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Abstract—In this paper we investigate the properties of a
cognitive heuristics based approach, by way of which the mobile
devices of users can become aware of the physical environment
surrounding them. Cognitive heuristics are the mental models
used in cognitive psychology to describe how human brains
efficiently process the huge amount of information constantly
coming from the environment around us. As personal mobile
devices represent proxies in the cyber world of their human
users, we investigate how the same cognitive heuristics can be
used by mobile devices to become self-aware of the features
of the physical environment around their users. Specifically,
we assume that physical locations are described as a network
of tags. We consider a self-organising opportunistic network
environment, where devices exchange information when meeting
directly. We propose algorithms based on cognitive heuristics
through which users’ nodes obtain tags either directly when
coming in proximity of locations, or indirectly through other
nodes they meet. We analyse the properties of the networks of tags
resulting at individual nodes, as they emerge from this process, as
a function of various cognitive parameters. We show that using
cognitive heuristics leads, under the same resource constraints, to
much more effective information diffusion with respect to other
reference solutions. Interestingly, we find critical thresholds for
key parameters that discriminate between information diffusion
and information loss. Finally, we show that, despite resource
constraints, the structure of the network of tags at individual
nodes is remarkably close to the ideal that would be obtained
with infinite resources.

I. INTRODUCTION

The ubiquitous and pervasive presence in the physical
world of devices that interact among themselves, their users
and other sources of information in the environment is leading
to an increasingly complex information landscape, where data
flows from the physical world to the cyber one, and vice-versa.
This scenario is known as the Cyber-Physical World (CPW)
convergence [1].

In this scenario, the opportunistic networking paradigm [2]
is considered as one of the enabling paradigms for a wide range
of applications, including smart cities, e-health, intelligent
transportation systems, etc [1]. In this context, it will play
a key role in making the network self-organised at multiple
levels. At the networking level, opportunistic networks exploit
the store-carry and forward paradigm, and opportunistically
exploit direct encounters between nodes to carry messages
towards destinations. In a data-centric perspective, the oppor-
tunistic paradigm allows nodes to self-organise in order to
disseminate data opportunistically, for example on the basis
of the users interests. In addition, the role of mobile devices
in the CPW convergence scenario is particularly relevant,

since they are actually proxies of their users in the cyber
world. Acting as proxies of their human users, they are in
charge of autonomously discovering, collecting and evaluating
the information available in the cyber world, determining its
relevance for their users and taking the data that is of interest
for them. This situation is very similar to what human brains
constantly do, both in isolation, and during interactions (i.e.,
discussions) between people. Indeed, humans are continuously
presented with a vast amount of information coming from the
physical environment they are acting in. Brains are able to
swiftly react and process new information, by asserting its
relevance with respect to the comprehension and perception
of the surrounding environment. Human brains are able to
perform this task in spite of limits of time and knowledge
thanks to the human ability to organise the information in
memory and by using simple cognitive decision-making rules,
known as cognitive heuristics [3]. These are very effective,
yet simple and “computationally inexpensive” rules, that are
functionally described in the cognitive science literature.

In this paper, we propose to apply human memory organ-
isation models and information selection rules (i.e. cognitive
heuristics) in order to let mobile devices become aware of the
features of the physical environment where they move. Using
cognitive heuristics at nodes is motivated exactly by the role
of proxies of users personal devices, that, therefore, organise
and process information in the cyber world as they human
users do in the physical world. According to the proposed
algorithms, users personal devices self-organise through direct
interactions among them and with physical locations in the
environment, in order to efficiently disseminate information
about the physical locations towards relevant users. As a side
effect of the dissemination process, nodes become aware of
the features of the environment their users are moving in.
More specifically, we assume that locations in the physical
world spread their description in the environment, in the form
of sets of tags.1 Mobile devices passing near those locations
can then be exposed to this information and can interact with
physical locations in order to acquire their tags. Moreover,
mobile nodes communicate with other mobile devices and op-
portunistically exchange information, thus mutually increasing
their knowledge about the environment. In order to model the
organisation of this information, we use a solution inspired by
the Semantic Associative Network models of human memory,
described in the cognitive psychology field. In these networks,

1Interestingly, as a case study we consider a case where these descriptions
emerge from a flow of information from the physical world to the cyber one.
In fact, we assume that they are extracted from online descriptions of the
locations given by human users that physically visited them (see Sec. IV).



vertices represent the semantic concepts (i.e. tags) associated
to physical locations, and the edges represent the relationships
between tags (e.g. they are used to describe the same location).
Starting from this structure of information, and assuming that
limited resources are available upon contacts between nodes or
between a node and a location (such that only limited amount
of information can be transferred), a physical location or a
mobile node selects, upon contact, the most relevant data to
communicate to the other interacting party. In our solution, the
selection of the information to be exchanged is also driven by
cognitive models of how humans exchange information during
a discussion. Intuitively, common concepts of interest drive the
selection of the concepts that more easily come to mind, since
they are more related with the common concepts. To replicate
this process, we propose to exploit the fluency heuristic [4]
strategy. The fluency heuristic is the cognitive strategy that
allows the brain to choose among two or more alternatives.
Among all the alternatives, this heuristic favours the ones that
are recognised, i.e. have been “seen” in the environment a
sufficient number of times. Among them, it then chooses the
one that is perceived as being recognised faster, , because
more strongly related to common concepts of the discussion.
We show how the graph information representation based on
associative network models and the information selection strat-
egy based on the fluency heuristic can be coupled to achieve
an effective dissemination of the physical world description
among mobile nodes in an opportunistic network. We report
results on the analysis of the emerging properties of graphs
with tags of physical locations stored at each node as a side
effect of these interactions, and the behaviour of the proposed
solution under different settings of its main parameters. Specif-
ically, we show that the cognitive-based dissemination scheme
is more efficient than standard solutions not using cognitive
heuristics. Through a sensitiveness analysis we highlight phase
transitions for the dissemination of location information. We
also highlight that the tag networks at individual nodes are
structurally very similar to the asymptotic one, containing the
union of all physical locations’ descriptions, that would be
collected with infinite available resources.

The rest of the paper is organised as follows: in Sec. II
we report previous work about information dissemination in
opportunistic networks and the extraction of representations of
physical places from online descriptions. In Sec. III we present
the main algorithms about the information organisation and ex-
change processes. In Sec. IV we illustrate how the description
of the physical locations has been derived. Sec. V shows results
about the properties and behaviour of the proposed system in
a simulated environment. Finally, Sec. VI concludes the paper.

II. RELATED WORK

The data dissemination problem in opportunistic networks
is a sensitive issue that has been faced by many works in the
literature (see [2] for a complete survey). All of them are based
on “traditional” computer-science heuristic solutions. Only
some recent works [5], [6], [7] start to consider solutions com-
ing from the cognitive science field to devise simple and low
resource-demanding schemes for effectively disseminating the
information among nodes in an opportunistic network scenario.
In scenarios were mobile devices are proxies of the human
users, using heuristics that exploit the same mechanisms used
by the human brain to take decisions prove to be particularly
efficient. In fact, these solutions proved to be as efficient as
other “traditional” approaches in disseminating the data toward
interested nodes, while, at the same time, requiring much
lower resources to reach this result. Independently from the

adopted dissemination strategy, anyway, all those approaches
do not take into consideration the semantic side of data,
or, more precisely, how different pieces of information are
connected to each other for humans because of their semantic
relationship. To cope with this issue, in [8] an algorithm for
spreading semantic information has been proposed. On the
other hand, the work proposed in [9] represents, at the best
of our knowledge, the first attempt for equipping nodes with
cognitive-based solutions for the opportunistic exchange and
diffusion of semantic information and its associated content.
All these works, anyway, do not take into account any possible
interaction between mobile devices and the physical envi-
ronment the nodes are moving in. Moreover, also the data
available in the network is assumed to be not related in any
way to the physical context. Thus, by using those schemes,
it is not possible for nodes in an opportunistic network to
become aware of their surrounding environment. In this paper
we propose to overcome these limitations, using a solution
that allows nodes to acquire a knowledge about the physical
space their users move. This is obtained through a semantic
representation of the information about physical locations, and
its spreading through a direct communication of the devices
with the physical locations they encounter in the environment,
and between them. To treach this goal, we show how cognitive
memory representations and information selection schemes
taken from cognitive psychology can be exploited to this end.

In order to communicate their features to mobile nodes
passing near-by, physical locations need to generate their
own descriptions. Virtual representations of place have been
the topic of active research, with an understanding that, for
the human mind, the geospatial environment is organised
as places rather than sets of geospatial coordinates [10].
Places appear as complex thematic entities in relation with
the physical configuration of the environment as well as with
human cognition such as memory [11]. Places, as part of the
environment, present physical or social opportunities for action
or information [12], as well as for social interaction with other
agents, or the absence of them [13]. Therefore, they are spatial
regions that support information of significance for the agent
in an environment and act as cognitive anchors, through salient
features that make them useful or interesting, memorable
because of past experiences, or desirable as expected loci of
anticipated ones [14], [15], [16].

Online representation of places has been the object of
several publications in the literature. For example, [17] sug-
gests that if it is possible to ‘visit’ virtual representations of
places and collect from them the information we are seeking.
Tags could be the basis of a novel process for the extraction
and building of digital location, place, events and semantic
descriptions [18], [19] which could lead to a re-design of
the concept of an urban area [20] closer to demands from
parallel research areas, such as cognitive psychology and
the formulation of a new notion of ‘place’ conceived of as
encompassing meanings, sense of attachment, and satisfaction
provided by the people interacting with it [21], [11]. The
authors have presented a proof of concept for a keyword
extraction methodology using online tips and reviews from a
number of online sources, see [22] for a complete description.
This has also been adopted in this current research to build
a dataset to represent a number of sample venues of different
characteristics and types.

Digital representation of information and opportunities for
action available at places are made available notably through
the use of crowdsourced information, such as reviews [23].



Mobile devices and location-based services now allow the
monitoring of geographical positions in real time, thus moving
from an initial adaptation of online maps and navigators
towards services more oriented to provide reviews and per-
sonalised recommendations such as Yelp and Qype2. Other
services combine location and user mobility information with
a social networking component. Among those Foursquare,
Flickr3, and Google+ Local4 have converged to a place rep-
resentation that focuses on the individual needs of users, in
terms of users being at a particular location at a particular time
often making use of tags, annotations and other user generated
content [19], thus differentiating from an initial representation
of places as a stand-alone virtual location that appeared distant
from the real user’s needs [11], [17].

The importance of the use of shared keywords and ‘tags’
as a form of metadata in content organisation (collaborative
tagging) has been widely recognised as a basis for modern
suggestion and recommendation systems [24]. Free tags, as
opposed to controlled vocabularies are generally preferred by
users as more personal and less cognitively demanding [25],
[26]. Location services can be used to mine crowdsourced
data in a place and reusing keywords extracted from these
descriptions (tags) to inform the user, use of this technique of
summarisation is not yet widespread.

While most of this research assumes fixed data sharing
platforms such as Online Social Networks, this papers focuses
on the issue of disseminating physical locations information
(i.e. tags generated according to the methodology above, better
described in Sec. IV) in mobile social networks scenarios,
where devices of the users exchange information between each
other, without any mediation of fixed infrastructures.

III. ORGANISATION AND DISSEMINATION OF PHYSICAL
LOCATION INFORMATION

In this section, we show how human cognitive information
collection and selection schemes can be exploited to drive
the dissemination of the information describing locations of
the physical world among mobile devices, making them (and,
in turn, their users) aware of the features of the physical
environment they are moving in.

We face two main challenges in designing a system for
disseminating location tags. The first one is how tags are
organised in the nodes’ memories and associated to locations.
In particular, we wish to let each device become aware that
tags describing the same location are in some way related
to each other and that different locations can share common
sets of tags, allowing users to apply further strategies, e.g. the
computation of similarities between locations, based on the
locations’ descriptions. The second challenge is how tags are
efficiently passed either from locations to users’ devices, or
between users’ devices, upon encounters. In the following we
separately address these two challenges.

A. Memory Organisation

To address the first challenge, we refer to the cognitive as-
sociative memory description of the human brain. The human
associative memory is modelled in the cognitive sciences using
the so-called Semantic Associative Network (SN) models [27].
These models focus on the patterns and strength of associative

2http://www.yelp.co.uk/, http://www.qype.co.uk/
3https://foursquare.com/; http://www.flickr.com/
4http://www.google.com/+/learnmore/local/
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Fig. 1: Example of an annoted vertex in a user SN

linkages among concepts in the brain. Associative network
models represent the memory as a graph, where concepts are
the nodes. Each pair of concepts is connected in case the
brain has made an association between them. Edges of an SN
are weighted, where the weight reflects the strength of each
association in memory.

In order to take advantage of this cognitive mechanism, we
define the physical locations description and each user’s mem-
ory about them as a weighted graph G = {V,E,m(e, t)} :
t ∈ T . In this definition, t is an instant in the time frame
T , V is the set of vertices (i.e. locations’ tags) and E is the
set of edges (i.e. the connections between tags). Moreover,
we consider that each node (tag) of the graph G is annotated
with the set of physical places associated to that tag known by
the device, as illustrated in Fig. 1. Clearly, physical locations
maintain only the associations with their own name. On the
other hand, along with the association with the names of
physical locations, mobile devices keep track of the number
of times this association has been observed in exchanges with
other peers. This information will be used in the data exchange
process, as explained in the second part of this section.

As we stated above, in a SN, links have an associated
weight that represents the strength with which the brain is
able to “recall” the association between the pair of concepts in
memory. This process is replicated in G using a memory weight
function m(e, t). We define this function in the following
way. We consider that an edge eij has the initial condition
m(eij , t0) = 1, where t0 is the edge’s creation time. We
consider that physical locations do not change their description
over time. Thus, in the SN of a physical place, m(eij , t0) = 1
, ∀e ∈ E and ∀t ∈ T . For a mobile node, at any instant in
time t > t0, m(eij , t) decreases exponentially depending on
the length of the interval (t′, t) , where t′ is the last time eij
was “refreshed” in memory (i.e. used in interactions with other
nodes or locations). We can then define m(eij , t) as:

m(eij , t) = e−βij(t−t′) (1)

where βij is a factor that regulates the “speed of forgetting”,
defined as

βij =
β

ptij
where β is a speed regulator parameter and ptij is the “popular-
ity” of edge eij , i.e. the number of times it was used during the
encounters of that specific user with other people until time t.
This information is stored as an additional label (together with
the weight) associated with the edge, and updated as described
in the following section. The exponential forgetting function
is a well-known representation of the forgetting process in
cognitive psychology [4]. Rather than a limit, the forget
process helps human brains to discard less relevant information
when making decisions [4]. For this reason, whenever the value
of the memory weight function for an edge eij goes below
a memory weight threshold Mmin, eij is removed from G.
Since human memories are more likely to drop information



that is rarely accessed than frequently used data, we bind
the definition of the memory weight function to the edge
popularity. Therefore, connections between tags that are rarely
used during exchanges with other devices or locations are more
easily “forgotten”. The forget process can affect also the tags
retention in memory. In fact, as shown in Fig. 2, a node in
G is dropped from the graph in the case where it becomes
isolated, i.e. it is not connected anymore to any other node
in G, due to the deletion of one or more of its outgoing
edges. Note that in the tag network stored at a physical
location, edges still represent an association between tags,
although clearly not bound to any human reasoning process,
but representing how the tags representing that location are
linked to each other. In Sec. V we explore the performance
of the dissemination system starting from different ways of
organising the individual locations’ tags networks.

coffee jazz

music

club

coffee jazz

music

club

Fig. 2: Effect of edge “forgetting” on an isolated node

All the operations described above allow locations and
nodes to store and handle the information in their memories.
We now give a description of the mechanisms that allow the
exchange and update of data using a semantic associative
network description.

B. Information Selection and Exchange

We consider that, upon meeting, a node (either mobile or
physical) starts to exchange its knowledge with the other party
by selecting the most relevant concepts for that given contact
at that time from its SN. The information exchange process
starts from concepts that the two parties have in common.
From those starting points, the information is selected by
navigating each SN, according to a weighting scheme. This
process is similar to what is called a sequential search over
human associative memories [28]. This search mechanism
starts with an activated semantic concept (key-concept) and
then proceeds vertex by vertex in the SN, following the links
that connect them. Whenever a “dead end” is found, the search
is reinitiated. In order to determine the relevant paths to follow
when exploring a SN, we apply a very simple rule: when a
node in a SN has more than one outgoing edge, the link with
the “strongest activation” (measured by the retrieval weight
index explained in the following) is selected. This behaviour is
the implementation of the Fluency Heuristic (FH) [4] cognitive
strategy. We now describe the precise algorithm by which the
FH is used by a physical location or a mobile node to retrieve
the most relevant semantic information to be exchanged from
its memory. In the following, the description is made from
the viewpoint of a location or a node that is selecting the
information to pass. We call this node the donor node, while
the other party is called the recipient node. As we already
stated, we assume that physical locations do not change their
descriptions. Thus, they are always only donor nodes. On the
other hand, two mobile nodes swap roles (donor and recipient)
upon contact to realise a bidirectional exchange of information.
In this phase, we call donor node’s SN G = (V,E,m(e, t))
the donor network, while the other peer’s semantic network
G′ = (V ′, E′,m′(e′, t)) is termed the recipient network. The

subgraph C = (V̄ , Ē, m̄(ē, t)) selected from the donor net-
work to be passed to the recipient one is called the contributed
network. The following description assumes also that there
exist resource consumption constraints that limit the number of
exchangeable tags (i.e. nodes of the SN) to a maximum value
Tmax. For the same reason, we assume that the donor node
can select no more than Lmax names of physical locations
associated with each tag it includes in the contributed network.
The pseudo-code of the subsequent description is given in
Alg. 1 and 2. The pseudo-code of Alg. 1 is the same we use
in [9] and we report it here for the reader’s convenience. As
we stated above, we assume that the dialogue starts from a
set of key vertices K = {vk|vk ∈ V ∩ V ′} (line 3 of Alg. 1),
i.e. a set of semantic concepts that the SNs of the donor and
recipient nodes have in common. Given this set of common
concepts, the visit of the SN starts from the most relevant nodes
in the set. Vertex relevance is computed by summing up the
memory weights of a vertex’s incoming edges (line 8). In order
to represent the relevance of a vertex, we consider that it is
increased every time it is included in K during information
exchanges by augmenting the popularities of all the edges
attached to it (lines 5–7).

Algorithm 1 Contributed Network computation at time t∗

1: Let G = (V,E,m(e, t)) be the donor network;
2: Let C = (V̄ , Ē, m̄(ē, t)) be the contributed network;
3: Let K be the set of key vertices, K ⊆ V
4: for each vi ∈ K do
5: for each eij ∈ E do
6: increase popularity of eij
7: end for
8: Let relij =

∑
eij∈Em(eij , t

∗)
9: end for

10: for each vi ∈ K taken in desc. order w.r.t. relij do
11: C∪ = visit(vi, 1, t

∗ − t)
12: end for
13: Send C to the other node

Taking the key vertices (sorted by relevance) one at a
time, edges and vertices are visited and passed from the donor
network to the contributed one using Alg. 2, based on the
FH. Before exploring the SN, since vertices are annotated
with the physical location names, once a vertex is selected,
its set of annotations is considered (line 5 of Alg. 2). While
physical locations always only associate their names to passed
vertices, we assume that mobile nodes order vertex annotations
in descending order with respect to their popularities. Thus, the
locations that are most frequently associated with a given tag
are chosen first to be exchanged. As already pointed out, no
more than Lmax locations are included in the annotations of
the nodes included in the contributed network (lines 8–12).
Then, the edges used to visit a SN are selected using the FH.
Since the FH favours recognised objects (i.e. objects seen more
than a given amount of times) against unrecognised items, we
start by excluding all the edges whose popularity is below a
recognition threshold θrec (line 15 of Alg. 2).

In order to replicate the subsequent discrimination made by
the FH, and based on the perceived retrieval time, we consider
that the most relevant edges are the ones with higher memory
weight values and closer to a key vertex. Anyway, the longer
the contact time between two nodes, the more time is available
to navigate the donor network and include edges and vertices
in the contributed one. These factors are taken into account in
the algorithm by computing a retrieval weight value for each
outgoing edge edge eij of a vertex vi (line 16). The retrieval



weight is computed as in Equation 2:

w(eij , n, t
∗ − t) = m(eij , t

∗)
1− e−τ(t∗−t)

n
(2)

where m(eij , t
∗) is the memory weight value of eij at time t∗,

n is the number of hops in the shortest path to the nearest key
vertex and τ is a “speed” factor that regulates the dependency
of this value on the communication duration (t∗ − t). With a
longer communication time, edges have more chances to be
“warmed up” by the “discussion” and, then exchanged. We
also refer to the retrieval weight as the warm value. Using this
quantity, edges are sorted according to their retrieval weight
and are then taken one at the time in descending order (line
16). Clearly, since for each physical location m(eij , t

∗) = 1
for each edge eij , the retrieval weight for an edge in physical
location SN depends only on the distance from a key vertex and
the communication duration. Each selected edge is included
in the contributed network and allows the donor network
exploration from this link to continue (lines 4–21). We consider
that the edges whose retrieval value is below a threshold Wmin

are not relevant for the actual information exchange and, thus,
they are excluded from the contributed network (line 17).
Moreover, once an edge is included in the contributed network,
its memory weight is set to the maximum in both the donor and
the contributed networks, since its inclusion in the exchanged
data corresponds to an “activation” in memory (lines 19 and
20).

Algorithm 2 Functionc visit(vi, n, t∗ − t)
1: Let G = (V,E,m(e, t)) be the donor network;
2: Let C = (V̄ , Ē, m̄(ē, t)) be the contributed network;
3: if |V̄ | < tag limit then
4: Let v̄i = vi
5: Let L be the set of the annotations of vi
6: order L in desc. order w.r.t. the annotation pop.
7: Let L̄ = ∅
8: if |L| ≤ Lmax then
9: L̄ = L

10: else
11: put the first Lmax elements of L in L̄
12: end if
13: Annotate v̄i with L̄
14: V̄ ∪ = v̄i
15: Let R = {eij ∈ E|pt

∗

ij ≥ θrec}
16: for each eij ∈ R in desc. order w.r.t. w(eij , n, t

∗ − t) do
17: if w(eij , n, t

∗ − t) ≥Wmin then
18: Ē∪ = eij
19: m(eij , t

∗) = 1
20: m̄(ēij , t

∗) = 1
21: C∪ = visit(vj , n+ 1, t∗ − t)
22: end if
23: end for
24: end if
25: Return C

Whenever |V̄ | = Tmax and/or no other edges can be
selected from the donor network, the contributed network
computation ends and the resulting graph is passed to the
recipient node. This node, in turn, merges the received con-
tributed network to the recipient one by simply adding all
the missing vertices and edges. Moreover, as for the donor
node, all the edges received from the contributed network
(new or already present) set their memory weight to 1, since
they are “activated” by the “conversation”. When merging the

contributed and the recipient networks, the recipient node also
considers the annotations of each vertex of the contributed
network. In case the vertex was already present in the recipient
network, the recipient node increases the popularity of all the
annotations that already exist in the recipient network vertex
and are present in the contributed one. Otherwise (i.e. the
vertex was not previously in the recipient network, or the
annotation is not already present) the popularity of the received
annotations is set to 1.

IV. DATASET CREATION

We have produced a data set for venue representation using
the methodology presented as a proof of concept in [22] and
shown as example in Figure 3. This consists of a keyword
extraction process from aggregated text obtained from online
reviews thought as representative of the perception of users
about a place (venue), rather than its objective description.
The procedure returns a weighted list of keywords (tags) where
each weight represents the ‘importance’ of specific keywords
(for example its frequency in the text in the simplest version).
This methodology can be described by the processes described
in the following subsections. :

Fig. 3: Tag-list generation process
A. Document Aggregation

For each venue we produce a document that aggregates
text from online reviews, user tips and comments, and other
keywords that can be found online. Google+, Yelp, Qype (for
reviews) and Foursquare (for tips) are used as data sources.
Using the text document for each venue as an input the
procedure that extracts (Sec. IV-B) and weight (Sec. IV-C)
a list of keywords is then executed. The end result is that each
venue is represented by a n-dimensional vector v with each
dimension v[i] being mapped to a distinct individual keyword
(tag).

B. Keyword Comparison and Filtering

This is obtained by:

• Using the Natural Language Toolkit library 6 to filter
by different parts of speech (POS) such as adjec-
tives, nouns, verb and adverbs. This is also used to
tokenise, un-capitalise, strip of punctuation, remove
unwanted words such as conjunctions, stop-words,
repeated words, non-english words etc. We have here
focused on adjectives and nouns as POS’s.

• Using different options in parsing the test document,
for example we can include everything (e.g tips,
reviews, comments, categories etc.) or include only
the proper reviews (and tips or comments) but leave
out the text classified as representing a venue type or
category. This is the approach used to produce our
data set, which only considers reviews and tips.

6http://nltk.org/



C. Relevance Weighting

There are different procedures to produce the tag weight-
ing. In particular we can use:

• The word count of each term in the text document.

• More sophisticated procedures such as TF-IDF
(see [29] for technical details). In this case the weight-
ing for a specific venue also depends on documents
about other venues (the collections of documents used
is called the corpus).

Term Frequency (TF) is a simple weighting scheme for
keywords in a document, that uses the bag of words model.
TF assumes the weight of a keyword to be equal to the
number of occurrences of term t in the document. Using term
frequency alone however has little discriminating power in a
themed corpus, as some keywords will probably be found in
all documents. For example the word ‘beer’ will be found in
many or all pub reviews. The idea is therefore to adjust term
frequency using the count of occurrences of the term in the
whole collection. This measure is the document frequency DF ,
or number of documents that contain a term t. To use DF to
scale the term frequency, the inverse document frequency IDF
of a term t is defined as

idf(t) = log(N/df(t)) (3)

where N is the number of documents in the corpus. The TF-
IDF weighting scheme assigns to term t a weight in document
d given by:

tf − idf(t, d) = tf(t, d)× idf(t) (4)
The weighting has the following characteristics:

• highest when the term occurs many times within a
small number of documents

• lower when the terms occurs fewer times in a docu-
ment, or occurs in many documents

• lowest when the term occurs in virtually all documents

In this work we have considered about 10 venues in the
city of Cardiff (UK) using a ‘global’ corpus consisting of the
collection of all documents considered. This results in a total
of 2210 tags, with an average of 221 tags per location.

V. PROPERTIES OF THE SEMANTIC NETWORK OF
LOCATIONS AT MOBILE NODES

In this section we present results about the properties of
the information dissemination process and of the SN of mobile
nodes obtained in a simulated environment. Tab. I shows the
main parameters used for the simulation. We considered a
1000m2 wide area where 100 nodes move according to a
random waypoint model. Inside this area, there are 10 static
physical locations (placed uniformly at random in the simu-
lation area) that spread their information. The description of
these locations is derived from a real-world dataset, described
in more detail in Sec. IV. This simulation settings have been
chosen as they are able to highlight the general behaviour and
the macroscopic features of the proposed approach, allowing
us to give an intial evaluation on the system performance
in a realistic scenario. In order to model the SNs of the
physical locations, in the following we consider three different
configurations, based on the tag popularities derived from the
TF-IDF frequencies of the locations tags in the dataset. The
first configuration organises the nodes of the locations’ SNs as

TABLE I: Main simulation parameters

Simulation Parameters
Simul. Area 1000m2

Numb. of Nodes 100
Numb. of Phys. Loc. 10

Node speed unif. in [1, 1.86]m/s

Transm. range 20m
Simulation time 75000s

β 0.1
τ 0.1
θrec 5

a chain, with the most relevant tag at one end, connected to
the second most popular tag, and so on, till the least popular
tag at the other end. Semantic networks derived from online
description could be also viewed as the aggregation of the
associations made by a plurality of different users. Studies in
the cognitive sciences (e.g. [30]) report that aggregate semantic
associative networks show scale-free properties. Therefore, we
also use two more clustered approaches, obtained using the
algorithm reported in [31]. Since this is a growing model of
a graph with scale-free properties, for each location we run
the algorithm by introducing the vertices in the graph growing
process on the base of their TF-IDF order of relevance. The
first configuration has a clustering coefficient of about 0.2 and
the other one has a clustering coefficient of 0.5. Hereafter, we
refer to all these three configurations as the Chain, CC=0.2
and CC=0.5. configurations, respectively. At the start of the
simulation each node SN is initialised by choosing a group
of tags from the set of all the available tags. Each tag has
a 0.01 probability to be added to a node SN. Initially, tags
in a node SN are not connected to each other, i.e. the node
SN do not have any edge. Moreover, tags are not annotated.
Nodes should then acquire the knowledge about relantionships
between tags and association to physical location through the
interaction between physical locations and other nodes. In the
following, the performance metrics that we use are the Hit
Ratio and the Coverage. The first one is the average over
all the nodes of the ratio between the number of tags held
by each node and the overall number of tags available from
the physical locations. The Hit Ratio indicates the amount of
information acquired by the nodes in the system. The second
measure is defined as the average of the per-node Coverage.
This value, in turn, is computed as average (computed over
all locations stored in the node SN as tags annotations) ratio
between the the number of tags in the node SN annotated with
a location, and the number of tags that describe that location
and are also stored at the node. Note that the node may not
store all the locations associated to a stored tag, and thus
coverage measures how complete is the information for the
stored tags. In order to make the values of the memory and
retrieval weights more intuitive for the reader, in the following
we use these conventions. A notation like forget = 50s means
that the Mmin weight is set in such a way that edges with
popularity 1 are dropped from a SN in case they are not seen
before 50s from the last time they were used in an exchange.
On the other hand, a notation like warm = 25s means that the
Wmin threshold is computed taking into account, as a reference
case, an interaction between nodes of 2s, that let to include
(warm up) at least edges at distance 1 from a key node if they
are not used (i.e. they were subject to the forget process) from
no more than 25s. All the reported results are the mean of 10
different runs of the algorithm, obtained by using 10 different
mobility traces for the nodes and 10 different placements in
the area for locations.



A. Comparison with an epidemic dissemination model

In this first set of results, we show a comparison between
our solution and an epidemic-like [32] data dissemination
scheme. In this epidemic scheme, locations and mobile devices
select the tags to pass to another encountered peer uniformly at
random from the set of data they hold in their memories. Upon
contact, for each exchanged tag, a set of known associated
locations is also passed to the other party, by selecting them
uniformly at random from the ones in memory. The epidemic
scheme is also subject to the same restrictions of the cognitive-
based approach. Thus, no more than Tmax tags can be passed
at each encounter and no more than Lmax locations can be
associated with each exchanged tag. Moreover, we assume
that data in the epidemic approach is subject to an aging
process, similar to that of the cognitive case. For each tag
stored by a device in the epidemic scenario, we compute
a “popularity” value in the same way as for edges in the
cognitive approach. Then, we can define a memory weight
function m(di, t) = e−βi(t−t′) applied to each data di. It
is simply the cognitive memory weight function (Form. 1)
applied to data items rather then edges. We use this function
with exactly the same parameters as the cognitive function,
i.e. the β value and the same Mmin threshold, used to drop
items from memory. This epidemic scheme is a very simple
benchmark for our algorithm. In particular, it does not use any
semantic representation of tags and any association between
them. Epidemic is the most simple scheme that can be used to
disseminate location information without using our cognitive
based approach, but subject to the same resource constraints.
Comparing our scheme with epidemic allows us to check that
the former, under the same resource constraints, is able to
achieve better information dissemination, thus resulting in a
more efficient use of the available resources.

In the following simulations, we vary the maximum num-
ber of exchangeable tags Tmax and the memory weight thresh-
old Mmin values, keeping fixed the minimum retrieval Wmin

and maximum number of exchangeable vertex annotations
Lmax parameters. In particular, Lmax = 2 and Wmin is
computed for a warm time = 25s. In all the results reported
in Figs. 4–5, it is possibile to see that the cognitive-based
approach is able to outperform the epidemic approach in
terms of both the Hit Ratio and Coverage, independently of
the tag and forget parameters and the cognitive location tag
network configuration. Moreover, note that, in all cases the
epidemic approach reaches a point where it enters a sort of
oscillatory behaviour, where the values of the performance
figures increase and decrease, floating around a stabilisation
point. This behaviour is due to the effect of the forgetting
process. In this region, the increase of the performance figures
due to newly acquired tags is soon compensated by the drop
of the oldest, least popular tags.

On the other hand, the cognitive-based approach takes
advantage of a structured information representation, where
the forget process is applied to the edges in each SN, before it
impacts on the data. Specifically, organising tags in semantic
networks allow the system to avoid oscillations, as important
tags have time to become “well established” in the nodes
semantic networks, while tags that are really less important
are correctly dropped. Finally, it is possible to observe that
more clustered location SNs allow a better flow of information.
This is expected, as clustered tags are closer to each other
in the locations SN, and thus it is easier for each tag to be
passed in the mobile nodes SN (remember that the lower
the number of hops between a tag and the set of common

tags, the higher the chance of ending up in the contributed
network). Anyway, differences between the two clustered
configurations are evident only in the experiment with the
lowest Tmax and forget values (Fig. 4). It has to be noted
that the Chain configuration achieves Coverage results very
close to the clustered configurations when using higher forget
and tag limit values (e.g. Fig. 5). Thus, even with the most
difficult starting configuration, information spreads efficiently
using the cognitive based schemes.

B. Sensitiveness Analysis

The previous results highlight the dependance of the per-
formance figures on the Tmax and forget parameters. In order
to better understand this point, in the next set of experiments
we report the performance of the system under various values
of all its main parameters. The results are obtained for a Chain
location SN configuration, that is, the most difficult case for
disseminating the information. Similar outcomes, with higher
performances, as observed in the previous results, can be
observed with all the clustered location SN configurations. If
not otherwise stated, the results are obtained with forget = 75s,
Tmax = 150, warm = 25s, and Lmax = 2. Fig. 6a shows
the Hit Ratio variations due to various values of the forget
parameter. As observed in the comparison with the epidemic-
like model, the higher the forget time, the higher the Hit
Ratio. Note that the difference between the two lowest forget
values are far bigger than the difference between the other
settings. In particular, the lowest forget value leads to a very
slow increase of the Hit Ratio over time. A similar situation
is observed in Fig. 6b for the Tmax value, where the lowest
value results in an even slower Hit Ratio increase than for
the forget case. On the other hand, fewer differences emerge
for the warm value (Fig. 6c). In particular, an increase from
warm = 25s to warm = 50s does not give a great difference
in the final Hit Ratio values. Therefore, the system seems to be
less sensitive to this value than the previous ones. Note that,
although higher values of forget and tag limits could result in
higher Hit Ratios, their setting should be pondered. In fact,
higher Tmax values lead to a higher resource consumption,
since more information could be exchanged at every encounter,
while higher forget values make the system less responsive
and adaptive to changes in the environment. In fact, in case
the oldest information suddenly becomes less relevant, making
it stay for longer periods in memory will force the devices to
evaluate it during encounters, even if it is now not relevant.

The Coverage value has a dependance to the various
parameters which is similar to the dependence of the Hit
Ratio. In Fig. 7a we show the impact of the forget value. As
for the Hit Ratio, it is possible to see that a small increase
in the forget threshold (from 50s to 75s) leads to a great
increase in the Coverage measure. These observations seems
to point to the fact that there exist a point over which the
information dissemination process is able to proceed more
rapidly. We investigate this fact more in detail in the next
set of experiments. Fig. 7b shows that the higher the number
Lmax of suggested location with each tag, the higher the
Coverage. Since increasing the Lmax value produces a higher
resource consumption during exchanges, the tuning of this
parameter should take into account a trade-off between higher
performances and resource consumption constraints, as for the
Tmax parameter.
C. Macroscopic properties of the mobile nodes SNs

The following results focus on more general, macroscopic
properties of the system. In particular, we investigate more
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Fig. 4: Hit Ratio (a) and Coverage (b) results comparison; #tags =75, forget=75s
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Fig. 5: Hit Ratio (a) and Coverage (b) results comparisons; #tags =150, forget=150s
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Fig. 6: Impact on the Hit Ratio of various settings of the parameters of the forget (a), tag limit (b) and warm activation (c) values
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Fig. 7: Impact on the Coverage of various settings of the parameters of the forget threshold (a) and the number of suggested
locations (b)

deeply the possible presence of a phase transition in the knowl-
edge acquisition process, as suggested by the previous results.

Moreover, we study some general properties of the nodes’ SN,
such as degree distribution and clustering coefficient.
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Fig. 8: Phase transitions for the Hit Ratio metric; #tags = 50, warm threshold = 15s

Fig. 8 presents an analysis on the phase transition for the
Hit Ratio for all the three SN location organisation configura-
tions. The results are obtained by varying the forget value and
with a Tmax = 50 and warm = 15s. Similar results can be
obtained with different configurations of the parameters. Note
that for the lowest forget values, all the configurations lead to
a loss of information rather than an increase. This is due to
the fact that the forget process is quicker than the knowledge
acquisition process, so that data is dropped rapidly before it
can be seen again or new data can be added. Interestingly,
the Hit Ratio does not reach a value of 0. Physical Locations
do not change their SNs. Hence, devices can always add
some information from them, even if they drop it in a very
short time. Eventually, the system reaches a stabilisation point
where the Hit Ratio does not increase or decrease anymore.
This behaviour is changed by increasing the forget value. In
particular, for the two clustered configurations, a small increase
of the forget parameter (from 50s to 75s) leads from a loss of
information to a gain of knowledge. This process is achieved
also for the Chain configuration, but it needs higher values
of the forget parameter. This sudden change highlights the
presence of a phase transition point, showing that if the data
stored in memory is able to reach a given critical mass, it
prompts an increase of knowledge. Under that value, even the
information initially owned by each node can get lost.

With Fig. 9 we compare the properties of the individual
nodes SNs with those of the Locations SN. The latter is the
result of the union of all the SNs of the physical locations
available in the simulation, and represents all the information
that can possibly be learned in the system and, thus, it is the
asymptotic SN toward which the nodes’ SNs would tend in
case of infinite resources. Fig. 9 shows the average CCDF of
the degree distribution of the nodes’ SN at the end of the
simulation for all the three configurations of the SN of the
locations, and for three different combinations of the forget
and tag limits. In all the results, it is possible to see that
the average nodes’ degree distribution has the same slope as
the Locations SN. Moreover, with higher values of forget and
tag limits, the nodes’ curves are very close to the Locations
SN curve. This fact points out that the nodes are able to
organise the information in their memories in such a way
that it closely approximates the characteristics of the global
information of the Locations SN. In particular, the nodes’ SN
have the presence of vertices with high degrees, even if with
slightly lower probabilities than that of the global information.
This is particularly relevant for the Chain configuration sce-
nario, where devices acquire the information in the form of
strings of tags. Even with the most difficult conditions for the
information diffusion process, the nodes’ SN self-organise in
such a way that we can find hubs that allow to both bridge
the description of different physical locations and determine

correlations between different concepts.

TABLE II: Average Clustering Coefficient of nodes’ tag graphs
at the end of the simulation

# of tags
Locations SN CC

Forget 75 150

75
Chain 0.0195 0.0412 0.0454

CC = 0.2 0.1632 0.2639 0.1343

CC = 0.5 0.1557 0.3532 0.3024

150
Chain 0.0316 0.0484 0.0454

CC = 0.2 0.2268 0.2856 0.1343

CC = 0.5 0.3108 0.3748 0.3024

Not only hubs are replicated. In Tab. II we report the
findings of the average clustering coefficient (CC) of the final
nodes’ SN, compared with the Locations SN. The results
are shown for different values of the forget and tag limit
parameters and with warm = 25s. Note that the clustered
locations SN configurations generally lead to nodes’ SN with
higher CCs than that of the Locations SN. This is mainly due to
the fact that the nodes SN do not hold all the vertices and edges
of the Locations SN. With this still incomplete knowledge,
the forget process drops more likely the edges and vertices
that diminish the CC than edges and vertices that are part of
clustered part of a SN. These latter components of each SN
are more easily accessible from each other and, as a result,
are more likely exchanged upon contact. Thus, the nodes’
individual SNs organise in such a way that they learn and
maintain more correlated components in memory than isolated,
less connected ones. This process resembles the human brains
ability to retain more closely related concepts rather than
weakly associated ones. On the other hand, generally, with the
most difficult initial conditions (i.e. the Chain configuration)
and/or the lowest parameter settings, the knowledge acquisition
process advances with more difficulties. Thus, nodes could not
be able to even fetch and maintain in memory all the elements
of the clustered components. As a result, the CC of the nodes’
SNs is lower than that of the Locations SN.

VI. CONCLUSION

In this paper we have explored the use of models of human
cognitive processes to design a data dissemination scheme for
making users’ personal devices aware of the features of the
physical environment around them. Our system uses the same
cognitive schemes that drive the behaviour of the human brain
in acquiring knowledge about the environment and becoming
aware of its features. As personal devices are proxies of their
human users in the cyber world, such a direct mapping is an
interesting approach to self-organisation of mobile networks.
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Fig. 9: Mean degree distribution in the nodes’ final SNs

The algorithm we have proposed is shown to be quite effi-
cient from a number of standpoints. Under limited resources,
it results in more effective dissemination of information with
respect to reference solutions that do not exploit cognitive
models. This result is achieved thanks to a structured infor-
mation representation in memory, based on cognitive models,
that allows the most relevant data to be kept in the users’
devices, allowing an increase of knowledge. Moreover, the
structural properties of the network of information describing
physical places collected autonomously at nodes is remarkably
close to what would be achieved (asymptotically) with infinite
resources. Finally, a sensitiveness analysis revealed interesting
properties of the system, such as the presence of phase
transitions in the dissemination process, determined by the
system’s parameters. Interestingly, the presented results open
to further investigations, such as, for example, models that
can mathematically describe the properties of these transition
phases, or, in a totally different domain, ways of organising
the description of physical places that optimise their diffusion.
Nevertheless, the set of results we have presented in the paper
already provides a solid indication about the effectiveness of
our approach for implementing a self-organising data dissem-
ination scheme for making mobile nodes autonomously aware
of the features of the physical environment around them.
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