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ABSTRACT 

Many previous papers have pointed out that TCP performance in 
multi-hop ad hoc networks is not optimal. This is due to several 
TCP design principles that reflect the characteristics of wired 
networks dominant at the time when TCP was designed, but are 
not adequate for multi-hop ad hoc networks. For example, 
congestion phenomena in multi-hop networks are very different 
than in traditional wired networks, and route failures and route 
changes may be frequent events. To overcome these problems, in 
a previous work we presented a novel transport protocol – named 
TPA – specifically tailored to multi-hop ad hoc networks. In this 
paper we perform an experimental analysis of TPA in static multi-
hop scenarios. Specifically, we compare TPA and TCP 
performance in a chain topology with different number of hops 
and traffic patterns. We also consider the effect of the routing 
protocol. Our experimental results show that TPA protocol 
outperforms TCP significantly both in terms of throughput and 
energy consumption. 

Categories and Subject Descriptors 

C.2.2 [Computer-Communication Networks]: Network 

Protocols; C.2.1 [Computer-Communication Networks]: 
Network Architecture and Design. 

General Terms 

Measurement, Performance, Design, Algorithms. 

Keywords 

Ad hoc networks, TCP, Transport Layer, Performance Evaluation, 
Experimental Analysis, Routing protocols 

1. INTRODUCTION 
TCP (Transmission Control Protocol) is the de facto standard for 
reliable connection-oriented transport protocols, and is normally 
used over the Internet Protocol (IP) to provide reliable 
communication to Internet applications. However, in the last 

years many papers have pointed out that TCP performance in 
multi-hop ad hoc networks is not optimal. This is because some 
assumptions in its design are clearly inspired from the 
characteristics of wired networks dominant at the time when it 
was conceived. More specifically, TCP implicitly assumes that 
packet loss is almost always due to congestion phenomena 
causing buffer overflows at intermediate routers. Furthermore, it 
also assumes that nodes are static (i.e., they do not change their 
position over time). Unfortunately, these assumptions do not hold 
in multi-hop ad hoc networks. 

In multi-hop ad hoc networks, packet losses due to interference 
and link-layer contentions are largely predominant, while packet 
losses due to buffer overflows at intermediate nodes are rare 
events. The TCP protocol reacts to packet losses originated by 
link-layer contentions by activating the window-based 
congestion-control mechanism. This may lead to throughput 
degradation and instability [1], [11], [8], [12]. In addiction, in 
multi-hop ad hoc networks nodes may be mobile. This may 
further degrade the TCP performance [15]. However, in this paper 
we not consider node mobility. 

To overcome the above problems several proposals have been 
presented. Most of them are TCP enhancements aimed at 
improving TCP performance either by means of lower layer 
mechanisms that hide the multi-hop network characteristics from 
TCP, or by modifying TCP mechanisms. A comprehensive survey 
of such TCP variants can be found in [15]. In addition, some 
novel transport protocols, designed from scratch and specifically 
tailored to multi-hop ad hoc networks, have been also proposed. 
In a previous paper [3] we argued that the characteristics of multi-
hop ad hoc networks are very different from those of wired 
networks for which TCP was originally conceived. Thus, a TCP 
variant may not be the best choice for multi-hop ad hoc networks. 
Therefore, we designed a new transport protocol named TPA 
(Transport protocol for Ad Hoc networks). TPA provides a 
reliable, connection-oriented type of service and includes 
mechanisms for managing route failures and route changes 
efficiently. In addition, it has a novel congestion control 
mechanism that takes into account problems introduced by link-
layer contentions. Finally, it implements a novel retransmission 
policy to reduce the number of useless retransmissions and, 
hence, power consumption. 

The authors in [17] also took an approach similar to ours and 
defined the Ad hoc Transport Protocol (ATP). Even if novel in 
many respects, TPA conserves some TCP characteristics adapting 
them to the new environment (for example, it still uses a window-
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based transmission scheme but with very small maximum 
congestion window size). On the other side, ATP is completely 
antithetic to TCP as it relies upon rate-based transmissions, 
network-supported congestion detection and control, no 
retransmission timeout, decoupled congestion control and 
reliability, etc. [17]. Specifically, it requires assistance from the 
underlying network layer (and more precisely from intermediate 
nodes along the connection) for performing its tasks. This may 
make it unsuitable for those environments where the network 
layer protocol does not provide such a support. 

In [4] we performed a preliminary simulation analysis of TPA and 
compared its performance to that of TCP. The results obtained 
were very promising as they showed that TPA outperforms TCP 
in all scenarios taken into consideration, both in terms of 
throughput and energy consumption. However, previous 
experimental studies have shown that certain aspects of real 
multi-hop networks are often not effectively captured in 
simulation tools [5]. Furthermore, available software and 
hardware products often use parameter settings different from 
those commonly assumed in simulation tools. Finally, real 
operating conditions are often different from those modeled in 
simulation experiments. For example, interferences caused by 
WiFi hotspots or other devices in the proximity are inevitable in 
practice. For all the above reasons, we believe it is of great 
importance to compare TPA and TCP performance in a real 
environment. Therefore, we implemented the TPA protocol and 
performed the experimental analysis described in this paper. The 
TPA performance is thus compared with that of TCP NewReno 
(with the delayed-ACK mechanism enabled) available with Linux 
distributions. To perform our experiments, we used a testbed 
based on laptops running the Linux operating system. In addition, 
to investigate the effect of the routing protocol, we considered 
two very popular routing protocols, i.e., AODV [16], [2] and 
OLSR [1], [10] which take a different approach on building and 
maintaining routes (reactive vs. proactive). For the sake of 
simplicity our analysis is limited to static networks with a chain 
topology. The results obtained show that TPA outperforms TCP, 
both terms of throughput and energy consumption, especially 
when problems related to link-layer contentions became more 
evident. Specifically, with respect to the best TCP configuration, 
TPA increases the throughput up to 26%, and reduces the number 
of (re)transmissions up to 80%. 

The rest of the paper is organized as follows. Section 2 describes 
the TPA protocol. Section 3 provides a brief description of TPA 
implementation in a Linux environment. Section 4 introduces the 
experimental environment used for performance evaluation. 
Section 5 discusses the results obtained from the experiments. 
Finally, Section 6 concludes the paper. 

2. TPA PROTOCOL DESCRIPTION 
TPA provides a reliable, connection-oriented type of service. In 
the following subsections we will provide a description of the 
main aspects of the protocol. The interested reader can refer to [3] 
and [4] for motivations behind TPA design, and protocol details, 
respectively. 

2.1 Data Transfer 
TPA is based on a sliding-window scheme where the window size 
varies dynamically according to the flow control and congestion 

control algorithms. The flow control mechanism is similar to the 
corresponding TCP mechanism [18], while the congestion control 
mechanism is described in Section 2.2. 

TPA manages application data in blocks, with a block consisting 
of K segments. The source TPA grabs a number of bytes - 
corresponding to K TPA segments - from the transmit buffer, 
encapsulates these bytes into TPA segments, and transmits them 
reliably to the destination.  

Segment transmissions are handled as follows. Whenever sending 
a segment, the source TPA sets a timer and waits for the related 
ACK from the destination. Upon receiving an ACK for an 
outstanding segment the source TPA performs the following 
steps: i) derives the new window size according to the congestion 
and flow control algorithms (see below); ii) computes how many 
segments can be sent according to the new window size; and iii) 
sends next segments in the block. On the other hand, whenever a 
timeout related to a segment in the current window expires, the 
source TPA marks the segment as “timed out” and executes steps 
i)-iii) as above, just as in the case the segment was acknowledged. 

As soon as all segments belonging to the block have been 
transmitted, the sender performs a second round for retransmitting 
“timed-out” segments, which are said to form a “retransmission 
stream”. In the second round the sender performs steps i)-iii) 
described above with reference to the retransmission stream 
instead of the original block. This procedure is repeated until all 
segments within the original block have been acknowledged by 
the destination. Only when all segments belonging to a block have 
been acknowledged, TPA takes care to manage the next block. 

The proposed scheme has several advantages with respect to the 
transmission scheme used in TCP. First, the probability of useless 
transmissions is reduced since segments for which the ACK is not 
received before the timeout expiration are not retransmitted 
immediately (as in the TCP protocol) but in the next transmission 
round. Second, TPA is resilient against ACK losses because a 
single ACK is sufficient to notify the sender about all missed 
segments in the current block. Third, the sender does not suffer 
from out-of-order arrivals of segments. 

2.2 Congestion Control Mechanism 
Congestions due to link-layer contentions manifest themselves at 
the transport layer in two different ways. An intermediate node 
may fail in relaying data segments to its neighboring nodes and, 
thus, it sends an ELFN (if available) back to the sender node. This 
case, throughout referred to as data inhibition, cannot be 
distinguished by the sender TPA from a real route failure. On the 
other hand, an intermediate node may fail in relaying ACK 
segments. In this case, throughout referred to as ACK inhibition, 
the ELFN (if available) is received by the destination node (i.e., 
the node that sent the ACK), while the source node (i.e., the node 
sending data segments) only experiences one or more 
(consecutive) timeouts. Whenever the sender TPA detects thCONG 
(with thCONG >= 1) consecutive timeout expirations it assumes 
that an ACK inhibition has occurred, and enters the congested 

state. The source TPA leaves the congested state as soon as it 
receives thACK consecutive ACKs from the destination. If the 
network layer does not support the ELFN service, the only way to 
detect both data and ACK inhibitions is by monitoring timeouts at 
the sender. 



  

The TPA congestion control mechanism is window-based as in 
TCP. However, in TPA the maximum congestion window size 
(cwndmax) is very small (in the order of 2-3 TPA segments) and, 
hence, the maximum and minimum values are very close. 
Therefore, the TPA congestion control algorithm is very simple. 
In normal operating conditions, i.e., when TPA is not in the 
congested state, the congestion window is set to the maximum 
value, cwndmax. When TPA enters the congested state, the 
congestion window is reduced to 1 to allow congestion to 
disappear.  

2.3 ACK Management 
Many papers [1], [14], [1] have shown that the Delayed ACK 
mechanism can improve significantly the TCP performance. 
Based on these results we implemented a Delayed ACK 
mechanism in TPA as well. When using this mechanism, if the 
TPA sender is transmitting with the maximum value for the 
transmission window (cwndmax), the TPA receiver sends back one 
acknowledgement every other segment received, or upon timer 
expiration. Otherwise, the TPA receiver sends back one 
acknowledgment for each segment received. The TPA sender 
uses the txStatus flag of  the TPA segment header to announce the 
size of the transmission window to the receiver. 

We also implemented the following modified version of Delayed 

ACK. To minimize the number of ACKs in transit in the network,  
the receiver can delay the ACK transmission up to cwndmax 
segments. In other words, when the TPA sender transmits 
segments with a window size equal to one, the receiver sends 
back one ACK for each segment received. Otherwise, if the TPA 
sender transmits segments with a window size equal to cwndmax 
segments the TPA receiver sends back one ACK every cwndmax 
segments received (e.g. every three segments received if cwndmax 
is set to three) or on timer expiration. Throughout the paper we 
will refer to TPA with modified version of the Delayed ACK as 
TPA

*. 

In both TPA variants, the interval that triggers the ACK 
transmission is set to a constant value. 

3. TPA PROTOCOL IMPLEMENTATION 
In this section, we provide a brief description of our TPA 
implementation in the Linux environment. A more detailed 
description can be found in [6]. Network protocols are usually 
implemented in the kernel space and can be accessed by 
applications through an interface consisting of a set of system 
calls (e.g., the socket-based interface). Security and performance 
are the main motivations behind this approach. However, there 
are several factors that can motivate an implementation of 
network protocols out of the kernel space [19]. The most obvious 
of these factors is ease of prototyping, debugging and 
maintenance. Another factor may be an improved system stability. 
When developing protocols in a user-level environment, an 
unstable stack affects only the application using it and does not 
cause a system crash.  

Therefore, we decided to prototype TPA by means of a user-level 
implementation. Since TPA only requires a datagram service it 
was implemented on top of the UDP/IP protocols that are 
accessed through the legacy socket-based interface. To allow a 
simple re-use of legacy application written for TCP, we 

implemented for TPA a socket application programming interface 
(API) similar to that provided by TCP. 

TPA was implemented (by using the C programming language) 
with distinct execution flows that interact according to the 
client/server and producer/consumer paradigms. Specifically, we 
structured the TPA software module by means of three processes: 
a data-processing process, a sender process, and a receiver 
process. The data-processing process collects data passed by the 
application process in a buffer to form blocks. Data blocks are 
then passed to the sender process that manages them according to 
TPA specifications. Finally, the receiver process is in charge of 
processing data coming from the network and sending ACKs back 
to the sender. In this model processes resident on the same 
machine communicate each other by using FIFOs [1] and signals, 
while the sender and the receiver process use a UDP socket to 
transmit data and ACK packets. 

4. EXPERIMENTAL ENVIRONMENT 

4.1 Testbed Description 
Our testbed consisted of IBM R-50 laptops equipped with 
integrated Intel Pro-Wireless 2200 wireless cards. All the laptops 
were running the Linux Kernel 2.6.12 with the latest available 
version of the ipw2200 driver (1.1.2). Wireless cards followed the 
IEEE 802.11b specifications with maximum bit rate set to 2 
Mbps. The RTS/CTS mechanism was enabled and RTS/CTS 
threshold was set to 100 bytes so that RTS/CTS handshake was 
active for data segments and disabled for ACKs. The transmission 
power of the wireless cards was set to the minimum allowed value 
(-12db) so as to reduce the transmission range and make it 
possible to perform experiments in an indoor environment. 
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N1

N2N3
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Figure 1. Indoor environment and network topology used in 

our experiments. 

Figure 1 shows the indoor environment where the experiments 
were carried out. It is a real working environment with offices and 
labs. In particular, there are several WiFi Access Points in the 
proximity. Although this environment may influences our 
performance measures, we believe that it is important to test the 
TPA protocol performance in a real working environment. In our 
experiments we considered a chain topology with five nodes 
deployed as in Figure 1. In all the experiments node N1 was the 
sender, while the receiver (and the number of active nodes) 
depended on the specific scenario. Specifically, we considered 
four different scenarios with hop count ranging from 1 to 4. For 



  

example, in the 3-hop scenario, node N4 is the receiver (node N5 
is not active). The distance between nodes was chosen in such a 
way that only adjacent nodes were within the transmission range 
of each other. 

We used ftp-like traffic, i.e., the sender node had always data 
ready to send. To this end, we developed a simple client/server 
application using Linux sockets operating with TCP protocol and 
we adapted this application to operate with TPA sockets as well. 
Several papers have shown the advantage of limiting the TCP 
window size in multi-hop ad hoc networks. To be fair, we 
compared TPA and TCP with limited window size. To limit the 
maximum value for the TCP congestion window size (cwnd), we 
used the TCP_WINDOW_CLAMP socket parameter that permits 
to bound the size of the TCP advertised window. The segment 
size was constant in all the experiments with the transport-layer 
payload size set to 1460 bytes. To capture TCP segment we used 
tcpdump, while to analyze the experiments results we used tcpstat 
and tcptrace (enhanced by our shell scripts). Since TPA is 
implemented in the user-space to capture TPA segments we used 
our TPA code. 

As anticipated, we compared the performance of TPA and TCP 
by considering two different routing protocols, i.e., AODV and 
OLSR. AODV (Ad hoc On-demand Distance Vector, [16]) is a 
well-known reactive protocol that uses RREQ, RREP and RERR 
messages to discover and maintain routes to the destination. It can 
use two different mechanisms for neighbor discovery and local 
connectivity maintenance, i.e., link layer information provided by 
the underlying MAC protocol, or HELLO messages periodically 
exchanged between all nodes in the multi-hop network. In our 
testbed we used the AODV implementation for Linux by the 
Uppsala University [2] version 0.9.1. To maintain local 
connectivity we set AODV to use HELLO messages since our 
ipw2200 driver didn’t provide link-layer failure notifications. All 
the AODV parameters were set to their default values. 

OLSR (Optimized Link State Routing, [10]) is an optimization of 
the classical link state algorithm for mobile ad hoc networks (it is 
thus a proactive protocol). OLSR periodically floods the network 
with route information so that each node can build locally a 
routing table containing the complete information of routes to all 
possible destinations within the ad hoc network. Similarly to 
AODV, OLSR employs a neighbor discovery procedure based on 
HELLO messages. In our testbed we used the OLSR_UniK 
implementation for Linux version 0.4.10 [1]. We set all the 
parameters to their default values and we disabled the OLSR 
hysteresis mechanism, because it was found to degrade TCP 
throughput in an unacceptable way [8]. 

Table 1 shows the operational parameters for the TPA protocol. 
As far as TCP,  the following kernel variables were disabled.  

• tcp_moderate_rcvbuf. This variable enables the 

kernel to dynamically update receiver socket buffer 
size. 

• tcp_bic. This variable enables the Binary Increase 

(BIC) congestion control algorithm. 

• tcp_vegas_cong_avoid. This variable enables 

TCP-Vegas congestion avoidance algorithm. 

• tcp_westwood. This variable enables TCP 

westwood (TCPW) congestion control algorithm. 

• tcp_sack. This variables enables RFC 2018 TCP 

Selective Acknowledgments (SACK) mechanism. 

• tcp_window_scaling. This variable enables RFC 

1323 TCP window scaling mechanism. 

• tcp_timestamps. This variable enables RFC 1323 

TCP timestamps mechanism. 

In our experimental analysis we compared the performance of 
TCP and TPA using different values for the maximum congestion 
window size. Previous simulation studies [8], [11] suggest that in 
our scenarios (chain topology whit hop count ranging from 3 to 4) 
the optimal value for the maximum cwnd size is 2. However, 
experimental measurements from a real testbed [7] show that 3 is 
the optimal value for the maximum cwnd size in a real 
environment. Therefore, we considered a maximum cwnd of size 
2 and 3 for both TCP and TPA. We also considered an unclamped 
(uc) value for the maximum cwnd size of TCP. Moreover, we 
evaluated the performance of TPA with the modified version of 
the delayed ACK mechanism. In the following we will refer to 
TCP with maximum cwnd size of W as TCP-W, and we will refer 
to TPA with cwndmax set to W as TPA-W (or TPA

*
-W). 

Table 1. TPA Operational Parameters. 

Parameter Value 

thRC (TPA)  3 segments 
nRC (TPA) 3 segments 

G 0.125 
H 0.25 
g1 0.25 
h1 0.5 

ThCONG  (TPA) 1 segment 
thACK (TPA) 1 segment 

Block Size (TPA) 12 segments 

4.2 Performance measures 
In our analysis we considered the following two performance 
measures: 

• Throughput, i.e., the average number of bytes 
successfully received by the final destination per unit 
time. 

• Retransmission index, i.e., the percentage of segments 
re-transmitted by the TPA/TCP sender.  

The throughput was measured at the application layer as the 
number of bytes successfully received by the destination process 
in a given time interval, divided by the duration of the time 
interval. 

The re-transmission index (rtx) was obtained as: 

ndestinatiothebyreceivedlysuccessfulpacketsduplicatednonof

sourcethebytedretransmitpacketsof
rtx

−

=

#

#    

The re-transmission index allows us to evaluate the ability of 
TPA/TCP to handle transmission in an efficient way. It is 
worthwhile to emphasize that re-transmitted segments consume 
energy and generate congestion both at the sender and 
intermediate nodes. As nodes in a multi-hop ad hoc network may 
have limited power budget, and wireless bandwidth is a scarce 
resource, it is important to manage (re-)transmission efficiently. 



  

Therefore, a small value for the re-transmission index is highly 
desirable. 

4.3 Methodology 
When dealing with real testbeds one of the main difficulties is that 
experiments cannot be repeated exactly in the same way since 
external conditions may vary from time to time -- sometimes 
during the same experiment -- and there is definitely no control on 
them. Therefore, successive experiments carried out under the 
same operating conditions may provide outcomes that differ 
significantly from each other. In addition, comparison of 
performance measurements obtained in different scenarios or 
operating conditions becomes hard or even impossible. 

To achieve more statistical accuracy, we replicated each 
experiment 5 times, and averaged the performance measures over 
the entire set of 5 replicas. In addition, experiments with similar 
parameter values (e.g., with different maximum cwnd size but all 
other equal parameter values) were performed in an interleaved 
way. For instance, with reference to the 3-hop topology, we ran a 
first replica of TCP-2, TCP-3, TCP-uc, TPA-2, TPA-3 and TPA

*
-

3. Then, we performed a second replica, a third replica, and so on.  

Each replica was 120s long, and consisted of a file transfer. To 
perform multiple replicas the whole process of experimentation 
(data generation, logging and archiving) was automated using 
shell scripts. 

5. EXPERIMENTAL RESULTS 
In this section we describe the results obtained from our 
experiments carried out in different scenarios. Specifically, we 
considered four chain topologies with increasing number of hops 
(from 1 to 4). In addition, for each scenario we performed the 
experiments using both AODV and OLSR routing protocol. In all 
the experiments only a single TPA/TCP connection was active in 
the network. The purpose was to investigate the influence of the 
link-layer contention on TPA and TCP in a very simple network 
topology. Then, we extended our analysis by considering the 
effects of interfering traffic as well.  

This section is organized as follows. Section 5.1 and 5.2 show the 
results of the experiments with AODV and OLSR, respectively. 
Section 5.3 describes the different behavior of TPA and TCP in 
the presence of ACK inhibition by means of a detailed analysis of 
TPA traces. 

5.1 Analysis with AODV routing protocol 
In this section we describe the experimental results obtained with 
the AODV routing protocol. Figure 2 through Figure 6 show the 
throughput and retransmission index of both TCP and TPA in all 
the scenarios we considered. 

Figure 2 shows that in the 1-hop scenario there are not significant 
differences between TCP and TPA performance. This was 
expected since in this simple scenario problems related to link-
layer contention are managed efficiently by the IEEE 802.11 
MAC protocol. Specifically, in this simple scenario all nodes are 
within the transmission range of each other and can thus 
coordinate efficiently their transmissions. This produces a 
retransmission index equal to zero for all values of the maximum 
cwnd size parameter. Figure 2 also shows that TCP with an 

unclamped congestion window slightly outperform both TPA and 
TCP with clamped window. Specifically, TCP-uc throughput is 
about 2% higher that TPA-3 throughput. However, we can 
observe that  TPA

*
-3 achieves about the same throughput of TCP-

uc. It may be worthwhile to recall here that TPA is implemented 
in the user space and, thus, experiences a higher overhead with 
respect to TCP-uc running in the kernel space. 
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Figure 2. Throughput (left) and percentage of retransmitted 

segments (right) vs. window size in the 1-hop scenario. 

Figure 3 shows that in the 2-hop scenario TPA outperforms TCP 
with clamped window both in terms of throughput and 
retransmission index. Specifically, TPA-2 provides approximately 
the same throughput as TCP-2 but retransmits about 79% less 
segments. TPA-3 provides a throughput about 9% higher than that 
of TCP-3 but it reduces the number of retransmitted segments of 
about 13%. 
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Figure 3.Throughput (left) and percentage of retransmitted 

segments (right) vs. window size in the 2-hop scenario. 

The main reason for the difference between TCP and TPA 
performance in this scenario, where there is no interference (all 
nodes are in the carrier sensing of each other), resides on HELLO 
messages used by AODV to maintain local connectivity [7]. 
When using HELLO messages (with default parameter values), 
it’s sufficient to loose two consecutive HELLO messages to 
detect a link failure. Since HELLO messages are broadcast 
packets, and broadcast packets are neither acknowledged nor 
retransmitted by the MAC layer, they are vulnerable to collisions 
and channel errors. This results in a loss of local connectivity 
even in networks where all nodes are within the same carrier 
sensing range. This loss of local connectivity results in frequent 
route failures which turns out in timeouts and retransmissions at 
the sender side. However, as expected TPA is much more 
efficient than TCP in managing such events as highlighted by the 
above results (Figure 3 right). 

Figure 3 also shows that, as in the 2-hop scenario, TCP achieves 
optimal throughput when it uses an unclamped transmission 



  

window [1]. Specifically, TCP-uc throughput is about 13% higher 
than TCP-3 throughput. This happen because in a scenario where 
all nodes are within the same carries sensing range, the IEEE 
802.11 MAC protocol works well. However, TPA

*
-3 provides a 

higher throughput than TCP-uc (about 3%) while retransmits 
about 70% less segments. This is because TPA

*
-3 reduces the 

number of ACKs and, hence, the amount traffic on the channel. 
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Figure 4. Throughput (left) and percentage of retransmitted 

segments (right) vs. window size in the 3-hop scenario. 

The 3-hop scenario is the first scenario where problems related to 
link layer contentions become evident [1]. Figure 4 shows that the 
optimal value for the TCP maximum cwnd size is 3 segments. 
This result is apparently in contrast with previous simulation 
results showing that in the 3-hop scenario the TCP optimal 
window size is 2 segments. This discrepancy has been found to 
reside in the different behaviour between the TCP version 
implemented in the Linux kernel used in our testbed, and the TCP 
implementation available in the ns-2 simulator [13]. In [7], by a 
detailed analysis of traces, we found that when a maximum cwnd 
size of to 2 segments is used, the simulated TCP receiver sends 
back one ACK every other segment, while the real (i.e. Linux) 
TCP receiver sends back one ACK every segment. Figure 4 shows 

that TPA outperforms TCP with optimal window size both in 
terms of throughput and retransmission index (with all congestion 
window size). Specifically, TPA-2 increases the throughput of 
about 17% with respect to TCP-2, retransmitting about 62% less 
segments. TPA-3 provides a throughput 3% higher than TCP-3, 
while retransmitting about 19% less segments. Figure 4 also 
shows that TPA

*
-3 is the best configuration for TPA, providing a  

throughput increase of about 5% with respect to TCP-3 and 
retransmitting about 38% less segments. 
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Figure 5. Throughput (left) and percentage of retransmitted 

packets (right) vs. window size in the 4-hop scenario. 

In the 4-hop scenario, the link layer contentions increases and, 
thus the difference in performance between the two protocols is 
expected to become even more evident. Figure 5 shows that, as in 
the 3-hop scenario, the optimal value for the TCP maximum cwnd 

size is 3 segments. Throughput with TPA-2 is 19% higher than 
with TCP-2, while retransmissions are cut by 68%. TPA-3 
increases the throughput of about 10% with respect to TCP-3, and 
retransmits 45% less segments. Also in this scenario TPA

*
-3 is the 

best configuration for TPA, providing an increase of about 11% in 
terms of throughput with respect to TCP-3 and a decrease of 
about 60% in terms of retransmitted packets. 

Finally, we also evaluated the performance of TCP and TPA in 
the presence of interfering traffic. To this end we considered the 
3-hop network topology described above, and added a CBR 
(Continuous Bit Rate) session to it. This CBR session has N3 as 
its source node, and N2 as its recipient node (Figure 1), and uses 
UDP as the transport protocol. It inject a periodic traffic pattern in 
the network with a bit rate equal to 192 Kbps, which corresponds 
to the bit rate of an MP3 stream. The packet size of UDP traffic 
was set to 1460 bytes. The results obtained, summarized in  
Figure 6, shows that in this scenario there is no qualitative 
difference with the results obtained in the 3-hop scenario. One 
important observation is that the performance improvement of 
TPA is much more evident because the probability of link layer 
contentions is now greater. With respect to TCP-2, TPA-2 exhibits 
an increment in throughput of about 24% and a decrement of 
retransmission index of about 70%. TPA-3 provides a throughput 
of about 8% higher than TCP while retransmitting about 52% less 
segments. We can observe that also in this scenario TPA

*
-3 is the 

best configuration for TPA, providing an increment in throughput 
of about 17% with respect to TCP-3 and retransmitting about 60% 
less segments. 
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Figure 6. Throughput (left) and percentage of retransmitted 

segments (right) vs. window size in the 3-hop-UDP scenario. 

5.2 Analysis with OLSR routing protocol 
To conclude our analysis, in this section we show the 
experimental results obtained in the same above scenarios using 
OLSR instead of AODV as routing protocol. Table 2 and Table 3 
summarize the throughput and retransmission index, respectively. 
We can see that the results obtained with OSLR are similar to 
those obtained with AODV. As soon as problems related to link-
layer contention become evident, TPA outperforms TCP both in 
terms of throughput and retransmission index. We can observe 
that the performance improvement of TPA with respect to TCP is 
much more evident when OLSR is used instead of AODV as 
routing protocol. For example, in the 4-hop scenario TPA-2 
increases the throughput of about 19% with respect to TCP-2 
while retransmitting about 74% less segments. Throughput with 
TPA-3 is 17% higher than with TCP-3, and retransmissions are 
56% less. Finally, TPA*-3 provides a throughput  about 25% 
higher that TCP-3 (that is the optimal configuration for TCP) and 
retransmits about 60% less segments. Table 2 and Table 3 also 



  

show that in the 2-hop scenario, in contrast with the results 
obtained with AODV, there are not significant differences 
between TPA and TCP performance. One possible reason for this 
behavior is the different parameter values used by AODV and 
OLSR to manage HELLO messages. Specifically, by considering 
the defaults parameter values, OLSR considers a link as broken if 
it fails to receive three consecutive HELLO messages form its 
neighbor while AODV assumes a link failure when if fails to 
receive two consecutive HELLO messages. This make OLSR 
more robust to false link failures [7], and results in a 
retransmission index closer to zero in the 2-hop scenario. 

Table 2. Throughput (in Kbps) vs. maximum cwnd size with 

OLSR. 

Scenario TCP-2 TPA-2 TCP-3 TPA-3 
TPA*-

3 
TCP-uc 

1-hop 1369 1464 1456 1461 1495 1524 

2-hop 603 679 657 650 687 675 

3-hop 283 356 302 354 339 308 

4-hop 175 208 173 203 215 163 

3-hop-

UDP 
273 343 279 300 314 288 

 

Table 3. Retransmission index vs. maximum cwnd size with 

OLSR. 

Scenario TCP-2 TPA-2 TCP-3 TPA-3 
TPA*-

3 
TCP-uc 

1-hop 0 0 0 0 0 0 

2-hop 0,02 0 0,01 0,07 0 0 

3-hop 1,13 0,37 1,5 0,67 0,56 1,22 

4-hop 3,55 0,93 3,2 1,41 1,3 4,8 

3-hop-

UDP 
1,49 0,34 1,42 0,97 0,35 1,62 

5.3 Trace Analysis 
The aim of this section is to emphasize the different behaviour of 
TPA and TCP in the presence of an ACK inhibition, i.e., when the 
route between receiver and sender is broken while the route 
between sender and receiver is still available. This can help us to 
understand why TPA can outperform TCP. To this end we refer to 
a portion of the TPA trace file obtained in one replica of the 
OLSR experiment in the 3-hop scenario. 

Figure 7-left shows the behaviour of TPA after about 39,557s 
since the beginning of the experiment. At this time the TPA 
sender is transmitting segments belonging to the block 131. The 
route between node N4 (TPA receiver) and node N1 (TPA sender) 
is broken while the reverse route between node N1 and N4 is 
active. This implies that TPA data segments can reach node N4, 
while ACKs are dropped by the routing protocol and never reach 
node N1. Upon timers expiration for segment 0, TPA enters the 
congested state and starts sending segments with a cwndmax 
parameter set to one (segments 3 to 9 are sent at each timer 
expiration). Those segments are successfully received by the 
destination that continues to send ACKs to the sender node. 
However, ACKs are discarded by the routing protocol. At time 
50.92s, the routing protocol recovers the route to node N1. At this 
point the TPA receiver, on receptions of segments 9, sends back 

an ACK that reaches the TPA sender and notifies it that all 
segments belonging to block 131 have been successfully received 
by the destination. Upon reception of the above ACK, TPA leaves 
the congested state and sends segments 10 and 11. Then, upon 
reception of the ACK for segment 11, TPA transmits segments 
belonging to a new block. 
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Figure 7. Impact of an ACK inhibition. 

Figure 7-right shows the behaviour that TCP would have had in 
the same conditions. For the sake of simplicity we will refer to 
TCP sequence numbers in terms of packets instead of bytes. As 
we can see from the sequence shown in Figure 7-right, upon timer 
expiration for segment 200 the TCP sender retransmits the same 
segment and continues to do so upon recursive timeouts. This 
results in a performance degradation compared with TPA 
behaviour. 

6. SUMMARY AND CONCLUSIONS 
In this paper we have reported the results of an experimental 
analysis of the TPA protocol, a novel transport protocol 
specifically tailored to multi-hop ad hoc networks. We have 
implemented TPA in a real testbed and compared TPA and TCP 
performance in a chain topology with different number of hops 
and traffic patterns. From the results obtained we can draw the 
following conclusions. In the 1-hop and 2-hop scenarios, since all 
nodes are in the carrier sensing of each other, the major issues of 
running TCP over multi-hop ad hoc networks disappear. TCP 
with unclamped cwnd size exhibits a higher throughput than TCP 
with clamped window, even though the differences in terms of 
throughput are very small. Nevertheless, in the 2-hop scenario 
TPA

*
-3 slightly outperforms TCP with unclamped transmission 

window, both in terms of throughput and retransmission index. 
This is a side effect of transmitting fewer ACK segments. As an 
example, when using AODV, TPA increases the throughput of 
about 3% and reduces the retransmission index of about 72%. In 
the 3-hop and 4-hop scenarios, the limitations of standard TCP 
over multi-hop networks become ever more evident. In such 
harsher configuration, TPA always outperforms TCP, either with 
AODV or with OLSR. For example, in the 4-hop scenario with 
AODV, TPA-3 increases the throughput of about 10%, and 
reduces the retransmission index of about 45% in comparison 
with TCP-3. With OLSR, TPA-3 increases the throughput of 
about 17% and reduces the retransmission index of about 56% 
with respect to TCP-3. Finally, when using TPA

*
-3, TPA further 

improves its performance. In the 4-hop scenario it increases the 



  

throughput up to 26%, and reduces the retransmission index up to 
80% with respect to TCP-3.  

In conclusion, the results of the experimental analysis have shown 
that TPA always outperforms TCP, and highlights that the 
difference in performance increases as soon as the problems 
related to link-layer congestion becomes evident. Note that the 
testbed configuration presented in this paper slightly favors TCP 
in comparison with TPA. We have considered only static 
topologies, with fairly limited interferences from concurrent 
transport-layer flows. As soon as concurrent flows starts to 
appear, the advantage of using TPA becomes higher (see Figure 
6). Therefore, we can speculate that in even harsher 
configurations TPA will further outperform TCP. Specifically, we 
are currently comparing the two protocols in cases of mobility, 
more complex topologies, and additional concurrent flows. 
Subjects for future work also include understanding the 
interactions between routing protocols’ parameters and TCP/TPA 
performance. 

7. ACKNOWLEDGMENTS 
This work is partially funded by the Information Society 
Technologies program of the European Commission under the 
FET-SAC HAGGLE project. 

8. REFERENCES 
[1] E. Altman and T. Jimenez, “Novel Delayed ACK 

Techniques for improving TCP Performance in Multihop 
Wireless Networks," Proceedings of the IFIP International 

Conference on Personal Wireless Communications (PWC 

2003), Venice, Italy, September 23-25, 2003. 

[2] AODV-UU, AODV Linux Implementation, University of 
Uppsala. Available at: 
http://core.it.uu.se/AdHoc/AodvUUImpl. 

[3] G. Anastasi, A. Passarella, “Towards a Novel Transport 
Protocol for Ad Hoc Networks”, Proc. IFIP Int. Conference 

on Personal Wireless Communications (PWC 2003), Sept. 
23-25, 2003, Venice (Italy), LNCS, N. 2775. 

[4] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella, “TPA: A 
Transport Protocol for Ad hoc Networks”, Proceedings of 
the IEEE Symposium on Computers and Communications 

(ISCC 2005), Cartagena (Spain), June 27-30, 2005. 

[5] G. Anastasi, E. Borgia, M. Conti, E. Gregori, “Wi-Fi in Ad 
Hoc Mode: A Measurement Study”, Proceedings of the IEEE 

International Conference on Pervasive Computing and 

Communications (PerCom 2004), Orlando (Florida), March 
14-17, 2004. 

[6] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella, "Design, 
Implementation and Measurements of a Transport Protocol 
for Ad Hoc Networks", chapter in MobileMAN (M. Conti, 

Editor), Sprinter, to appear. Also available at 
http://www2.ing.unipi.it/~o1653499/papers.htm. 

[7] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella, 
"Experimental Analysis of TCP Performance in Static Multi-
hop Ad Hoc Networks", chapter in Mobile Ad Hoc Networks: 

from Theory to Reality, (M. Conti, J. Crowcroft, A. 

Passarella, Editors), Nova Science Publisher, to appear. 
Also available at 
http://www2.ing.unipi.it/~o1653499/papers.htm. 

[8] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, and A. 
Pinizzotto, “A Layer-2 Architecture for Interconnecting 
Multi-hop Hybrid Ad Hoc Networks to the Internet,” in 
Proceedings of WONS 2006, Les Menuires, France, January, 
18–20 2006, pp. 87-96.  

[9] K. Chen, Y. Xue, S. Shah, K. Nahrstedt, “Understanding 
Bandwidth-Delay Product in Mobile Ad Hoc Networks”, 
Computer Communications, Vol. 27, pp. 923-934, 2004. 

[10] T. Clausen and P. Jaquet, “Optimized Link State Routing 
Protocol (OLSR),” RFC 3626, October 2003. Available: 
http://www.ietf.org/rfc/rfc3626.txt. 

[11] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The 
Impact of Multihop Wireless Channel on TCP Throughput 
and Loss”, Proceedings of IEEE INFOCOM 2003, San 
Francisco (California), March 30.April 3, 2003. 

[12] K. Nahm, A. Helmy, C.-C.Jay Kuo, “TCP over Multihop 
802.11 Networks: issues and Performance Enhancement”, 
Proceedings of ACM MobiHoc 2005, Urbana-Champaign, 
IL, pp 277-287, June 2005. 

[13] The Network Simulator - ns-2 (version 2.28). 
http://www.isi.edu/nsnam/ns/index.html. 

[14] R. de Oliveira, T. Braun, “A Dynamic Adaptive 
Acknowledgment Strategy for TCP over Multihop Wireless 
Networks”, Proceedings of IEEE Infocom 2005, Vol. 3, pp. 
1863-1874, Miami, USA, March 13-17, 2005. 

[15] S. Papanastasiou, M. Ould-Khaoua, L. MacKenzie, “TCP 
Developments in Mobile Ad Hoc Networks”, Chapter 30 in 
Handbook of Algorithms and Wireless Networking and 

Mobile Computing (A. Bouchercke editor). 

[16] C. Perkins, E. Belding-Royer, S. Das, “Ad hoc On-Demand 
Distance Vector (AODV) Routing”, RFC 3561, July 2003. 
Available at: http://www.ietf.org/rfc/rfc3561.txt 

[17] K. Sundaresan,  V. Anantharaman. H. Hsieh, R. Sivakumar, 
“ATP: A Reliable Transport Protocol for Ad Hoc Networks”, 
Proceedings of ACM MobiHoc 2003, Annapolios 
(Maryland), June 1-3, 2003 

[18] W.R. Stevens, “TCP/IP Illustrated”, Vol. 1, Addison Wesley, 
1994. 

[19] W.R. Stevens, “UNIX Network Programming – Volume 2, 
Interprocess Communications”, Prentice Hall PTR, 2nd 
Edition, 1999.  

[20] C.A. Thekkath, T.D. Nguyen, E. Moy, E.D. Lazowska, 
“Implementing Network Protocols at User Level”, 
IEEE/ACM Transactions on Networking, vol. 1(5), pp. 554-
565, October 1993.  

[21] A. Tønnesen, “Implementation of the OLSR specification 
(OLSR UniK)”, Version 0.4.10, University of Oslo. 
Available at: http://www.olsr.org/. 

[22] K. Xu, M. Gerla and S. Bae, “Effectiveness of RTS/CTS 
Handshake in IEEE 802.11 Based Ad Hoc Networks”, Ad 
Hoc Networks Journal, vol. 1, no.1, pp. 107-123, July 2003. 

[23] S. Xu, T. Saadawi, “Performance Evaluation of TCP 
Algorithms in Multi-hop Wireless Packet Networks”, 
Wireless Communications and Mobile Computing, Vol. 2 
(2001), N. 1, pp.85-100. 


