
Pervasive and Mobile Computing 4 (2008) 62–91
www.elsevier.com/locate/pmc

P2P multicast for pervasive ad hoc networksI

Franca Delmastro∗, Andrea Passarella, Marco Conti

CNR, IIT Institute, Via G. Moruzzi, 1 – 56124 Pisa, Italy

Received 19 December 2006; received in revised form 9 March 2007; accepted 23 March 2007
Available online 4 April 2007

Abstract

During the last few years, the proliferation of miniaturised devices with networking capabilities
has provided the technological grounds for pervasive networking environments. It is not visionary to
foresee a world of pervasive devices embedded in the environment interacting between them, and
with those carried by users, via wireless communications. In addition, fostered by the diffusion
of small-size, computational-rich mobile devices, the way content is generated, and accessed is
changing with respect to the legacy-Internet paradigm. An ever-increasing share of the Internet
content is generated directly by the users, and shared on the network (following the User-Generated
Content model). While today the legacy Internet is still used to share user-generated content, it is
reasonable to envision that pervasive networking technologies will represent the natural platform to
support this new model. This will result in content being distributed on users’ devices rather than on
centralised servers on the Internet, and in users creating ad hoc networks to share content. The p2p
paradigm is particularly suitable for this scenario, because communications will occur directly among
users, instead of being necessarily mediated by centralised servers. Motivated by these remarks, in
this work we focus on p2p multicast services over ad hoc networks aimed at sharing content among
groups of users interested in the same topics. Specifically, starting from a reference solution in legacy
wired networks (Scribe), we design a cross-layer optimised protocol (XScribe) that addresses most
of the Scribe problems on ad hoc networks. XScribe exploits cross-layer interactions with a proactive
routing protocol to manage group membership. Furthermore, it uses a lightweight, structureless
approach to deliver data to group members. By jointly using experimental results and analytical
models, we show that, with respect to Scribe, XScribe significantly reduces the packet loss and

I This work has been partly supported by the Italian Ministry for Research (MIUR) in the framework of the
Project FIRB-PERF.

∗ Corresponding author.
E-mail addresses: franca.delmastro@iit.cnr.it (F. Delmastro), andrea.passarella@iit.cnr.it (A. Passarella),

marco.conti@iit.cnr.it (M. Conti).

1574-1192/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2007.03.001

http://www.elsevier.com/locate/pmc
mailto:franca.delmastro@iit.cnr.it
mailto:andrea.passarella@iit.cnr.it
mailto:marco.conti@iit.cnr.it
http://dx.doi.org/10.1016/j.pmcj.2007.03.001


F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 63

the delay experienced by multicast receivers, and increases the maximum throughput that can be
delivered to multicast groups.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Multi-hop ad hoc networks; P2p multicast; Cross-layer; Experimental evaluation; Modelling

1. Introduction

1.1. Background and motivations

The hardware and software progresses of the last ten years have provided the basic
elements (wearable computers, wireless-network technologies, devices for sensing, and
remote control, etc.) for the deployment of pervasive computing and communication
systems. We are actually progressing towards Mark Weiser’s vision, in which the
environment is saturated with devices that have computing and communication
capabilities, interacting among them and with the users. Besides this, the computing and
networking capabilities of current mobile devices (PDAs, WiFi phones, etc.) are changing
the way content is generated and accessed with respect to the legacy-Internet architecture
(mostly based on the client-server model). Following the User-Generated Content model,
users generate the content on their own, and share it over the network. The increasing
popularity of services like YouTube, flickr, blogs, and grassroot journalism are just a few
examples of this trend. Even though these services are currently implemented through
the legacy-Internet architectures, a pure p2p communication model is more suitable to
support this way of accessing information. Currently p2p systems are widespread on the
Internet, and this trend will be even greater in pervasive networking environments. By
progressing along these directions, we can envisage that in the ubiquitous Internet the
content will be available everywhere, distributed among all networked devices, while the
role of centralised Internet servers will diminish. The users will mine the network for
relevant information and data, starting from nodes physically close to them.

This different method to access the information will have a strong impact on the network
organisation. In a pervasive networking environment, the infrastructure-based wireless
communication model will often not be adequate. Rather, self-organised networks will
provide a more efficient and flexible solution for accessing network services and retrieving
data from the network. We can thus envisage that the network structure will evolve towards
a model in which dynamic, content-rich, ad hoc networking clouds will co-exist and be
integrated with legacy-Internet backbones. A big share of the traffic will be generated and
accessed via p2p communication models directly within the ad hoc networking clouds,
without relying on the legacy infrastructure. Thus, since in this environment content
management will be of primary importance, increasing attention is being devoted to design
efficient p2p solutions for ad hoc networks. Specifically, during the last few years, there has
been increasing interest in integrating legacy p2p systems and multi-hop ad hoc networks
(see, for example, [1,2]).

One of the main obstacles to this integration is the fact that p2p systems are typically
based on opposite assumptions with respect to those really held in ad hoc networks. Legacy
p2p systems are designed to scale up to thousands of nodes. Furthermore, the networking



64 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

environment for which they are intended is typically resource rich, especially in terms of
bandwidth. Thus, legacy p2p systems usually trade increased bandwidth consumption for
higher scalability. Scalability to thousands of nodes is not a major issue for flat multi-hop
ad hoc networks. Actually, theoretical and experimental results show that large-scale flat
ad hoc networks are not very likely, because of intrinsic wireless capacity constraints [3,
4]. Based on these observations [4] defines an “ad hoc horizon” for realistic flat ad hoc
networks, consisting of 10–20 nodes, with peer-to-peer communications spanning 2 to
3 hops. Furthermore, ad hoc networks are definitely not a resource-rich environment,
particularly in terms of bandwidth. Thus, trading increasing bandwidth consumption for
greater scalability is not the best design choice. Experimental results show that, because of
this mismatch, legacy p2p systems usually fail when used “as-they-are” in multi-hop ad hoc
environments [5,6]. One of the main issues is therefore how to efficiently provide the same
kind of p2p services implemented in legacy wired networks in multi-hop ad hoc networks
also. Fortunately, previous studies show that p2p systems implementing DHTs can be
designed to achieve high performance in ad hoc networks too (e.g. CrossROAD [7] and
Virtual Ring Routing (VRR) [8]). However, a lot of work has still to be done to extend these
results to more complex p2p platforms, providing further p2p services on top of DHTs.

One of the main lessons learnt from the previous work is that cross-layering is a
fundamental approach to build efficient p2p systems in ad hoc networks [7,6]. To exploit
this important result, in [9] we have defined an XL-CommonAPI that extends the original
CommonAPI [10] to ad hoc environments. The original CommonAPI defines interfaces
between components of a p2p system and applications, thus granting easy portability of p2p
applications across different p2p systems’ implementations. The extensions provided by
the XL-CommonAPI are mainly focused on exporting fundamental routing- and DHT-level
information to upper-layer services, thus allowing them to exploit complete knowledge
about both the network topology and the overlay status, without requiring additional
cross-layer interactions. The XL-CommonAPI is therefore a reference point to implement
efficient p2p platforms on ad hoc networks, and to support new distributed services or
optimise those already developed for wired networks.

1.2. Contributions

Starting from these considerations, in this paper we focus on p2p multicast services.
Specifically, we consider p2p multicast protocols running on top of a p2p substrate
providing a DHT (in Section 3 we discuss the reasons of this architectural choice). As a
starting point, we choose a legacy solution made up of Pastry (at the DHT level), and Scribe
(at the multicast level), since it is one of the most efficient solutions designed for wired
networks [11]. After recalling the main features of Pastry and Scribe (Sections 3 and 4),
we highlight the inefficiencies of such a p2p system when used as-it-is on ad hoc networks
(Section 4.2). Based on these remarks, we propose a new solution that leverages cross-
layer interactions between the p2p and the routing levels to optimise the multicast system
implementation (see Fig. 1). Specifically, we replace Pastry with CrossROAD (whose
main features are recalled in Section 3), and Scribe with XScribe (which are extensively
described in Section 4). Since CrossROAD implements the XL-CommonAPI, and XScribe
exploits cross-layer interactions via this interface, this is also an example of how to use the
XL-CommonAPI to optimise p2p services for ad hoc networks.



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 65

Fig. 1. Network architectures, emphasis on the p2p platforms and the cross-layer mechanisms.

While CrossROAD has already been proven to outperform Pastry on ad hoc networks
(e.g., [5,6]), the main focus of this paper is the design and evaluation of XScribe. In
Section 5, we evaluate the XScribe performance in comparison with Scribe, in terms
of packet loss and delay. We report results from experiments run on a real multi-hop
ad hoc network, implementing both p2p solutions. Results show that, in the majority
of the cases, XScribe is able at the same time to halve the packet loss and the delay
experienced by Scribe. To better understand p2p systems’ behavior, in Section 6 we present
an analytical model, which provides expressions for the saturation throughput of both
Scribe and XScribe. The saturation throughput is defined as the maximum throughput that
the multicast system is able to fairly deliver from groups’ senders to groups’ receivers.
We exploit this model to show that XScribe is able to increase the scalability bounds of
Scribe with respect to a number of parameters. Specifically, the proportional increase of
the saturation throughput achieved by XScribe can be as high as 50%.

Despite its good performance, our results also suggest Xscribe’s limitations and ways to
further improve it. Specifically, XScribe implements a pure p2p delivery policy, in which
no information about physical paths is exploited. We highlight that this is the main direction
along which XScribe can be further improved, by blending together p2p multicast features
and layer-3 multicast mechanisms.

2. Related work

Multicast support implemented at the p2p layer is just one of the available options
proposed in the literature. Usually, multicast protocols are classified as operating at
the network layer (layer-3), like routing protocols, or at the application layer, where
’application’ denotes all possible layers above the transport.

Application-level multicast runs only at nodes involved in the related application, and
it just requires standard unicast support from the routing level. The most recent proposals
for wired environments run the multicast protocol on top of an overlay network based
on a DHT [12–15]. This approach is very interesting for several reasons, as discussed in
Section 3. The application-level multicast has been proposed also for ad hoc networks
(e.g., ALMA [16] and PAST-DM [17]) even though, to the best of our knowledge, it
has not yet been implemented on top of a DHT. This is mainly because efficient DHT
implementations over ad hoc networks, that make such an approach feasible, have been



66 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

proposed just recently. Thanks to this, exploiting DHTs to support multicast services is an
interesting direction to investigate in ad hoc networks also.

It should be pointed out that the application-level multicast potentially generates path
stretch because just a subset of nodes can be used to deliver data. Moreover, although
nodes that do not participate in multicast groups do not have to store multicast state,
they have to forward data nevertheless. Therefore, it is not clear whether a multicast
for ad hoc networks should be implemented at the network or at the application level.
Examples of multicast protocols for ad hoc networks implemented at the network level are
MAODV [18] and ODMRP [19] (other proposals, either implemented at the application
or at the network level, are described in [20]). From this standpoint, there is actually an
increasing trend towards blending together, in ad hoc networks’ stacks, features usually
implemented at the network and at the p2p levels (e.g., [8,7]). Therefore, an interesting
solution could be a multicast system implemented within a routing layer that also includes
p2p features. Results presented in this paper motivate this approach, and can be seen as a
helpful intermediate step towards this goal.

The vast majority of multicast protocols for ad hoc networks proposed in the literature
adopt structured approaches, i.e. the multicast protocol builds and maintains networking
structures exclusively related to data delivery. For example, MAODV and ALMA use
shared trees, while ODRMP and PAST-DM use meshes. A few others implement a
structureless approach, in which the multicast protocol does not rely on any structure
exclusively related to multicasting. Structureless multicasting requires that each sender
is aware of at least a fraction of the receivers of the multicast group (we will refer to
this property as receiver awareness in the following). Receiver awareness allows senders
to directly deliver messages to receivers along the paths already built by the underlying
routing protocol. Basically, receiver awareness replaces multicast structures. Examples
of structureless multicast protocols for ad hoc networks are DDM [21] and RDG [22].
A structureless approach avoids the cost of maintaining another networking structure
separated from the one already provided by the routing protocol. The main drawback of
such an approach is clearly the cost of implementing receiver awareness (usually, receivers
have to register with the senders, which then periodically poll them with alive messages).

XScribe actually follows a structure-less approach, since it exploits the network
structure already defined by the underlying layers. With respect to DDM and RDG,
XScribe works on top of a DHT and can straightforwardly support p2p applications.
Furthermore, it implements receiver awareness in a more efficient way than periodic
polling, and thus it better exploits the advantages of a structure-less design.

This paper complements our previous work on p2p multicast for multi-hop ad hoc
networks. Specifically, in [23,24] we extensively evaluated the performance of Pastry
and Scribe in ad hoc networks. In this work, we focus on the comparison between the
legacy solution (Pastry & Scribe), and the cross-layer one (CrossROAD & XScribe).
The main design features of XScribe have been presented in [25], together with a
preliminary evaluation. In this paper, we provide a more complete evaluation, both from
an experimental and an analytical standpoint. The subject of this work is comparing
XScribe with Scribe, and we do not consider other multicast schemes proposed for ad hoc
networks, such as ALMA, DDM, PAST-DM or ODRMP. This is because we are interested
in multicast protocols implemented on top of a DHT. As discussed in Section 3, this is a



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 67

very promising direction not only for multicast over legacy wired networks, but also for
multicast for ad hoc networks. As shown in [11], Scribe is the reference protocol for this
particular approach. As a topic for future work, it would be interesting to compare XScribe
with other application-level multicast schemes (e.g. ALMA). However, a fair comparison
is not straightforward. Application-level multicasting usually defines a different overlay
structure (typically in the form of a tree) for each multicast group. Instead, XScribe exploits
the underlying overlay network (i.e., a DHT), for all the active multicast groups. A fair
comparison will thus require us to take into account the overhead related to building a
distinct tree for each group on the one hand, and the overhead related to DHT maintenance
on the other hand. Finally, it would be also interesting to compare XScribe with the vast
family of protocols designed for content-delivery networks. This is outside the scope of
this paper, but it is definitely an interesting subject for future work.

3. DHTs for p2p multicast

Before describing the features of the p2p platforms shown in Fig. 1, it is worth briefly
discussing why using a DHT to support p2p multicast is an interesting idea, and why
using structured overlay networks is a reasonable choice. Using a DHT below the p2p
multicast level is interesting for a number of reasons. Firstly, the task of defining a network
structure that just encompasses the edge nodes is assigned to the DHT, and has not to be
implemented by the multicast protocol itself. Secondly, the multicast protocol leverages
the self-organising and self-recovery features of the DHT. Finally, the same DHT can be
shared by several higher-level services running beside the multicast protocol.

Mainly designed for handling exact-match queries, a structured overlay (i.e. a DHT)
is the most natural support for a p2p multicast protocol, in which single nodes have
to send data to a well-defined set of receivers. In comparison with unstructured and
hybrid overlays, structured overlays are usually considered (i) less efficient in terms
of management, (ii) not able to exploit nodes’ heterogeneity, and (iii) not able to
support content-based queries. However, the discussion on these points is still open. For
example, [26] shows that it is possible to address points (i)–(iii) by still using Pastry, and
by achieving performance at least comparable to that provided by unstructured overlay
networks. Thus, even though conceptually interesting, porting our analysis of p2p multicast
protocols to unstructured and hybrid overlays is not the most compelling issue.

3.1. Pastry vs. crossROAD

Pastry defines a DHT using a logical circular address space where nodes and data are
mapped. The logical address of a node is the hashed value of its IP address, while data are
identified by key values. Thus, a key is associated to each message sent on the overlay to
distribute or recover related data. Pastry delivers the message to the node whose logical id
is the closest one to the hashed key. For the sake of scalability, each node keeps a partial
view of the overlay network, i.e. it just knows about a limited set of nodes. The nodes
that are kept in the set guarantee the forwarding correctness, i.e. that messages sent from
anywhere eventually reach the correct destination, usually following a multi-hop path at
the overlay level.



68 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

Therefore, the main costs of Pastry in terms of networking overhead are due to (i) the
overlay creation and management that require periodic communications between nodes,
and (ii) the multi-hop middleware routing caused by the incomplete knowledge of the
overlay at each node, which possibly results in significant path stretches. These costs are
well justified in large-scale wired networks, where the ability to scale to large number
of nodes (possibly thousands) is correctly traded for additional bandwidth consumption
(brought by points (i) and (ii) above). However, the cost of this trade-off is turned upside-
down in multi-hop ad hoc networks, where the number of nodes is limited, bandwidth is
scarce, and paths should be kept as short as possible since communications to nodes can
be severely affected by unstable links.

CrossROAD has been designed to overcome Pastry’s inefficiencies on multi-hop ad
hoc networks. It provides the same DHT features, but implements them via a cross-layer
optimised approach. Specifically, CrossROAD interacts with a proactive routing protocol
via the cross-layer architecture proposed in [27]. As shown in Fig. 1, these interactions are
mediated by the NeSt module, which provides standard interfaces for cross-layering, thus
granting both performance optimisations and stacks manageability. A node wishing to join
a CrossROAD overlay embeds few bytes into periodic routing advertisements, announcing
its participation to a specific service. This information eventually reaches all the other
nodes in the network through the proactive flooding of the routing protocol. Therefore,
every node in the overlay knows the IP address of all the other nodes currently running
the same service, and it is able to autonomously build the overlay by simply hashing
their IP addresses. In this way, CrossROAD drastically reduces the bandwidth overhead
with respect to Pastry [5,6], because building the overlay does not require any connection
between nodes to exchange overlay information. Furthermore, p2p messages always travel
just one-hop on the overlay because every node knows all the others (assuming that the
routing protocol provides a consistent view at all the nodes). Even though using a proactive
routing protocol over ad hoc networks might sound expensive, experimental results [5]
showed that the overhead of the proactive routing protocol (OLSR in the particular case) is
completely affordable. More details about CrossROAD operations can be found in [7,5].

Finally, note that CrossROAD exports to upper-layer services specific cross-layer
information derived by its interactions with the routing protocol. This allows distributed
services to optimise their behavior without requiring additional cross-layer interactions.
However, in case a service needs a specific interaction with another layer of the stack,
it can implement it through the general mechanism provided by the NeSt. In case of
XScribe, cross-layer information derived by CrossROAD are used to distribute content
on the overlay, following the main principles of DHTs. In addition, it defines an
independent cross-layer interaction with the routing protocol to implement the membership
management policy (see Section 4.3).

4. P2p multicast systems

4.1. Scribe

Scribe is a p2p shared-tree multicast protocol. It identifies each tree with a topic, and
defines a root node for each topic as the node in the overlay whose address is the closest



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 69

Fig. 2. Scribe tree construction (a), and data delivery (b).

one to the hashed topic. For example, in Fig. 2 the root is node C. Multicast trees are
built through the well-known reverse path algorithm. Each node willing to join the tree
sends a subscribe message specifying the topic as the key. An intermediate node (in the
overlay path between the subscribing node and the root) that receives such a message,
either subscribes itself to the same topic if it is not a member of the tree (e.g., node B after
step 1 in Fig. 2(a)), or discards the message otherwise (e.g., node B in step 3 in Fig. 2(a)).
In both cases, it enrolls the node from which it received the message as a child. Messages to
be delivered over the tree are firstly sent towards the root of the topic (step 1 in Fig. 2(b)),
and subsequently delivered by each parent to its children (steps 2 and 3 in Fig. 2(b)).
Parent–child relationships are periodically refreshed through HeartBeat Messages sent by
each parent to each child (application messages are also used as implicit HeartBeats). Upon
missing a specified number of HeartBeats, a child assumes that the parent is no longer in
the overlay, and sends a new subscribe message. This also allows the identification of the
new root upon a failure or disconnection of the previous one. Children of the old root node
detect that the root node is no longer there, and send subscribe messages that eventually
arrive at the node currently closest to the topic, i.e. the new root. Nodes at lower levels in
the tree are not affected by root failures. Finally, the current root node periodically checks
whether it is still the node with the closest id to the topic. If it is not (e.g., because a new
node joined the overlay), a new node has to become root. The old root sends a subscribe
message to the new one, attaching the whole tree to the new root.

4.2. Scribe strengths and limitations

The design of Scribe has a number of interesting features. First of all, it allows the
application to define multicast groups in a straightforward way by identifying groups
with topics translated into logical ids in the DHT address space. Furthermore, when the
network is stable enough, it minimizes the tree management traffic thanks to the implicit
HeartBeats mechanism. Finally, it leverages the self-organising and self-healing features
of the underlying DHT very effectively. The mechanisms described in the previous section
to detect parent failures, recover the tree structure, and manage root changes guarantee
loop freedom, and keeps recovery traffic local to the nodes actually involved in the failure
detection and repair.

Despite these nice properties, Scribe also has features that are definitely not suitable
for multi-hop ad hoc networks. Firstly, the data delivery mechanism is highly centralised.
Messages have to first reach the root, and then are forwarded on the tree. Clearly, this is
not efficient since it tends to saturate network resources around the root node, as shown by
experiments in [28].



70 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

Secondly, Scribe uses a structured approach to multicast, which generally results in
higher path stretches with respect to the minimum stretch granted by the DHT. Let us
focus again on Fig. 2(b), and specifically on the path followed by messages sent by D to
reach node E. Even though the mechanism could be optimised by avoiding messages being
sent through the root node, messages from D to E have to pass through node B anyway,
because they have to be delivered over the structure defined by the multicast protocol.
Generally, it is easy to show that the best path on the overlay between D and E does not
necessarily include B. Thus, such a delivery policy generally extends the physical path
between senders and receivers more than what is strictly required by the DHT.

A third problem is also related to the structure defined by Scribe. Under dynamic or
unstable conditions, the management traffic might grow significantly. Link instability,
which is typical of wireless environments, may actually result in the disappearance of
the temporaneous nodes from the overlay. This may increase the management traffic at the
Scribe level to repair the multicast structure. In addition, if the link instability is caused by
network congestion, such recovery mechanisms actually exacerbate the problem instead of
contributing to fix it, and may result in tree partitions and isolation of the nodes [28].

Finally, the fourth problem we highlight is the fact that Scribe uses a pure p2p data
delivery mechanism, in the sense that no information about the real paths taken by
messages in the network is used. For example, when node B in Fig. 2 delivers a message
to D and E, it generates two distinct copies of the message. If the paths between B and D,
and between B and E, partially overlap, such a pure p2p delivery results in the unnecessary
replication of message transmissions over the physical network.

4.3. XScribe

To cope with most of the problems highlighted in Section 4.2, we propose XScribe,
which is a replacement for Scribe optimised through cross-layer interactions. XScribe still
intentionally uses a pure p2p data delivery strategy, not addressing the fourth problem
highlighted in the previous section. However, it is able to deal with the other Scribe
limitations. XScribe is heavily inspired by stateless, explicit multicast approaches such
as DDM [21] and RDG [22]. The main differences between these protocols and XScribe
are that (i) XScribe is implemented at the p2p level, and therefore provides a more
friendly support for applications with respect to standard layer-3 multicast, and (ii) its
group membership policy is implemented via dedicated cross-layer interactions, drastically
reducing the management traffic. For ease of explanation, we divide the XScribe operations
into data dissemination and membership management, and discuss each aspect separately.

4.3.1. Data dissemination
To visually clarify how XScribe data dissemination works, Fig. 3 shows a simple case

in which a multicast group is composed by 5 nodes, 2 of them generating data. Nodes
are placed in their logical position in the CrossROAD ring overlay. Arrows represent
flows of data between senders and receivers. As in DDM, in XScribe each sender of a
multicast group is aware of all the other group members (we have defined this property
as receiver awareness). Specifically, in XScribe each sender keeps a list with the logical
addresses (in the overlay network) of the group members. Locally generated messages are
disseminated in the group by sending a distinct message to each member of the overlay.



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 71

Fig. 3. XScribe data dissemination.

Thanks to receiver awareness, no structure related to multicast is required, and XScribe is
thus a structure-less protocol. Clearly, the main issue of this approach is how to implement
receiver awareness efficiently. The membership-management section addresses this aspect.

Even though this data-dissemination mechanism can be further optimised, it addresses
the first, second, and third problems we have discussed in Section 4.2. The first advantage
of the structure-less approach is to avoid centralisation, since no root node is defined
anymore. In addition, XScribe also avoids the management traffic and path stretches
brought into Scribe by the multicast structure. To understand this point, recall that in
CrossROAD all the nodes in the overlay are aware of each other (thanks to the cross-layer
interaction with a proactive routing protocol), and therefore they are just one hop away
from each other in the overlay. In other words, no multi-hop on the overlay is required
in CrossROAD. Therefore, if we consider any sender–receiver pair in XScribe, the sender
can send messages to the receiver via a single-hop path on the overlay. Thus, messages are
actually sent from a multicast sender to a receiver along the shortest (possibly multi-hop)
path at the network level, according to the underlying layer-3 routing protocol.

Despite these advantages, it is easy to show that XScribe’s dissemination policy could
be further optimised. The repeated unicast used by XScribe is definitely a feature to be
improved. However, note that in small-scale ad hoc networks Scribe tends to build two-
level trees in which all the leaf nodes are direct children of the root node.1 Thus, data
dissemination from the root node occurs via repeated unicast in Scribe too. Despite this
sub-optimal behavior, the results presented in the following sections show that XScribe is
already able to significantly improve Scribe. Furthermore, the current version of XScribe
allows us to stress the limits of a pure p2p delivery mechanism applied to multicast, and to
understand how to further improve it (see Section 7 for a discussion on this point).

1 This is essentially because in small-scale networks nodes tend to be aware of all the other nodes at the Pastry
level.



72 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

4.3.2. Membership management
XScribe uses a cross-layer policy to manage group-membership, inspired by the main

principle of CrossROAD. Even in this case, the main idea is to exploit the proactive
routing traffic to spread information around. We assume that multicast groups can be
mapped to positions in a group bitmask. One could envision a number of ways to
define mappings, such as, for example, exploiting the fingerprint of the group id in a
Bloom filter. XScribe maintains a group bitmask local to each node, which stores the
multicast groups the node is subscribed to. As soon as the node subscribes to some groups
(i.e. the bitmask is not completely cleared), the local bitmask is embedded into periodic
messages generated by the routing protocol, and disseminated in the network. Further
subscriptions/unsubscriptions are disseminated by setting/clearing the corresponding bit(s)
in the bitmap embedded into routing packets. By inspecting received routing packets, each
node in the network can be aware of all the members of the available multicast groups,
which is exactly the information required by the data dissemination algorithm. A node
is assumed to have ceased to be part of the network when no bitmasks of that node are
received for a specified amount of time. Clearly, nodes that do not run the XScribe layer
are not able to join multicast groups, while they are still able to run other applications based
on CrossROAD.

Essentially, this is the same mechanism CrossROAD uses to advertise the presence of
nodes in the overlay, and it is highly efficient from a bandwidth overhead standpoint. For
example, if the bitmask size is 128 b, and the period used by the routing protocol to send
updates is 2 s (the default value for Hello packets in OLSR), the overhead injected by a
XScribe node is just 8 Bps. Furthermore, XScribe information does not need to be sent
in separate frames at the MAC level, and this avoids additional accesses to the shared
medium. This is very important whenever the network starts to become even slightly
congested. Actually, experimental results related to CrossROAD (see [5]) show that the
networking overhead to disseminate p2p-level information through the routing protocol
is minimal. Since the additional information required by XScribe is very small, we do not
quantitatively investigate this protocol’s aspect, while we focus the performance evaluation
on data delivery figures.

Finally, note that the membership management policy represents one of the main
differences between XScribe and the other stateless multicast protocols such as DDM or
RDG. Both DDM and RDG require each receiver to send a joint message to each sender of
the group. Furthermore, they require periodic polling to refresh membership. These aspects
of the protocols are usually neglected in evaluations, but they may represent a significant
overhead.

5. Experimental evaluation

5.1. Methodology

To compare the legacy and the cross-layer multicast p2p systems we ran experiments in
a real ad hoc network setup. Specifically, we used the Pastry and Scribe implementations
provided by Rice University (FreePastry [29]) for the legacy system, while we
implemented XScribe on top of CrossROAD. To have a realistic application environment,



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 73

we also implemented a simple Whiteboard Application (WB) on top of both systems,
allowing users to share drawings, writings, etc. Specifically, users run a Whiteboard
instance on nodes of the ad hoc network, select a topic to join, and are then able to draw
on a canvas, and receive drawings from the other users that selected the same topic. All the
nodes whose users subscribe to the same topic form a multicast group.

To have a controllable and reproducible environment, in our tests WB was not run
by humans, but by simulated users. Each user alternated between ON and OFF phases.
During ON phases it drew strokes on the canvas, while during OFF phases it did nothing
but receive other users’ strokes. Both ON and OFF phases’ lengths were exponentially
distributed. An ON phase and the following OFF phase defined an active/idle cycle.
Each trial was composed by 100 active/idle cycles, and each node running WB generated
at least 500 messages.2 To make trials start at the same time at different nodes, we
synchronised the nodes before each trial, and scheduled the trial to start at the same time
on each node. In the following, each trial configuration is identified by the application-
load index, measured as the number of Packets Per Second (pps) generated by each
user. This index is defined as the ratio between the average number of strokes generated
in the ON phase of active/idle cycles, and the average duration of active/idle cycles.
We found that this simple index is sufficient to correctly identify usage cases for our
environments. The software implementing the protocol stacks can be downloaded from
http://bruno1.iit.cnr.it/xscribe exp/.

We characterise the architectures’ performance at each node in terms of packet loss and
delay statistics. Specifically, for any particular multicast group, the packet loss at node i is
measured as 1 −

Ri∑N
j=1 S j

, where Ri is the number of messages received by node i related

to that particular group, N the number of senders in the group, and S j is the number
of messages generated by the j-th sender of the group. Packet delays were measured by
timestamping the transmission time at the sender, and the reception time at the receiver
(recall that nodes were synchronised). Each configuration was replicated for 5 trials to have
i.i.d. samples of the packet loss and delay statistics. Hereafter, we provide average values
and confidence intervals of the performance figures for each configuration (specifying 90%
confidence level, unless otherwise stated).

We have used the topologies shown in Fig. 4 to compare the performance of Scribe
and XScribe. In both cases, all the nodes were IBM ThinkPad R50 laptops with integrated
802.11b wireless cards (Intel PRO-Wireless 2200). The OS was linux-2.6.12.3, loading
the ipw2200 driver for the network card. Actually, in both scenarios we used iptables
to emulate multi hopping, and we cross-checked that paths were actually multi-hop by
inspecting packet traces collected during the experiments. Although this methodology
is unable to completely capture all the effects of wireless links’ intricacies, it allowed
us to closely approximate the system behavior in a realistic multi-hop setting, avoiding
uncontrollable events due to the high variability of the wireless links’ behavior. We did
not run experiments in mobile conditions, in order to separate the effects of the different
multicast architectures from those of nodes mobility. Correctly analysing these solutions

2 A distinct message was sent for each stroke. The size of each WB message was 1448 B. In this way, each
WB message resulted in a single frame of MTU size at the MAC level.

http://bruno1.iit.cnr.it/xscribe_exp/


74 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

(a) Mesh topology.

(b) Rebundant chain topology.

Fig. 4. Topologies of the experimental testbed.

in mobile scenarios is a very interesting topic, but we have chosen not to address it in
this work. When considering mobility, the performance differences between Scribe and
XScribe are due to two distinct factors: (i) the different architectural choices, and (ii) the
impact of mobility on the different architectures’ features. To correctly understand the
latter aspect it is first necessary to evaluate the performance differences of the alternative
architectures alone (i.e., in static configurations), which is what we achieve in this work.
This lays down the basis for a comprehensive understanding of Scribe and XScribe
behavior in mobile configurations. Since the analysis in mobile configurations is a self-
contained topic, and deserves a dedicated and carefully designed experimental planning,
we consider it as one of the main subjects of future work.

The mesh topology (Fig. 4(a)) is representative of typical topologies one can expect
to find in small-scale, general-purpose, self-organizing ad hoc networks. Nodes are not
placed in a well-defined, ordered fashion (such as a chain or a grid), more than one path is
available between any couple of nodes, and nodes physically close to each other may not
be able to directly communicate (e.g., nodes D and F) due, for example, to the presence of
obstacles such as concrete walls between them. Furthermore, in this topology, nodes A–E
ran the whole protocol stacks, including the fact that in such a network nodes are likely to
cooperate in forwarding tasks even though they may not be interested in the application
data they are forwarding. We assumed that all the nodes running the WB application



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 75

were interested in the same topic. Therefore, the multicast protocol worked with a single
multicast group encompassing all the nodes. Node C was the root of the Scribe tree. Nodes
C and D generated traffic at the application layer, thus acting as senders of the multicast
group, while the other nodes only received application-level traffic.

As it is representative of general-purpose self-organizing ad hoc networks, we have
used the mesh topology to understand the typical performance differences (in terms of
packet loss and delay) between XScribe and Scribe. Instead, we used a redundant chain
topology (Fig. 4(b)) to highlight one of the main architectural advantages of XScribe over
Scribe, i.e. the fact that XScribe does not require a root node to manage the multicast
group. To this end, we ran experiments in which just one node, placed at the center of
the topology (node E in the figure), was sending messages to the group, while the root
node was placed in different positions. Specifically, we defined three configurations (R1,
R2, and R3) in which the Scribe root node was located on node E, G, and I respectively.
The main purpose of the experiments run on this topology is to isolate the effect of the
Scribe root node placement, and highlight the advantages of a solution like XScribe, that
does not require any rendezvous point. To this end, we took particular care of avoiding
effects related to routing instabilities (see the Appendix for a thorough discussion on this
point). Therefore, we added a minimum path redundancy to the original chain topology,
by allowing communications not only between adjacent nodes but also between nodes
placed two positions apart in the chain. Furthermore, we ran experiments with a light
traffic load (10 pps), to avoid congestion effects due to higher application loads. In each
configuration, we measured the delay and packet loss achieved by Scribe and XScribe,
averaged over all the nodes (again, the results we present hereafter are averaged over 5
replicas, and confidence intervals have a 90% confidence level). These experiments are
partly overlapped with those presented in [23,24], in which we placed the Scribe root
node at one edge of the mesh topology (Fig. 4(a)). However, those results are a particular
“showcase” of what happens when the Scribe root node is not at the center of the topology.
By using this purposely designed topology, in this work we quantitatively analyse the
performance worsening of Scribe as a function of the physical distance between the root
node and the other nodes in the multicast group, and especially from the sender node.3

5.2. Experimental results in the mesh topology

In this section we deeply analyse the two performance indices, i.e. the packet loss
(Section 5.2.1), and the delay (Section 5.2.2) achieved in the mesh topology. When
inspecting the delay samples of both architectures, we found random and unexpected
spikes. We found that these high values are exclusively due to routing-protocol
misbehavior, and are equally likely running both Scribe and XScribe. Therefore, we
decided to remove them from the performance evaluation. This allows us to evaluate the
p2p multicast solutions in an optimistic case, in which the routing protocol behaves as
expected, and we can thus fairly compare the architectural differences between Scribe and
XScribe. The detailed explanation of these routing anomalies is presented in the Appendix.

3 Recall that in XScribe all the messages have firstly to be sent to the root node and then forwarded to all the
receivers.



76 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

(a) Node C. (b) Node D.

(c) Node E. (d) Node A.

(e) Node B. (f) Node F.

Fig. 5. Packet loss at each node.

5.2.1. Packet loss
Fig. 5 shows the packet loss experienced by each node under the two alternative

architectures as a function of the application load (loads below 20 pps resulted in no packet
loss, and are thus omitted). Plots are presented starting from the center of the topology
(node C), towards the edges. Since both architectures use TCP at the transport layer, one
could expect not to see any packet loss. Actually, both Pastry and CrossROAD use internal
queues (of the same size) to store messages going to be sent. Packet loss actually occurs
when these queues fill up, and is thus a side effect of network congestion. In our setup we
used the Pastry default value for the queue size, i.e., 128 messages. Properly dimensioning
the queues to find the right balance between delay and packet loss depends on the particular
application demands (actually, in other sets of experiments we have completely removed
packet losses by allowing queues to grow to unlimited size).



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 77

Several interesting observations can be drawn from these plots. In general, it is evident
that XScribe drastically reduces the packet loss with respect to Scribe. In more detail, at
nodes D, A, and B the packet loss is always more than halved with respect to Scribe. At
node E, the packet loss experienced by XScribe is lower than in the case of Scribe, but
the reduction is less marked. Instead, different observations should be drawn with respect
to node C (the Scribe root), and node F. Referring to node C, the packet loss experienced
by the two systems is almost the same at the different traffic loads, and is reasonably low.
Actually, this is expected. In fact, both in Scribe and XScribe, node C receives only packets
from node D. Since the packet loss is mainly due to overflows at the sender’s queue, the
two systems experience the same performance. On the other hand, analysing the packet
loss measured by node F, XScribe experiences slightly higher values only for high traffic
loads (i.e. 40 and 50 pps). Note that in case of Scribe node F receives all the messages
from a single TCP connection originated by node C, which is a 2-hop away. In the case of
XScribe, node F receives the message over two concurrent TCP connections (from C and
D), one of which spans 3 hops. Thus, at high traffic loads the longer connection suffers
more than the others, and the sender’s queue at node D fills up more quickly, thus causing
a higher packet loss.

As a final remark, it should be noted that the packet loss we measured is also influenced
by the routing anomalies discussed in the Appendix. In conjunction with these anomalies,
route failures occur, and TCP retransmits failed packets until a new route is established.
Thus, the senders’ queues at the p2p level tend to fill up, and packet loss becomes more
and more likely. Unfortunately, it is not possible to establish the exact share of packet
loss related to these events. Therefore, our results might overestimate the packet loss once
routing anomalies are fixed. However, since routing misbehavior is equally likely for Scribe
and XScribe, the ranking among the two architectures that we have derived in this section
is still valid.

In conclusion, the experimental results show that in the majority of the cases, XScribe
performs better than Scribe, even though it generates more TCP connections. This means
that, for any given usability threshold provided by the application in terms of maximum
tolerable packet loss, XScribe allows the application to operate at higher loads than Scribe.

5.2.2. Delay
Table 1 shows the average values and the 99th percentiles of delays experienced by each

node. We also associated with every single value its confidence interval. Three traffic loads
have been selected as representative of light, medium, and high loads, and the experimental
results are almost self-explanatory. When XScribe is used, the average delay is generally
more than halved, while the 99th percentile is reduced by at least 1.4x, except for nodes
E and F that experience higher delay percentiles in case of XScribe, but only for high
traffic loads (50 pps). Coupled with the results related to packet loss, this means that, in the
majority of the cases, for the same application load XScribe is able to drastically reduce
the packet loss and, at the same time, to reduce the average delay.

As a final remark, it is worth pointing out that in this set of experiments, the root node
of Scribe is located at the center of the topology, which minimizes the distance with all
the other nodes. The next section is devoted to analyse the effect of different root node
locations on the packet loss and delay performance figures.



78 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

Table 1
Delay statistics at each node (s)

Node Load (pps) Average 99th percentile
Scribe XScribe Scribe XScribe

C 5 0.173 ± 0.048 0.108 ± 0.013 0.590 ± 0.178 0.432 ± 0.067
20 1.03 ± 0.170 0.5 ± 0.054 3.05 ± 0.382 1.53 ± 0.246
50 2.10 ± 0.084 1.64 ± 0.249 3.89 ± 0.122 4.28 ± 0.593

D 5 0.167 ± 0.09 0.095 ± 0.011 0.314 ± 0.055 0.432 ± 0.067
20 1.38 ± 0.158 0.497 ± 0.055 4.07 ± 0.665 2.09 ± 0.389
50 3.38 ± 0.653 1.81 ± 0.373 4.81 ± 1.38 4.38 ± 0.307

E 5 0.21 ± 0.058 0.113 ± 0.007 0.827 ± 0.204 0.432 ± 0.089
20 1.89 ± 0.294 0.588 ± 0.042 6.00 ± 1.33 2.56 ± 0.669
50 4.57 ± 0.087 1.88 ± 0.353 7.52 ± 0.379 7.72 ± 1.27

A 5 0.162 ± 0.079 0.111 ± 0.006 0.852 ± 0.197 0.385 ± 0.058
20 2.06 ± 0.347 0.592 ± 0.055 6.32 ± 1.39 2.00 ± 0.206
50 4.91 ± 0.348 2.01 ± 0.369 7.78 ± 0.357 5.42 ± 1.11

B 5 0.167 ± 0.10 0.079 ± 0.032 0.835 ± 0.206 0.322 ± 0.051
20 2.03 ± 0.295 0.445 ± 0.110 6.28 ± 1.20 2.00 ± 0.333
50 4.75 ± 0.057 1.92 ± 0.342 7.70 ± 0.405 5.75 ± 0.621

F 5 0.217 ± 0.063 0.176 ± 0.067 0.859 ± 0.252 0.514 ± 0.07
20 2.01 ± 0.222 0.750 ± 0.088 6.25 ± 1.15 2.99 ± 0.551
50 4.55 ± 0.30 4.08 ± 1.04 7.68 ± 0.369 9.34 ± 0.532

5.3. Experimental results in the redundant chain topology

In this section, we quantify the Scribe performance worsening when the root node is
moved from the center of the topology towards one edge. To this end, we ran three sets of
experiments, in which the Scribe root was placed on node E, G, and I, respectively, while
just the central node of the topology (E) was sending messages to the group. As shown
in Fig. 4(b), we refer to these configurations as R1, R2, and R3, respectively. Note that
XScribe does not require a root node, and therefore its performance is the same in the three
configurations.

First of all, the performance in terms of packet loss is acceptable both for Scribe and
XScribe. Specifically, all the nodes experience no packet loss when XScribe is used. In the
case of Scribe, we measured non-negligible packet loss (i.e. about 10%) on node A, just
in experiments where the root was located at the opposite edge of the chain (i.e., on node
I). This was expected, since packet loss is a by-product of congestion at the root node (as
explained in Section 5.2). The application load we have used is not high enough to saturate
the TCP connections from the root to the other members, except for quite long paths.

The impact of the Scribe root node position is evident when one focuses on the delay
statistics. Specifically, Table 2 shows the average and the 99th percentile of the delay
achieved in the different configurations by Scribe and XScribe. In detail, from each run
we derived the average and 99th percentile of the delay achieved by every node, and we
computed their mean value over all nodes. We report in the table the confidence intervals
of the mean values, with a 90% confidence level. Basically, these results represent the



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 79

Table 2
Delay statistics in the redundant chain topology (ms)

XScribe Average 99th percentile
300 ± 4.45 1025 ± 35.6

R1 710 ± 14.5 2071 ± 32.1
Scribe R2 906 ± 34.2 2698 ± 180

R3 2702 ± 377 7474 ± 852

(a) Average.

(b) 99th percentile.

Fig. 6. Ratio between the Scribe and XScribe delay statistics.

“average delay statistics” one can expect in a chain topology. To complement the results of
Table 2, Fig. 6 shows the ratio between the Scribe and XScribe delay, both for the average
value (a), and for the 99th percentile (b).

First of all, it should be noted that, even in the best Scribe configuration (R1), the aver-
age and 99th percentile of the delay are respectively 2.37 and 2.02 times the correspond-
ing XScribe figures. It can be easily shown that in this case the application-level traffic



80 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

(i.e., WB messages) between the group members flows exactly along the same TCP con-
nections both with Scribe and XScribe. Therefore, the XScribe performance improvement
witnesses that the lightweight architecture of CrossROAD and XScribe results in lower
application-level delay. Furthermore, Fig. 6 also shows that the Scribe delay statistics ex-
ponentially increase with the distance of the root from the center of the topology and from
the sender node. Specifically, in an intermediate configuration (R2), the average and 99th
percentile of the delay are respectively 3.02 and 2.63 times the corresponding XScribe
figures. Finally, when root is on node I (R3), the Scribe average and 99th percentile delay
grow up to 9.00 and 7.29 times the corresponding XScribe figures. Intuitively, the exponen-
tial increase of the Scribe delay is grounded in the increasing distance between the sender
and the Scribe root, and in the fact that the throughput of the TCP connections between the
root and the other group members decreases as 1/

√
n, where n is the path length [3]. The

exponential increase of the delay statistics show that Scribe may be able to support p2p
applications in self-organized networks only in very particular configurations.

We would like to stress the fact that, even though these results are derived for a
theoretical topology, they provide a general important result. Self-organized networks are
totally unplanned, and the location of the root node is totally random. Having the root node
at the center of the topology minimizing the distance from the other group members is
thus quite a rare event. The typical performance difference between Scribe and XScribe in
terms of delay is therefore represented by the R2 and R3 configurations. The experimental
results discussed in this section confirm that XScribe is a much more suitable solution for
general-purpose self-organizing networks with respect to Scribe.

6. Analytical evaluation of the XScribe improvements

To complement the results presented in Section 5 we now investigate in more detail
the improvements that XScribe is able to provide in comparison with Scribe. Specifically,
we present an analytical model providing the Scribe and XScribe saturation throughput,
defined as the maximum application load generated by each sender that the multicast
protocol is actually able to deliver to all the receivers. Loads higher than the saturation
throughput can be delivered in general just to a subset of the receivers. Clearly, the higher
the saturation throughput, the better. Comparing Scribe and XScribe in terms of saturation
throughput actually complements the results we have achieved via experimental analysis.
The comparison in terms of packet loss and delay presented before shows how XScribe
is able to improve the QoS perceived by the users. The comparison in terms of saturation
throughput, instead, shows to what extent XScribe is able to increase the region of the
parameters’ space for which the network is not overloaded.

6.1. Analytical model

For reasons of space, in this section we just present the main results of the analysis,
i.e. the closed forms of the Scribe and XScribe saturation throughputs, hereafter referred
to as γS and γX S , respectively.4

4 The analytical proofs of these closed forms and other details on the model can be found in an extended version
of this paper available at http://bruno1.iit.cnr.it/˜andrea/docs/mcast tr.pdf as a technical report.

http://bruno1.iit.cnr.it/~andrea/docs/mcast_tr.pdf


F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 81

Table 3
Model parameters

Symbol Meaning

Γ Saturation throughput of an 802.11 network whose nodes are in the same CS range
n Number of nodes in the network
nG Average number of multicast groups in the network
nS Average number of senders in a multicast group
nR Average number of nodes, in a group, a sender has to send data to

First of all, let us clarify the main modeling assumptions. For fairness reasons, we
impose that, in the saturation condition, all the senders of all the multicast groups generate
the same application-level load. We assume that the average number of senders in any
group is the same (nS), and that, for any given group, each sender “sees” the same average
number of receivers, nR . In other words, each sender of any given group has to send data
to nR other nodes, on average. Please note that this also implies that the average size of
multicast groups is nR + 1.

In the model, we also assume that all the nodes are inside the same Carrier-Sensing (CS)
range. The CS range in 802.11 networks has proved to be much larger than the transmission
range, especially at high transmission rates. For example, the CS range measured in [30] is
7 times larger than the transmission range at 11 Mbps, 3 times larger at 5.5 Mbps, 2 times
larger at 2 Mbps, and 1.6 times larger at 1 Mbps. This means that nodes 7-hop away from
each other (or even more) may be in the same CS range. As we mostly focus on multi-hop
ad hoc networks within the ad hoc horizon (2–3 hops, 10–20 nodes), assuming that all the
nodes are in the same CS range is reasonable. The last modeling assumption is that the
overlay networks adopt UDP as the transport protocol. This is a reasonable choice for a
number of applications that could run on top of p2p multicast systems, without necessarily
requiring 100% reliability. For example, using UDP would provide reduced delays to
the Whiteboard Application for an increased packet loss. This represents a reasonable
trade-off. Furthermore, using UDP simplifies the analysis and, in our networking scenario,
provides an upper bound for the saturation throughput achievable over TCP.

The Scribe and XScribe saturation throughputs are a function of a number of
parameters, which are summarised in Table 3. Specifically, Γ denotes the saturation
throughput of an 802.11 ad hoc network in which all the nodes are in the same CS range.
Closed form expressions for this figure are available in the literature (the interested reader
can refer, for example, to [31]). Furthermore, n denotes the number of nodes in the network,
nG the average number of multicast groups concurrently active in the network.

Having described the main model assumptions and parameters, we are now able to
provide closed-form expressions of γS and γX S . Specifically, the XScribe saturation
throughput (γX S) can be evaluated as

Γ = nG · γX S · k
√

n · nR · nS ⇒ γX S =
Γ

nG · k
√

n · nR · nS
. (1)

Eq. (1) is quite intuitive. In saturation’s condition, the load generated by all senders of all
groups has to meet the saturation load of the network, Γ . Following our assumptions, each



82 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

(a) Scribe. (b) XScribe.

Fig. 7. Example of flows’ pattern.

sender generates γX S bps, which are sent to nR receivers over a multi-hop path. Based on
the well-known results in [32], the average length of a multi-hop path in an ad hoc network
can be expressed as k

√
n, where k is a constant. Therefore, γX S · k

√
n · nR is the load

generated on the whole network by a single sender. The expression in Eq. (1) can be easily
derived based on this remark, and on the definitions of nG and nS .

Following a similar line of reasoning, it is possible to evaluate the Scribe saturation
throughput (γS), as well. In this case, the derivation is less straightforward, as the cases
in which the root node is or is not a sender have to be distinguished. Let us denote by h
the number of groups for which the root node is a sender. It can be shown that the Scribe
saturation throughput, for a fixed value of h, is

γS(h) =
Γ

k
√

n · (nG · nR · nS + nG · nS − h)
. (2)

It can also be shown that the probability of having h groups for which the root node
is a sender (denoted by p(h)) is distributed according to a Binomial distribution with
parameters nG and p , nS/ (nR + 1). Therefore, the average value of the Scribe saturation
throughput can be evaluated as follows5

γS =

nG∑
h=0

γS(h) · p(h). (3)

6.2. Model validation

In order to validate our model, we ran a set of experiments on the mesh topology
described in Section 5.2. Instead of using the real p2p systems, we replicated the set of
UDP flows between the senders and the receivers that would have been generated by Pastry
and CrossROAD to deliver the messages generated by Scribe and XScribe, respectively.
Just as an example, Fig. 7 shows the set of flows in the case of Scribe and XScribe when

5 Providing a closed form for Eq. (3) is not practical. However, in the technical report, we show that it is
possible to evaluate the γS values by using the constructive method of Eq. (3).



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 83

Table 4
Validation parameters

Param Value

k 0.67
n 8
nR 5
nS 2–6

the senders were nodes C and D. Traffic on the UDP flows was generated by using the
netperf tool, version 2.4.1 [33]. Replacing the p2p systems with the equivalent set of
UDP flows generated through netperf gives us a more controllable environment, allowing
us to precisely investigate the scalability bounds of Scribe and XScribe nevertheless.

We tested the system under increasing numbers of senders, between 2 and 6 (the
maximum possible in our mesh topology). In every case, we ran a set of experiments by
increasing the load each sender generated on its flows, and we measured the throughput
at the receivers. The configuration of an experiment is therefore defined by the number of
senders, and by the load generated by each sender on each flow. We ran each configuration
10 times, each run lasting 100 s. Results presented hereafter are the average over the 10
runs. The 95% confidence interval was almost always within 2% of the average value, and
was about 15% of the average value just in a few cases.

The outcome of an experiment (made up of 10 runs) was labeled as “good” if all the
flows were able to correctly terminate the 10 runs. Under netperf, network overload
manifests as a premature termination of some flows, which results in unavailability of
the throughput measure at the receivers.6 We labeled this type of experiment as “bad”.
Basically, “good” experiments represent cases in which the network was able to carry
the load offered by all the senders, while “bad” experiments represent cases in which the
network was overloaded (and the system was thus working beyond the saturation point).

Fig. 8 shows the results from our testbed, compared with the saturation throughput
predicted by the analytical model (i.e., by Eqs. (1) and (3)). Table 4 shows the model
parameter values used for the validation. The value of k (where k

√
n is the average

path length) has been derived based on the average path length of the flows in all the
configurations. Note that this value is remarkably aligned with the theoretical value of
2/3 predicted by [32]. The value of Γ was derived exploiting the analytical model
presented in [31], which provides the capacity (i.e., the maximum throughput) of an 802.11
network with a variable number of saturated nodes within a unique carrier-sensing region.
Specifically, from the logs of the validation experiments, we derived, in each configuration
(i.e., for each number of senders), the number of active nodes in the network, and we
computed the analytical value of Γ corresponding to that number of active nodes.

In Fig. 8, for each number of senders, the white diamonds are related to the “highest-
load good experiment”, i.e. to the experiment with the highest offered load that resulted
in a “good” experiment. Specifically, the white diamonds are the average values of the

6 In detail, nodes experiencing a throughput below the offered load become unable to correctly manage the
timers used by netperf to schedule message transmissions, thus resulting in a premature experiment termination.



84 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

(a) Scribe.

(b) XScribe.

Fig. 8. Model validation.

throughput measured at the receivers in the “highest-load good experiment”. Likewise, the
black diamonds are related to the “lowest-load bad experiment”, i.e. to the experiment with
the lowest offered load that resulted in a “bad” experiment. Recall that, due to netperf
internals, in “bad” experiments only a subset of the receivers were able to correctly
complete the experiment, and thus to provide a meaningful throughput value. The black
diamonds are the average values of throughput measured at those receiver that correctly
completed the “lowest-load bad experiment”.

Clearly, for a particular number of senders, the real saturation throughput lies
somewhere between the white and black diamonds. Fig. 8 actually validates our model,
since the model predictions are, with a good degree of accuracy, within the region where the
saturation throughput actually lies. Based on this result, in the following section we exploit
the model to show that XScribe is able to significantly improve the saturation throughput
with respect to Scribe, thus resulting in increased scalability with the load generated by
applications.



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 85

Fig. 9. XScribe improvement with respect to Scribe (ρ) as a function of nS .

Fig. 10. XScribe improvement with respect to Scribe (ρ) as a function of nR .

6.3. XScribe improvement in terms of scalability

To evaluate the XScribe improvement in terms of scalability, we focus on the
proportional increase of the saturation throughput achieved by XScribe with respect to
Scribe. This will be denoted by ρ, and can be clearly evaluated as ρ = (γX S − γS)/γS ,
where γX S and γS are defined by Eqs. (1) and (3), respectively.

First of all, it is easy to show that ρ does not depend on the multicast groups’ popularity,
i.e. the fraction of nodes that are members of multicast groups. In detail, we assume that
the popularity is the same for all groups, and we define it as the ratio between the average
group size and the average network size, i.e. α , nR+1

n . It is easy to show that both γS and
γX S are proportional to

√
α, and thus ρ is independent of α. Therefore, in the following

we assume the same popularity of the experimental setup presented in Section 5, i.e. we
fix α = 0.75.

Figs. 9–11 plot ρ as a function of the other main system parameters, i.e. nR , nS , and
nG . Note that we limit the analysis to small-to-medium network sizes, i.e. we focus on nR
and nS values below 20. This is coherent with the “ad hoc horizon” discussed in Section 1.



86 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

Fig. 11. XScribe improvement with respect to Scribe (ρ) as a function of nG .

The proportional advantage of XScribe over Scribe is slightly dependent on the number
of senders nS (Fig. 9), and on the number of groups nG (Fig. 11). This can be also
derived directly by Eqs. (3) and (1). Specifically, γS is proportional both to 1/nS and to
1/nG . Except for small nS (nG) values, γX S can be closely approximated with a function
proportional to 1/nS (1/nG). Therefore, ρ is clearly independent of nS (nG), except for
small nS (nG) values.

On the other hand, ρ is fairly sensitive to the nR parameter, i.e. to the size of the group
(Fig. 10). It is interesting to note that XScribe is able to increase the saturation throughput
up to 50% with respect to Scribe. The advantage of using XScribe decreases as the average
number of receivers seen by each sender grows, but it still remains non-negligible even
for medium-size groups (i.e. for nR between 10 and 20). The XScribe advantage is greater
for small set of receivers, because, in general, the additional traffic generated by Scribe is
due to carrying all multicast messages from the senders to the root before delivering them
to the receivers. Clearly, this cost is less amortized, and Scribe performs worse, when the
number of receivers is small.

In conclusion, the above analysis shows that the saturation throughput of both Scribe
and XScribe decreases with the number of senders, receivers, and with the number of
groups. This is because both γS and γX S can be closely approximated by functions
proportional to 1/nS , 1/nR , and 1/nG . However, as shown by the ρ index, XScribe always
outperforms Scribe, and is able to increase the saturation throughput up to 50%.

7. Conclusions and open issues

In this work we analysed the performance and limitations of p2p multicast systems for
pervasive ad hoc networks. This is interesting because, thanks to the diffusion of resource-
rich mobile devices, an ever-increasing share of the Internet content is actually generated
by users themselves, and shared with other users over the network. Coupled with the
increasing networking capabilities of mobile devices, it is reasonable to assume that a
pervasive networking environment is made up of dynamic, wireless ad hoc networks, in
which users generate and share content within the ad hoc networks, without necessarily



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 87

Fig. 12. Chain topology.

relying on centralized services over the Internet. Since the most likely communication
paradigm aimed at this kind of sharing in the wired network is p2p, understanding how p2p
systems should be designed to work over ad hoc networks is a hot topic. In addition, the
increasing diffusion of user communities interested in common topics makes p2p multicast
applications a suitable service in this environment.

In this work, we considered Scribe as a p2p multicast system, since it has shown good
performance over legacy wired networks. However, experimental results demonstrated its
major inefficiencies when it is used over ad hoc networks. Therefore, we presented and
evaluated XScribe, which is a simple cross-layer replacement for Scribe, designed for
multi-hop ad hoc networks. XScribe takes a structureless approach to multicast. Thus,
it relies on the networking structure already defined by the underlying layers, instead
of binding together multicast group members through network structures defined at the
multicast level, such as trees or meshes. This is possible thanks to receiver awareness,
i.e. in XScribe all the senders of a group know the group receivers. With respect to the
other solutions exploiting receiver awareness, XScribe implements this feature via a very
efficient cross-layer mechanism. Both the experimental results shown in Section 5 and
the analysis discussed in Section 6 show that XScribe outperforms Scribe, thanks to these
design features.

Despite these performance figures, there is still room for improvement. By design
choice, XScribe adopts a pure p2p data delivery mechanism, in the sense that no
information about the physical paths between senders and receivers is exploited during data
delivery. This allowed us to stress the limits of such p2p delivery policies. The results in
this paper clearly show that this policy actually limits the system scalability. Specifically,
our analytical models show that, since a distinct message is delivered to each multicast
receiver, the saturation throughput decreases as 1/nR , where nR is the number of receivers
“seen” by each sender. A possible fix for this is including cross-layer optimisations in
the data-delivery phase as well. Specifically, possible portions of shared paths between
senders and receivers could be efficiently exploited, since the same message could be
transported just once along the shared portion of the path. Actually, this is a feature
already implemented by traditional layer-3 multicast protocols. We think that integrating
multicast features implementable at layer-3 (like sharing paths), and features related to the
middleware layers (like exploiting subject-based routing) is the right balance to achieve
efficiency while providing the applications with standard p2p multicast services.

Appendix. Analysis of routing misbehavior

Since experimental results obtained in the setup shown in Fig. 4 presented unexpected
spikes in the delay samples, we decided to run some trials on a simple topology, to get
an easier interpretation of the protocols’ behavior. Specifically, we have used the chain
topology shown in Fig. 12. In this topology all the nodes run the whole protocol stacks



88 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

(including the p2p systems and the Whiteboard application). A single multicast group
encompasses all the nodes. Node C is the only sender, and all the other nodes are receivers.
In this setup, the behaviours of Scribe and XScribe are remarkably similar. In the case
of Scribe, since the root node is the only sender, it does not represent a centralisation
point, since it does not receive traffic to be forwarded. Furthermore, the traffic pattern
generated by Scribe and XScribe to deliver application-level data to the receivers is the
same (i.e. data generated by C are delivered to each receiver on a dedicated TCP connection
in both cases). Actually, since XScribe adds group-membership information to routing
packets, the routing protocol behaves slightly different in the two cases, but the effects of
its anomalies are very similar. For these reasons, hereafter we only discuss results from
XScribe experiments that better highlight the anomalies we have found. Specifically, we
discuss a single trial in which node C generates 20 pps (similar remarks apply also to the
other configurations we used).

In this specific experiment, nodes A, B, and D measure no packet loss, while nodes E
and F measure 37% and 40% packet losses, respectively. The log files show that node F
loses all the routes for a few seconds during the trial, while in the same period node E has
only a valid route to F (while the routes to all the other nodes have disappeared). At the
same time, all the other nodes (i.e. from C to B) lose the routes to both E and F. This is
not so surprising in this kind of scenario, since it is well known that in a multi-hop chain
topology the loss of some Hello packets can cause a network partition.

Unfortunately, such route failures cause spikes of application messages delays. In
conjuction with these events, nodes E and F experience delays in the order of 20 s, while
the other nodes experience delays no greater than 5 s throughout the whole experiment.
It is quite surprising that such route losses, and the associated delay spikes, also occur
at very light traffic loads (5 pps), i.e. when the network is not congested. This suggests
that they could be caused by some misbehavior of the routing protocol. To investigate this
hypothesis, we deeply analysed the routing behaviour directly examining the packets sent
on the network through the tcpdump sniffer.

According to the standard OLSR specification [34], Hello messages should be sent
every 2 s, and TC messages (aggregating the link state of several nodes) every 5 s, or
upon a topology change. Links advertised by Hello and TC messages are valid for the
next 6 and 15 s, respectively. If they are not refreshed within these validity timeouts, they
are removed from the routing table. Referring to the OLSR implementation we used, we
noticed that, even though Hello and TC messages are generated on time by the OLSR
process (i.e. precisely every 2 and 5 s), they experience significant delays either in being
actually sent, or in being processed at the receiving side. Such delays occur because (i) this
specific OLSR implementation aggregates routing messages in single packets to reduce
the network load, and (ii) routing packets are not prioritized at the MAC level, and are thus
queued together with application-level packets (especially at high traffic loads).

The delayed sending of routing packets thus makes the entire system more susceptible to
route failures. Maintaining the original values of route validity timeouts, it can be sufficient
to lose one routing packet, or receive it with a delay higher than the timeout, to cause a
route failure. In our specific trial, node F lost a Hello packet sent by node E, and received
the next packet 10 s after the last one correctly received. This caused the expiration of the
validity timeout in F’s routing table for the link with E, and the consequent route failures.



F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 89

Similar events have been noticed at node E, i.e. it lost a Hello from B, and all the related
routes. This example highlights how the additional delays of routing messages weaken the
protocol reaction to packet loss.

Such misbehavior partly depends on the particular routing protocol implementation, but
is highly determined by the fact that the routing traffic is not prioritized at the MAC level.
As mentioned before, we decided to eliminate from our logs spikes in application message
delays that occur because of these routing anomalies. This allows us to evaluate the p2p
multicast solutions in an optimistic case, in which the routing protocol behaves as expected,
and we can fairly compare the architectural differences between Scribe and XScribe.

References

[1] M. Gerla, C. Lindemann, A. Rowstron, p2p MANETs—New research issues. Available online:
http://drops.dagstuhl.de/portals/index.php?semnr=05152.

[2] C. Lindemann, A. Rowstron (Eds.), ACM MobiCom MobiShare Workshop, September 2006. Available
online: http://www.mobishare.org.

[3] P. Gupta, P. Kumar, The capacity of wireless networks, IEEE Transactions on Information Theory 46 (2)
(2000) 388–404.

[4] P. Gunningberg, H. Lundgren, E. Nordstroem, C. Tschudin, Lessons from experimental MANET research,
Ad Hoc Networks Journal 3 (2) (2005) 221–233.

[5] E. Borgia, M. Conti, F. Delmastro, MobileMAN: Design, integration and experimentation of cross-layer
mobile multi-hop ad hoc networks, IEEE Communication Magazine, Ad Hoc & Sensor Network series 44
(7) (2006).

[6] M. Conti, F. Delmastro, G. Turi, Peer-to-peer computing in mobile ad hoc networks, in: P. Bellavista,
A. Corradi (Eds.), The Handbook of Mobile Middleware, Chapman & Hall/CRC Press, 2006.

[7] F. Delmastro, From pastry to crossROAD: Cross-layer ring overlay for AD hoc networks, in: Proc. of IEEE
PerCom MP2P Workshop, Kauai Island, Hawaii, March 2005.

[8] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, A. Rowstron, Virtual ring routing: Network routing
inspired by DHTs, in: Proc. of ACM SIGCOMM, Pisa, Italy, September 11–15, 2006.

[9] F. Delmastro, M. Conti, E. Gregori, P2P Common API for structured overlay networks: A cross-layer
extension, in: Proc. of MDC’06 Workshop, Niagara Falls, Buffalo, NY, June 2006.

[10] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, I. Stoica, Towards a common API for structured Peer-to-
Peer overlays, in: Proc. of the the 2nd International Workshop on Peer-to-peer Systems, IPTPS’03, Berkeley,
CA, February 2003.

[11] M. Castro, M.B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H Wang, A. Wolman, An evaluation of
scalable application-level multicast built using peer-to-peer overlays, in: Proc. of INFOCOM, San Francisco,
CA, April 2003.

[12] M. Castro, P. Druschel, A.-M. Kermarrec, A. Rowstron, SCRIBE: A large-scale and decentralised
application-level multicast infrastructure, IEEE Journal on Selected Areas in Communications 20 (8) (2002).

[13] S. Ratnasamy, M. Handley, R. Karp, S Shenker, Application-Level multicast using content-addressable
networks, in: 3rd International Workshop on Networked Group Communication, November 2001.

[14] S.Q. Zhuang, B.Y. Zhang, A.D. Joseph, R.H. Katz, J.D. Kubiatowicz, Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination, in: Eleventh International Workshop on Network and
Operating Systems Support for Digital Audio and Video, NOSSDAV, 2001.

[15] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, A. Singh, SplitStream: High bandwidth
multicast in cooperative environments, in: ACM SOSP, October 2003.

[16] M. Ge, S.V. Krishnamurthy, M. Faloutsos, Application versus network layer multicasting in Ad hoc
networks: The ALMA routing protocol, Elsevier Ad Hoc Networks Journal 4 (2) (2006) 283–300.

[17] C. Gui, P. Mohapatra, Overlay multicast for MANETs using dynamic virtual mesh, Wireless Networks 13
(1) (2007) 77–91, doi: http://dx.doi.org/10.1007/s11276-006-1056-4.

[18] E. Royer, C. Perkins, Multicast Ad hoc On-Demand Distance Vector (MAODV) Routing, 2000. Available
online: http://www3.ietf.org/proceedings/00jul/I-D/manet-maodv-00.txt.

http://drops.dagstuhl.de/portals/index.php%3Fsemnr%3D05152
http://www.mobishare.org
http://dx.doi.org/doi:10.1007/s11276-006-1056-4
http://www3.ietf.org/proceedings/00jul/I-D/manet-maodv-00.txt


90 F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91

[19] S.-J. Lee, W. Su, M. Gerla, On-demand multicast routing protocol (ODMRP) for Ad Hoc networks, 2000.
Available online: http://www.cs.ucla.edu/NRL/wireless/PAPER/draft-ietf-manet-odmrp-02.txt.

[20] S. Yang, J. Wu, in: Y. Xiao, Y. Pan (Eds.), New Technologies of Multicasting in MANETS, Nova Publishers,
2005.

[21] L. Ji, M. Corson, Explicit multicasting for mobile ad hoc networks, Mobile Networks and Applications 8
(2003) 525–549.

[22] J. Luo, P. Eugster, J.-P. Hubaux, Probabilistic reliable multicast in ad hoc networks, Ad Hoc Networks 2
(2004) 369–386.

[23] F. Delmastro, A. Passarella, M. Conti, Experimental analysis of p2p shared-tree multicast on MANETs: The
case of scribe, in: Proc. of the Fifth IFIP Annual Mediterranean Ad Hoc Networking Workshop, MedHocNet
2006, Lipari, Italy, June 2006.

[24] A. Passarella, F. Delmastro, Usability of legacy p2p multicast in multi-hop ad hoc networks: An
experimental study, EURASIP Journal on Wireless Communications and Networking 2007 (2007) 13 pages,
doi: http://dx.doi.org/10.1155/2007/62089.

[25] A. Passarella, F. Delmastro, M. Conti, XScribe: A Stateless, cross-layer approach to p2p multicast in multi-
hop ad hoc networks, in: Proc. of ACM MobiShare, September 2006.

[26] M. Castro, M. Costa, A. Rowstron, Debunking some myths about structured and unstructured overlays, in:
Proc. of NSDI, May 2–5, 2005.

[27] M. Conti, G. Maselli, G. Turi, S. Giordano, Cross layering in mobile ad hoc network design, IEEE Computer
(2004).

[28] F. Delmastro, A. Passarella, An experimental study of p2p group-communication applications in real-world
MANETs, in: Proc. of IEEE ICPS REALMAN 2005 Workshop, Santorini, Greece, July 2005.

[29] FreePastry, Rice University. Available online: http://freepastry.rice.edu.
[30] G. Anastasi, E. Borgia, M. Conti, E. Gregori, A. Passarella, Understanding the real behavior of Mote and

802.11 ad hoc networks: An experimental approach, Pervasive and Mobile Computing 1 (2) (2005) 237–256.
[31] G. Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function, vol. 18, no. 9,

2000 pp. 1787–1800.
[32] J. Li, C. Blake, D.S.D. Couto, H.I. Lee, R. Morris, Capacity of ad hoc wireless networks, in: Proc. of ACM

MobiCom, 2001.
[33] Netperf traffic generator. Available online: http://www.netperf.org/netoerf/NetperfPage.html.
[34] Optimized Link State Routing Protocol (OLSR): RFC3626. Available online: http://www.ietf.org/rfc/

rfc3626.txt.

Franca Delmastro is a Research Associate at the IIT Institute of the National Research
Council (CNR), Italy. She received the M.S. Degree in Computer Engineering and the
Ph.D. in Information Engineering, both from the University of Pisa, in 2002 and 2006
respectively. She joint IIT in 2003. Her research interests include ad hoc, mesh and
opportunistic networks, with particular attention to routing and forwarding protocols,
mobile p2p systems, multicasting for ad hoc networks, and distributed applications.

Andrea Passarella is a Researcher at the IIT Institute of the National Research
Council (CNR), Italy. Before joining IIT, he was a Research Associate at the Computer
Laboratory of the University of Cambridge, UK. He received the Ph.D. and M.S.
Degrees in Computer Engineering, both from the University of Pisa, Italy, in 2005 and
2001, respectively. His current research is mostly on opportunistic and delay-tolerant
networking. More generally, he works on ad hoc and sensor networks, specifically on p2p
systems, multicasting, transport protocols, and energy-efficient protocols. His research
interests also include mesh networks and wireless access to the Internet. He is Co-Editor
of the book “Multi-hop Ad hoc Networks: From Theory to Reality” (Nova Science, 2007).
He was TPC Vice-Chair for IEEE REALMAN 2005, ACM REALMAN 2006, and IEEE

MDC 2006. He served and is currently serving in the TPC of several international conferences, including IEEE
PerCom 2006–07 and IEEE WoWMoM 2006–07, and workshops. He is an Associate Technical Editor for IEEE
Communications Magazine. He is a member of ACM SIGMOBILE.

http://www.cs.ucla.edu/NRL/wireless/PAPER/draft-ietf-manet-odmrp-02.txt
http://dx.doi.org/doi:10.1155/2007/62089
http://freepastry.rice.edu
http://www.netperf.org/netoerf/NetperfPage.html
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt


F. Delmastro et al. / Pervasive and Mobile Computing 4 (2008) 62–91 91

Marco Conti is a research director at IIT, an institute of the Italian National Research
Council (CNR). He co-authored the book “Metropolitan Area Networks” (Springer, 1997)
and is co-editor of the book “Mobile Ad Hoc Networking” (IEEE-Wiley 2004). He has
published in journals and conference proceedings more than 180 research papers related
to the design, modeling, and performance evaluation of computer-network architectures
and protocols. He served as the TPC chair of IEEE PerCom 2006, and of the IFIP-
TC6 Conferences “Networking2002” and “PWC2003”, and as TPC co-chair of ACM
WoWMoM 2002, WiOpt ’04, IEEE WoWMoM 2005, and ACM MobiHoc 2006. He
also served as general co-chair of IEEE WoWMoM 2006 and as general chair of ACM
REALMAN 2006. Currently, he is serving as general chair of IEEE MASS 2007. He

is Associate Editor of Pervasive and Mobile Computing Journal, and he is on the editorial board of: IEEE
Transactions on Mobile Computing, Ad Hoc Networks journal and Wireless Ad Hoc and Sensor Networks: An
International Journal.


	P2P multicast for pervasive ad hoc networks
	Introduction
	Background and motivations
	Contributions

	Related work
	DHTs for p2p multicast
	Pastry vs. crossROAD

	P2p multicast systems
	Scribe
	Scribe strengths and limitations
	XScribe
	Data dissemination
	Membership management


	Experimental evaluation
	Methodology
	Experimental results in the mesh topology
	Packet loss
	Delay

	Experimental results in the redundant chain topology

	Analytical evaluation of the XScribe improvements
	Analytical model
	Model validation
	XScribe improvement in terms of scalability

	Conclusions and open issues
	Analysis of routing misbehavior
	References


