same nodes. As already pointed out
in the previous section, results in the cognitive science field
correlate the strength of social connections with the dynamics
of physical contacts. Therefore, peers belonging to the same
social category should show similar contact patterns, and, as
a consequence, they should induce similar activation values in
memory upon meeting.

In a similar way as proposed in the cognitive sciences by
Raviv et al. [22], we assume that the observation of a series of
similar values produces a trace in the memory of a node that
gives a sort of digest of all these previously observed similar
stimuli (i.e. memory activations). Since nodes with similar
social behaviour produce similar memory activation values,
these traces can be regarded as the basis for formulating the
hypotheses needed by the similarity heuristic. Thus, they can
be used for assigning newly observed memory activations to
social categories.

More in details, the procedure used for the classification
of encountered nodes using the memory activation process
described in Equation 1 is described in Algorithm 1.

Using the description given in the algorithm, we assume
that each node has a set S of social categories. When the node
meets another peer i at a time t, it computes the memory
activation of i, A

i

(t) (line 1 of Alg. 1). In case the set
S is empty (line 3), the memory activation value is stored
as the first of the social category exemplars. Otherwise, the
exemplar with the lowest distance from the actual activation is
chosen as the category hypothesis that best fits the observed
activation value (line 7). In this paper, we consider that the

Algorithm 1 Classification of a node i upon contact at time t

1: Let a = A
i

(t)
2: Let S be the set of social category exemplars
3: if S = ; or d(a, s) > ✓

split

8s 2 S then

4: S = S [ {a}
5: Return IndexOf(a)
6: else

7: Let s⇤ = min
s2S

d(a, s)

8: s⇤ = ↵s⇤ + (1� ↵)a
9: Return IndexOf(s⇤)

10: end if

distance function is simply the absolute value of the difference
between the actual activation and the category representatives,
i.e. d(a, s) = |a�s|, 8s 2 S, where a is the observed memory
activation. Moreover, as suggested by Raviv et al. [22], we
assume that the chosen category representative s⇤, in response
to the presentation of a new, related stimulus is updated in a
way that linearly combines its current value with the observed
activation. Specifically, upon a new activation a related to the
category represented by s⇤, the node updates its reference
value for this category using a smoothed average (line 8):

s⇤ = ↵s⇤ + (1� ↵)a (2)

where ↵ 2 [0, 1] Moreover, in case the actual activation a has
a distance from each of the exemplars stored in S greater than
a threshold ✓

split

(line 3), a is considered to represent a new,
previously unobserved category. Therefore, a new category is
added to S, using a as the seed of the value that represents it.
This behaviour is similar to what is described in the cognitive
sciences by Anderson [23]. According to this work, stimuli are
clustered by the brain on the basis of their similarity. When
a new stimulus differs too much from the members of the
existing clusters, a new group is formed.

The procedure described in Alg. 1 returns an index that
uniquely identifies the chosen category representative within
S, and it can then be used by the node to decide the social
category the encountered peer belongs to.

Note that by using Alg. 1, the information that two nodes
have to exchange upon meeting is made up of just their own
IDs. Knowing which is the other interacting party, each node is
able to retrieve the data about previous encounters and, using
the memory activation value, can decide which is the social
category to which the other node belongs to.

IV. SIMULATION EVALUATION

In this section, we report initial, yet significant results about
the algorithm performance obtained by simulation using the
HCMM mobility model [24]. HCMM is a mobility model
that integrates temporal, social and spatial notions in order
to obtain an accurate representation of real user movements.
In order to achieve this goal, its design is inspired by results
in the sociology and complex networks literature. One of its
main features is the ability to reproduce statistical properties
of real user movement patterns, such as inter-contact times and
contact durations. In HCMM, the simulation space is divided
in cells. Each cell could host a group of nodes, that represents
a social community. Different groups can be connected by
special nodes, called “travellers”, that move across different
communities, thus bridging them. Each social group is initially
assigned to a cell (its home-cell) avoiding that two groups are



physically adjacent (no edge contacts between groups) or in
the same cell. This allows us to eliminate physical shortcuts
between groups. Therefore, nodes can communicate only due
to social mobility and not due to random colocation. Table I
shows the values of the main simulation parameters used to
obtained the results reported in this section.

TABLE I. MAIN SIMULATION PARAMETERS

Simulation Parameters
Simul. Area 1000m2

Grid 4x4
Numb. of Communities 3

Numb. of Nodes 45 (15 per comm.)
Node speed unif. in [1, 1.86]m/s

Transm. range 20m
Simulation time 50000s

↵ 0.9
✓split 1.5

d 0.5

In the first set of experiments, we use a configuration with
3 distinct communities of 15 nodes each. In this scenario, a
community has a traveller toward each of the other groups.
Each traveller is allowed to move from its home community
to just one other group. In these experiments, we force the
system to make each single node recognise no more than two
distinct communities. This lead to classify the other nodes into
friends and familiar strangers, which is a typical classification
performed by other reference community detection approaches
(see, e.g., [13], [14]). Each node considers as friends the peers
with a memory activation associated to the hypothesis with the
highest value.

Fig. 1 reports the results of an experiment where we
want to investigate the ability of the proposed solution to
let nodes other than travellers (i.e., nodes “internal” to their
social community) to recognise the members of their own
community, i.e. their friends. The curves in Fig. 1 are obtained
with three different mean sojourn times of the travellers in
their home and external communities, respectively. This curves
correspond to the following scenarios:

• Evenly distributed (ED) sojourn times: travellers
spend in their home cell and in the external community
almost the same amount of time;

• Home community shorter (HS): travellers spend more
time in the external community they visit than in their
home community;

• Home community longer (HL): travellers spend more
time in their home community than that spent in the
external ones.

The values of the mean sojourn times of these three
scenarios are reported in Table II.

TABLE II. MEAN SOJOURN TIMES

Home Comm. Ext. Comm.
ED 554.60s 549.93s
HS 479.82s 1704.07s
HL 619.99s 175.49s

In order to evaluate the similarity between the community
detected by each node and the community structure with which
we have configured HCMM, we use the Jaccard index. For
each node n, it is defined as:

�(n) =
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f
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(n)
S
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where C
f

(n) is the community of friends detected by n,
while T

f

(n) is its true set of peers belonging to the node’s
home community. In principle, the target of a community
detection algorithm should be to achieve a value of 1 for
this index. In practice, this might not be the case. Remember
that in our scenario travellers spend time both inside and
outside their home community. According to our definition,
nodes belong to the same community if they spend sufficient
time together and meet frequently enough. Therefore, nodes
internal to a community may perceive travellers either as being
part of the community or not, depending on how much time
they spend together. In other words, we may expect that our
algorithm correctly achieves similarity values lower than 1,
in cases where the HCMM association of a traveller to its
home community does not reflect the amount of time it spends
inside it. Results in Fig. 1 are the average over time for all
the internal nodes of all the three communities used in the
experiments. In all these cases, ✓

forget

= 0.01. In all the
presented results, detection of travellers is the discriminating
point in the performance figure. In fact, the best results are
achieved in the HL case, when travellers spend most of their
time inside their home community, rather than outside it. In
the HS case, the Jaccard similarity stabilises around a value
given by the fact that all the other internal nodes are seen as
friends, while all the home community travellers are regarded
as familiar strangers. This behaviour can be judged positively,
since travellers usually stay a long time away from their home
community, thus having a more strict relation with the nodes
of the external group. In the ED case, note that travellers stay
in both the communities they visit an almost identical amount
of time. The effect of this behaviour is to lead an internal
node to consider travellers (either of its own home community
or coming from outside) alternatively as familiar strangers or
friends, in case they have just come back from another group,
or they have already spent a sufficient amount of time in the
community, respectively.
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Fig. 1. Familiar nodes recognition for a internal peer, with different traveller
sojourn times

In Fig. 2, we analyse the impact of forgetting on the
algorithm performance. Since the most complex scenario for
an internal node is the ED one, we focus our attention on
this configuration of the system. As expected, higher values
of ✓

forget

degrade the performance of the proposed solution.
Anyway, note that making the ✓

forget

value three times higher
than that used in Fig. 1 does not cause great variations in the
Jaccard similarity values. On the other hand, increasing ✓

forget

up to 0.1 (ten times the value of the previous experiments)
produces a strong degradation of the performance. In fact,
in this case, too few information is retained by a node for
each of its social contacts. As a consequence, other internal



nodes that are not seen for a while can rapidly become familiar
strangers. Note that higher similarities around the beginning of
the simulation are due to the fact that in that phase the relative
weight of each contact with respect to the whole activation
value is not below the threshold, because there are still few
contacts, and each of them has a significant relative weight. As
contacts accumulate over time, their relative weight becomes
lower and lower, and they are progressively discarded, resulting
in a decrease of the similarity value.
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Fig. 2. Variation of the Jaccard similarity metric for the friends set of an
internal node, with different ✓
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values

Fig. 3 shows the average number of previous contacts
that are maintained in the memory of an internal node, using
the same forgetting parameters of the previous figure. We
can observe that the number of stored previous encounters
decreases linearly with respect to the value of ✓

forget

. Thus,
the number of contacts maintained for ✓

forget

= 0.02 is half
the number used with ✓

forget

= 0.01, and so on. As seen
in Fig. 2, we do not have a great variation in the similarity
metrics using ✓

forget

= 0.03 instead of ✓
forget

= 0.01,
while, at the same time, we use a third of the information
about previous meetings. Using ✓

forget

= 0.1, the number
of previous encounters (5.5 on average) becomes to low to
achieve a good performance.
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While in the previous experiments we observed the be-
haviour of internal nodes, we now move our attention to the
performance of the travellers. Since travellers move from one
community to another, one of the main results we want to
achieve is to let them autonomously recognise that the envi-
ronment around them changes and, as a consequence, modify
their perception of friends and familiar strangers accordingly.

Fig. 4 and 5 show how the composition of the friends set
of a tagged traveller changes over time. Specifically, the two
figures show the number of nodes of the tagged traveller’s
home and external communities that are regarded as friends
by the traveller. The results are obtained with ✓

forget

= 0.01
in Fig. 4, and with ✓

forget

= 0.1 in Fig. 5. For the sake of
readability, the figures show only a part of the data of the
whole experiment (from sec. 42000 to sec. 48000). Figures
show a series of pairs of vertical bars. In each pair, the first
bar denotes the time instants when the traveller exits from the
previous community, and the second the time when it enters
the next one.
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Fig. 4. Variation in the friends set composition for a tagged traveller,
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In both the figures, it is possible to observe that the number
of “friends” of the traveller coming from its home community
decreases, as a consequence of a change of community done by
the tagged traveller. On the other hand, the number of friends
belonging to the external community increases accordingly.
Typically, when the number of friends of one community
reaches its peak, the number of nodes of the other community
in the friend set achieves its minimum. This point is even more
noticeable in Fig. 5, highlighting the fact that higher forgetting
could be more beneficial for a traveller, since it becomes even
more responsive to changes in its surroundings.
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Fig. 5. Variation in the friends set composition for a tagged traveller,
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In order to have a deeper understanding of the ability of
travellers to dynamically adapt their vision to the structure
of the local social context, in Fig. 6 we present the results
obtained in a more complex scenario. In this case, we still
have three distinct communities. However, just one of them
has a traveller. This traveller bridges its home community
with all the remaining groups. Moreover, we do not impose
to classify the other nodes in just two sets, i.e. friends and



familiar strangers. We give the system the full flexibility to
autonomously decide the proper number of social categories
needed to classify the other encountered peers (i.e., we use
exactly Algorithm 1, where new categories are generated
according to the split parameter, without imposing a maximum
number of communities). The results presented in Fig. 6 are
obtained with exactly the same parameters used for all the
previous experiments and with ✓

forget

= 0.1.
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Fig. 6. Variation in the composition of the social set with the highest
activation

For the same reasons used for the two previous figures, we
limit the view of the results to a portion of all the data, from
sec. 42000 to sec. 48500. During the experiment, the traveller
created three different social categories, that is consistent with
the moving patterns of the traveller among three different
communities. In Fig. 6 we show the number of nodes of each
of the three existing communities inside the set associated
with the highest activation values, i.e. the nodes considered
to be more socially connected with the traveller. Again, the
traveller shows its ability to adapt its view of its social ties.
Analogously to the previous results, a peak in the number
of most socially related nodes coming from a community
corresponds a minimum in the number of nodes in this set
belonging to the other groups.

V. CONCLUSION
In this paper, we propose a community detection scheme

for nodes in an opportunistic networking environment that
is inspired by memory-based human cognitive solutions. A
memory activation-based method is used by nodes to evaluate
the social strength existing with another encountered node
and assign it to a proper social community. We give an
initial evaluation of the proposed approach in a simulated
environment. Our method shows to be able to detect the
right communities when nodes are restricted to move inside
just one single group, letting them also discover which are
the nodes that act as connectors with other communities (i.e.
travellers). Moreover, when nodes, like travellers, experience
sudden changes in the environment in which they move, they
are able to change the composition of the social groups they
perceive, autonomously adapting their view to the new context.
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