

Experimental Analysis of a Transport Protocol

for Ad hoc Networks (TPA)

Giuseppe Anastasi, Emilio Ancillotti
Dept. of Information Engineering,

University of Pisa, Italy

{firstname.lastname@iet.unipi.it}

Marco Conti, Andrea Passarella

CNR-IIT
National Research Council, Italy

 {firstname.lastname@iit.cnr.it}

ABSTRACT

Many previous papers have pointed out that TCP performance in
multi-hop ad hoc networks is not optimal. This is due to several
TCP design principles that reflect the characteristics of wired
networks dominant at the time when TCP was designed, but are
not adequate for multi-hop ad hoc networks. For example,
congestion phenomena in multi-hop networks are very different
than in traditional wired networks, and route failures and route
changes may be frequent events. To overcome these problems, in
a previous work we presented a novel transport protocol – named
TPA – specifically tailored to multi-hop ad hoc networks. In this
paper we perform an experimental analysis of TPA in static multi-
hop scenarios. Specifically, we compare TPA and TCP
performance in a chain topology with different number of hops
and traffic patterns. We also consider the effect of the routing
protocol. Our experimental results show that TPA protocol
outperforms TCP significantly both in terms of throughput and
energy consumption.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network

Protocols; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design.

General Terms

Measurement, Performance, Design, Algorithms.

Keywords

Ad hoc networks, TCP, Transport Layer, Performance Evaluation,
Experimental Analysis, Routing protocols

1. INTRODUCTION
TCP (Transmission Control Protocol) is the de facto standard for
reliable connection-oriented transport protocols, and is normally
used over the Internet Protocol (IP) to provide reliable
communication to Internet applications. However, in the last

years many papers have pointed out that TCP performance in
multi-hop ad hoc networks is not optimal. This is because some
assumptions in its design are clearly inspired from the
characteristics of wired networks dominant at the time when it
was conceived. More specifically, TCP implicitly assumes that
packet loss is almost always due to congestion phenomena
causing buffer overflows at intermediate routers. Furthermore, it
also assumes that nodes are static (i.e., they do not change their
position over time). Unfortunately, these assumptions do not hold
in multi-hop ad hoc networks.

In multi-hop ad hoc networks, packet losses due to interference
and link-layer contentions are largely predominant, while packet
losses due to buffer overflows at intermediate nodes are rare
events. The TCP protocol reacts to packet losses originated by
link-layer contentions by activating the window-based
congestion-control mechanism. This may lead to throughput
degradation and instability [1], [11], [8], [12]. In addiction, in
multi-hop ad hoc networks nodes may be mobile. This may
further degrade the TCP performance [15]. However, in this paper
we not consider node mobility.

To overcome the above problems several proposals have been
presented. Most of them are TCP enhancements aimed at
improving TCP performance either by means of lower layer
mechanisms that hide the multi-hop network characteristics from
TCP, or by modifying TCP mechanisms. A comprehensive survey
of such TCP variants can be found in [15]. In addition, some
novel transport protocols, designed from scratch and specifically
tailored to multi-hop ad hoc networks, have been also proposed.
In a previous paper [3] we argued that the characteristics of multi-
hop ad hoc networks are very different from those of wired
networks for which TCP was originally conceived. Thus, a TCP
variant may not be the best choice for multi-hop ad hoc networks.
Therefore, we designed a new transport protocol named TPA
(Transport protocol for Ad Hoc networks). TPA provides a
reliable, connection-oriented type of service and includes
mechanisms for managing route failures and route changes
efficiently. In addition, it has a novel congestion control
mechanism that takes into account problems introduced by link-
layer contentions. Finally, it implements a novel retransmission
policy to reduce the number of useless retransmissions and,
hence, power consumption.

The authors in [17] also took an approach similar to ours and
defined the Ad hoc Transport Protocol (ATP). Even if novel in
many respects, TPA conserves some TCP characteristics adapting
them to the new environment (for example, it still uses a window-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PE-WASUN'06, October 6, 2006, Torremolinos, Malaga, Spain.
Copyright 2006 ACM 1-59593-487-1/06/0010...$5.00.

based transmission scheme but with very small maximum
congestion window size). On the other side, ATP is completely
antithetic to TCP as it relies upon rate-based transmissions,
network-supported congestion detection and control, no
retransmission timeout, decoupled congestion control and
reliability, etc. [17]. Specifically, it requires assistance from the
underlying network layer (and more precisely from intermediate
nodes along the connection) for performing its tasks. This may
make it unsuitable for those environments where the network
layer protocol does not provide such a support.

In [4] we performed a preliminary simulation analysis of TPA and
compared its performance to that of TCP. The results obtained
were very promising as they showed that TPA outperforms TCP
in all scenarios taken into consideration, both in terms of
throughput and energy consumption. However, previous
experimental studies have shown that certain aspects of real
multi-hop networks are often not effectively captured in
simulation tools [5]. Furthermore, available software and
hardware products often use parameter settings different from
those commonly assumed in simulation tools. Finally, real
operating conditions are often different from those modeled in
simulation experiments. For example, interferences caused by
WiFi hotspots or other devices in the proximity are inevitable in
practice. For all the above reasons, we believe it is of great
importance to compare TPA and TCP performance in a real
environment. Therefore, we implemented the TPA protocol and
performed the experimental analysis described in this paper. The
TPA performance is thus compared with that of TCP NewReno
(with the delayed-ACK mechanism enabled) available with Linux
distributions. To perform our experiments, we used a testbed
based on laptops running the Linux operating system. In addition,
to investigate the effect of the routing protocol, we considered
two very popular routing protocols, i.e., AODV [16], [2] and
OLSR [1], [10] which take a different approach on building and
maintaining routes (reactive vs. proactive). For the sake of
simplicity our analysis is limited to static networks with a chain
topology. The results obtained show that TPA outperforms TCP,
both terms of throughput and energy consumption, especially
when problems related to link-layer contentions became more
evident. Specifically, with respect to the best TCP configuration,
TPA increases the throughput up to 26%, and reduces the number
of (re)transmissions up to 80%.

The rest of the paper is organized as follows. Section 2 describes
the TPA protocol. Section 3 provides a brief description of TPA
implementation in a Linux environment. Section 4 introduces the
experimental environment used for performance evaluation.
Section 5 discusses the results obtained from the experiments.
Finally, Section 6 concludes the paper.

2. TPA PROTOCOL DESCRIPTION
TPA provides a reliable, connection-oriented type of service. In
the following subsections we will provide a description of the
main aspects of the protocol. The interested reader can refer to [3]
and [4] for motivations behind TPA design, and protocol details,
respectively.

2.1 Data Transfer
TPA is based on a sliding-window scheme where the window size
varies dynamically according to the flow control and congestion

control algorithms. The flow control mechanism is similar to the
corresponding TCP mechanism [18], while the congestion control
mechanism is described in Section 2.2.

TPA manages application data in blocks, with a block consisting
of K segments. The source TPA grabs a number of bytes -
corresponding to K TPA segments - from the transmit buffer,
encapsulates these bytes into TPA segments, and transmits them
reliably to the destination.

Segment transmissions are handled as follows. Whenever sending
a segment, the source TPA sets a timer and waits for the related
ACK from the destination. Upon receiving an ACK for an
outstanding segment the source TPA performs the following
steps: i) derives the new window size according to the congestion
and flow control algorithms (see below); ii) computes how many
segments can be sent according to the new window size; and iii)
sends next segments in the block. On the other hand, whenever a
timeout related to a segment in the current window expires, the
source TPA marks the segment as “timed out” and executes steps
i)-iii) as above, just as in the case the segment was acknowledged.

As soon as all segments belonging to the block have been
transmitted, the sender performs a second round for retransmitting
“timed-out” segments, which are said to form a “retransmission
stream”. In the second round the sender performs steps i)-iii)
described above with reference to the retransmission stream
instead of the original block. This procedure is repeated until all
segments within the original block have been acknowledged by
the destination. Only when all segments belonging to a block have
been acknowledged, TPA takes care to manage the next block.

The proposed scheme has several advantages with respect to the
transmission scheme used in TCP. First, the probability of useless
transmissions is reduced since segments for which the ACK is not
received before the timeout expiration are not retransmitted
immediately (as in the TCP protocol) but in the next transmission
round. Second, TPA is resilient against ACK losses because a
single ACK is sufficient to notify the sender about all missed
segments in the current block. Third, the sender does not suffer
from out-of-order arrivals of segments.

2.2 Congestion Control Mechanism
Congestions due to link-layer contentions manifest themselves at
the transport layer in two different ways. An intermediate node
may fail in relaying data segments to its neighboring nodes and,
thus, it sends an ELFN (if available) back to the sender node. This
case, throughout referred to as data inhibition, cannot be
distinguished by the sender TPA from a real route failure. On the
other hand, an intermediate node may fail in relaying ACK
segments. In this case, throughout referred to as ACK inhibition,
the ELFN (if available) is received by the destination node (i.e.,
the node that sent the ACK), while the source node (i.e., the node
sending data segments) only experiences one or more
(consecutive) timeouts. Whenever the sender TPA detects thCONG
(with thCONG >= 1) consecutive timeout expirations it assumes
that an ACK inhibition has occurred, and enters the congested

state. The source TPA leaves the congested state as soon as it
receives thACK consecutive ACKs from the destination. If the
network layer does not support the ELFN service, the only way to
detect both data and ACK inhibitions is by monitoring timeouts at
the sender.

The TPA congestion control mechanism is window-based as in
TCP. However, in TPA the maximum congestion window size
(cwndmax) is very small (in the order of 2-3 TPA segments) and,
hence, the maximum and minimum values are very close.
Therefore, the TPA congestion control algorithm is very simple.
In normal operating conditions, i.e., when TPA is not in the
congested state, the congestion window is set to the maximum
value, cwndmax. When TPA enters the congested state, the
congestion window is reduced to 1 to allow congestion to
disappear.

2.3 ACK Management
Many papers [1], [14], [1] have shown that the Delayed ACK
mechanism can improve significantly the TCP performance.
Based on these results we implemented a Delayed ACK
mechanism in TPA as well. When using this mechanism, if the
TPA sender is transmitting with the maximum value for the
transmission window (cwndmax), the TPA receiver sends back one
acknowledgement every other segment received, or upon timer
expiration. Otherwise, the TPA receiver sends back one
acknowledgment for each segment received. The TPA sender
uses the txStatus flag of the TPA segment header to announce the
size of the transmission window to the receiver.

We also implemented the following modified version of Delayed

ACK. To minimize the number of ACKs in transit in the network,
the receiver can delay the ACK transmission up to cwndmax
segments. In other words, when the TPA sender transmits
segments with a window size equal to one, the receiver sends
back one ACK for each segment received. Otherwise, if the TPA
sender transmits segments with a window size equal to cwndmax
segments the TPA receiver sends back one ACK every cwndmax
segments received (e.g. every three segments received if cwndmax
is set to three) or on timer expiration. Throughout the paper we
will refer to TPA with modified version of the Delayed ACK as
TPA

*.

In both TPA variants, the interval that triggers the ACK
transmission is set to a constant value.

3. TPA PROTOCOL IMPLEMENTATION
In this section, we provide a brief description of our TPA
implementation in the Linux environment. A more detailed
description can be found in [6]. Network protocols are usually
implemented in the kernel space and can be accessed by
applications through an interface consisting of a set of system
calls (e.g., the socket-based interface). Security and performance
are the main motivations behind this approach. However, there
are several factors that can motivate an implementation of
network protocols out of the kernel space [19]. The most obvious
of these factors is ease of prototyping, debugging and
maintenance. Another factor may be an improved system stability.
When developing protocols in a user-level environment, an
unstable stack affects only the application using it and does not
cause a system crash.

Therefore, we decided to prototype TPA by means of a user-level
implementation. Since TPA only requires a datagram service it
was implemented on top of the UDP/IP protocols that are
accessed through the legacy socket-based interface. To allow a
simple re-use of legacy application written for TCP, we

implemented for TPA a socket application programming interface
(API) similar to that provided by TCP.

TPA was implemented (by using the C programming language)
with distinct execution flows that interact according to the
client/server and producer/consumer paradigms. Specifically, we
structured the TPA software module by means of three processes:
a data-processing process, a sender process, and a receiver
process. The data-processing process collects data passed by the
application process in a buffer to form blocks. Data blocks are
then passed to the sender process that manages them according to
TPA specifications. Finally, the receiver process is in charge of
processing data coming from the network and sending ACKs back
to the sender. In this model processes resident on the same
machine communicate each other by using FIFOs [1] and signals,
while the sender and the receiver process use a UDP socket to
transmit data and ACK packets.

4. EXPERIMENTAL ENVIRONMENT

4.1 Testbed Description
Our testbed consisted of IBM R-50 laptops equipped with
integrated Intel Pro-Wireless 2200 wireless cards. All the laptops
were running the Linux Kernel 2.6.12 with the latest available
version of the ipw2200 driver (1.1.2). Wireless cards followed the
IEEE 802.11b specifications with maximum bit rate set to 2
Mbps. The RTS/CTS mechanism was enabled and RTS/CTS
threshold was set to 100 bytes so that RTS/CTS handshake was
active for data segments and disabled for ACKs. The transmission
power of the wireless cards was set to the minimum allowed value
(-12db) so as to reduce the transmission range and make it
possible to perform experiments in an indoor environment.

N1

N2N3

N4

N5

N1

N2N3

N4

N5

Figure 1. Indoor environment and network topology used in

our experiments.

Figure 1 shows the indoor environment where the experiments
were carried out. It is a real working environment with offices and
labs. In particular, there are several WiFi Access Points in the
proximity. Although this environment may influences our
performance measures, we believe that it is important to test the
TPA protocol performance in a real working environment. In our
experiments we considered a chain topology with five nodes
deployed as in Figure 1. In all the experiments node N1 was the
sender, while the receiver (and the number of active nodes)
depended on the specific scenario. Specifically, we considered
four different scenarios with hop count ranging from 1 to 4. For

example, in the 3-hop scenario, node N4 is the receiver (node N5
is not active). The distance between nodes was chosen in such a
way that only adjacent nodes were within the transmission range
of each other.

We used ftp-like traffic, i.e., the sender node had always data
ready to send. To this end, we developed a simple client/server
application using Linux sockets operating with TCP protocol and
we adapted this application to operate with TPA sockets as well.
Several papers have shown the advantage of limiting the TCP
window size in multi-hop ad hoc networks. To be fair, we
compared TPA and TCP with limited window size. To limit the
maximum value for the TCP congestion window size (cwnd), we
used the TCP_WINDOW_CLAMP socket parameter that permits
to bound the size of the TCP advertised window. The segment
size was constant in all the experiments with the transport-layer
payload size set to 1460 bytes. To capture TCP segment we used
tcpdump, while to analyze the experiments results we used tcpstat
and tcptrace (enhanced by our shell scripts). Since TPA is
implemented in the user-space to capture TPA segments we used
our TPA code.

As anticipated, we compared the performance of TPA and TCP
by considering two different routing protocols, i.e., AODV and
OLSR. AODV (Ad hoc On-demand Distance Vector, [16]) is a
well-known reactive protocol that uses RREQ, RREP and RERR
messages to discover and maintain routes to the destination. It can
use two different mechanisms for neighbor discovery and local
connectivity maintenance, i.e., link layer information provided by
the underlying MAC protocol, or HELLO messages periodically
exchanged between all nodes in the multi-hop network. In our
testbed we used the AODV implementation for Linux by the
Uppsala University [2] version 0.9.1. To maintain local
connectivity we set AODV to use HELLO messages since our
ipw2200 driver didn’t provide link-layer failure notifications. All
the AODV parameters were set to their default values.

OLSR (Optimized Link State Routing, [10]) is an optimization of
the classical link state algorithm for mobile ad hoc networks (it is
thus a proactive protocol). OLSR periodically floods the network
with route information so that each node can build locally a
routing table containing the complete information of routes to all
possible destinations within the ad hoc network. Similarly to
AODV, OLSR employs a neighbor discovery procedure based on
HELLO messages. In our testbed we used the OLSR_UniK
implementation for Linux version 0.4.10 [1]. We set all the
parameters to their default values and we disabled the OLSR
hysteresis mechanism, because it was found to degrade TCP
throughput in an unacceptable way [8].

Table 1 shows the operational parameters for the TPA protocol.
As far as TCP, the following kernel variables were disabled.

• tcp_moderate_rcvbuf. This variable enables the

kernel to dynamically update receiver socket buffer
size.

• tcp_bic. This variable enables the Binary Increase

(BIC) congestion control algorithm.

• tcp_vegas_cong_avoid. This variable enables

TCP-Vegas congestion avoidance algorithm.

• tcp_westwood. This variable enables TCP

westwood (TCPW) congestion control algorithm.

• tcp_sack. This variables enables RFC 2018 TCP

Selective Acknowledgments (SACK) mechanism.

• tcp_window_scaling. This variable enables RFC

1323 TCP window scaling mechanism.

• tcp_timestamps. This variable enables RFC 1323

TCP timestamps mechanism.

In our experimental analysis we compared the performance of
TCP and TPA using different values for the maximum congestion
window size. Previous simulation studies [8], [11] suggest that in
our scenarios (chain topology whit hop count ranging from 3 to 4)
the optimal value for the maximum cwnd size is 2. However,
experimental measurements from a real testbed [7] show that 3 is
the optimal value for the maximum cwnd size in a real
environment. Therefore, we considered a maximum cwnd of size
2 and 3 for both TCP and TPA. We also considered an unclamped
(uc) value for the maximum cwnd size of TCP. Moreover, we
evaluated the performance of TPA with the modified version of
the delayed ACK mechanism. In the following we will refer to
TCP with maximum cwnd size of W as TCP-W, and we will refer
to TPA with cwndmax set to W as TPA-W (or TPA

*
-W).

Table 1. TPA Operational Parameters.

Parameter Value

thRC (TPA) 3 segments
nRC (TPA) 3 segments

G 0.125
H 0.25
g1 0.25
h1 0.5

ThCONG (TPA) 1 segment
thACK (TPA) 1 segment

Block Size (TPA) 12 segments

4.2 Performance measures
In our analysis we considered the following two performance
measures:

• Throughput, i.e., the average number of bytes
successfully received by the final destination per unit
time.

• Retransmission index, i.e., the percentage of segments
re-transmitted by the TPA/TCP sender.

The throughput was measured at the application layer as the
number of bytes successfully received by the destination process
in a given time interval, divided by the duration of the time
interval.

The re-transmission index (rtx) was obtained as:

ndestinatiothebyreceivedlysuccessfulpacketsduplicatednonof

sourcethebytedretransmitpacketsof
rtx

−

=

#

The re-transmission index allows us to evaluate the ability of
TPA/TCP to handle transmission in an efficient way. It is
worthwhile to emphasize that re-transmitted segments consume
energy and generate congestion both at the sender and
intermediate nodes. As nodes in a multi-hop ad hoc network may
have limited power budget, and wireless bandwidth is a scarce
resource, it is important to manage (re-)transmission efficiently.

Therefore, a small value for the re-transmission index is highly
desirable.

4.3 Methodology
When dealing with real testbeds one of the main difficulties is that
experiments cannot be repeated exactly in the same way since
external conditions may vary from time to time -- sometimes
during the same experiment -- and there is definitely no control on
them. Therefore, successive experiments carried out under the
same operating conditions may provide outcomes that differ
significantly from each other. In addition, comparison of
performance measurements obtained in different scenarios or
operating conditions becomes hard or even impossible.

To achieve more statistical accuracy, we replicated each
experiment 5 times, and averaged the performance measures over
the entire set of 5 replicas. In addition, experiments with similar
parameter values (e.g., with different maximum cwnd size but all
other equal parameter values) were performed in an interleaved
way. For instance, with reference to the 3-hop topology, we ran a
first replica of TCP-2, TCP-3, TCP-uc, TPA-2, TPA-3 and TPA

*
-

3. Then, we performed a second replica, a third replica, and so on.

Each replica was 120s long, and consisted of a file transfer. To
perform multiple replicas the whole process of experimentation
(data generation, logging and archiving) was automated using
shell scripts.

5. EXPERIMENTAL RESULTS
In this section we describe the results obtained from our
experiments carried out in different scenarios. Specifically, we
considered four chain topologies with increasing number of hops
(from 1 to 4). In addition, for each scenario we performed the
experiments using both AODV and OLSR routing protocol. In all
the experiments only a single TPA/TCP connection was active in
the network. The purpose was to investigate the influence of the
link-layer contention on TPA and TCP in a very simple network
topology. Then, we extended our analysis by considering the
effects of interfering traffic as well.

This section is organized as follows. Section 5.1 and 5.2 show the
results of the experiments with AODV and OLSR, respectively.
Section 5.3 describes the different behavior of TPA and TCP in
the presence of ACK inhibition by means of a detailed analysis of
TPA traces.

5.1 Analysis with AODV routing protocol
In this section we describe the experimental results obtained with
the AODV routing protocol. Figure 2 through Figure 6 show the
throughput and retransmission index of both TCP and TPA in all
the scenarios we considered.

Figure 2 shows that in the 1-hop scenario there are not significant
differences between TCP and TPA performance. This was
expected since in this simple scenario problems related to link-
layer contention are managed efficiently by the IEEE 802.11
MAC protocol. Specifically, in this simple scenario all nodes are
within the transmission range of each other and can thus
coordinate efficiently their transmissions. This produces a
retransmission index equal to zero for all values of the maximum
cwnd size parameter. Figure 2 also shows that TCP with an

unclamped congestion window slightly outperform both TPA and
TCP with clamped window. Specifically, TCP-uc throughput is
about 2% higher that TPA-3 throughput. However, we can
observe that TPA

*
-3 achieves about the same throughput of TCP-

uc. It may be worthwhile to recall here that TPA is implemented
in the user space and, thus, experiences a higher overhead with
respect to TCP-uc running in the kernel space.

0

200

400

600

800

1000

1200

1400

1600

TCP-2 TCP-3TCP-uc TPA-3 TPA-3 TPA*-3

AODV, 1-hop

Maximum window size (#of packets)

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Figure 2. Throughput (left) and percentage of retransmitted

segments (right) vs. window size in the 1-hop scenario.

Figure 3 shows that in the 2-hop scenario TPA outperforms TCP
with clamped window both in terms of throughput and
retransmission index. Specifically, TPA-2 provides approximately
the same throughput as TCP-2 but retransmits about 79% less
segments. TPA-3 provides a throughput about 9% higher than that
of TCP-3 but it reduces the number of retransmitted segments of
about 13%.

400

420

440

460

480

500

520

540

560

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 2-hop

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Maximum window size (# of packets)

0

0.5

1

1.5

2

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 2-hop

Maximum window size (# of packets)

P
e
r
c
e
n
ta
g
e
 o
f
r
e
tr
a
n
s
m
is
s
io
n
s
 (
%
)

Figure 3.Throughput (left) and percentage of retransmitted

segments (right) vs. window size in the 2-hop scenario.

The main reason for the difference between TCP and TPA
performance in this scenario, where there is no interference (all
nodes are in the carrier sensing of each other), resides on HELLO
messages used by AODV to maintain local connectivity [7].
When using HELLO messages (with default parameter values),
it’s sufficient to loose two consecutive HELLO messages to
detect a link failure. Since HELLO messages are broadcast
packets, and broadcast packets are neither acknowledged nor
retransmitted by the MAC layer, they are vulnerable to collisions
and channel errors. This results in a loss of local connectivity
even in networks where all nodes are within the same carrier
sensing range. This loss of local connectivity results in frequent
route failures which turns out in timeouts and retransmissions at
the sender side. However, as expected TPA is much more
efficient than TCP in managing such events as highlighted by the
above results (Figure 3 right).

Figure 3 also shows that, as in the 2-hop scenario, TCP achieves
optimal throughput when it uses an unclamped transmission

window [1]. Specifically, TCP-uc throughput is about 13% higher
than TCP-3 throughput. This happen because in a scenario where
all nodes are within the same carries sensing range, the IEEE
802.11 MAC protocol works well. However, TPA

*
-3 provides a

higher throughput than TCP-uc (about 3%) while retransmits
about 70% less segments. This is because TPA

*
-3 reduces the

number of ACKs and, hence, the amount traffic on the channel.

300

350

400

450

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 3-hop

Maximum window size (# of packets)

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

0

1

2

3

4

5

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 3-hop

P
e
r
c
e
n
ta
g
e
 o
f
r
e
tr
a
n
s
m
is
s
io
n
s
 (
%
)

Maximim window size (# of packets)

Figure 4. Throughput (left) and percentage of retransmitted

segments (right) vs. window size in the 3-hop scenario.

The 3-hop scenario is the first scenario where problems related to
link layer contentions become evident [1]. Figure 4 shows that the
optimal value for the TCP maximum cwnd size is 3 segments.
This result is apparently in contrast with previous simulation
results showing that in the 3-hop scenario the TCP optimal
window size is 2 segments. This discrepancy has been found to
reside in the different behaviour between the TCP version
implemented in the Linux kernel used in our testbed, and the TCP
implementation available in the ns-2 simulator [13]. In [7], by a
detailed analysis of traces, we found that when a maximum cwnd
size of to 2 segments is used, the simulated TCP receiver sends
back one ACK every other segment, while the real (i.e. Linux)
TCP receiver sends back one ACK every segment. Figure 4 shows

that TPA outperforms TCP with optimal window size both in
terms of throughput and retransmission index (with all congestion
window size). Specifically, TPA-2 increases the throughput of
about 17% with respect to TCP-2, retransmitting about 62% less
segments. TPA-3 provides a throughput 3% higher than TCP-3,
while retransmitting about 19% less segments. Figure 4 also
shows that TPA

*
-3 is the best configuration for TPA, providing a

throughput increase of about 5% with respect to TCP-3 and
retransmitting about 38% less segments.

200

220

240

260

280

300

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 4-hop

Maximum window size (# of packets)

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

0

1

2

3

4

5

6

7

8

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 4-hop

P
e
r
c
e
n
ta
g
e
 o
f
r
e
tr
a
n
s
m
is
s
io
n
s
 (
%
)

Maximum window size (# of pck)

Figure 5. Throughput (left) and percentage of retransmitted

packets (right) vs. window size in the 4-hop scenario.

In the 4-hop scenario, the link layer contentions increases and,
thus the difference in performance between the two protocols is
expected to become even more evident. Figure 5 shows that, as in
the 3-hop scenario, the optimal value for the TCP maximum cwnd

size is 3 segments. Throughput with TPA-2 is 19% higher than
with TCP-2, while retransmissions are cut by 68%. TPA-3
increases the throughput of about 10% with respect to TCP-3, and
retransmits 45% less segments. Also in this scenario TPA

*
-3 is the

best configuration for TPA, providing an increase of about 11% in
terms of throughput with respect to TCP-3 and a decrease of
about 60% in terms of retransmitted packets.

Finally, we also evaluated the performance of TCP and TPA in
the presence of interfering traffic. To this end we considered the
3-hop network topology described above, and added a CBR
(Continuous Bit Rate) session to it. This CBR session has N3 as
its source node, and N2 as its recipient node (Figure 1), and uses
UDP as the transport protocol. It inject a periodic traffic pattern in
the network with a bit rate equal to 192 Kbps, which corresponds
to the bit rate of an MP3 stream. The packet size of UDP traffic
was set to 1460 bytes. The results obtained, summarized in
Figure 6, shows that in this scenario there is no qualitative
difference with the results obtained in the 3-hop scenario. One
important observation is that the performance improvement of
TPA is much more evident because the probability of link layer
contentions is now greater. With respect to TCP-2, TPA-2 exhibits
an increment in throughput of about 24% and a decrement of
retransmission index of about 70%. TPA-3 provides a throughput
of about 8% higher than TCP while retransmitting about 52% less
segments. We can observe that also in this scenario TPA

*
-3 is the

best configuration for TPA, providing an increment in throughput
of about 17% with respect to TCP-3 and retransmitting about 60%
less segments.

200

220

240

260

280

300

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 3-hop UDP

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

Maximum window size (# of packets)

0

1

2

3

4

5

TCP-2 TCP-3TCP-uc TPA-2 TPA-3 TPA*-3

AODV, 3-hop UDP

P
e
r
c
e
n
ta
g
e
 o
f
r
e
tr
a
n
s
m
is
s
io
n
 (
%
)

Maximum window size (# of packets)
Figure 6. Throughput (left) and percentage of retransmitted

segments (right) vs. window size in the 3-hop-UDP scenario.

5.2 Analysis with OLSR routing protocol
To conclude our analysis, in this section we show the
experimental results obtained in the same above scenarios using
OLSR instead of AODV as routing protocol. Table 2 and Table 3
summarize the throughput and retransmission index, respectively.
We can see that the results obtained with OSLR are similar to
those obtained with AODV. As soon as problems related to link-
layer contention become evident, TPA outperforms TCP both in
terms of throughput and retransmission index. We can observe
that the performance improvement of TPA with respect to TCP is
much more evident when OLSR is used instead of AODV as
routing protocol. For example, in the 4-hop scenario TPA-2
increases the throughput of about 19% with respect to TCP-2
while retransmitting about 74% less segments. Throughput with
TPA-3 is 17% higher than with TCP-3, and retransmissions are
56% less. Finally, TPA*-3 provides a throughput about 25%
higher that TCP-3 (that is the optimal configuration for TCP) and
retransmits about 60% less segments. Table 2 and Table 3 also

show that in the 2-hop scenario, in contrast with the results
obtained with AODV, there are not significant differences
between TPA and TCP performance. One possible reason for this
behavior is the different parameter values used by AODV and
OLSR to manage HELLO messages. Specifically, by considering
the defaults parameter values, OLSR considers a link as broken if
it fails to receive three consecutive HELLO messages form its
neighbor while AODV assumes a link failure when if fails to
receive two consecutive HELLO messages. This make OLSR
more robust to false link failures [7], and results in a
retransmission index closer to zero in the 2-hop scenario.

Table 2. Throughput (in Kbps) vs. maximum cwnd size with

OLSR.

Scenario TCP-2 TPA-2 TCP-3 TPA-3
TPA*-

3
TCP-uc

1-hop 1369 1464 1456 1461 1495 1524

2-hop 603 679 657 650 687 675

3-hop 283 356 302 354 339 308

4-hop 175 208 173 203 215 163

3-hop-

UDP
273 343 279 300 314 288

Table 3. Retransmission index vs. maximum cwnd size with

OLSR.

Scenario TCP-2 TPA-2 TCP-3 TPA-3
TPA*-

3
TCP-uc

1-hop 0 0 0 0 0 0

2-hop 0,02 0 0,01 0,07 0 0

3-hop 1,13 0,37 1,5 0,67 0,56 1,22

4-hop 3,55 0,93 3,2 1,41 1,3 4,8

3-hop-

UDP
1,49 0,34 1,42 0,97 0,35 1,62

5.3 Trace Analysis
The aim of this section is to emphasize the different behaviour of
TPA and TCP in the presence of an ACK inhibition, i.e., when the
route between receiver and sender is broken while the route
between sender and receiver is still available. This can help us to
understand why TPA can outperform TCP. To this end we refer to
a portion of the TPA trace file obtained in one replica of the
OLSR experiment in the 3-hop scenario.

Figure 7-left shows the behaviour of TPA after about 39,557s
since the beginning of the experiment. At this time the TPA
sender is transmitting segments belonging to the block 131. The
route between node N4 (TPA receiver) and node N1 (TPA sender)
is broken while the reverse route between node N1 and N4 is
active. This implies that TPA data segments can reach node N4,
while ACKs are dropped by the routing protocol and never reach
node N1. Upon timers expiration for segment 0, TPA enters the
congested state and starts sending segments with a cwndmax
parameter set to one (segments 3 to 9 are sent at each timer
expiration). Those segments are successfully received by the
destination that continues to send ACKs to the sender node.
However, ACKs are discarded by the routing protocol. At time
50.92s, the routing protocol recovers the route to node N1. At this
point the TPA receiver, on receptions of segments 9, sends back

an ACK that reaches the TPA sender and notifies it that all
segments belonging to block 131 have been successfully received
by the destination. Upon reception of the above ACK, TPA leaves
the congested state and sends segments 10 and 11. Then, upon
reception of the ACK for segment 11, TPA transmits segments
belonging to a new block.

TPA sender TPA receiver

0:131
1:131
2:131
3:131

4:131

5:131

6:131

7:131

8:131

9:131

10:131
11:131

0:132

TCP sender TCP receiver

200
201
202
200

200

200

200

200

200

200

200
203

Figure 7. Impact of an ACK inhibition.

Figure 7-right shows the behaviour that TCP would have had in
the same conditions. For the sake of simplicity we will refer to
TCP sequence numbers in terms of packets instead of bytes. As
we can see from the sequence shown in Figure 7-right, upon timer
expiration for segment 200 the TCP sender retransmits the same
segment and continues to do so upon recursive timeouts. This
results in a performance degradation compared with TPA
behaviour.

6. SUMMARY AND CONCLUSIONS
In this paper we have reported the results of an experimental
analysis of the TPA protocol, a novel transport protocol
specifically tailored to multi-hop ad hoc networks. We have
implemented TPA in a real testbed and compared TPA and TCP
performance in a chain topology with different number of hops
and traffic patterns. From the results obtained we can draw the
following conclusions. In the 1-hop and 2-hop scenarios, since all
nodes are in the carrier sensing of each other, the major issues of
running TCP over multi-hop ad hoc networks disappear. TCP
with unclamped cwnd size exhibits a higher throughput than TCP
with clamped window, even though the differences in terms of
throughput are very small. Nevertheless, in the 2-hop scenario
TPA

*
-3 slightly outperforms TCP with unclamped transmission

window, both in terms of throughput and retransmission index.
This is a side effect of transmitting fewer ACK segments. As an
example, when using AODV, TPA increases the throughput of
about 3% and reduces the retransmission index of about 72%. In
the 3-hop and 4-hop scenarios, the limitations of standard TCP
over multi-hop networks become ever more evident. In such
harsher configuration, TPA always outperforms TCP, either with
AODV or with OLSR. For example, in the 4-hop scenario with
AODV, TPA-3 increases the throughput of about 10%, and
reduces the retransmission index of about 45% in comparison
with TCP-3. With OLSR, TPA-3 increases the throughput of
about 17% and reduces the retransmission index of about 56%
with respect to TCP-3. Finally, when using TPA

*
-3, TPA further

improves its performance. In the 4-hop scenario it increases the

throughput up to 26%, and reduces the retransmission index up to
80% with respect to TCP-3.

In conclusion, the results of the experimental analysis have shown
that TPA always outperforms TCP, and highlights that the
difference in performance increases as soon as the problems
related to link-layer congestion becomes evident. Note that the
testbed configuration presented in this paper slightly favors TCP
in comparison with TPA. We have considered only static
topologies, with fairly limited interferences from concurrent
transport-layer flows. As soon as concurrent flows starts to
appear, the advantage of using TPA becomes higher (see Figure
6). Therefore, we can speculate that in even harsher
configurations TPA will further outperform TCP. Specifically, we
are currently comparing the two protocols in cases of mobility,
more complex topologies, and additional concurrent flows.
Subjects for future work also include understanding the
interactions between routing protocols’ parameters and TCP/TPA
performance.

7. ACKNOWLEDGMENTS
This work is partially funded by the Information Society
Technologies program of the European Commission under the
FET-SAC HAGGLE project.

8. REFERENCES
[1] E. Altman and T. Jimenez, “Novel Delayed ACK

Techniques for improving TCP Performance in Multihop
Wireless Networks," Proceedings of the IFIP International

Conference on Personal Wireless Communications (PWC

2003), Venice, Italy, September 23-25, 2003.

[2] AODV-UU, AODV Linux Implementation, University of
Uppsala. Available at:
http://core.it.uu.se/AdHoc/AodvUUImpl.

[3] G. Anastasi, A. Passarella, “Towards a Novel Transport
Protocol for Ad Hoc Networks”, Proc. IFIP Int. Conference

on Personal Wireless Communications (PWC 2003), Sept.
23-25, 2003, Venice (Italy), LNCS, N. 2775.

[4] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella, “TPA: A
Transport Protocol for Ad hoc Networks”, Proceedings of
the IEEE Symposium on Computers and Communications

(ISCC 2005), Cartagena (Spain), June 27-30, 2005.

[5] G. Anastasi, E. Borgia, M. Conti, E. Gregori, “Wi-Fi in Ad
Hoc Mode: A Measurement Study”, Proceedings of the IEEE

International Conference on Pervasive Computing and

Communications (PerCom 2004), Orlando (Florida), March
14-17, 2004.

[6] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella, "Design,
Implementation and Measurements of a Transport Protocol
for Ad Hoc Networks", chapter in MobileMAN (M. Conti,

Editor), Sprinter, to appear. Also available at
http://www2.ing.unipi.it/~o1653499/papers.htm.

[7] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella,
"Experimental Analysis of TCP Performance in Static Multi-
hop Ad Hoc Networks", chapter in Mobile Ad Hoc Networks:

from Theory to Reality, (M. Conti, J. Crowcroft, A.

Passarella, Editors), Nova Science Publisher, to appear.
Also available at
http://www2.ing.unipi.it/~o1653499/papers.htm.

[8] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A.
Pinizzotto, “A Layer-2 Architecture for Interconnecting
Multi-hop Hybrid Ad Hoc Networks to the Internet,” in
Proceedings of WONS 2006, Les Menuires, France, January,
18–20 2006, pp. 87-96.

[9] K. Chen, Y. Xue, S. Shah, K. Nahrstedt, “Understanding
Bandwidth-Delay Product in Mobile Ad Hoc Networks”,
Computer Communications, Vol. 27, pp. 923-934, 2004.

[10] T. Clausen and P. Jaquet, “Optimized Link State Routing
Protocol (OLSR),” RFC 3626, October 2003. Available:
http://www.ietf.org/rfc/rfc3626.txt.

[11] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The
Impact of Multihop Wireless Channel on TCP Throughput
and Loss”, Proceedings of IEEE INFOCOM 2003, San
Francisco (California), March 30.April 3, 2003.

[12] K. Nahm, A. Helmy, C.-C.Jay Kuo, “TCP over Multihop
802.11 Networks: issues and Performance Enhancement”,
Proceedings of ACM MobiHoc 2005, Urbana-Champaign,
IL, pp 277-287, June 2005.

[13] The Network Simulator - ns-2 (version 2.28).
http://www.isi.edu/nsnam/ns/index.html.

[14] R. de Oliveira, T. Braun, “A Dynamic Adaptive
Acknowledgment Strategy for TCP over Multihop Wireless
Networks”, Proceedings of IEEE Infocom 2005, Vol. 3, pp.
1863-1874, Miami, USA, March 13-17, 2005.

[15] S. Papanastasiou, M. Ould-Khaoua, L. MacKenzie, “TCP
Developments in Mobile Ad Hoc Networks”, Chapter 30 in
Handbook of Algorithms and Wireless Networking and

Mobile Computing (A. Bouchercke editor).

[16] C. Perkins, E. Belding-Royer, S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing”, RFC 3561, July 2003.
Available at: http://www.ietf.org/rfc/rfc3561.txt

[17] K. Sundaresan, V. Anantharaman. H. Hsieh, R. Sivakumar,
“ATP: A Reliable Transport Protocol for Ad Hoc Networks”,
Proceedings of ACM MobiHoc 2003, Annapolios
(Maryland), June 1-3, 2003

[18] W.R. Stevens, “TCP/IP Illustrated”, Vol. 1, Addison Wesley,
1994.

[19] W.R. Stevens, “UNIX Network Programming – Volume 2,
Interprocess Communications”, Prentice Hall PTR, 2nd
Edition, 1999.

[20] C.A. Thekkath, T.D. Nguyen, E. Moy, E.D. Lazowska,
“Implementing Network Protocols at User Level”,
IEEE/ACM Transactions on Networking, vol. 1(5), pp. 554-
565, October 1993.

[21] A. Tønnesen, “Implementation of the OLSR specification
(OLSR UniK)”, Version 0.4.10, University of Oslo.
Available at: http://www.olsr.org/.

[22] K. Xu, M. Gerla and S. Bae, “Effectiveness of RTS/CTS
Handshake in IEEE 802.11 Based Ad Hoc Networks”, Ad
Hoc Networks Journal, vol. 1, no.1, pp. 107-123, July 2003.

[23] S. Xu, T. Saadawi, “Performance Evaluation of TCP
Algorithms in Multi-hop Wireless Packet Networks”,
Wireless Communications and Mobile Computing, Vol. 2
(2001), N. 1, pp.85-100.

