Towards a Novel Transport Protocol for Ad hoc
Networks*

G.Anastasi and A.Passarella

University of Pisa, Dept. of Information Engineering
Via Diotisalvi 2 - 56122 Pisa, Italy
{g.anastasi, a.passarella}@iet.unipi.it

Abstract. The TCP protocol exhibits poor performance in multi-hop
Mobile Ad Hoc Networks (MANETSs). The ultimate reason for this is
that MANETSs behave in a significantly different way from traditional
wired networks (like the Internet) for which the TCP protocol was orig-
inally designed. In particular, route failures and route changes due to
node mobility may be frequent events in MANETSs. Furthermore, con-
gestion phenomena in MANETS are essentially different from traditional
wired networks. In this paper we propose a novel transport protocol
for MANETSs. Unlike other proposals, our protocol is not a modifica-
tion of the TCP but is specifically tailored to the characteristics of the
MANET environment. It is able to manage efficiently route changes and
route failures. Furthermore, it includes a completely re-designed conges-
tion control mechanism. Finally, it is designed in such a way to reduce
as much as possible the number of useless retransmissions. This is ex-
tremely important since retransmissions consume energy.

Keywords. Ad Hoc Networks, Mobility, Transport Protocols, TCP.

1 Introduction

The proliferation of portable computers (notebooks, palm tops, PDAs, smart
phones) and the development of wireless technologies has spurred the interest
towards Mobile Ad Hoc Networks (MANETS). Thanks to their self-organizing
nature, MANETS are suitable for applications that must be deployed in high
dynamic scenarios (e.g., peer to peer communications within a campus, support
in rescue operations, etc.).

In the last years the research activities in the field of MANETS have mainly
focused on routing protocols [1,2]. In addition, several papers have pointed out
that the TCP behavior in a multi-hop ad hoc network is far from ideal. Many
aspects contribute to this non-ideal behavior, some of which are discussed in Sect.
2. To improve the performance of the TCP protocol in multi-hop ad hoc networks
several proposals have been presented [3-8]. To the best of our knowledge, all

* This work was partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001-38113 MOBILEMAN project.

these proposals are modified versions of the legacy TCP protocol. However, as
shown in Sect. 2, MANETSs behave in a completely different way from wired
networks, (e.g., Internet), for which the TCP protocol was originally conceived.
Therefore, we think that it is more fruitful to think in terms of a new transport
protocol optimized for MANETS rather than trying to adapt the TCP protocol
to the ad hoc environment. Moreover, the compatibility with host connected to
the fixed Internet (i.e., running the TCP protocol) can be achieved by exploiting
the Indirect-TCP model [14, 11].

In this paper we propose a novel transport protocol, named TPA (Transport
Protocol for Ad hoc networks), specifically tailored to the characteristics of the
MANET environment. It provides a reliable, connection-oriented type of service
and includes several innovations with respect to the legacy TCP protocol. In
particular, the TPA is able to manage situations that may arise due to nodes’
mobility (e.g., route failures and route changes). Furthermore, the congestion
control mechanism is completely re-designed with respect to the legacy TCP.
Finally, the TPA implements a novel retransmission policy aimed at reducing
the number of useless retransmissions and, hence, energy consumption.

2 Motivations

The TCP protocol was originally conceived for wired networks, like the Internet,
where nodes are static. However, nodes’ movements and failures in MANETS are
very frequent, and cause phenomena like link failures, route failures, and route
changes. The TCP is not able to manage such phenomena efficiently. In partic-
ular, the sender TCP misinterprets duplicated ACKs and timeouts caused by to
route failures or route changes as congestion and activates the congestion con-
trol mechanism. This leads to both unnecessary retransmissions and throughput
degradation (3,4, 10].

Even assuming that nodes in the MANET are static, the MANET behavior
is significantly different from that of a traditional wired network. In traditional
wired networks, like the Internet, packet losses are almost totally due to con-
gestions causing buffer overflows at intermediate routers. This is not true in
MANETSs where buffer overflows at intermediate nodes are rare events, while
packet losses due to link-layer contentions are largely predominant. The TCP
protocol reacts to such packet losses by activating the legacy congestion-control
mechanism. A severe drawback of using this mechanism is that the TCP window
size is allowed to grow beyond its optimal value, which is typically very small
(i.e., 1 - 4 TCP packets [9,10]). This behavior exacerbates the problem, since it
produces new link-layer congestions at intermediate nodes.

3 TPA Protocol Description

The TPA protocol provides a reliable, connection-oriented type of service. The
set up and tear down phases are similar to the TCP protocol and are thus

omitted for the sake of space. In the following we only describe the data transfer
phase.

The TPA protocol is based on a sliding-window scheme where the window
size varies dynamically according to the flow control and the congestion control
algorithms (like the TCP protocol [15]). The congestion control mechanism is
described in Sect. 3.3, while the flow control mechanism is similar to the corre-
sponding TCP mechanism [15] and is thus omitted. The TPA tries to minimize
the number of (re)transmissions in order to save energy. To this end, packets
to be transmitted are managed in blocks, with a block consisting of K packets.
Specifically, the source TPA grabs a number of bytes — corresponding to K TPA
packets — from the transmit buffer!, encapsulates these bytes into TPA packets,
and tries to transmit them reliably to the destination. Only when all packets
belonging to a block have been acknowledged the TPA takes care to manage the
next block. Each packet header includes a sequence number field that identifies
the block to which the packet belongs, and a data_bitmap field consisting of K
bits to identify the position of the packet within the block. The TPA header
also includes two fields for piggybacking ACKs into data packets: acknowledge-
ment number and ack_bitmap. The acknowledgement number identifies the block
containing the packet(s) to be acknowledged, while a bit set in the ack_bitmap
indicates that the corresponding packet within the block has been received cor-
rectly by the destination. Please note that it is possible to acknowledge more
than one packet by setting the corresponding bits in the bitmap.

Packet transmissions are handled as follows. Whenever sending a packet, the
source TPA sets a timer and waits for the related ACK from the destination.
Upon receiving an ACK for an outstanding packet the source TPA performs the
following steps: i) evaluates the new window size according to the congestion
and flow control algorithms; ii) shifts the window forward, so that it starts with
the packet next to the last acknowledged one; and iii) sends packets included in
the current window (see Fig. 1-a). On the other hand, if all timeouts related to
packets in the current window expire, the source TPA still executes steps i)-iii)
above, just as in the case the last outstanding packet has been acknowledged
(see Fig. 1-b). In other words, the TPA performs a transmission round during
which it tries to send all packets within the block, without retransmitting missed
packets.

After the first one, the sender performs a second round for retransmitting
packets in the block not yet acknowledged, which are said to form a “retrans-
mission stream” (see Fig.1-¢). Again, this stream is managed according to steps
i)-iii) above. If a packet within the retransmission stream is acknowledged before
being retransmitted, it is dropped from the stream. This procedure is repeated
until all packets within the original block have been acknowledged by the desti-
nation.

The proposed scheme has several advantages with respect to the retransmis-
sion scheme used in the TCP. First, the probability of useless retransmissions

1 A block may include less than K packets if the buffer does contain a sufficient number
of bytes.

new ACK

[[K packets
SSSSS S=SSSNF
m|o SSSN m|o SSSS
e S
C g| | EE R0 0NrENR
current current
ast pkts to be sent ast pkts to be sent
PastPs: window Past P window main stream M ACKed
B ACKed B ACKed .
O timeout 3 O timeout l) / '/ '/ O timeout
O ACK wait O ACK wait
. [le[sle[s]ol
mlo S mm|O|m|ojojojo|olo
CRECEEEEE
C g| L 1
current current retransmission stream
past pkis window to be sent past pkts window to be sent
(a) ACK received (b) all timeouts (c) retr. stream

Fig. 1. Management of the sender sliding window (a,b) and management of the re-
transmission stream (c)

is reduced since packets for which the ACK is not received before the timeout
expiration are not retransmitted immediately (as in the TCP protocol). This is
particularly important in MANETs where nodes are highly mobile and, thus,
the timeout value might not reflect the current RTT of the connection (see also
Sect. 3.2). It should also be observed that the longer waiting time in the TPA
protocol does not result in a throughput degradation since during this time in-
terval the sender transmits other packets. Second, the TPA is resilient against
ACK losses because a single ACK is sufficient to notify the sender about all
missed packets in the current block. Third, the sender does not suffer from the
out-of-order arrivals of packets. This implies that the TPA can operate efficiently
also in MANETS using multi-path forwarding [16], where, on the contrary, the
TCP performs very poorly [5].

The TPA protocol also includes some mechanisms to dynamically adapt to
the network conditions. Specifically, it is able to detect and manage three kinds
of events: route failures, route changes and congestions.

3.1 Route Failure Management

Like many other solutions [3-6], the TPA protocol relies on the network-layer
support to detect route failures [1,2]. Specifically, if an intermediate node re-
alizes that a packet cannot be forwarded to the next node because of a link
failure, and no alternative route to the destination is available, it sends an Fz-
plicit Link Failure Notification (ELFN) back to the sender node. At the sender
node the ELFN is notified by the network layer to the transport layer. Upon
receiving an ELFN, the source TPA enters into a freeze state where it refrains
from transmitting new packets (there is no available path to the destination).
We assume that the network layer does not provide route re-establishment
notifications. Therefore, while in the freeze state, the source TPA sends a probe

packet every t,, seconds in order to look for a new route. Upon receiving an ACK
from the receiver it realizes that the route has been re-established. Therefore, it
i) leaves the freeze state; ii) sets the congestion window to the maximum value
cwnd,y,q,; and iiil) sends the packet that has originated the ELFN.

3.2 Route Change Management

Similarly to the TCP, the TPA protocol estimates the RTT of the connection
and, then, uses these estimate to set the retransmission timeout. Both parame-
ters are derived in the same way as in the TCP protocol, i.e.,

prrr (n) =g RTT(n) + (1 —g) - prrr (n — 1)
oprr (n) =h - |RTT (n) — purrr (n)| + (1 = h) - oprr (n—1) ,
Timeout (n) = pwrrr (n) +4 - oprr (n)

where purrr (n) and orrr (n) are, respectively, the average value and standard
deviation of the RTT estimated at the n-th step, RTT (n) is the n-th RTT
sample, Timeout (n) is the retransmission timeout computed at the n-th step
and, finally, g and h (0 < g, h < 1) are real parameters (see [15] for details).

When a route change occurs, packets typically experience a variation in the
RTT and the retransmission timeout might be no longer appropriate for the
new path. To avoid possible useless retransmissions the TPA protocol must
detect route changes as soon as they occur, and modify the RTT estimation
method accordingly. In practice, the TPA detects that a route change has oc-
curred either i) when a new route becomes available after an ELFN; or ii) when
thrc consecutive samples of the RTT are found to be external to the interval
[4rTT — ORTT, irTT + ORTT]. Upon detecting a route change, the TPA replaces
the g and h values in the prprr and orpr estimators to greater values g; and hq
so that the new RTT estimates is heavily influenced by the new RTT sample.
This allows to achieve a reliable estimate of the new RTT immediately after
the route change has been detected. Finally, after nzc updates of the estimated
RTT, the parameter values are restored to the normal values g and h.

3.3 Congestion Control Mechanism

Congestions due to link-layer contentions manifest themselves at the transport
layer in two different ways. An intermediate node may fail in relaying data pack-
ets to its neighboring nodes and, thus, it sends an ELFN back to the sender node.
This case, throughout referred to as data inhibition, cannot be distinguished by
the sender TPA from a real route failure. On the other hand, an intermediate
node may fail in relaying ACK packets. In this case, throughout referred to as
ACK inhibition, the ELFN is received by the destination TPA, while the source
TPA experiences consecutive timeouts without receiving any ELFN. As soon
as the source TPA detects thcong consecutive timeout expirations it assumes
that an ACK inhibition has occurred, and reacts by entering the congested state.

This state will be exited when the source TPA receives th 4¢x consecutive ACKs
from the destination.

The TPA congestion control mechanism is window-based as in the TCP pro-

tocol. However, as anticipated, in the TPA the maximum congestion window
size cwnd,q, is very small (in the order of 3 or 4 TPA packets). Therefore, the
TPA congestion control algorithm is very simple. When the TPA is not in the
congested state, the congestion window is set to the maximum value, cwnd,qz -
On the other hand, during the congested state, the congestion window is reduced
to 1 to allow congestion to disappear.

References

1.

10.

11.

12.

13.

14.

15.
16.

J. Broch, D.B. Johnson and D.A. Maltz, “The dynamic source routing protocol for
mobile ad hoc networks”, Internet Draft of the IETF MANET Working Group,
December 1998.

C. Perkins, E. Royer and S. Das, “Ad-hoc on demand distance vector (aodv) rout-
ing”, in IETF Internet Draft, November 2000.

K. Chandran, S. Raghunathan, S. Venkatesan, R. Prakash, “A Feedback Based
Scheme for Improving TCP Performance in Ad-Hoc Wireless Networks”, Proceed-
ings of ICDCS 98, pp. 472-479.

G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc
networks”, Wireless Networks, Vol. 8, pp. 275-288, 2002.

. J. Liu and S. Singh, “ATCP: TCP for Mobile Ad Hoc Networks”, IEEE J-SAC,

Vol. 10, No. 7, July 2001.

D. Sun and H. Man, “ENIC - An Improved Reliable Transport Scheme for Mobile
Ad Hoc Networks”, Proceedings of the IEEE Globecom Conference, 2001.

D. Kim, C. Toh and Y. Choi, “TCP-Bus: Improving TCP Performance in Wireless
Ad-Hoc Networks”, ICC, 2000.

F. Wang and Y. Zhang, “Improving TCP Performance over Mobile Ad-Hoc Net-
works with Out-of-Order Detection and Response”, MobiHoc 2002.

Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The Impact of Multihop
Wireless Channel on TCP Throughput and Loss”, Proceedings of IEEE INFOCOM
2003, San Francisco (CA), March 30-April 3, 2003.

S. Xu, T. Saadawi, “Revealing the problems with 802.11 medium access control
protocol in multi-hop wireless ad hoc networks”, Computer Networks 38 (2002),
pp. 531-548.

K. Xu, S. Bae, S. Lee and M.Gerla, “T'CP Behavior accross Multihop Wireless
Networks and the Wired Internet”, The Fifth International Workshop on Wireless
Mobile Multimedia (WoWMoM 2002), Atlanta (GA), September 28, 2002.

P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks”, IEEE Transac-
tions on Information Theory, Vol. 46, No. 2, pp. 388-404, March 2000.

P. Gupta, R. Gray, and P.R. Kumar, “An Experimental Scaling Law for Ad Hoc
Networks”, http://black.csl.uiuc.edu/~prkumar/postscript_files.html, 2001.
A.Bakre, B.R.Badrinath, “Implementation and Performance Evaluation of Indirect
TCP”, IEEE Transactions on Computers, Vol.46, No.3, March 1997.

W.R. Stevens, “TCP/IP Illustrated”, Vol. 1, Addison Wesley, 1994.

V.D. Park and M.S. Corson, “A Highly Adaptive Distributed Routing Algorithm
for Mobile Wireless Networks”, Proceedings of IEEE INFOCOM ’97, Kobe, Japan,
1997.

