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Abstract

Integrating p2p services in multi-hop ad hoc networks is today a hot topic. General multi-hop

networks, and pervasive systems in particular, can greatly benefit from high-level middleware abstractions

able to provide a friendly and powerful substrate for applications development. The p2p paradigm is

particularly suitable in this case, because ad hoc networks are decentralised, self organising and self

healing. Despite the vast literature on p2p systems in legacy wired networks, providing efficient p2p

services for wireless ad hoc networks is still an open issue. Furthermore, evaluating legacy p2p services

in pervasive environments can give good hints for innovative service architectures and the interoperability

of p2p systems in heterogeneous networks. Motivated by these remarks, in this work we focus on p2p

multicast services. Specifically, starting from a reference solution in legacy wired networks (Scribe), we

design a cross-layer optimised protocol (XScribe) that addresses most of the Scribe problems on ad hoc

networks. XScribe exploits cross-layer interactions with a proactive routing protocol to manage group

membership. Furthermore, it uses a lightweight structure-less approach to deliver data to group members.

By jointly using experimental results and analytical models, we show that, with respect to Scribe, XScribe

significantly reduces the packet loss and the delay experienced by multicast receivers, and increases the

maximum throughput that can be delivered to the multicast groups. We also exploit analytical models to

highlight limitations of XScribe, showing that they are actually general problems of p2p multicast, due

to delivering messages via pure p2p policies. We finally suggest that the direction to address this issue

is to extend the cross-layer interactions among the routing and the p2p level to the data-delivery phase,

as well.

Index Terms

Multi-hop ad hoc networks, p2p systems, multicast, cross-layer

I. INTRODUCTION

A. Background and Motivations

During the last few years there has been increasing interest to integrate p2p systems and multi-

hop ad hoc networks (see, for example, [1], [2]), because they share a number of common features.

Both are completely self organising, decentralised and self healing. Both allow users to join and leave

dynamically, with possibly high churn rates. Both are good platforms to host “p2p” applications in which
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nodes directly communicate with each other without any centralised service. Furthermore, p2p systems

could help developing sensible applications for multi-hop ad hoc networks, which still represents a great

barrier for this technology to become truly pervasive. Specifically, applications for pervasive networks

definitely require middleware-level services that provide abstractions from large sets of physical devices.

The decentralised and dynamic nature of pervasive systems makes the p2p paradigm suitable for

providing such middleware-level abstraction.

One of the main obstacles to legacy p2p systems integration in multi-hop ad hoc networks is the

fact that p2p systems are typically based on opposite assumptions with respect to what really holds in

ad hoc networks. Legacy p2p systems are designed to scale up to thousands of nodes. Furthermore,

the networking environment for which they are thought is typically resource rich, especially in terms

of bandwidth. Thus, legacy p2p systems usually trade increased bandwidth consumption for higher

scalability. Scalability to thousands of nodes is not a major issue for flat multi-hop ad hoc networks.

Actually, theoretical and experimental results show that large-scale flat ad hoc networks are not very

likely, because of intrinsic wireless capacity constraints [3], [4]. Based on these observations [4]

defines an ”ad hoc horizon” for realistic flat ad hoc networks, consisting of 10 to 20 nodes, with

peer-to-peer communications spanning 2 to 3 hops. Furthermore, ad hoc networks are definitely not a

resource rich environment, particularly in terms of bandwidth. Thus, trading increasing bandwidth

consumption for greater scalability is not the best design choice. Experimental results show that,

because of this mismatch, legacy p2p systems usually fail when used ”as-they-are” in multi-hop ad hoc

environments [5], [6]. One of the main issues is therefore how to efficiently provide the same kind of p2p

services implemented in legacy wired networks also in multi-hop ad hoc networks. Fortunately, previous

studies show that p2p systems implementing DHTs can be designed to achieve high performance in ad

hoc networks too (e.g. CrossROAD [7] and Virtual Ring Routing (VRR) [8]). However, a lot of work

has still to be done to extend these results to more complex p2p platforms.

Besides efficiency, another main concern to be addressed is the portability of legacy p2p applica-

tions on ad hoc networks, and the interoperability between p2p systems running on heterogeneous

(wired/wireless) networks. P2p applications can represent a great inheritance for wireless networks

and pervasive environments improving the popularity of this technology among users communities. The

CommonAPI defined in [9] represents a first step in this direction even though it has been originally

defined for wired p2p systems. In fact, it defines interfaces between components of a p2p system and

towards the applications, thus granting easy portability of p2p applications across different p2p systems’

implementations. Then, to port distributed applications on wireless networks, a cross-layer extension

of the original common API (named XL-CommonAPI) has been defined in [10], with special emphasis

on cross-layer support to the upper p2p layers. The XL-CommonAPI exports fundamental routing- and

DHT-level information to upper-layer services, thus allowing them to exploit complete knowledge about

both the network topology and the overlay status. Exploiting cross-layer information has proved to be

very important for both CrossROAD and VRR. Besides this, designing p2p components on top of the

XL-CommonAPI grants easy portability of applications across wired and wireless networks, and their
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interoperability in heterogeneous environments.

B. Contributions

Starting from these considerations, in this paper we focus on p2p multicast services. Specifically, we

consider p2p multicast protocols running on top of a p2p substrate providing a DHT (in Section III we

discuss the reasons of this architectural choice). We choose a legacy solution made up of Pastry (at the

DHT level), and Scribe (at the multicast level), since it is one of the most efficient solutions designed

for wired networks [11].

After recalling the main features of Pastry and Scribe (Sections III and IV), we highlight the ineffi-

ciencies of such a p2p system when used as-it-is on ad hoc networks (Section IV-B). Based on these

remarks, we propose a new solution that leverages cross-layer interactions between the p2p and the

routing levels to optimise the multicast system implementation (see Figure 1). Specifically, we replace

Pastry with CrossROAD (whose main features are recalled in Section III), and Scribe with XScribe

(which are extensively described in Section IV). Since CrossROAD implements the XL-CommonAPI,

and XScribe exploits cross-layer interactions via this interface, this is also an example of how to exploit

the XL-CommonAPI to optimise p2p services for ad hoc networks.

While CrossROAD has already proved to outperform Pastry on ad hoc networks (e.g., [12]), the

main focus of this paper is the design and evaluation of XScribe. The main advantages of XScribe over

Scribe are: i) managing group membership with minimal overhead by exploiting the periodic traffic of

a proactive routing protocol and ii) delivering multicast data to intended receivers without requiring

any networking structure (such as trees or meshes) built and maintained exclusively for multicasting

purposes. In this sense, XScribe is a stateless, cross-layer, p2p multicast protocol.

In Section V we evaluate the XScribe performance in comparison with Scribe, in terms of packet loss

and delay. We report results from experiments run on a real multi-hop ad hoc network, implementing

both p2p solutions. Results show that, in the majority of the cases, XScribe is able to halve the packet

loss and the delay experienced by Scribe at the same time.

To better understand the p2p systems’ behavior, in Section VI we develop an analytical model,

which provide expressions for the saturation throughput of both Scribe and XScribe. The saturation

throughput is defined as the maximum throughput that the multicast system is able to fairly deliver

from groups’ senders to groups’ receivers. After validating the model by experimental results, we analyse

the scalability bounds of Scribe and XScribe varying several parameters, i.e., the number of sender and

receivers, the network size, and the number of multicast groups active at the same time. The model

demonstrates that both systems can be used in small- and medium-size networks, i.e., within the ad

hoc horizon. Specifically, in these scenarios they are able to support reference applications such as

multi-player games [13]. Furthermore, we also highlight that XScribe is able to increase the scalability

bounds of Scribe with respect to all the considered parameters. Specifically, the proportional increase

of the saturation throughput achieved by XScribe can be as high as 50%. Despite its good performance,

results also suggest XScribe limitations and ways to further improve it. Specifically, XScribe implements
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a pure p2p delivery policy, in which no information about physical paths is exploited. We highlight

that this is the main direction along which XScribe can be further improved, by blending together p2p

multicast features and layer-3 multicast mechanisms.

II. RELATED WORK

Multicast support implemented at the p2p layer is just one of the available options proposed in the

literature. Usually, multicast protocols are classified as operating at the network layer (L3), or at the

application layer, where application denotes all possible layers above the transport. Application-level

multicast runs only at nodes involved in the related application and it just requires standard unicast

support from the routing level. The most recent proposals for wired environments ([14] [15] [16] [17])

run the multicast protocol on top of an overlay network based on a DHT. This approach is very

interesting for several reasons, as discussed in Section III. To the best of our knowledge, the feasibility of

this approach on multi-hop ad hoc networks has not been investigated yet. Application-level multicast

has been proposed also for ad hoc networks (e.g., ALMA [18] and PAST-DM [19]), even though it is

not implemented on top of a DHT. We believe that exploiting a DHT to implement multicast services

is an interesting direction to investigate also in ad hoc networks.

On the other hand, it should be pointed out that application-level multicast potentially generates

path stretch because just a subset of nodes can be used to deliver the data. Moreover, nodes that

do not participate in multicast groups have to forward data nevertheless. Therefore, it is not yet clear

whether multicast for ad hoc networks should be implemented at the routing or at the application level.

Examples of multicast protocols for ad hoc networks implemented at the routing level are MAODV [20]

and ODMRP [21] (other proposals, either implemented at the application or at the routing level, are

described in [22]). From this standpoint, there is actually an increasing trend towards blending together,

in ad hoc networks’ stacks, features usually implemented at the routing and at the p2p levels (e.g.,

[8], [23], [7]). Therefore, an interesting solution could be a multicast system implemented within an

integrated routing layer that also includes p2p features. Results presented in this paper can be seen as

an helpful intermediate step towards this eventual goal.

The vast majority of multicast protocols for ad hoc networks proposed in the literature adopts struc-

tured approaches, i.e., the multicast protocol builds and maintains networking structures exclusively

related to data delivery. For example, MAODV and ALMA use shared trees, while ODRMP and PAST-DM

use meshes. A few others implement a structure-less approach, in which the multicast protocol does not

rely on any structure exclusively related to multicast. Structure-less multicast requires that each sender

is aware of at least a fraction of the receivers of the multicast group (we will refer to this property as

receiver awareness in the following). Receiver awareness allows senders to directly deliver messages to

receivers along the paths already built by the underlying routing protocol. Basically, receiver awareness

replaces multicast structures. Examples of structure-less multicast protocols for ad hoc networks are

DDM [24] and RDG [25]. A structure-less approach avoids the cost of maintaining another networking

structure separated from the one already provided by the routing protocol. The main drawback of such
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Fig. 1. Network architectures.

an approach is clearly the cost of implementing receiver awareness (usually, receivers have to register

with the senders, which then periodically poll them with alive messages).

XScribe actually follows a structure-less approach, since it exploits the network structure already

defined by the underlying layers. With respect to DDM and RDG, XScribe works on top of a DHT and

can straightforwardly support p2p applications. Furthermore, it implements receiver awareness in a

more efficient way than periodic polling, and thus it better exploits the advantages of a structure-less

design.

This paper complements our previous work on p2p multicast for multi-hop ad hoc networks. Specif-

ically, in [6], [26] we extensively evaluated the performance of Pastry and Scribe in ad hoc networks.

In this work we focus on the comparison between the legacy solution (Pastry & Scribe), and the cross-

layer one (CrossROAD & XScribe). The main design features of XScribe have been presented in [27],

together with a preliminary evaluation. In this paper we provide a more complete evaluation, both

from an experimental and from an analytical standpoint.

III. DHTS FOR P2P MULTICAST

Before describing the features of the p2p platforms shown in Figure 1, it is worth briefly discussing

why using a DHT to support p2p multicast is an interesting idea, and why using structured overlay

networks is a reasonable choice. Using a DHT below the p2p multicast level is interesting for a number

of reasons. Firstly, the task of defining a network structure that just encompasses the edge nodes is

assigned to the DHT, and has not to be implemented by the multicast protocol itself. Secondly, the

multicast protocol leverages the self-organising and self-recovery features of the DHT. Finally, the same

DHT can be shared by several higher-level services running besides the multicast protocol.

Being mainly designed for handling exact-match queries, a structured overlay (i.e., a DHT) is the

most natural support for a p2p multicast protocol, in which single nodes have to send data to a well-

defined set of receivers. In comparison with unstructured and hybrid overlays, structured overlays are

usually considered i) less efficient in terms of management, ii) not able to exploit nodes’ heterogeneity,

and iii) not able to support content-based queries. However, the discussion on these points is still

open. For example, [28] shows that it is possible to address points i)-iii) by still using Pastry, and by
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achieving performance at least comparable to that provided by unstructured overlay networks. Thus,

even though conceptually interesting, porting our analysis of p2p multicast protocols to unstructured

and hybrid overlays is not the most compelling issue.

A. Pastry vs. CrossROAD

Pastry defines a DHT using a logical circular address space. The logical address of a node is the hashed

value of its IP address (a proper hash function maps IP addresses and strings to logical addresses). A

key is associated to each message sent on the overlay. Pastry delivers the message to the node whose

logical id is the closest one to the hashed key. For the sake of scalability, each node keeps a partial view

of the overlay network, i.e., it just knows about a limited set of nodes. The nodes that are kept in the

set guarantee the forwarding correctness, i.e., that messages sent from anywhere eventually reach the

correct destination.

The main costs of Pastry in terms of networking overhead are due to i) the overlay creation and

management that require periodic communications between nodes, and ii) the multi-hop middleware

routing caused by the incomplete knowledge of the overlay at each node, which possibly results in

significant path stretches. These costs are well justified in large-scale wired networks, where the ability

to scale to large number of nodes (possibly thousands) is correctly traded for additional bandwidth

consumption (brought by points i) and ii) above). However, the cost of this trade-off is turned upside-

down in multi-hop ad hoc networks, where the number of nodes is limited, bandwidth is scarce, and

paths should be kept as short as possible since nodes communications can be severely affected by

unstable links.

CrossROAD has been designed to overcome Pastry’s inefficiences on multi-hop ad hoc networks. It

provides the same DHT features, but implements them via a cross-layer optimised approach. Specifically,

CrossROAD interacts with a proactive routing protocol via the cross-layer architecture proposed in [29].

As shown in Figure 1, these interactions are mediated by the NeSt module, which provides standard

interfaces for cross layering, thus granting both performance optmisations and stacks manageability.

A node wishing to join a CrossROAD overlay embeds few bytes into periodic routing advertisements,

announcing its participation to a specific service. This information eventually reaches all the other nodes

in the network through the proactive flooding of the routing protocol. Therefore, every node in the

overlay knows the IP addresses of all the other nodes currently running the same service, and it is

able to autonomously build the overlay by simply hashing their IP addresses. In this way, CrossROAD

drastically reduces the bandwidth overhead with respect to Pastry ([30], [5], [31]), because building

the overlay does not requires connections between nodes to exchange overlay information. Furthermore,

p2p messages always travel just one-hop on the overlay (assuming that the overlay view is consistent

at all nodes), because every node has a complete view of the overlay. Even though using a proactive

routing protocol over ad hoc networks might sound costly, experimental results [30] showed that the

overhead of the proactive routing protocol (OLSR in the particular case) is completely affordable. More

details about CrossROAD operations can be found in [7] and [12].
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Fig. 2. Scribe tree construction (a), and data delivery (b)

IV. MULTICAST SYSTEMS

A. Scribe

Scribe is a p2p shared-tree multicast protocol. It identifies each tree with a topic, and defines a

root node for each topic as the node in the overlay whose address is the closest one to the hashed

topic. For example, in Figure 2 the root is node C. Multicast trees are built through the well-known

reverse path algorithm. Each node willing to join the tree sends a subscribe message specifying the

topic as the key. An intermediate node (in the overlay path between the subscribing node and the

root) that receives such a message, either subscribes itself to the same topic if it is not a member of

the tree (e.g., node B after step 1 in Figure 2(a)), or discards the message otherwise (e.g., node B in

step 3 in Figure 2(a)). In both cases, it enrolls the node from which it has received the message as

a child. Messages to be delivered over the tree are first sent towards the root of the topic (step 1 in

Figure 2(b)), and subsequently delivered by each parent to its children (steps 2 and 3 in Figure 2(b)).

Parent-child relationships are periodically refreshed through HeartBeat Messages sent by each parent to

each child (application messages are also used as implicit HeartBeats). Upon missing a specified number

of HeartBeats, a child assumes that the parent is no longer in the overlay, and sends a new subscribe

message. This also allows to identify the new root upon a failure or disconnection of the previous one.

Children of the old root node detect that the root node is no longer there, and send subscribe messages

that eventually arrive to the node currently closest to the topic, i.e., the new root. Nodes at lower levels

in the tree are not affected by root failures. Finally, the current root node periodically checks whether

it is still the node with the closest id to the topic. If it is not (e.g., because a new node joined the

overlay), a new node has to become root. The old root sends a subscribe message to the new one,

attaching the whole tree to the new root.

B. Scribe strengths and limitations

The design of Scribe has a number of interesting features. First of all, it allows the application

to define multicast groups in a straightforward way by identifying groups with topics translated into

logical ids in the DHT address space. Furthermore, when the network is stable enough, it minimizes

the tree management traffic thanks to the implicit HeartBeats mechanism. Finally, it leverages the self-

organising and self-healing features of the underlying DHT very effectively. The mechanisms described
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in the previous section to detect parent failures, recover the tree structure, and managing root changes

guarantee loop freedom, and keep recovery traffic local to the nodes actually involved in the failure

detection and repair.

Despite these nice properties, Scribe also have features that are definitely not suitable for multi-hop

ad hoc networks. Firstly, the data delivery mechanism is highly centralised. Messages have firstly to

reach the root, and are then forwarded on the tree. Clearly this is not efficient since it tends to saturate

network resources around the root node, as shown by experiments in [32].

Secondly, Scribe uses a structured approach to multicasting, which in general results in higher path

stretches with respect to the minimum stretch granted by the DHT. Let us focus again on Figure 2(b), and

specifically on the path followed by messages sent by D to reach node E. Even though the mechanism

could be optimised by avoiding messages to go through the root node, messages from D to E have

to pass through node B anyway, because they have to be delivered over the structure defined by the

multicast protocol. In general, it is easy to show that the best path on the overlay between D and E does

not necessarily includes B. Thus, such a delivery policy generally extends the physical path between

senders and receivers more than what is strictly required by the DHT.

A third problem is also related to the structure defined by Scribe. Under dynamic or unstable

conditions, the management traffic might grow significantly. Link instability, which is typical of wireless

environments, may actually result in temporaneous nodes disappeareance from the overlay. This may

thus cause management traffic at the Scribe level to repair the multicast structure. Overall, if the link

instability is caused by network congestion, such recovery mechanisms actually exacerbate the problem

instead of contributing to fix it, and may result in tree partitions and nodes’ isolation [32].

Finally, the fourth problem we highlight is the fact that Scribe uses a pure p2p data delivery mecha-

nism, in the sense that no information about the real paths taken by messages in the network is used.

For example, when node B in Figure 2 delivers a message to D and E, it generates two distinct copies

of the message. If the paths between B and D, and between B and E, partially overlap, such a pure p2p

delivery results in unnecessary replication of message transmissions over the physical network.

C. XScribe

To cope with most of the problems highlighted in Section IV-B, we propose XScribe, which is a

replacement for Scribe optimised through cross-layer interactions. Purposely, XScribe still uses a pure

p2p data delivery strategy, not addressing the fourth problem highlighted in the previous section. On

the other hand, it is able to deal with the other Scribe limitations. XScribe is heavily inspired by stateless,

explicit multicast approaches such as DDM [24] and RDG [25]. The main differences between these

protocols and XScribe are that i) XScribe is implemented at the P2P level, and therefore provides a

quite more friendly support for applications with respect to standard layer-3 multicast, and ii) its group

membership policy is implemented via a very efficient cross-layer approach, that drastically reduces the

management traffic. For ease of explanation, we divide the XScribe operations into data dissemination

and membership management, and discuss each aspect separately.
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1) Data dissemination: As in DDM, in XScribe each sender of a multicast group is aware of all the

other group members (we will refer hereafter to this property as receiver awareness). Specifically, in

XScribe each sender keeps a list with the logical addresses (in the overlay network) of the group

members. Locally generated messages are disseminated in the group by sending to each member

a distinct message over the overlay network. Thanks to receiver awareness, no structure related to

multicast is required, and XScribe is thus a structure-less protocol. Clearly, the main issue of this

approach is how to implement receiver awareness efficiently. The membership-management section

addresses this aspect.

Even though this data-dissemination mechanism can be further optimised, it addresses the first,

second, and third problems we have discussed in Section IV-B. The first advantage of the structure-

less approach is to avoid centralisation, since no root node is defined anymore. In addition, XScribe

also avoids management traffic and path stretches brought in Scribe by the multicast structure. If we

consider a particular sender-receiver pair, in XScribe the sender directly sends messages to the receiver,

thus achieving the minimum path length according to the underlying DHT. It is worth recalling that in

CrossROAD all the nodes in the overlay are just one hop away from each other. Therefore, messages sent

from a multicast sender to a receiver actually travel along the shortest path according to the underlying

L3 routing protocol.

Despite these advantages, it is easy to show that the XScribe dissemination policy could be further

optimised. The repeated unicast used by XScribe is definitely a feature to be improved. However, note

that in small-scale ad hoc networks Scribe tends to build two-level trees in which all the leaf nodes

are direct children of the root node1. Thus, data dissemination from the root node occurs via repeated

unicast in Scribe too. Despite this sub-optimal behavior, the results presented in the following sections

show that XScribe is already able to significantly improve Scribe. Furthermore, the current version of

XScribe allows us to stress the limits of a pure p2p delivery mechanism applied to multicast, and to

understand how to further improve it (see Section VIII for a discussion on this point).

2) Membership management: XScribe uses a cross-layer policy to manage group-membership, inspired

by the main principle of CrossROAD. In fact, even in this case, the main idea is to exploit the proactive

routing traffic to spread information around.

We assume that multicast groups can be mapped to positions in a group bitmask. One could envision

a number of ways to define mappings such as, for example, exploiting the fingerprint of the group id

in a Bloom filter. XScribe maintains a group bitmask local to each node, which stores the multicast

groups the node is subscribed to. As soon as the node subscribes to some groups (i.e., the bitmask is

not completely cleared), the local bitmask is embedded into periodic messages generated by the routing

protocol, and disseminated in the network. Further subscriptions/unsubscriptions are disseminated by

setting/clearing the corresponding bit(s) in the bitmap embedded into routing packets. By inspecting

received routing packets each node in the network can be aware of all the members of the available

1This is essentially because in small-scale networks nodes tend to be aware of all the other nodes at the Pastry level.
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multicast groups, which is exactly the information required by the data dissemination algorithm. A

node is assumed to have ceased to be part of the network when no bitmasks of that node are received

for a specified amount of time. Clearly, nodes that do not run the XScribe layer are not be able to join

multicast groups, while they are still be able to run other applications based on CrossROAD.

Essentially, this is the same mechanism CrossROAD uses to advertise nodes’ presence in the overlay,

and it is highly efficient from a bandwidth overhead standpoint. For example, if the bitmask size is 128

bits, and the period used by the routing protocol to send updates is 2 seconds (the default value

for Hello packets in OLSR), the overhead injected by a XScribe node is just 8 Bps. Furthermore,

XScribe information does not need to be sent in separate frames at the MAC level, not resulting in

additional accesses to the shared medium. This is very important whenever the network starts to be

even slightly congested. Actually, experimental results related to CrossROAD (see [33], [12]) show that

the networking overhead to disseminate p2p-level information through the routing protocol is minimal.

Since the additional information required by XScribe is very small, we do not quantitatively investigate

this protocol’s aspect, while we focus the performance evaluation on data delivery figures.

Finally, note that the membership management policy represents one of the main differences between

XScribe and the other stateless multicast protocols such as DDM or RDG. Both DDM and RDG require

each receiver to send a join message to each sender of the group. Furthermore, they require periodic

polling to refresh membership. These aspects of the protocols are usually neglected in evaluations, but

they may represent a significant overhead.

V. EXPERIMENTAL EVALUATION

A. Methodology

To compare the legacy and the cross-layer multicast p2p systems we ran experiments in a real ad

hoc network setup. Specifically, we used the Pastry and Scribe implementations provided by the Rice

University (FreePastry [34]) for the legacy system, while we implemented XScribe on top of CrossROAD,

directly exploiting its cross-layer interactions to spread group information on the network. To have a
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realistic application environment, we also implemented a simple Whiteboard Application (WB) on top

of both systems, allowing users to share drawings, writings, etc. Specifically, users run a Whiteboard

instance on nodes of the ad hoc network, select a topic to join to, and then they are able to draw on

a canvas, and receive drawings from the other users that selected the same topic. All the nodes whose

users subscribe to the same topic form a multicast group. The software implementing the protocol

stacks can be downloaded from http://bruno1.iit.cnr.it/xscribe exp/.

The testbed we have used represents a small-scale multi-hop ad hoc network with two different

topologies, as shown in Figures 3 and 4. All the nodes were IBM ThinkPad R50 laptops with integrated

802.11b wireless card (Intel PRO-Wireless 2200). The OS was linux-2.6.12.3, loading the ipw2200

driver for the network card. The network topology shown in Figure 3 represents the main scenario of

our experimental evaluation. In this case nodes A to E ran the whole protocol stacks, including the WB

application, while nodes R1 and R2 just worked as routers. On the other hand, the chain topology shown

in Figure 4 has been used to highlight some anomalies of the routing protocol, as deeply explained in

the following.

In all the experiments we assumed that all the nodes running the WB application were interested in

the same topic. Therefore, the multicast protocol worked with a single multicast group encompassing

all nodes. In both topologies, node C was the root of the Scribe tree. In the main topology, nodes C

and D generated traffic at the application layer, thus acting as senders of the multicast group, while

the other nodes only received application-level traffic. In the chain topology the only sender was node

C, and all the other nodes were receivers. Actually, in both scenarios we used iptables to emulate

multi hopping, and we cross-checked that paths were actually multi-hop by inspecting packet traces

collected during the experiments. Although this methodology is not able to completely capture all the

effects of wireless links’ intricacies, it allows us to closely approximate the system behavior in a realistic

multi-hop setting. We did not run experiments in mobile conditions, in order to separate the effects of

the different multicast architectures from those of nodes mobility. Analysing the multicast systems in

mobile scenarios is one of the main subjects of future work.

To have a controllable and reproducible environment, in our tests WB was not run by humans, but by

simulated users. Each user alternated between ON and OFF phases. During ON phases it drew strokes

on the canvas, while during OFF phases it did nothing but receiving other users’ strokes. Both ON and

OFF phases lengths were exponentially distributed. Each trial was composed by 100 active/idle cycles,

and in any configuration each node running WB generated at least 500 messages2. To make trials start

at the same time at different nodes, we synchronised the nodes before each trial, and scheduled the

trial to start at the same time on each node. In the following, each trial configuration is identified by

the application-load index, measured as the number of Packets Per Second (pps) generated by each

user. This index is defined as the ratio between the average number of strokes generated in a cycle, and

the average duration of an active/idle cycle. We found that this simple index is sufficient to correctly

2A distinct message was sent for each stroke. The size of each message was 1448 bytes.
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identify usage cases for our environments.

We characterise the architectures’ performance at each node in terms of packet loss and delay

statistics. Specifically, the packet loss at node i is measured as 1 − Ri
P

N
j=1

Sj
, where Ri is the number of

messages received by node i, N the number of senders in the group, and Sj is the number of messages

generated by the j-th sender. Packet delays were measured by timestamping the transmission time at

the sender, and the reception time at the receiver (recall that nodes were synchronised). For nodes

acting as senders, we did not take into account locally generated packets to compute the performance

figures. Each configuration was replicated for 5 trials to have i.i.d. samples of the packet loss and delay

statistics. For each configuration, we hereafter provide average values and confidence intervals of the

performance figures (with 90% confidence level, unless otherwise stated).

B. The chain topology

Since experimental results obtained in the main scenario presented some anomalies strictly dependent

on the routing protocol, we decided to run some trials on the chain topology, to have a simpler setup

and achieve an easier interpretation of the routing behavior. In this setup Scribe and XScribe behavior

is remarkably similar. In the case of Scribe, since the root node is the only sender, it does not represent

a centralisation point, since it does not receive traffic to be forwarded. Furthermore, the traffic pattern

generated by Scribe and XScribe to deliver application-level data to receivers is the same (i.e., data

generated by C are delivered to each receiver on a dedicated TCP connection in both cases). Actually,

since XScribe adds group-membership information to routing packets, the routing protocol behaves

slightly different in the two cases, but the effects of routing protocol anomalies are very similar. For

these reasons, in this section we discuss results from XScribe experiments, that better highlight these

anomalies. Specifically, we discuss a single trial in which node C generates 20pps (similar remarks apply

also to the other configuration that we have used).

In this specific experiment nodes A, B, and D measure no packet loss, while nodes E and F measure

37% and 40% packet loss, respectively. The log files show that node F loses all the routes for a few

seconds during the trial, while in the same period node E has only a valid route to F (while the routes

to all the other nodes disappeare). At the same time, all the other nodes (i.e., from C to B) lose the

routes to both E and F. This fact is not so surprising in this kind of scenario, since it is well-known that

in a multi-hop chain topology the loss of some Hello packets can cause a network partition.

Unfortunately, these route failures cause spikes of application messages delays. In correspondence

of these events, nodes E and F experience delays in the order of 20 seconds, while the other nodes

experience delays no greater than 5 seconds throughout the whole experiment. It is quite surprising

that such route losses, and the associated delay spikes, also occur at very light traffic loads (5 pps), i.e.,

when the network is not congested. This suggests that they could be caused by some misbehavior of

the routing protocol. To investigate this hypothesis, we deeply analysed the routing behaviour directly

examining the packets sent on the network through the tcpdump sniffer.
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According to the standard OLSR specification [35], Hello messages should be sent every 2 seconds,

and TC messages (aggregating the link state of several nodes) every 5 seconds, or upon a topology

change. Links advertised by Hello and TC messages are valid for the next 6 and 15 seconds, respectively.

If they are not refreshed within these validity timeouts, they are removed from the routing table.

Referring to the OLSR implementation we used we noticed that, even though Hello and TC messages

are generated on time by the OLSR process (i.e., precisely every 2 and 5 seconds), they can experience

significant delays either in being actually sent, or in being processed at the receiving side. Such delays

occur because i) this specific implementation aggregates routing messages in single packets to reduce

the network load, and ii) routing packets are not prioritised at the MAC level, and are thus queued

together with application-level packets (especially at high taffic loads).

The delayed sending of routing packets makes thus the entire system more susceptible to route

failures. Maintaining the original values of routes validity timeouts, it can be sufficient to lose one

routing packet, or receive it with a delay higher than the timeout, to cause the route failure. In our

specific trial, node F loses an Hello packet sent by node E, and receives the next packet 10 seconds

after the last one correctly received. This causes the expiration of the validity timeout in F’s routing

table for the link with E, and the consequent route failures. Similar events have been noticed at node

E, i.e. it loses an Hello from B, and all the related routes. This example highlights how the additional

delays of routing messages weaken the protocol reaction to packet loss.

Such misbehaviors partly depend on the particular routing protocol implementation, but are highly

determined by the fact that the routing traffic is not prioritised at the MAC level. Anyway, we decided

to eliminate from our logs spikes in application message delays that occur because of these routing

anomalies. This allows us to evaluate the p2p multicast solution in an optimistic case, in which the

routing protocol behaves as expected, and we can fairly compare the architectural differences between

Scribe and XScribe.

C. Main evaluation scenario

The main scenario is represented by the network topology shown in Figure 3. In this case the topology

is characterised by multiple paths connecting pairs of nodes, and the root node (C) is located at the

center of the network, thus being well-connected with all the other nodes. In the following subsections

we deeply analyse the two performance indices, i.e., the packet loss (Section V-C.1), and the delay

(Section V-C.2).

1) Packet loss: Figure 5 shows the packet loss experienced by each node under the two alternative

architectures as a function of the application load (loads below 20pps resulted in no packet loss, and

are thus omitted). Plots are presented starting from the center of the topology (node C), towards the

edges. Since both architectures use TCP at the transport layer, one could expect not to see any packet

loss. Actually, both Pastry and CrossROAD use internal queues (of the same size) to store messages

going to be sent. Packet loss actually occurs when these queues fill up, and is thus a side effect of
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Fig. 5. Packet loss at each node

network congestion3.

Several interesting observations can be drawn from these plots. In general, it is evident that XScribe

drastically reduces the packet loss with respect to Scribe. In more details, at nodes D, A, and B the

packet loss is always more than halved with respect to Scribe. At node E the packet loss experienced by

Xscribe is lower than in case of Scribe but the reduction is less marked. Instead, different observations

should be drawn with respect to node C (the Scribe root), and node F. Referring to node C, the packet

loss experienced by the two systems is almost the same at the different traffic loads, and is reasonably

low. Actually, this had to be expected. In fact, both in Scribe and XScribe, node C receives only packets

from node D. Since the packet loss is mainly due to overflows at the sender’s queue, the two systems

experience the same performance. On the other hand, analysing the packet loss measured by node F,

XScribe experiences slightly higher values only for high traffic loads (i.e. 40 and 50 pps). Note that

in case of Scribe node F receives all the messages from a single TCP connection originated by node

C, which is 2-hop away. In the case of XScribe, node F receives the message over two concurrent

TCP connections (from C and D), one of which spans 3 hops. Thus, at high traffic loads the longer

connection suffers more than the other one, and the sender’s queue at node D fills up more quickly

causing a higher packet loss.

As a final remark, it should be noted that the packet loss we measured is influenced by the routing

anomalies discussed in Section V-B. In correspondence of route failure events, TCP retransmits failed

packets until a new route is established. Thus, the senders’ queues at the p2p level tend to fill up and

3Properly dimensioning the queues to find the right balance between delay and packet loss depends on the particular application
demands (actually, in other sets of experiments we have completely removed packet losses by allowing queues to grow unlimited).
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TABLE I

DELAY STATISTICS AT EACH NODE (SECONDS)

node load (pps) average 99th percentile
Scribe XScribe Scribe XScribe

C 5 0.173±0.048 0.108±0.013 0.590±0.178 0.432± 0.067
20 1.03±0.170 0.5±0.054 3.05±0.382 1.53±0.246
50 2.10±0.084 1.64±0.249 3.89±0.122 4.28±0.593

D 5 0.167±0.09 0.095±0.011 0.314±0.055 0.432± 0.067
20 1.38±0.158 0.497±0.055 4.07±0.665 2.09± 0.389
50 3.38±0.653 1.81±0.373 4.81±1.38 4.38±0.307

E 5 0.21±0.058 0.113±0.007 0.827±0.204 0.432± 0.089
20 1.89±0.294 0.588±0.042 6.00±1.33 2.56± 0.669
50 4.57±0.087 1.88±0.353 7.52±0.379 7.72±1.27

A 5 0.162±0.079 0.111±0.006 0.852±0.197 0.385± 0.058
20 2.06±0.347 0.592±0.055 6.32±1.39 2.00±0.206
50 4.91±0.348 2.01±0.369 7.78±0.357 5.42±1.11

B 5 0.167±0.10 0.079±0.032 0.835±0.206 0.322± 0.051
20 2.03±0.295 0.445±0.110 6.28±1.20 2.00±0.333
50 4.75±0.057 1.92±0.342 7.70±0.405 5.75±0.621

F 5 0.217±0.063 0.176±0.067 0.859±0.252 0.514± 0.07
20 2.01±0.222 0.750±0.088 6.25±1.15 2.99±0.551
50 4.55±0.30 4.08±1.04 7.68±0.369 9.34±0.532

packet loss becomes more and more likely. Unfortunately, it is not possible to establish the exact share

of packet loss related to these events. Since routing misbehavior is almost equally probable for Scribe

and XScribe, our results might overestimate the packet loss, but correctly rank the performance of the

two protocols.

Overall, the experimental results show that in the majority of the cases XScribe performs better than

Scribe even though it generates more TCP connections, and, fixed a usability threshold, XScribe allows

the application to operate at higher loads than Scribe does.

2) Delay: Table I shows the average values and the 99th percentiles of delays experienced by each

node. We also associated with every single value its confidence interval. Three traffic loads have been

selected, representative for light, medium, and high loads, and experimental results are almost self-

explanatory. When XScribe is used, the average delay is generally more than halved, while the 99th

percentile is reduced by at least 1.4x, except for nodes E and F that experience higher percentiles in

case of XScribe, but only for high traffic loads (50 pps). Coupled with the results related to packet loss,

this means that, in the majority of the cases, for the same application load XScribe is able to drastically

reduce the packet loss and, at the same time, to reduce the average delay.

As a final remark, it is worth pointing out that in this sets of experiments the root node of Scribe is

located at the center of the topology, which minimises the distance with all the other nodes. However,

it has been shown in [6] and [26] that, whether the root node is placed at one edge of the network,

the performance can be far worse than that presented here. Thus, performance in case of Scribe highly

depends on the particular position of the root node in the network topology, while XScribe is immune

to this problem.
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VI. MODEL OF SCRIBE AND XSCRIBE BOUNDS

To complement the results presented in Section V we now investigate the scalability bounds of both

Scribe and XScribe with respect to the multicast group size, the number of senders in the group, and

the number of multicast groups. Specifically, we present an analytical model providing the Scribe and

XScribe saturation throughput, defined as the maximum application load generated by each sender that

the multicast protocol is actually able to deliver to all the receivers. Loads higher than the saturation

throughput can be delivered in general just to a subset of the receivers. The model is validated by

experimental results, and then used to identify the parameter ranges for which the saturation throughput

is greater than a specific application load.

To have sensible values for the application load, we refer to the characterisation provided in [13].

In that work, authors focus on massive multiplayer games implemented via p2p multicast system (they

actually consider Scribe), and show that each multicast receiver can receive as much as 100 packets

per seconds. If aggregation techniques are applicable, the majority of nodes receive between 0 and 10

pps. Therefore, we consider application loads between 1 and 100 pps as representative loads.

A. Modelling Assumptions

The saturation throughput of Scribe and XScribe are hereafter referred to as γS and γXS , respectively.

For the sake of simplicity, we now consider a single multicast group. We extend the analysis to the case

of multicast groups in Section VII-C. Moreover, we assume that all the senders of the multicast group

generate the same application-level load.

In the model we also assume that all the nodes are inside the same Carrier-Sensing (CS) range. The

CS range in 802.11 networks has proved to be quite larger than the transmission range, especially

at high transmission rates. For example, the CS range measured in [36] is 7 times larger than the

transmission range at 11 Mbps, 3 times larger at 5.5 Mbps, 2 times larger at 2 Mbps, and 1.6 times

larger at 1 Mbps. This means that nodes 7 hops away from each other (or even more) may be in the

same CS range. As we mostly focus on multi-hop ad hoc networks within the ad hoc horizon (2-3 hops,

10 to 20 nodes) assuming that all the nodes are in the same CS range is reasonable.

The last modelling assumption is that the overlay networks adopt UDP as the transport protocol.

This is a reasonable choice for a number of applications that could be run on top of p2p multicast

systems, which do not necessarily require 100% reliability. For example, using UDP would provide to

the Whiteboard Application reduced delays for an increased packet loss, which could be a reasonable

trade off. Furthermore, using UDP simplifies the analysis, and, in our networking scenario, provides an

upper bound for the saturation throughput achievable over TCP.

B. Model in the case of a single group

Let us firstly focus on XScribe, and specifically on a single sender-receiver pair. Let us finally consider

the case in which the network is not overloaded, i.e., all the traffic generated by the senders can be
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delivered to the receivers. If n denotes the size of network in number of nodes, then the average length

of the multi-hop path between the sender and the receiver is O(
√

n) [37]. According to [37], we assume

that the average of this length can be expressed as k
√

n, being k a constant value. The average number

of (successful) MAC-level accesses to deliver a single packet from the sender to the receiver is thus

k
√

n. Therefore, from the MAC-level standpoint, a UDP flow spanning k
√

n hops and generating γ bits

per second at the sender is equivalent to k
√

n flows spanning just one hop, generating γ bps each. The

average load imposed on the network by one such flow is therefore γ · k√n. In the case of f multiple

concurrent flows generating γ bps each, by assuming a fair scheduling among the flows at each node,

the total average load on the network is f · γ · k√n.

Based on the above remarks it is straightforward to derive the saturation throughput for XScribe. In

the saturation condition each sender generates a UDP flow of γXS bps towards each receiver. Clearly,

each sender “sees” the same number of receivers, throughout referred to as nR. Note that the number

of nodes in the group is nR + 1. Therefore, nR is also the number of UDP flows generated by each

sender. The total load imposed on the network by each sender is thus, on average, γXS ·k√n ·nR. If nS

is the number of senders in the group, the total load imposed on the network is γXS · k√n ·nR ·nS . By

definition, the total load in the saturation condition has to meet the maximum load sustainable by the

network, denoted as Γ. Γ is actually the saturation throughput of an 802.11 ad hoc network in which

all the nodes are in the same CS range. Closed form expressions for this figure are available in the

literature (the interested reader can refer, for example, to [38]). The saturation throughput of XScribe

can be finally derived as follows:

Γ = γXS · k
√

n · nR · nS ⇒ γXS =
Γ

k
√

n · nR · nS

. (1)

In the case of Scribe the analysis is a bit more involved, even though the guidelines are similar. Let

us firstly focus on the traffic outgoing from the root node, and addressed to the other nodes in the

multicast group. Recall that the root node receives all the traffic from all the senders, and delivers it to

all the nodes in the multicast group (each sender receives back from root its own traffic too). Assuming

that the root node is also a member of the group, it has to deliver data to nR other nodes (because

the size of the group is nR + 1). Below the saturation point, the root node of the group delivers all

messages to all the group’s receivers. If nS senders generate γ bps each, then nR flows originate from

the root node, each carrying the whole traffic generated by the senders, i.e., γ · nS bps. Finally, each

flow covers a path long, on average, k
√

n hops. Therefore, the total load generated by the root node

in the saturation condition is γS · k√n · nR · nS .

In addition to the traffic generated by root, in the case of Scribe we have also to take into account

the traffic generated by each sender towards root. Specifically, in the saturation condition each sender

generates a flow of γS bps towards root, which results in an average load on the network of γS · k√n

bps. To count the number of such flows we have to distinguish between two cases, i.e., the root node

is or is not a sender of the multicast group. Clearly, the former case provides a best-case condition with
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respect to the saturation throughput, because the network has to carry one flow less than in the latter

case. The number of flows towards the root node is indeed nS − 1 in the former case, and nS in the

latter.

By denoting with γo
S the saturation throughput in the best case (when root is a sender), and with

γw
S the saturation throughput in the worst case, the following equations hold:

Γ = γo
S · k

√
n · nR · nS + (nS − 1) · γo

S · k
√

n ⇒ γo
S =

Γ

k
√

n · nS

(

1 + nR − 1
nS

) , (2)

Γ = γw
S · k

√
n · nR · nS + nS · γw

S · k
√

n ⇒ γw
S =

Γ

k
√

n · nS (1 + nR)
. (3)

Finally, it is easy to show that the probability of the root node being a sender of the multicast group

is equal to nS

nR+1 . Therefore, we can evaluate the saturation throughput in the Scribe case as follows:

γS = p (root being a sender) · γo
S + p (root not being a sender) · γw

S =

=
ns

nR + 1
· γo

S +

(

1 − ns

nR + 1

)

· γw
S (4)

C. Extension to the case of multiple groups

The number of active groups in the network is hereafter referred to as nG. For the sake of simplicity,

we assume that all groups have the same number of senders (nS), are all of the same size (nR + 1),

and all their senders generate the same amount of traffic. The extension of Equation 1 to the case of

multiple groups is straightforward. For fairness reasons, before the saturation point all the multicast

groups should deliver to their receivers the same throughput, say γ. Based on the same outline followed

to derive Equation 1, the load generated in the network by nG groups, each delivering γ bps to its

receivers, is nG · γ · k√n ·nR ·nS . Therefore, the saturation throughput of XScribe when nG groups are

active can be derived as follows:

Γ = nG · γ(nG)
XS · k

√
n · nR · nS ⇒ γ

(nG)
XS =

Γ

nG · k√n · nR · nS

. (5)

Again, the evaluation of the saturation throughput of Scribe is a bit more involved. Let us assume

that for h groups out of the nG the root node is also a sender of the group. Before the saturation point,

each group should be able to deliver γ bps to the receivers. Therefore, the total load generated in the

network (γt(h)) is

γt(h) = h · A(γ) + (nG − h) · B(γ) , (6)

where A(γ) and B(γ) are the loads generated by a single group for which the root node is and is not

a sender, respectively. Specifically, by following the same guidelines used to derive equations 2 and 3,

A(γ) and B(γ) can be written as follows:

March 19, 2007 DRAFT



19

A(γ) = γ · k
√

n · nR · nS + (nS − 1) · γ · k
√

n

B(γ) = γ · k
√

n · nR · nS + nS · γ · k
√

n (7)

At the saturation point, the total load generated on the network, given by Equation 6, has to meet

the available bandwidth of the network Γ. Therefore, the Scribe saturation throughput, conditioned

to the fact that for h groups the root node is a sender, can be obtained from Equations 6 and 7 after

simple algebraic manipulations:

γnG

S (h) =
Γ

k
√

n · (nG · nR · nS + nG · nS − h)
(8)

It is also easy to show that the probability of having h groups for which the root node is a sender is

distributed according to a Binomial distribution with parameters nG and p , nS/ (nR + 1), i.e.:

p(h) =

(

nG

h

)

· ph · (1 − p)nG−h . (9)

Therefore, the average value of the Scribe saturation throughput can be evaluated as follows:

γnG

S =

nG
∑

h=0

γnG

S (h) · p(h) . (10)

Providing a closed form for Equation 10 is not practical. Therefore, in the following analysis we use

the constructive method given by Equation 10 to evaluate the values of γnG

S . As a final remark, note

that the expressions of Equations 5 and 10 evaluated for nG = 1 coincide with the expressions provided

by Equations 1 and 4, respectively.

D. Model Validation

In order to validate our model we ran a set of experiments on the mesh topology described in

Section V-C. Instead of using the real p2p systems, we replicated the set of UDP flows between the

senders and the receivers that would have been generated by Pastry and CrossROAD to deliver the

messages generated by Scribe and XScribe, respectively. Just as an example, Figure 6 shows the set

of flows in the case of Scribe and XScribe when the senders were nodes C and D. Traffic on the UDP

flows was generated by using the netperf tool, version 2.4.1 [39]. Replacing the p2p systems with

the equivalent set of UDP flows generated through netperf gives us a more controllable environment,

allowing us to precisely investigate the scalability bounds of Scribe and XScribe nevertheless.

We tested the system under increasing number of senders, between 2 and 6 (the maximum possible

in our mesh topology). In every case we ran a set of experiments by increasing the load each sender

generated on its flows, and we measured the throughput at the receivers. The configuration of an

experiment is therefore defined by the number of senders and by the load generated by each sender

on each flow. We ran each configuration 10 times, each run lasting 100 seconds. Results presented
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hereafter are the average over the 10 runs. The 95% confidence interval was almost always within 2%

of the average value, and was about 15% of the average value just in a few cases.

The outcome of an experiment (made up of 10 runs) was labelled as ”good” if all the flows were

able to correctly terminate the 10 runs. Under netperf, network overload manifests as a premature

termination of some flows, which results in unavailability of the throughput measure at the receivers4.

We labelled this type of experiments as ”bad”. Basically, ”good” experiments represent cases in which

the network was able to carry the load offered by all the senders, while ”bad” experiments represent

cases in which the network was overloaded (and the system was thus working beyond the saturation

point).

TABLE II

VALIDATION PARAMETERS

Param Value
k 0.67
n 8

nR 5
nS 2 to 6

Figure 7 shows the results from our testbed, compared with the saturation throughput predicted by

the analytical model (i.e., by Equations 1 and 4). Table II shows the model parameter values used for

the validation. The value of k (where k
√

n is the average path length) has been derived based on the

average path length of the flows in all the configurations. Note that this value is remarkably aligned

with the theoretical value of 2/3 predicted by [37]. The value of Γ was derived exploiting the analytical

model presented in [40], which provides the capacity (i.e., the maximum throughput) of an 802.11

network with a variable number of saturated nodes within a unique carrier-sensing region. Specifically,

from the logs of the validation experiments, we derived, in each configuration (i.e., for each number

of senders), the number of active nodes in the network, and we computed the analytical value of Γ

corresponding to that number of active nodes.

4In detail, nodes experiencing a throughput below the offered load become unable to correctly manage the timers used by
netperf to schedule message transmissions, thus resulting in premature experiment termination.
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Fig. 7. Model validation

In Figure 7, for each number of senders, the white diamonds are related to the ”highest-load good

experiment”, i.e. to the experiment with the highest offered load that resulted in a ”good” experiment.

Specifically, the white diamonds are the average values of throughput measured at the receivers in

the ”highest-load good experiment”. Likewise, black diamonds are related to the ”lowest-load bad

experiment”, i.e. to the experiment with the lowest offered load that resulted in a ”bad” experiment.

Recall that, due to netperf internals, in ”bad” experiments just a subset of the receivers were able

to correctly complete the experiment, and thus to provide a meaningful throughput value. The black

diamonds are the average values of throughput measured at those receiver that correctly completed

the ”lowest-load bad experiment”.

Clearly, for a particular number of senders, the real saturation throughput lies somewhere between

the white and black diamonds. Figure 7 actually validates our model, since the model predictions are,

with a good degree of accuracy, within the region where the saturation throughput actually lies. Based

on this result, in the following section we exploit the model to show that XScribe is able to significantly

improve the saturation throughput with respect to Scribe, thus resulting in increased scalability with

the load generated by applications.

VII. EVALUATING SCRIBE AND XSCRIBE SCALABILITY BOUNDS

A. Scalability with the number of senders and receivers

Figures 8 and 9 highlight the scalability properties of Scribe and XScribe as the number of senders

(nS) increases. Different curves are plotted for selected numbers of receivers “seen” by each sender

(nR). Note that the number of senders must be lower than the group size, i.e. curves have physical

sense just up to nS = nR + 1. The k and Γ parameters are kept as in Table II. The number of nodes

in the network (n) is scaled according to the multicast group size (nR + 1) to keep the fraction of

multicast members as in the experiments presented in Section V. Specifically, we set this fraction as

(nR + 1)/n = α = 6
8 . Note that this represents a fairly dense configuration, in the sense that 75% of

nodes (i.e., 6 over 8) are in the multicast group. Sensitiveness to the α parameter is investigated in
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Section VII-B. Finally, horizontal lines in the curves show representative loads as generated by senders

of the Whiteboard Application presented in Section V.

First of all, it is worth noting that Scribe and XScribe support fairly well small to medium size

groups. For groups with up to 20 receivers, there is a quite large region in which both systems are able

to deliver more than 1 pps to all the receivers. For pretty small groups (nR = 5) the systems are able

to deliver even more than 50 pps to the receivers. According to the traffic characterisation presented

in [13], this means that in that region Scribe and XScribe can support multicast applications generating

a fairly high amount of traffic, such as p2p interactive games. On the other hand, similar applications

cannot be supported when the size of the multicast group grows beyond 20. As shown by Figure 8,

in these cases just applications generating light loads (i.e., below 1pps) can be efficiently supported.

This is actually not a too severe limitation. As noted in [13], a large class of data-intensive multicast

applications (i.e., multiplayer games) are expected to generate small groups. Thus, Scribe and XScribe

are possible options in these scenarios. Note also that results plotted here are quite pessimistic, since

our model assumes that all the nodes in the network are in the same Carrier Sensing range. Clearly,
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this assumption becomes less accurate as the number of nodes in the network (and the group size)

increases.

Figure 9 also allows us to better understand the results presented in Section V. Specifically, those

results were obtained with nS = 2 and nR = 5. In this case the saturation throughput is around

30 pps. Therefore, the results discussed in Section V tell that XScribe is able to significantly reduce

the average delay in non overloaded configurations (below 30 pps). Beyond the saturation point (i.e.,

beyond 30 pps) XScribe works significantly better than Scribe does, it is thus able to mitigate the effect

of network overloading more efficiently than Scribe. Figures 10 and 11 show the scalability with the

number of receivers. Essentially, they confirm that Scribe and XScribe are both able to support very

high application-level loads (even beyond 100 pps) in case of small-scale groups and a limited number

of senders.

Finally, Figure 12 and 13 show the proportional increase of the saturation throughput achieved by

XScribe with respect to Scribe. Specifically, they plot (γXS − γS) /γS , where γXS and γS are defined

by Equations 1 and 4, respectively. The proportional advantage of XScribe over Scribe is slighthly

dependent on the number of senders nS (Figure 12), while it is fairly sensitive to the size of the group

nR (Figure 13). It is interesting to note that XScribe is able to increase the saturation throughput up to

50% with respect to Scribe. The advantage of using XScribe reduces as the number of receivers grows,

but it still remains not negligible even for medium-size groups (i.e., for nR between 10 and 20).

To summarise, results presented so far show that Scribe and XScribe saturation points drop as either

the number of senders or the number of receivers increase. This is actually due to the fact that both γS

and γXS decrease as 1/nR and 1/nS. The interesting feature is that for small- and medium-size groups

(i.e., for nS less than 10 and nR less than 20) the saturation throughput is above 1 pps, and can even

be greater than 100 pps. This means that, in such network scales, these systems are able to support

a fairly large range of multicast applications. Furthermore, XScribe is able to increase the saturation

throughput with respect to Scribe. Specifically, the increase is in the range between 5% and 50% in
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the cases we have highlighted. This confirms that XScribe generates quite less traffic on the network.

The XScribe advantages is more pronounced for small sets of receivers. This is because the additional

traffic generated by Scribe is due to carrying all multicast messages from the senders to the root before

delivering them to the receivers. Clearly, this cost is less amortised when the number of receivers is

small.

B. Sensitiveness to the multicast group popularity

To analyse the systems’ scalability properties with respect to the fraction of nodes belonging to the

multicast group, we consider three representative cases for the number of receivers (i.e., nR = 5, 10, 20),

and for the number of senders (i.e., nS = 1, 2, 5). In the previous section we have shown that in all

these cases Scribe and XScribe are able to reasonably support multicast applications, i.e., the saturation

throughput is higher than 1 pps. Recall also that results presented in the previous section are obtained

in case 75% of the nodes in the network belong to the multicast group.

Figures 14, 15, and 16 show the saturation throughput in all the representative cases, as functions of

March 19, 2007 DRAFT



26

 0

 20

 40

 60

 80

 100

 120

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
at

ur
at

io
n 

th
ro

ug
hp

ut
 (

K
bp

s)

% of nodes in the group (alpha)

Scalability with group popularity - 20 recv

XScribe
Scribe

1 pps

2 pps

5 pps

10 pps

ns=1

ns=2

ns=5

Fig. 16. Scalability with the group popularity, for 20 receivers.

the multicast group popularity. The group popularity is actually represented by the α parameter, which

is defined as the ratio between the number of nodes in the group, and the number of nodes in the

network, i.e., α = (nR + 1) /n. Note that in each plot the number of receivers is fixed. Therefore, lower

values of α represent larger networks or, from a complementary standpoint, sparser groups. Clearly, the

saturation throughput decreases as the group becomes more and more sparse, i.e., as the value of α

decreases. This is because the average length of the paths between senders and receivers increases with

the network size, specifically as O(
√

n). Thus, the network becomes more congested as its size increases,

because messages have to be forwarded many times. From Equations 1 and 4 it can be derived that

both γXS and γS are proportional to
√

α. Therefore, the decrease of the saturation throughput with low

α values is not steep at all, and the saturation throughput drop sharply just for very sparse groups, i.e.,

for α values below 10%. Clearly, the specific usability bounds depend heavily on the number of senders

and receivers, as can be noted by comparing the plots in the three figures. However, from the shape

of the curves we can conclude that, for a fixed group size, Scribe and XScribe performance degrade

fairly gracefully as the network size increases, unless for very sparse groups. It is also worth pointing

out that the saturation throughput remain greater than 1 pps for fairly sparse groups even in the worst

scenario we have considered here. Specifically, note that the curve related to 5 senders crosses the 1

pps line in Figure 16 at about α = 0.3.

As far as the sensitiveness to α, we do not plot the proportional advantage of XScribe over Scribe,

because it does not depend on α. Actually, the proportional advantage of XScribe over Scribe is defined

as (γXS − γS) /γS , and γXS and γS are proportional to
√

α.

C. Scalability with the number of groups

The last parameter we take into consideration is the number of multicast group, nG. Specifically,

Figures 17 and 18 show the saturation throughput of Scribe and XScribe as functions of nG. Specifically,

we draw three couple of curves, for three representative sets of the parameters (nS , nR). The three set

of values for (nS , nR) have been chosen following the same principle used in Section VII-B, and are
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representative for small (nS = 1, nR = 5), medium (nS = 2, nR = 10), and slightly larger (nS = 5, nR =

20) groups. The popularity of the multicast groups has been kept as in the experiments described in

Section V, i.e., we set α = 0.75.

Unfortunately, both system suffer from the increase of the number of groups. This might actually

be a problem for a class of p2p applications (e.g. multiplayer games), which tend to generate several

groups of small size. However, note that in the case of small groups, the saturation throughput remains

well above 1 pps up to about 60 groups, and in the case of medium groups, the saturation throughput

drops below 1 pps for more than 10 groups.

Finally, Figure 19 plots the proportional advantage of XScribe over Scribe as function of nG. Inter-

estingly, the proportional advantage is almost independent of nG and, once again, mainly depends on

the particular value of nR.
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D. Summary of the main results

In this section we have analysed the scalability bounds of both Scribe and XScribe with respect to

a number of key system parameters. In conclusion, the saturation throughput of both systems drops

significantly as either the number of senders (nS), or the number of receivers (nR), or the number

of groups (nG) increase, for a fixed network size. For a fixed group size, the saturation throughput

decreases as the group becomes more and more sparse (i.e., as the popularity of the group, α, decreases).

Despite these bounds, both Scribe and XScribe are possible candidates to support even p2p interactive

gaming in small and medium size networks (up to 20 receivers and 10 senders), and for a reasonable

number of groups (up to 60). In this region of the parameters’ space, both systems are able to provide

more than 1 pps to all the receivers, which can be seen as a minimum requirement to support this kind

of applications (see [13]). Clearly, for less-demanding multicast applications, the range of applicability

of these systems increases.

As expected, XScribe always outperforms Scribe, in the sense that it increases the saturation through-

put for any given configuration of the system parameters. Quite interestingly, the proportional advantage

of XScribe over Scribe slightly depends on the number of senders, on the number of groups, and does

not depend at all on the group popularity. On the other hand, it is highly influenced by the number of

receivers of the groups, and for few receivers the performance advantage can reach about 50%.

VIII. CONCLUSIONS & OPEN ISSUES

In this work we have analysed the performance and limitations of p2p multicast systems for pervasive

ad hoc networks. This is an interesting topic, because pervasive systems can benefit from efficient

middleware services exploiting the p2p paradigm, and studying p2p multicast in this framework is thus

important. We have considered Scribe, which is a p2p multicast system that has shown high performance

over legacy wired networks, but it has several inefficiences in pervasive environments. Therefore, we

have presented and evaluated XScribe, which is a simple cross-layer replacement for Scribe, designed

for multi-hop ad hoc networks. XScribe takes a structure-less approach to multicast, and relies on the
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networking structure already defined by the underlying layers instead of binding together multicast

group members through network structures defined at the multicast level, such as trees or meshes.

This is possible thanks to receiver awareness, i.e., in XScribe all the senders of a group know the group

receivers. With respect to other solutions exploiting receiver awareness, XScribe implements this feature

via a very efficient cross-layer mechanism. Both the experimental results shown in Section V and the

analysis discussed in Section VII show that XScribe outperforms Scribe thanks to these design features.

Specifically, XScribe increases the maximum throughput that the multicast system is able to deliver to

multicast receivers and, even in overloaded conditions, reduces the performance penalties of Scribe in

terms of delay and packet loss.

Despite these performance figures, there is still room for improvement. By design choice, XScribe

adopts a pure p2p data delivery mechanism, in the sense that no information about the physical paths

between senders and receivers is exploited during data delivery. This allowed us to stress the limits of

such p2p delivery policies. However, the results in this paper clearly show that this policy actually limits

the system scalability. Specifically, our analytical models show that, since a distinct message is delivered

to each multicast receiver, the saturation throughput decreases as 1/nR where nR is the number of

receivers “seen” by each sender. A possible fix to this point is including cross-layer optimisations also in

the data-delivery phase. Specifically, possible portions of shared paths between senders and receivers

could be exploited efficiently, since the same message could be transported just once along the shared

portion of the path. Actually, this is a feature already implemented by traditional layer-3 multicast

protocols. We think that integrating multicast features implementable at layer-3 (like sharing paths),

and features related to the middleware layers (like exploiting subject-based routing) is the right balance

to both achieve efficiency, and providing the applications with standard p2p multicast services.
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