

C

Consiglio Nazionale delle Ricerche

Exploiting opportunistic contacts

for service provisioning

in bandwidth limited opportunistic networks

AA.. PPaassssaarreellllaa,, MM.. CCoonnttii,, EE.. BBoorrggiiaa,, MM.. KKuummaarr

IIT TR-18/2010

Technical report

Maggio 2010

Iit

Istituto di Informatica e Telematica

Exploiting opportunistic contacts for service provisioning
in bandwidth limited opportunistic networks

Andrea Passarella, Marco Conti,
Elonora Borgia

IIT-CNR
Via G. Moruzzi, 1
56124 Pisa, Italy

{a.passarella,m.conti,e.borgia}@iit.cnr.it

Mohan Kumar
University of Texas at Arlington

Arlington, TX 76019, USA
mkumar@uta.edu

ABSTRACT
Opportunistic computing has emerged as a new paradigm in
computing, leveraging the advances in pervasive computing
and opportunistic networking. Nodes in an opportunistic
network avail of each others’ connectivity and mobility to
overcome network partitions. In opportunistic computing,
this concept is generalised, as nodes avail of any resource
available in the environment. Here we focus on computa-
tional resources, assuming mobile nodes opportunistically
invoke services on each other. Specifically, resources are ab-
stracted as services contributed by providers and invoked
by seekers. In this paper, we present an analytical model
that depicts the service invocation process between seekers
and providers. Specifically, we derive the optimal number
of replicas to be spawned on encountered nodes, in order
to minimise the execution time and optimise the computa-
tional and bandwidth resources used. Performance results
show that a policy operating in the optimal configuration
largely outperforms policies that do not consider resource
constraints.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols

General Terms
Performance, Design, Algorithms

Keywords
Opportunistic networks, service provisioning, performance
evaluation, analytical modelling

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
XXX 20XX XXX
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Opportunistic computing [10] is a recently proposed mo-
bile computing paradigm, blending the areas of pervasive
computing and opportunistic networking. In opportunistic
networks, no continuous end-to-end path between nodes can
be granted. To cope with intermittent connectivity, nodes
opportunistically exploit encountered peers to forward mes-
sages and disseminate content to the intended recipients.
Note that the conventional networking paradigm to sup-
port multi-hop pervasive networks, i.e. MANET, has been
shown to be ineffective in general [8] as it does not cope with
challenged network conditions that opportunistic networks
natively address. In opportunistic networks, nodes essen-
tially contribute and opportunistically avail of each other
resources in terms of connectivity and temporary buffer stor-
age. Opportunistic computing generalises this concept, con-
sidering the possibility for nodes to opportunistically avail
of each others’ general resources, including, but not limiting
to, connectivity and storage. This concept is particularly
suitable for pervasive computing environments, which are
seen as featuring a huge and extremely variable set of het-
erogeneous resources available on fixed and mobile devices
with wireless networking capabilities. In this context, re-
sources may include heterogeneous hardware components,
software processes, multimedia content, sensors and sensory
data. While not all resources can be available on any single
device, they can be collectively available to anyone through
the deployment of effective middleware schemes for oppor-
tunistic computing. The opportunistic computing paradigm
enables several interesting applications that are already be-
ing investigated in the areas of participatory sensing, perva-
sive healthcare, intelligent transportation systems, and crisis
management, as discussed in [10].

In this view, it is natural to abstract resources as ser-
vices that are contributed by providers and invoked by seek-
ers. While service-oriented computing has long been inves-
tigated in the conventional Internet, in single hop wireless
networks (e.g., WLANs or cellular networks) and in conven-
tional MANET, it is definitely a novel research area in op-
portunistic networks. Intermittent connectivity and severely
unstable topologies typical of opportunistic networks make
conventional service-oriented approaches too cumbersome to
be used.

This paper is one of the first attempts, to the best of our
knowledge, to tackle key research challenges implied by the
opportunistic computing concept. Specifically, we develop a
detailed analytical model of the service invocation process
between seekers and providers. As better described in Sec-

tion 3, we assume the service invocation and provisioning is
carried out as follows: Whenever a seeker has a request for
a service execution, it waits to encounter possible providers.
When a provider is met, a service execution may be spawned,
according to the replication policy used by the seeker. Ser-
vice results are gathered by the seeker from the first provider
encountered which has completed the service execution. The
goal of the model is to identify the optimal operating point
of the replication policy, in which the expected service time
(i.e. the time interval between when a request is gener-
ated at the seeker and when the seeker receives the output
results) is minimised, subject to the available providers’ re-
sources in terms of computation and bandwidth. The model
is general enough to consider arbitrary bandwidth and com-
putational constraints, heterogeneous mobility of different
sets of users, varying density of seekers and providers. Note
that modelling resource limitations (particularly in terms of
bandwidth) is very challenging in opportunistic networks,
and indeed it is common practice to assume unlimited band-
width scenarios, to simplify the analysis (see, e.g., [22, 14,
6]). While this assumption is acceptable when congestion
is not an issue, neglecting bandwidth limitations may lead
to very inaccurate conclusions when the effect of congestion
plays a role [15].

The model presented in this paper significantly extends
an initial model we have described in [20]. Unlike the model
in [20] here we consider i) limited bandwidth, ii) hetero-
geneous mobility processes of different nodes, iii) heteroge-
neous providers computation capabilities, and iv) varying
seekers generation rates.

The model, described in Section 4, is validated against
simulation results to assess its accuracy, and then used to
characterise the performance of the optimal, resource aware,
replication policy (Section 5). Specifically, comparison of
the optimal policy with resource-blind policies clearly shows
that the latter leads to saturation or under utilisation of
available resources. The performance analysis also charac-
terises the behaviour of the optimal policy as a function of
the overall load in terms of service requests. The load is
varied through several parameters: the percentage of seek-
ers and providers in the network, the rate of requests issued
by seekers, and the average computation time required by
service executions at providers. With respect to all these
parameters, we find that the optimal policy is able to toler-
ate increasing loads by limiting the corresponding increase
of service time, up to the point where the resources become
inevitably saturated. Specifically, as the load increases, the
optimal policy reduces the replication level so as to avoid re-
source saturation, thus constantly minimising the expected
service time experienced by seekers. Under the optimal pol-
icy, saturation occurs only for loads such that the overall sys-
tem capacity cannot support even a single execution for each
generated request. No alternative policy can perform better,
as in these cases the only solution would be to drop some
service requests without even attempting to serve them. In-
vestigating such “back-pressure” policies is out of the scope
of this paper, and subject of future work.

2. RELATED WORK
Service provisioning in opportunistic networks is a chal-

lenging problem that, to the best of our knowledge, has just
recently started to be addressed. Research on opportunis-
tic networks has mainly focused on routing issues (e.g. [3,

22, 14, 24, 2]), mobility analysis (e.g. [6, 5, 26]) and, more
recently, on data-centric architectures for content delivery
(e.g., [11, 4]).

The work presented in this paper can be seen as one of
the building blocks of the recently proposed concepts of op-
portunistic computing [10] and people-centric sensing [17].
The latter area already produced significant results, which
however are mainly focused on inferring people activities
through sensors available on single pervasive user devices
(such as last-generation smartphones), and how to exploit
such information for augmented mobile social networking
services. The process necessary to perform such inferences
is mainly executed on single devices, by exploiting sensory
data available on the device itself. The work presented in
this paper starts investigating opportunistic service provi-
sioning between pervasive devices, and is thus complemen-
tary.

Finally, service-oriented architectures have been investi-
gated in the area of ubiquitous and pervasive computing,
either assuming single hop wireless environments (WLANs,
cellular networks), or well connected MANET [16, 19, 21,
25, 7, 13]. In such environments, which are less challenged
from a networking standpoint, considering service compo-
sition issues is easier than in opportunistic networks, and
indeed much effort has been devoted by the research com-
munity to this topic. Examples exist both of static service
composition [25, 7, 13], in which the components are iden-
tified before requests are issued, and possible providers are
sought in the network upon requests, and of dynamic com-
position [16], in which the composition is built dynamically
when requests arise, based on what is available in the net-
work. As already highlighted, in this paper we consider a
different, more challenged networking environment, which
poses completely novel challenges to service provisioning so-
lutions. Being the networking environment so challenging,
we limit the study in this paper to a simple service provi-
sioning scheme, in which seekers can just avail of services
directly provided by encountered providers.

3. SERVICE INVOCATION IN OPPORTUNIS-
TIC COMPUTING ENVIRONMENTS

The model for service provisioning in opportunistic com-
puting environments we consider in this paper is as follows.
Whenever a seeker needs a service execution it looks for can-
didate providers in the environment. Whenever a suitable
provider is encountered, the seeker may spawn a service ex-
ecution on it. The execution process entails three stages,
i.e., uploading the input parameters, executing the service,
and downloading the output results. This process may take
several contact times. While this process is ongoing, the
seeker may encounter a different provider, and therefore an
opportunity arises to spawn an additional service execution
in parallel. In general, the same service request may gener-
ate multiple parallel executions. A service is complete when
the seeker downloads the output results from any of the
providers running in parallel. Whether a new parallel execu-
tion is spawned or not when an opportunity arises, depends
on the replication policy implemented by the seeker.

Although quite simple, developing this service provision-
ing model in an efficient manner requires to address several
challenging research questions. In opportunistic computing
environments it is particularly important to optimise the

Figure 1: Scheme of the replication process

use of the resources, which are typically contributed by mo-
bile users’ devices. The replication policy plays a key role
from this standpoint. In a resource unlimited environment
(both in terms of computation and bandwidth) clearly the
best option would be to replicate service executions onto
all encountered providers. In general, running more replicas
in parallel tends to reduce the expected service (execution)
time (the time required by the seeker to receive results), as
results can be collected from any of the providers on which
a replica has been spawned. However, when resource con-
straints are considered, uncontrolled replication may lead to
resource saturation and thus to exponential increase of the
expected service execution time, as we demonstrate in the
following.

The goal of this paper is therefore to characterise through
an analytical model the expected service time as a func-
tion of the number of spawned replicas, considering two key
resource limitations: the computational capabilities of the
providers, and the bandwidth limitations between provider-
seeker pairs. The model allows us to derive the optimal
operating point for the replication policy, i.e., the number
of replicas that should be spawned to minimise the expected
service execution time. This also corresponds to the optimal
use of the computational and bandwidth resources.

4. ANALYTICAL MODEL
In the model we consider a specific service Sj , and anal-

yse the service execution time as a function of the number
of replicas to be spawned by seekers, referred to as m in the
remainder of the paper. Specifically, we focus on a tagged
seeker, and derive the expected execution time when m exe-
cutions are spawned on different providers, hereafter referred
to as E [Rj(m)]. The optimal operating point is the value
of m that minimises E[Rj(m)]. Note that we assume Mj

nodes in the whole network providing the service Sj , thus
1 ≤ m ≤ Mj must hold.

The rationale of the model derivation is captured in Fig-
ure 1 (to simplify the notation, we omit index j in the figure).
We assume that each service Sj ’s seeker issues requests ac-
cording to a Poisson process with rate λj , and that there
are kj such seekers in the network. Therefore, the total re-
quest rate for service Sj is λjkj . Each of the m replicas is
represented with an horizontal pipe in Figure 1. For each
particular request, the i-th provider starting the execution

in temporal order is represented by pipe i.
Each pipe consists of three stages. The first stage rep-

resents the time required to complete the i-th upload of
the input parameters, and is referred to as Bji. The sec-
ond stage represents the time required to execute the re-
quest after it is spawned, and is referred to as Dji. The
third stage represents the time required by the seeker to
complete the download of the output results from the i-
th provider, and is referred to as θji. The delay on the
i-th pipe is thus Rji = Bji + Dji + θji, and the service
execution time experienced by a node issuing a request is
Rj(m) = mini=1,...,m{Rji}.

The offered load on pipe i, denoted as λ′
ji, can be eval-

uated as follows. The overall offered load for service Sj is
λjkjm. This rate is split among Mj providers. By denoting
with fji the percentage of executions of service Sj spawned
on provider i, the offered load on pipe i becomes λjkjmfji.
The values of fji depend on the properties of the seekers
and providers mobility process.

Note that, with respect to the scheme in Figure 1, band-
width limitations affect the delays of the first and third
stage, while computational limitations affect the delay of
the second stage. Specifically, a contact event might not
be long enough to upload all service Sj ’s input parame-
ters and/or download all output results. In such cases, up-
loads/downloads are resumed at the next contact opportu-
nity with the same provider.

Hereafter we separately analyse the delays of the three
stages, and then derive the service time Rj(m). In general,
the distributions of the random variables (r.v.) Rji are fairly
complex, and therefore it is possible to provide a closed form
expression for their minimum Rj(m) only under particular
assumptions. Specifically, we will fully describe the case in
which the r.v. Rji are assumed to be exponential. Although
in the following we are able to provide a more precise char-
acterisation of some Rji components, note that, under the
assumption that the r.v. Rji are exponential, it is sufficient
to derive the average values of the delays of the stages in
order to fully characterise Rji.

Before presenting the analysis, it is worth focusing on
a general concept that will be used extensively hereafter.
Whenever a new request for service Sj is issued by the
seeker, the seeker has to spawn m replicas. The execution
of a replica on a provider actually starts when the corre-
sponding input parameters are completely uploaded on the
provider. Therefore, the m replicas are spawned on the first
m providers (out of Mj) on which the upload of the input
parameters completes. As uploads may require several con-
tacts to complete, the providers on which the replicas are
executed are not necessarily the first m providers encoun-
tered by the seeker after the request is generated. This has
a non-trivial side effect on mapping providers to pipes of
Figure 1. Specifically, pipe i corresponds to the provider
on which the i-th upload completes, starting from the point
in time when the request is issued at the seeker. In other
words, if the set of r.v. {βl}l=1,...,M denotes the time inter-
vals needed by the seeker to upload the input parameters on
providers, starting from the point in time when the request
is generated, then pipe i corresponds to provider l̂ iff βl̂ is
the i-th shorter time in the set {βl}.

For the sake of readability, without loss of generality, in
the following we omit, in the notation, to indicate the de-
pendence on the particular service Sj we consider. As a

t

random point

in time

!init

success

success failures

T

t1
(f) tI-1

(f)

T(f)

tI
(s)

L

contact

inter-contact

Figure 2: Scheme of the general contact process

among nodes.

final remark, we provide hereafter a concise description of
the analytical details, preferring to focus more on the ratio-
nale behind, and the meaning of the analytical derivations.
The detailed proofs of the lemmas and theorems are omitted
from the main flow of the paper, and can be found in the
Appendices.

4.1 Model of the contact process between nodes
Before analysing the delay of the three stages of the pipes,

and from them deriving the expected service time E[R(m)],
in this section we provide a general result, which is instru-
mental to the following parts of the analysis. Specifically,
we focus on a tagged node, and analyse the time required
by that node to encounter any node in a given subset of the
network nodes, starting from a random point in time. We
denote as success the event by which the tagged node finds
any node belonging to the sought subset, and as T the time
for success, starting from a random point in time. This gen-
eral result will be used afterwards to model the time required
by the seeker to meet possible providers on which to spawn
executions, by a tagged provider to meet one of the seekers
that might spawn requests on it, and by a tagged provider to
meet a particular seeker after a service execution spawned
by that seeker has completed.

We assume that inter-contact times (contact times) be-
tween the tagged node and any other nodes in the subset
can be divided in two classes: The first class includes inter-
contact (contact) times after which a success occurs, the sec-
ond class inter-contact (contact) times after which a failure
occurs. We assume that inter-contact (contact) times within
each class are independent and identically distributed (iid),
that contact and inter-contact times are mutually indepen-
dent, and that the next contact of the tagged node is inde-
pendent on the previous contacts. Inter-contact (contact)
times of different classes may have different distributions,
and these distributions can be arbitrary. Note that this is a
more general setting with respect to typical assumptions in
the models for opportunistic networks, where inter-contact
(contact) times are assumed completely iid and following an
exponential distribution, at least in the tail (e.g. [22, 5, 12]).

In general, we can represent the process as in Figure 2.
To derive E[T] we condition on the specific point in the
mobility process of the tagged node from where we start
measuring T (remember that T starts at a random point in
time), and apply the law of total probability. The starting
point of T may fall i) during a contact time with one of the
sought nodes; ii) during a contact time with a node not in the
sought subset; iii) during an inter-contact time after which a

success occurs; iv) during an inter-contact time after which

a failure occurs. These events will be denoted by C(s), C(f),

IC(s) and IC(f), and their probabilities as p
(s)
c , p

(f)
c , p

(s)
ic

and p
(f)
ic . Those probabilities can be derived with routine

analysis as shown in Appendix A, and are functions of the
average inter-contact and contact times of the two classes
(success, failure), throughout referred to as E[c(s)], E[c(f)],

E[t(s)], and E[t(f)], respectively, and of the probability that
an inter-contact time results in (a contact time is) a success,
ps. As in case i) T is clearly 0, E[T] can be written as

E [T] = p
(f)
c E

h

T |C
(f)

i

+ p
(s)
ic

E
h

T |IC
(s)

i

+ p
(f)
ic

E
h

T |IC
(f)

i

. (1)

The expression of E
h

T |IC(s)
i

can be derived by noting

that in case iii) above, T is the residual inter-contact time

after which a success occurs (denoted as t
(s)
+):

E
h

T |IC(s)
i

= E
h

t
(s)
+

i

=
E

h

t(s)
i

2
+

V ar
h

t(s)
i

2E [t(s)]
.

In the remaining cases ii) and iv), we have to account for
an initial component ∆init,k, representing the time between
start of T and the end of the following contact time. After
∆init,k there is a random number I − 1 (possibly equal to
0) of inter-contact and contact times after which a failure
occurs, and a final inter-contact time after which success
occurs. As proved in Appendix A, we obtain:

E[T |IC
(f)

] = E[t
(f)
+] +

E[t(f)] + E[c(f)]

ps

− E[t
(f)

] + E[t
(s)

]

E[T |C
(f)

] = E[c
(f)
+] +

„

1

ps

− 1

«

“

E[t
(f)

] + E[c
(f)

]
”

+ E[t
(s)

].

In the following analysis, in addition to T , we will also
need the time to success starting from the end of a contact,
referred to as L. It is easy to see that E[L] can be written
as follows:

E[L] =

„

1

ps

− 1

«

“

E[t(f)] + E[c(f)]
”

+ E[t(s)]. (2)

Note that E[T] and E[L] depend only on the average inter-
contact and contact times, and on the probability of an inter-
contact time resulting in (a contact time being) a success
(ps), i.e. on the properties of the mobility process and on
the probability of encountering one of the sought nodes.

4.2 Analysis of the first stage
In order to model the delay of the first stages {Bi}i=1,...,m,

we first analyse the time required by the tagged seeker to
upload the input parameters to any individual provider from
the point in time when the request is generated. Recall that
these time intervals are denoted as {βl}l=1,...,M . As dis-
cussed at the beginning of the section, pipe i corresponds
to the i-th provider on which the input parameters are up-
loaded, and therefore Bi is the i-th shortest element in the
set {βl}.

The figure βl can be modelled as an M/G/1 queue. Re-
quests are generated at the seeker according to a Poisson
process with rate λ. The service time of the queue (β̂l) in-
cludes the time to meet provider l enough times to upload
the input parameters of the service. Therefore, it accounts
both for the inter-contact process between the seeker and
the provider, and the constraint on the available bandwidth.
Let us denote by Tl and Ll the time required by the seeker
to meet provider l, respectively, starting from an arbitrary

!" #" $" %&"
É É

Figure 3: Embedded process for input parameters

upload.

point in time or from the end of a contact (as shown in
Section 4.1), and by ql the number of contact times needed
to complete the input parameters upload. Then, E[βl] is
provided in Lemma 1.

Lemma 1. The average delay to complete the upload of
the input parameters on provider l is

E [βl] =
E

h

β̂l

i

1 − λE
h

β̂l

i . (3)

where E[β̂l] is

E
h

β̂l

i

=
E [Tl] − E [Ll] + E [ql]

“

E [Ll] + E
h

c(s)
i”

M
m

− λ (E [Ll] − E [Tl])
. (4)

The figure ql accounts for the bandwidth limitations, and
is derived as follows. Let us denote with in the r.v. rep-
resenting the size of the input parameters to be uploaded.
Provider l has to be encountered, in general, more than once
by the seeker, as a single contact might not last long enough
to upload in bytes. We thus consider an embedded Markov
process, whose state is the number of bytes already uploaded
to provider l, and whose transitions occur upon each contact
between the seeker and the provider (see Figure 3).

Assuming that uploads always start at the beginning of a
contact, the chain always starts in state 0 at the beginning
of the first contact. The chain moves from the state s to
the state s+h if there is enough bandwidth and the contact
is long enough to transmit h bytes, i.e., with a probability

equal to p
“

h ≤ b · c(s) < h + 1
”

where b is the bandwidth

available during a contact. The number of contacts required
to complete the upload process is thus the first passage time
of the process from state in, starting from state 0.

The line of reasoning for completing the analysis of Bi is
as follows. Conditioning on the fact that the i-th ordered
shortest times in the set {βl} is known, say {βk1, . . . βki},
then Bi+1 is the minimum over the rest of the variables in
{βl}. Assuming that the random variables (r.v.) βl are
exponential and independent, we can provide closed form
expressions both for the probability of the set {βk1, . . . βki}
being the i-th shortest r.v. in {βl}, and for the distribution
(and average value) of Bi. This is derived in Lemma 2 and
Theorem 1. As a matter of notation, in the following φl =
1/E[βl].

Lemma 2. The probability of the set {βk1, . . . βki} being
the i-th ordered shortest variables in the set {βl}l=1,...,M is

P (βk1, . . . , βki) =

Qi
p=1 φkp

P

M
p=1 φp

P

M
p=1
p6=k1

φp . . .
P

M
p=1
p6=k1,...,k(i−1)

φp

(5)

Theorem 1. The time required by a seeker to complete
the upload of the input parameters on provider i + 1 (i =
0, . . . , m − 1) is distributed as follows:

Bi+1 ∼

M
X

k1=1

. . .

M
X

ki=1
ki6=k1,...,k(i−1)

P (βk1, . . . , βki) exp

0

B

B

@

M
X

p=1
i6=k1,...,ki

φp

1

C

C

A

and its average value is:

E [Bi+1] =
M

X

k1=1

. . .
M

X

ki=1
ki6=ki,...,k(i−1)

P (βk1, . . . , βki)
PM

p=1
p 6=k1,...,ki

φp

. (6)

Note that the above expression greatly simplifies when the
r.v. βl are also identically distributed, with rate φ. In this
case, Bi+1 is exponential with rate (M−i)φ (and its average
value is thus 1/[(M − i)φ]). This is a very intuitive result,
as Bi+1 becomes the minimum over M − i iid exponential
random variables with rate φ.

4.3 Analysis of the second stage
As shown in Figure 1 we model the computation process

at each provider with a queue. The service time of the queue
represents the computation time at the provider’s CPU. We
assume that the computation time at providers is exponen-
tially distributed with rate µl, l = 1, . . . , M . Considering
a random computation time allows us to account for varia-
tions in providers capabilities, and variations in computation
times of different requests for the service. To derive the av-
erage delay of the stage of the generic pipe i, we assume to
know that the generic provider l corresponds to pipe i, and
derive the conditioned average delay. This means assuming
that the seeker completed the i-th upload of the input pa-
rameters on provider l. By computing the probability of this
event, we can apply the law of total probability, and derive
the average value of the second stages.

Focusing on a particular provider l, it is possible to model
the second stage as a batch arrival system (see, e.g., [23]):
A batch of requests arrive at the provider when it meets a
seeker, and the size of the batch is the number of (sets of)
input parameters for requests queued at the seeker whose
upload completes during the contact. As a matter of nota-
tion, we describe the second stage as an M[X]/M/1 system,
where X is the r.v. denoting the size of the batch. Lemma 3
provides the average delay of the second stage of pipe i, as-
suming provider l corresponds to it, denoted by E[Di|l]. In

the formula we use the component E[L
(P)
l], denoting the av-

erage time for the provider l to meet any seeker starting from

the end of a contact. E[L
(P)
l] can be computed as shown in

Section 4.1.

Lemma 3. The average delay of the second stage of pipe
i, assuming provider l corresponds to it is

E[Di|l] =
E[X2

l] + 2E[Xl]

2µlE[Xl](1 − ρl)
, (7)

where Xl is the size of the batches arriving at provider l.
Furthermore, the utilisation of the providers is

ρl =
λX,lE[Xl]

µl

=
E[Xl]

µl(E[L
(P)
l] + E[c(s)])

, (8)

where λX,l is the rate of batch arrivals at provider l.

The result in Lemma 3 confirm our initial intuition about
the possibility of saturation of the service provisioning sys-
tem. The utilisation of providers increases with the batch
size and with the number of seekers ”using” the provider
(which clearly means an increase of λX,l). When the utilisa-
tion approaches 1, the average delay on the providers tends
to infinity.

Recalling the analysis of the first stage, the probability
that provider l corresponds to pipe i is the probability that
the time to complete the upload of the input parameters
on provider l is the i-th shortest time in the set {βl}l, i.e.
P (Bi = βl). The analysis of this figure is similar to that
related to Lemma 2. Specifically, by exploiting the result of
Lemma 2 and recalling that φl is equal to 1/E[βl], we obtain
the result in the following Lemma.

Lemma 4. The probability of provider l corresponding to
pipe i + 1 (i = 0, . . . , m − 1) is

P (Bi+1 = βl) =

M
X

k1=1
k1 6=l

. . .

M
X

ki=1
ki6=k1,...,k(i−1),l

P (βk1, . . . , βki)φl
P

M
s=1
s 6=k1,...,ki

φs

. (9)

Based on Lemmas 3 and 4 it is straightforward to derive
the expression of E[Di].

Theorem 2. The average delay to complete the service
computation of the i-th replica is

E[Di] =

M
X

l=1

E [Di|l] P (Bi = βl), (10)

where E [Di|l] and P (Bi = βl) are as in Equations 7 and 9.

4.4 Analysis of the third stage
The delay of the third stage is the time interval from the

end of the execution of a request at the provider, until the
point in time when the output results are completely down-
loaded to the seeker. Note that, in general, when a request
execution for a particular seeker completes at the provider,
output results from previously completed requests for the
same seeker might still be waiting to be downloaded to the
seeker. Therefore, we must model the third stage with a
queue. Actually, the analysis of the third stage is conceptu-
ally similar to that of the first stage, albeit for the fact that
the roles of the provider and seeker have to be switched (now
it is the provider that has to transfer data to the seeker).
Therefore, we model the third stage with an M/G/1 queue,
and the service time of the queue is the time for the provider
to download the output parameters to the seeker.

Also in this case, to derive the average delay of the stage
of the generic pipe i, we assume to know that the generic
provider l corresponds to pipe i, derive the conditioned av-
erage delay, and finally apply the law of total probability.
As a matter of notation, we denote with θi the delay of the
third stage of pipe i, with θ̂i the service time of the queue
representing the stage, and with θi|l and θ̂i|l the same fig-
ures conditioned to the fact that the pipe corresponds to
provider l. Recalling that we denote by λ′

i the total offered
load on pipe i, and by k the number of seekers, Lemma 5
provides the closed form expression for the average delay
conditioned to provider l. In the Lemma we denote by Tl

and Ll the time required by provider l to meet the seeker

(as can be derived by exploiting the analysis in Section 4.1),
and by ql the number of contact events required to download
the output results.

Lemma 5. The average delay of the third stage of pipe i
conditioned to the fact that provider l corresponds to the pipe
is

E [θi|l] =
E

h

θ̂i|l
i

1 −
λ′

i

k
E

h

θ̂i|l
i , (11)

where E
h

θ̂i|l
i

is:

E
h

θ̂i|l
i

=
E [Tl] − E [Ll] + E [ql]

“

E [Ll] + E
h

c(s)
i”

m −
λ′

i
k

(E [Ll] − E [Tl])

.

Based on Lemmas 5 and 4 it is straightforward to derive
the expression of E[θi].

Theorem 3. The average delay for the seeker to down-
load the output results of the i-th replica (i = 1, . . . , m) is

E [θi] =

M
X

l=1

E [θi|l] P (Bi = βl), (12)

where E [θi|l] and P (Bi = βl) are as in Equations 11 and 9,
respectively.

4.5 Optimal replication
The expected service execution time experienced by the

seeker (R(m)) is the minimum delay over the m pipes. As
analytical expressions for the minimum of a generic set of
r.v. are not available, we approximate R(m) assuming that
the r.v. Ri are exponentially distributed with rate γi =
(E[Bi] + E[Di] + E[θi])

−1. R(m) is then also exponentially
distributed, with rate Γ(m) =

Pm

i=1 γi, and average value

E[R(m)] = Γ(m)−1.
In the general case, E[R(m)] can be computed numeri-

cally, while closed formulas can be found under additional
assumptions. In the following of the section we derive a
closed formula of E[R(m)] under the assumption that the

r.v. β̂l, Di|l and θi|l do not depend on the particular provider,
i.e., they are identically distributed across providers. Under
these assumptions, the expressions of the average delay of
the three stages in Equations 6, 10, 12 become simpler. For
what concerns the second stage, with respect to Equation 10
all the dependencies on the particular provider disappear.
As we discussed in Section 4.2, the average delay of the first
stage on pipe i becomes the minimum over M − i + 1 expo-
nentially distributed r.v. with rate φ = 1/E[β]. Recalling
the expression of E[βl] in Equation 3 we obtain

E [Bi] =
E [β]

M − i + 1
=

1

M − i + 1
·

mK1

M − mλ(K1 + K2)
,

where K1 is E[T] − E[L] + E[q](E[L] + E[c(s)]), and K2 is
E[L] − E[T]. Note that K1 and K2 do not depend either
on the particular pipe i nor on the number of replicas m.
Finally, after similar routine manipulations, noting that the
offered load λ′ becomes equal to λkm

M
, the average delay of

the third stage becomes

E [θ] =
K1

m − λm
M

(K1 + K2)
.

Note that the only term that depends on the particular pipe
i is the delay of the first stage, due to the fact that the
pipe corresponds to the i-th provider on which the seeker
completes the upload of the input parameters.

Finally, we are in the position of deriving a closed form
expression for the expected service time E[R(m)] = 1/Γ(m),
as in Theorem 4.

Theorem 4. The average time for the seeker to avail of
service Sj is

E[R(m)] =
(E[D] + E[θ])2

m(E[D] + E[θ]) − E[β] ln Q−1
Q−m−1

, (13)

where Q is equal to E[β]
ED+Eθ

+ M + 1.

The optimal replication level mopt can be found by min-
imising Equation 13. This requires specifying the specific
dependence of ED on m. Once this is done, mopt can be ei-
ther found analytically or numerically. The result provided
by Theorem 4 is therefore general enough to be customised
to the features of any specific scenario.

5. PERFORMANCE RESULTS
In this section we analyse the expected service (execu-

tion) time of a replication policy which exploits the analyti-
cal model of Section 4 (optimal policy). Specifically, various
facets of such a policy are analysed. First, it is compared
with two resource-unaware policies, which replicate requests
on the first encountered node only (single policy), and on all
encountered nodes (greedy policy), respectively. Note that
the performance in terms of expected service time of these
two policies can also be found by using the analysis pre-
sented before, as they correspond to E[R(1)] and E[R(M)],
respectively. Comparing the three policies highlights the
advantage of considering resource limitations in the service
invocation process. Then, a sensitiveness analysis of the op-
timal policy is presented. We consider the impact of i) the

probability of nodes being providers (p(p)) or seekers (p(s))
for the service; ii) the number of nodes in the network (N);
iii) the request generation rate at seekers (λ); and iv) the
average service computation time at providers (1/µ).

In order to validate the analytical model, we also devel-
oped a simulation model based on the OMNeT++ simula-
tor (http://www.omnetpp.org/). Simulation results are pre-
sented with confidence intervals computed with 95% confi-
dence level. In the simulated environment the nodes move in
a square, according to the Random WayPoint (RWP) mobil-
ity model, with the modifications described in [18] to guaran-
tee that the model’s distributions are stationary (the nodes’
average speed is 1.5 m/s, representative of walking speeds).
In the simulation model, the value of the allowed replications
(m) is an input parameter of the simulation runs, and we re-
peated the simulation runs with increasing values of m. At
the end of each run for a given value of m, we computed the
corresponding average service time (with 95% confidence in-
tervals)1. For what concerns the optimal policy, we identify
the optimal case as the value of m achieving the minimum
average service time.

Results presented hereafter show a very good agreement
between simulation and analysis. The analytical model is

1Note that confidence intervals are very narrow, and can
hardly be noticed in the plots shown hereafter.

Table 1: Default analysis parameters

1/µ 30s
λ 0.005 req/s
N 100

tx range 20m
bandwidth 5.5Mbps

input param 100KB
output param 1MB

Area 1000m x 1000m
avg speed 1.5m/s

p(s) 0.1,0.2,0.5,0.8

p(p) 0.1,0.2,0.5,0.8

thus able to well predict the trends of behaviour of the vari-
ous policies under investigation. It is worth noting that the
analytical model provides a much more flexible tool than
the simulation model. Specifically, the inherent complex-
ity of the simulation model (mainly, the number of events
that are generated) makes it practically impossible to ex-
plore the policies behaviour over a large range of key param-
eters, while this becomes possible analytically. This is the
case, for example, of the sensitiveness analysis with respect
to the request generation rate λ and service computation
time 1/µ, for which the simulation model becomes too com-
plex (in terms of execution time and memory space), while
the analytical model allows us to completely investigate the
optimal policy’s behavior.

Details of the key parameters’ values are provided for each
investigated scenario. Unless otherwise stated, they are set
as in Table 1. These settings represent typical opportunistic
networking environments, in which the network is sparse (in-
deed we obtain average inter-contact times of about 10 min-
utes and contact times of about 15s). Note that the band-
width value is a conservative estimate, as it is the typical
throughput measured at the application level with 802.11b
technologies operating at a nominal rate of 11Mbps [1].

5.1 Resource-aware vs naïve policies
In this section we compare the performance of the optimal

(resource aware) policy against that of the single and greedy
policies, which do not take resource constraints into account.
Table 2 compares the average service time for an increasing
percentage of seekers, and a representative percentage of
providers (p(p) = 0.5, similar results are obtained for the

other values of p(p), as well). Results are shown, for each
policy, both for the analytical and the simulation model.

For a small number of seekers (i.e., p(s) ≤ 0.2), the opti-
mal and greedy policies basically coincide, as for such a small
percentage of seekers the “overall computational capacity”
of the system is large enough to afford greedy replication.
However, when the number of seekers increases beyond this
point, the greedy policy saturates the system. In these cases,
the expected service time is infinite. Simulation results are
the average over completed executions, which gives an in-
dication of the exponential increase of the simulated delay.
On the contrary, beyond p(s) = 0.2 the optimal policy pro-
gressively reduces the number of spawned replicas, and sig-
nificantly outperforms both the single and the greedy policy.
Also note that the optimal policy results in just a slight in-
crease of the expected service time as the number of seekers
increases.

Table 2: Policies comparison, p(p)=0.5

p(s) optimal(an) optimal(sim) single(an) single(sim) greedy(an) greedy(sim)
0.1 9886.32 8899.77±135.025 45914.6 44933±1313.36 9888.7 8904.68±137.857
0.2 10030.6 9567.35±108.429 45920.6 46236.7±1007.69 10072.9 9931.05±102.3
0.5 11883.7 12431.5±127.545 45940.8 44559.5±621.437 ∞ 69154.4±801.452
0.8 15381.7 16945.1±133.773 45965.8 45031.6±509.473 ∞ 167508±1501.26

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.2 0.4 0.6 0.8 1

se
rv

ic
e

tim
e

(s
)

providers percentage (pp)

expected service time (ps=0.1, 0.8)

ps=0.8
ps=0.1

Figure 4: Sensitiveness on the number of providers

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.2 0.4 0.6 0.8 1

se
rv

ic
e

tim
e

(s
)

seekers percentage (ps)

expected service time (pp=0.1, 0.8)

pp=0.8
pp=0.1

Figure 5: Sensitiveness on the number of seekers

These results clearly indicate the significant performance
gain that a resource-aware policy achieves with respect to
resource-unaware policies. From now on, we therefore fo-
cus on assessing the performance of the optimal policy with
respect to a number of parameters. Furthermore, as the an-
alytical model shows to predict very well the trend of simu-
lation results, in the rest of the analysis we use the analytical
model only.

5.2 Sensitiveness on the seekers and providers
population

Figures 4 and 5 show the expected service time as a func-
tion of the percentage of providers and seekers, respectively.
In each plot, two curves are shown, for the minimum and
maximum values of the other parameter (p(s) and p(p), re-
spectively).

The expected service time increases when either less providers
are available, or more seekers are present. In some configu-
rations, this may result in the resources’ saturation, as is the
case of p(s) = 0.8, p(p) = 0.1. For a given percentage of seek-
ers (providers) the service time decreases (increases) as the
percentage of providers (seekers) increases. Note that, un-
less for particularly congested settings (very low percentage

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120

se
rv

ic
e

tim
e

(s
)

network size (N)

expected service time (pp=0.5)

ps=0.1
ps=0.8

Figure 6: Impact of the network size

of providers or very high percentage of seekers), using the
optimal policy results in a graceful degradation of the per-
formance, as the expected service time gracefully increases
(e.g., see the curve for a varying number of providers and

p(s) = 0.1, or the curve for a varying number of seekers and
p(p) = 0.8).

5.3 Sensitiveness on the network size
In this section we study the sensitiveness of the optimal

policy with the number of nodes in the network (N). To
keep a scenario representative of opportunistic networking
environments, we scale the size of the simulation area to keep
the node density constant (this indeed results in invariant
average contact and inter-contact times). Specifically we
consider the cases N = 20, 50, 80, 100. Figure 6 shows the
expected service time as a function of N , for the two extreme
values of p(s) and a representative percentage of providers
(p(p) = 0.5).

The interesting feature shown by the plots is that the ex-
pected service time linearly increases with the network size.
Overall, the main reason behind this behaviour is due to the
delay for downloading the output results to the seeker (i.e.,
the delay of the third stage). Intuitively, after a provider has
completed the execution, it must encounter a single tagged
seeker to download the output parameters. The probabil-
ity of this event can be shown to be proportional to 1/N ,
which results in a linear increase of this part of the service
delay with N . More in detail, it is possible to write the
expected delay on pipe i as the sum of two components,
one independent of N , and another one linear with N , i.e.,
ERi = EWi + NEYi. EYi is dominated by the delay of the
third stage, and can thus be approximated by Eθ. Assum-
ing, again, that the r.v. Ri are exponential, and recalling
that the optimal service time is the minimum over the delays
of mopt pipes, R(mopt) is also an exponential r.v. with rate
γR =

Pmopt

j=1
1

EWi+NEθ
. Finally, it can also be shown that,

unless when the system is extremely close to the saturation
of the second stage, the factor NEθ dominates over EWi.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.001 0.01 0.1

se
rv

ic
e

tim
e

(s
)

λ (req/s)

expected service time (ps=0.1)

pp=0.1
pp=0.2
pp=0.5
pp=0.8

Figure 7: Sensitiveness on λ

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250

se
rv

ic
e

tim
e

(s
)

1/µ (s)

expected service time (ps=0.1)

pp=0.1
pp=0.2
pp=0.5
pp=0.8

Figure 8: Sensitiveness on µ

After simple manipulations, we find that the expected op-
timal service time is approximately equal to Eθ N

mopt
. This

confirms the linear dependence of ER(mopt) with N found
in Figure 6(b). Furthermore, it also justifies the fact that

the slope of the line increases with p(s), because, for a given
value of p(p), mopt clearly decreases with the percentage of
seekers.

5.4 Sensitiveness on the load on providers
The final aspect we analyse is the sensitiveness of the opti-

mal policy with the load on providers. This can be shown by
varying either the seekers’ request rate λ (Figure 7), or the
average providers’ computation time 1/µ (Figure 8). Specif-
ically, we scale the value of λ according to a logarithmic scale
from 0.001 req/s up to 0.1 req/s, while we scale the value of
1/µ by doubling it from 15s up to 240s. Note that we show

results for the lowest percentage of seekers (p(s) = 0.1), i.e.,
we do not further congest the system with a high number of
seekers, to better isolate the dependence on λ and µ.

Both plots essentially highlight the same feature of the
optimal policy. As expected, the service time increases with
the load of the providers, which can manifest either as an
increase of the seekers’ request rate, or as an increase of the
computation time for generating the service results. This
increase is moderate when the percentage of providers is
high enough (e.g., for p(p) = 0.8), meaning that the total
“service capacity” of the system is high enough to tolerate
increases of the offered load. For lower numbers of providers,
the increase of the service time becomes more evident. For
a very low percentage of providers (p(p) = 0.1) even the
optimal policy can work only up to a certain load, while
the system inevitably becomes saturated beyond this limit.

This is shown in the plots by the fact that the curves stop
for λ > 0.02 req/s and 1/µ > 120s, respectively.

6. CONCLUSIONS
In this paper we have derived a complete analytical model

for service invocation and provisioning in opportunistic com-
puting environments. The goal of the model is to take into
consideration a very general scenario, featuring different mo-
bility patterns, and, very importantly, resource constraints
both in terms of computation and bandwidth capabilities.
We have also shown how the model simplifies when less gen-
eral conditions can be assumed.

Employing the proposed model, it is possible to analyse
the performance of optimal service invocation, in terms of
expected service time (the time required by seekers to receive
output results). In this paper, we have highlighted several
features. First of all, we have shown that considering re-
source constraints in service invocation policies is a must to
optimise the performance. Näıve, resource-unaware policies
either easily saturate the available resources, or significantly
under-utilise them, while the optimal, resource-aware policy
always optimises their use. Second, we have shown that the
optimal policy is able to automatically counteract increased
demand on resources, which may arise due to different rea-
sons. Increased resource demand might arise either because
of a reduced number of providers, an increased number of
seekers, an increased load in terms of request rate or service
computation time. In all of these cases, we have shown that
the optimal invocation policy results in a graceful degra-
dation of the system performance, until a point where the
overall service capacity of the system is too low to cope with
the total offered load. Finally, we have highlighted an in-
trinsic increase of the service time with the network size,
which is an inevitable side effect of finding a particular user
in larger populations.

To the best of our knowledge, this paper is one of the
first considering the challenging problem of service provi-
sioning in opportunistic networks. Despite providing al-
ready significant results, there is still ample room for fu-
ture research directions. Among the most interesting ones,
we mention the design of distributed algorithms that im-
plement when possible, or approximate otherwise, the opti-
mal policy found by analysis. Characterising the impact of
opportunistic multi-hop forwarding or requests upload and
results download is another interesting extension. Finally,
it will also be important to understand how the opportunis-
tic computing paradigm can work when services available on
different nodes can be composed together in order to provide
richer functionality.

Acknowledgments
This work was partially funded by the European Commis-
sion under the SCAMPI (258414) FIRE Project and by the
US National Science Foundations award CNS-0834493.

7. REFERENCES
[1] G. Anastasi, E. Borgia, M. Conti, E. Gregori, and

A. Passarella. Understanding the real behavior of
Mote and 802.11 ad hoc networks: an experimental
approach. Pervasive and Mobile Computing,
1(2):237–256, 2005.

[2] A. Balasubramanian, B. N. Levine, and
A. Venkataramani. DTN Routing as a Resource
Allocation Problem. In Proc. ACM SIGCOMM, pages
373–384, August 2007.

[3] C. Boldrini, M. Conti, and A. Passarella. Exploiting
users’ social relations to forward data in opportunistic
networks: The hibop solution. Pervasive and Mobile
Computing, 4(5):633 – 657, 2008.

[4] C. Boldrini, M. Conti, and A. Passarella. Design and
performance evaluation of contentplace, a social-aware
data dissemination system for opportunistic networks.
Computer Networks, 54(4):589 – 604, 2010. Advances
in Wireless and Mobile Networks.

[5] H. Cai and D. Y. Eun. Crossing Over the Bounded
Domain: From Exponential To Power-law
Inter-meeting Time in MANET. In Proc. of ACM
MobiCom, 2007.

[6] A. Chaintreau, P. Hui, C. Diot, R. Gass, and J. Scott.
Impact of human mobility on opportunistic forwarding
algorithms. IEEE Trans. Mob. Comp., 6(6):606–620,
2007.

[7] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and
Y. Yesha. A Reactive Service Composition
Architecture for Pervasive Computing Environments.
In Proc. of IFIP PWC, 2002.

[8] M. Conti and S. Giordano. Multihop ad hoc
networking: The reality. Communications Magazine,
IEEE, 45(4):88–95, 2007.

[9] M. Conti, E. Gregori, and L. Lenzini. Metropolitan
Area Networks. Springer, 1997.

[10] M. Conti and M. Kumar. Opportunities in
opportunistic computing. Computer, 43(1):42–50, Jan.
2010.

[11] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco.
Socially-aware routing for publish-subscribe in
delay-tolerant mobile ad hoc networks. IEEE JSAC,
26(5), 2008.

[12] W. Gao, Q. Li, B. Zhao, and G. Cao. Multicasting in
delay tolerant networks: a social network perspective.
In MobiHoc ’09: Proceedings of the tenth ACM
international symposium on Mobile ad hoc networking
and computing, pages 299–308, New York, NY, USA,
2009. ACM.

[13] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - a
service discovery and deliveryprotocol for ad-hoc
network. In Proc. of IEEE WCNC, 2003.

[14] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap:
social-based forwarding in delay tolerant networks. In
MobiHoc ’08: Proceedings of the 9th ACM
international symposium on Mobile ad hoc networking
and computing, pages 241–250, New York, NY, USA,
2008. ACM.

[15] A. Jindal and K. Psounis. Contention-aware
performance analysis of mobility-assisted routing.
IEEE Transactions on Mobile Computing,
8(2):145–161, 2009.

[16] S. Kalasapur, M. Kumar, and B. A. Shirazi. Dynamic
Service Composition in Pervasive Computing. IEEE
TPDS, 18(7):907 – 918, 2007.

[17] H. Lu, N. D. Lane, S. B. Eisenman, and A. T.
Campbell. Bubble-sensing: Binding sensing tasks to
the physical world. Pervasive and Mobile Computing,

6(1):58 – 71, 2010.

[18] W. Navidi and T. Camp. Stationary distributions for
the random waypoint mobility model. IEEE
Transactions on Mobile Computing, 3(1):99–108, 2004.

[19] M. Papazoglou. Service Oriented Computing:
Concepts, characteristics and directions. In Proc. of
IEEE WISE, December 2003.

[20] A. Passarella, M. Kumar, M. Conti, and E. Borgia.
Minimum-Delay Service Provisioning in Opportunistic
Networks. In IIT-CNR Tech. Rep., available at
http: // bruno1. iit. cnr. it/ ~andrea/ tr/

services-tr. pdf , 2010.

[21] M. Ravi, P. Stern, N. Desai, and L. Iftode. Accessing
Ubiquitous Services using Smart Phones. In Proc. of
IEEE PerCom, March 2005.

[22] T. Spyropoulos, K. Psounis, and C. Raghavendra.
Efficient Routing in Intermittently Connected Mobile
Networks: The Multiple-copy Case. IEEE Trans. on
Net., 2008.

[23] H. Takagi. Queuing Analysis Volume I: Vacation and
Priority Systems, Part I. North-Holland, 1991.

[24] Y. Wang, H. Wu, F. Lin, and N.-F. Tzeng. Cross-layer
Protocol Design and Optimization for
Delay/Fault-Tolerant Mobile Sensor Networks. IEEE
Journal on Selected Areas in Communications
(JSAC), Special Issue on Delay and Disruption
Tolerant Wireless Communication, 26(5):809–819,
2008. A preliminary version was presented in IEEE
ICDCS’07.

[25] X.Gu and K. Nahrstedt. Dynamic QoS-aware
multimedia service configuration in ubiquitous
computing environments. In Proc. of IEEE ICDCS,
July 2002.

[26] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and
H. Zhang. Study of a Bus-Based Disruption Tolerant
Network: Mobility Modeling and Impact on Routing.
In Proc. ACM Intl. Conf. on Mobile Computing and
Networking (Mobicom), pages 195–206, September
2007.

APPENDIX

A. CONTACT PROCESS BETWEEN NODES
In this Appendix we provided a detailed discussion of some

derivations related to the model of contact process between
nodes, presented in 4.1.

Recall that the goal of this part of the model if finding
the time (T) required for a tagged node to meet any node
in a given subset starting from a random point in time. To
model T , we condition on the specific point of the tagged
node’s mobility process from where we start measuring T .
This point may fall i) during a contact time with one of
the sought nodes; ii) during a contact time with a node not
in the sought subset; iii) during an inter-contact time after
which a success occurs; iv) during an inter-contact time after

which a failure occurs. These events are denoted by C(s),
C(f), IC(s) and IC(f).

First of all, we derive the probabilities of these events, re-

ferred to as p
(s)
c , p

(f)
c , p

(s)
ic and p

(f)
ic . Let us define a stochastic

process {Y (t), t ≥ 0} that can be in four possible states, each
corresponding to one of the conditions i)-iv) above (here-
after, these states will be referred to as I to IV, respectively).
Essentially, Y (t) describes the state of the contact and inter-
contact process between the tagged node and the nodes in
the sought subset. Considering the sequence of points in
time when a success occurs {Sn, n = 0, 1, . . .}, and as we as-
sumed that contact and inter-contact events do not depend
on previous contacts and inter-contacts, it follows that Y (t)
is a regenerative process that regenerates after each success.
Let us finally denote by {Fn, n = 0, 1, . . .} the length of
the n-th (regeneration) cycle, i.e. Fn = Sn − Sn−1. The

probabilities p
(s)
c , p

(f)
c , p

(s)
ic and p

(f)
ic can be computed as

the probabilities of the states of Y (t), which can be found
by analysing a generic cycle of the process, shown in Fig-
ure 9. Denoting by J the number of inter-contacts (and
contacts) in a cycle, the cycle is characterised by an initial
contact following the success, J − 1 inter-contacts (and the
following contacts) after which a failure occurs, and a final
inter-contact after which a success occurs. Let us focus on
state I, i.e., the process is in the contact time after success.
By applying results on regenerative process (see, e.g., [9]),
the probability of state I is the ratio between the average
time spent by Y (t) in state I during a cycle, and the aver-
age cycle length E[Fn]. By noting that the probability of a
success ps is 1/E[J], we obtain the following expression:

p(s)
c =

E[c(s)]

(E[J] − 1)(E[t(f)] + E[c(f)]) + E[c(s)] + E[t(s)]

=
psE[c(s))]

(1 − ps)(E[t(f)] + E[c(f)]) + ps(E[c(s)] + E[t(s)])
.

t

success
success

success (J-1) failures

F

t1
(f) tJ-1

(f)
tI

(s)

contact

inter-contact

c(s) c1
(f) cJ-1

(f)

Figure 9: Form of the generic regeneration interval

The other probabilities can be found according to the same
line of reasoning, thus obtaining

p(f)
c =

(1 − ps)E[c(f))]

(1 − ps)(E[t(f)] + E[c(f)]) + ps(E[c(s)] + E[t(s)])

p
(s)
ic =

psE[t(s))]

(1 − ps)(E[t(f)] + E[c(f)]) + ps(E[c(s)] + E[t(s)])

p
(f)
ic =

(1 − ps)E[t(f))]

(1 − ps)(E[t(f)] + E[c(f)]) + ps(E[c(s)] + E[t(s)])
.

The second result we derive in this Appendix are the ex-
pressions for E[T |IC(f)] and E[T |C(f)], which are the aver-
age values of T , conditioned to the fact that T starts during
an inter-contact time and a contact time after which a fail-
ure occurs, respectively. Let us focus on E[T |IC(f)] first.
Recall that in this case T starts with an interval ∆init,k,
until the end of the next contact time. After ∆init,k there is
a random number I−1 (possibly equal to 0) of inter-contact
and contact times after which a failure occurs, and a final
inter-contact time after which success occurs. As in this case
T starts in a random point in time during an inter-contact
time after which a failure occurs, the following expression
holds true:

T |IC(f) = t
(f)
+ + c(f) +

I−1
X

i=1

(t
(f)
i + c

(f)
i) + t(s).

As we assumed that the next contact of the tagged node
does not depend on the previous contacts, the number of
intervals I follows a geometric distribution with parameter
ps. Furthermore, the lengths of contact and inter-contact
times are independent on I, and therefore we obtain

E[T |IC
(f)

] = E[t
(f)
+] +

E[t(f)] + E[c(f)]

ps

− E[t
(f)

] + E[t
(s)

].

Using the same line of reasoning, we also obtain the ex-
pression of E[T |C(f)]:

E[T |C
(f)

] = E[c
(f)
+] +

„

1

ps

− 1

«

“

E[t
(f)

] + E[c
(f)

]
”

+ E[t
(s)

].

The final result we obtain in this Appendix is the expres-
sion of E[L], i.e. the average time for the tagged seeker to
encounter any node in a given subset, starting from the end
of a contact. We can follow the same approach used for
the previous results, and notice that L starts with a ran-
dom number I − 1 (possibly equal to 0) of inter-contact and
contact times after which a failure occurs, and a final inter-
contact time after which success occurs. Therefore L can be
written as

L =

I−1
X

i=1

(t
(f)
i + c

(f)
i) + t(s),

and it’s average value is as follows:

E[L] =

„

1

ps

− 1

«

(E[t(f)] + E[c(f)]) + E[t(s)].

B. FIRST STAGE DERIVATIONS
In this Appendix we provide the detailed derivations of

the first stage delays, i.e., Lemmas 1, 2 and Theorem 1.

Lemma 1. The average delay to complete the upload of

the input parameters on provider l is

E [βl] =
E

h

β̂l

i

1 − λE
h

β̂l

i .

where E[β̂l] is

E
h

β̂l

i

=
E [Tl] − E [Ll] + E [ql]

“

E [Ll] + E
h

c(s)
i”

M
m

− λ (E [Ll] − E [Tl])
.

Proof. The key part of the analysis is modeling the ser-
vice time of the queue, β̂l. Three cases must be separately
considered. First of all, in general, some queued requests
(and even a request being served) might be dropped. This
happens if provider l is not among the first m providers on
which the input parameters upload completes. The prob-
ability of this event is throughout referred to as pm,l. We

set β̂l equal to 0 for these requests. Note that this results
in understimating β̂l, as the time spent on partially served
requests is neglected.

The second and third cases to be considered are the service
time for requests arriving when the queue is empty or not
empty, respectively. We denote these values with β̂l|NE and

β̂l|E , respectively. Let us focus again on Figure 2. In case the
request arrives when the queue is empty, the initial part of
β̂l is the time required to encounter provider i starting from
a random point in time (denoted as Tl). This can be derived
using to the general result described in Appendix A. When,
on the other hand, a request arrives when the queue is not
empty, it starts being served after the input parameters of
the previous request has been uploaded. By assuming that
uploads always complete at the end of a contact2, in this
case the service time starts with an inter-contact time, and,
again, the time until the first contact with provider i (Ll)
can be computed exploiting the result of Appendix A.

Based on the above discussion, if we use the standard

definition of the queue utilisation ρl = λE
h

β̂l

i

, we can write

β̂l as

β̂l = 0·pm,l+(1−pm,l)ρlβ̂l|NE +(1−pm,l)(1−ρl)β̂l|E . (14)

We now derive the expressions for β̂l|NE , β̂l|E and pm,l. Re-
member we have denoted by ql the number of contact events
needed by the seeker to complete the upload of the input pa-
rameters on provider l (modelled through the Markov chain

shown in Figure 3). β̂l|NE and β̂l|E can be computed as the
sum of the time to make contact with provider l for the first
time, plus a number of additional contact and inter-contact
times required for completing the upload:

β̂l|NE =

ql
X

k=1

“

Ll,k + c
(s)
k

”

(15)

β̂l|NE = Tl +

ql−1
X

k=1

“

c
(s)
k + Ll,k

”

+ c(s) (16)

In both cases the seeker has to meet the provider qi times.
When the queue is not empty, each encounter results in a
time interval equal to Ll + c(s), i.e., the time required to

2Note that the latter assumption can become weak when
the contact times are much longer than the time required
to upload the input parameters. However, in this case the
whole model can be simplified as shown in [20].

meet provider l starting from the end of a contact, plus
the contact time with provider l (c(s)). When the queue is
empty, the first encounter with provider l occurs after Tl,
because the service time starts at a random point in time
with respect to the underlying mobility process. Then, to
complete the upload, ql contacts are required (each lasting

for c(s)), and each contact is separated by an interval equal

to Ll. To derive the average values of β̂l|NE and β̂l|E we

assume that the r.v. ql is independent of Ll and c(s), and
thus obtain:

E
h

β̂l|NE

i

= E [ql]
“

E [Ll] + E
h

c
(s)

i”

E
h

β̂l|E
i

= E [Tl] − E [Ll] + E [ql]
“

E [Ll] + E
h

c
(s)

i”

(17)

To finally derive the expression of E
h

β̂l

i

based on Equa-

tion 14 we need to characterise pl,i, i.e., the probability that
the delay of the first stage related to provider l (βl) is greater
than the shortest m delays. By recalling that Bl represents
the delay of the first stage on the i-th pipe, pm,i can be
expressed as follows:

pm,l = P (βl = Bm+1) + P (βji = Bm+2) + . . . + P (βl = BM). (18)

The terms P (βl = Bk), k = 1, . . . , M will be completely
derived in the following of the analysis, as they are required
for characterising other parts of the model, as well. As far
as pm,l is concerned, we can anticipate that pm,i turns out
to be a complex function of the average values of all the r.v.
βl, and therefore, finding the average values of the r.v. βl by
exploiting Equation 14 requires to solve a complex non-linear
system. In general, this is possible only numerically. To
provide a closed formula, we derive pm,l in the case in which
the r.v. βl are independent and identically distributed. In
this case, it is straightforward to see that pm,l is equal to
M−m

M
. Based on this assumption, from the expression of β̂l

in Equation 14, and by using Equations 17, we can derive

the average value of the service time of the queue, E
h

β̂l

i

as:

E
h

β̂l

i

=
E

h

β̂l|E
i

M
m

− λ
“

E
h

β̂l|NE

i

− E
h

β̂l|E
i” (19)

=
E [Tl] − E [Ll] + E [ql]

“

E [Ll] + E
h

c(s)
i”

M
m

− λ (E [Ll] − E [Tl])
. (20)

According to the general results of M/G/1 queue, to de-
rive the average value of βl we should compute the second
moment of β̂l. Unfortunately, this would make the analy-
sis untractable, unless we consider a set of quite unrealistic
assumptions, such as the independence of the r.v. Ll and
Tl. Therefore, we approximate the analysis by considering
an equivalent M/M/1 queue, in which the service time is ex-
ponential and its average value is provided by Equation 20.
It immediately follows that the average delay for uploading
the input parameters to provider l is:

E [βl] =
E

h

β̂l

i

1 − λE
h

β̂l

i .

This concludes the proof.

Lemma 2. The probability of the set {βk1, . . . βki} being
the i-th ordered shortest variables in the set {βl}l=1,...,M is

P (βk1, . . . , βki) =

Qi
p=1 φkp

P

M
p=1 φp

P

M
p=1
p6=k1

φp . . .
P

M
p=1
p6=k1,...,k(i−1)

φp

Proof. The proof of Lemma 2 assumes that the r.v.
βl are independent and exponentially distributed with rate
φl = 1/E[βl]. Let us focus on the case where i = 2, i.e. we
want to find the probability that βk1 and βk2 are the short-
est and the second shortest r.v. in the set. We can write
P (βk1, βk2) as

P (βk1, βk2) = P (βk1)

= P (βk2is the second-shortest|βk1is the shortest).

As we assumed that the r.v. βl are exponential and inde-
pendent, the probability that βk1 is the shortest r.v. in the
set {β}l is φki

P

M
p=1 φp

. The probability that βk2 is the second-

shortest given βk1 is the shortest, is the probability that βk2

is the shortest r.v. in the set {βl} \ {βk1}, i.e. φk2
P

M
p=1

p 6=k1

φp
.

Generalising this line of reasoning, we obtain the expression
of P (βk1, . . . , βki) shown in the Lemma.

Theorem 5. The time required by a seeker to complete
the upload of the input parameters on provider i + 1 (i =
0, . . . , m − 1) is distributed as follows:

Bi+1 ∼
M

X

k1=1

. . .

M
X

ki=1
ki6=k1,...,k(i−1)

P (βk1, . . . , βki) exp

0

B

B

@

M
X

p=1
i6=k1,...,ki

φp

1

C

C

A

and its average value is:

E [Bi+1] =

M
X

k1=1

. . .

M
X

ki=1
ki6=ki,...,k(i−1)

P (βk1, . . . , βki)
PM

p=1
p 6=k1,...,ki

φp

.

Proof. Let us focus first on the distribution of the first
two stages, i.e. B1 and B2. B1 is clearly the minimum of
the r.v. {βl}, and is thus exponential with rate

PM

p=1 φp.
The distribution of B2 can be derived according to the

following line of reasoning. Assume that B1 is equal to βk1

for some k1. Then, B2 is distributed as the minimum of
the r.v. in the set {βl} \ {βk1}, i.e. it is exponential with

rate
PM

p=1
i6=k1

φp. By applying the law of total probability

and recalling the result of Lemma 2, we obtain that B2 is
hyperexponential, and is distributed as follows:

B2 ∼
M

X

k1=1

φk1
PM

p=1 φp

exp

0

B

@

M
X

p=1
p 6=k1

φp

1

C

A

where exp(x) denotes an exponential distribution with rate
x. The above line of reasoning can be extended to all the
r.v. Bi. Specifically, for a given variable Bi+1 we can con-
sider the generic set of r.v. shorter than Bi+1, denoted as
βj,k1, βj,k2, . . . , βj,ki. Note that we assume that this set is
ordered. Then, Bj,i+1 is the minimum in the set {βl} \

{βk1, βk2, . . . , βki}, it is exponential with parameter
PM

p=1
p 6=k1,...,ki

φp.

The results of the Theorem follow immediately by apply-
ing the law of total probability, and exploiting the result in
Lemma 2.

C. SECOND STAGE DERIVATIONS
In this Appendix we provide the detailed derivations re-

lated to the second stages, i.e. we prove Lemmas 3 and 4.

Lemma 3. The average delay of the second stage of pipe
i, assuming provider l corresponds to it is

E[Di|l] =
E[X2

l] + 2E[Xl]

2µlE[Xl](1 − ρl)
,

where Xl is the size of the batches arriving at provider l.
Furthermore, the utilisation of the providers is

ρl =
λX,lE[Xl]

µl

=
E[Xl]

µl(E[L
(P)
l] + E[c(s)])

,

where λX,l is the rate of batch arrivals at provider l.

Proof. A new request is ready at provider l as soon as
its input parameters are uploaded by the respective seeker.
Therefore, in general, whenever provider l encounters a seeker,
a batch of new request becomes available for being executed.
Assuming the batch size X is iid, we can model the second
stage as an M[X]/M/1 batch arrival system.

We first need to derive the rate of batch arrivals, λX,l.
The inter-arrival time between batches is the time interval
between the end of a contact between provider l and a seeker,
and the end of the next contact with any other seeker. Re-
calling the result of Section 4.1, we can say that the average
time interval from the end of a contact with a seeker and
the point in time when the next seeker is encountered is

equal to EL
(P)
l , P denoting the whole set of seekers. The

average time between batches is therefore EL
(P)
l + Ec. As

the inter-contact time between any two nodes is assumed to
be exponential, the inter-contact time between the tagged
provider and any seeker is the minimum over a set of ex-
ponential iid random variables, and it thus exponential too.
Therefore, the rate of batch arrivals is λX,l = 1

EL
(P)
l

+Ec
.

The expected delay of the second stage is the average delay
of the M[X]/M/1 system. If E[Wi|l] denotes its expected
waiting time, E[Di|l] is then E[Wi|l] + 1/µl, and can be
computed according to Equation 4.13(a) (page 47 of [23]).
Specifically, we obtain the formula reported in the Lemma:

E[Di|l] = E[Wi|l] +
1

µl

=
λX,lE[Xl]

2
µ2

l

2(1 − ρl)
+

E[X2
l] 1

µl

2E[Xl](1 − ρl)
+

1

µl

=
E[X2

l] + 2E[Xl]

2µlE[Xl](1 − ρl)
.

Finally, according to [23], the utilisation of provider l (ρl)
is as follows:

ρ = λX,lE[Xl]
1

µl

=
E[Xl]

µl(E[L
(P)
l] + E[c(s)])

.

This concludes the proof.

Lemma 4. The probability of provider l corresponding to
pipe i + 1 (i = 0, . . . , m − 1) is

P (Bi+1 = βl) =
M

X

k1=1
k1 6=l

. . .

M
X

ki=1
ki6=k1,...,k(i−1),l

P (βk1, . . . , βki)φl
P

M
s=1
s 6=k1,...,ki

φs

.

Proof. This probability actually corresponds to the prob-
ability that the r.v. βl takes the (i + 1)-th shortest value in
the set {βl}. If we condition this probability to the set of
r.v. taking the shortest i values, i.e., we assume that Bj1 =

βk1, B2 = βk2, . . . , Bi) = βki for a given set βk1, . . . , βki

such that βl is not in this set, then the conditional proba-
bility that βl is equal to Bi is the probability that βl takes
the minimum value in the set {βl} \ {βk1, . . . , βki}, which

is φl/
PM

p=1
p 6=k1,...,ki

φp. Furthermore, the probability that of

the event {B1 = βk1, B2 = βk2, . . . , Bi = βki} is provided
by Equation 5. The expression of P (Bi+1 = βl) shown in
the lemma follows immediately by applying the law of total
probability.

D. THIRD STAGE DERIVATIONS
In this Appendix we provide the detailed derivations re-

lated to the delay of the third stages, i.e., we prove Lemma 5.

Lemma 5. The average delay of the third stage of pipe i
conditioned to the fact that provider l corresponds to the pipe
is

E [θi|l] =
E

h

θ̂i|l
i

1 −
λ′

i

k
E

h

θ̂i|l
i ,

where E
h

θ̂i|l
i

is:

E
h

θ̂i|l
i

=
E [Tl] − E [Ll] + E [ql]

“

E [Ll] + E
h

c(s)
i”

m −
λ′

i
k

(E [Ll] − E [Tl])

.

Proof. The analysis of the delay of the third stage is
similar to that related to the first stage. The line of rea-
soning is as follows. Assume we now the provider that cor-
responds to pipe i. When the service execution ends, the
provider has to download the output results to the seeker.
In general, other results might still be waiting for download
to the same seeker. Therefore, we can model the process
of results download with an M/G/1 queue, in which the
service time is the time required to download the output
parameters to the seeker, from the point in time when the
request starts being served (i.e., all previous requests have
completed). As in the case of the M/G/1 queue used to
model the first stage, we have to distinguish three cases to
compute the service time: i) the download does not occur
because the seeker has already got the results from another
provider; ii) the queue is empty when the results are ready
to be downloaded, and iii) the queue is not empty when the
results are ready to be downloaded. Recall that, as a mat-
ter of notation, we denote with θi the M/G/1 queue delay,

with θ̂i its service time, and with θi|l and θ̂i|l the same fig-
ures conditioned to the fact that the pipe corresponds to
provider l. The derivation of θi|k is quite similar to that

of βi carried out in Appendix B.The service time θ̂i|l can
be computed as in Equation 14, by replacing all figures re-
lated to β with the corresponding figures related to θ, with
slight additional modifications. The expressions of θ̂i|l,NE

and θ̂i|l,E can be derived from Equations 16 by consider-
ing that Tl and Ll now describe the time required for the
provider l to meet with the tagged seeker, and ql is the
number of contacts required to complete the download. The

term ρl becomes ρl =
λ′

i

k
E [θi|l], as the offered load of the

M/G/1 queue is the offered load of the third stage, divided
by the number of seekers generating that load (k). The term
pm,l needs some more elaboration. The main difference is
that the result downloads for a given request does not start

at the same time (while the parameters upload do start at
the same time). Therefore pm,l, i.e., the probability that
a results download is cancelled, should be evaluated as fol-
lows. pm,l can be seen as the probability that the i-th pipe,
provided it corresponds to provider l, is not the first one to
complete. By recalling the general notation in Section 4, this
is actually P (Ri|l > mins6=i Rs|∼l), where Ri is the delay of
the pipe i, and the notation Rs|∼l corresponds to the delay
of the s-th pipe when all providers but l may correspond to
that pipe. As for the case of the first stage, the only case in
which a simple closed form for pm,l can be provided is when
the r.v. Ri are iid. In that case, it is straightforward to
obtain pm,l = m−1

m
. Finally, the closed form expression for

the average value of θi|l can be immediately obtained from
Equation 3 after applying the replacements discussed above,
obtaining the results shown in the Lemma.

E. DERIVATIONS FOR THE OPTIMAL REPLI-
CATION

In this section we provide the detailed derivations of the
expected service execution delay E[R(m)] as per Theorem 4.

Theorem 4. The average time for the seeker to avail of
service Sj is

E[R(m)] =
(E[D] + E[θ])2

m(E[D] + E[θ]) − E[β] ln Q−1
Q−m−1

,

where Q is equal to E[β]
ED+Eθ

+ M + 1.

Proof. Having assumed that the r.v. Ri are indepen-
dent and exponentially distributed with rate γi, it follows
that R(m) is exponential with rate Γ(m) =

Pm

i=1 γi =
Pm

i=1 1/E[Ri]. Recalling the simplifications described in
Section 4.5, E[Ri] can be written as

E[Ri] =
E[β]

M − i + 1
+ E[D] + E[θ].

After simple algebraic manipulations, the rate Γ(m) can be
written as follows:

Γ(m) =
m

X

i=1

„

1

E[D] + E[θ]
−

E[β]

(E[D] + E[θ])2
1

Q − i

«

=

=
m

E[D] + E[θ]
−

E[β]

(E[D] + E[θ])2

m
X

i=1

1

Q − i
,

where Q = E[β]
E[D]+E[θ]

+ M + 1. Approximating Q with the

closest integer number, the factor
Pm

i=1
1

Q−i
can be approx-

imated using the sum of the harmonic series, as ln Q−1
Q−m−1

.

Therefore, Γ(m) becomes

Γ(m) =
m

E[D] + E[θ]
−

E[β]

(E[D] + E[θ])2
ln

Q − 1

Q − m − 1
,

and ER(m) immediately becomes as shown in the Theo-
rem.

