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Abstra
t. Human so
ial relationships are a key 
omponent of emerging


omplex te
hno-so
ial systems su
h as so
ially-
entri
 platforms based

on the intera
tions between humans and ICT te
hnologies. Therefore,

the models of human so
ial relationships are fundamental to 
hara
terise

these systems and study the performan
e of so
ially-
entri
 platforms

depending on the so
ial 
ontext where they operate. The goal of this pa-

per is presenting a generative model for building syntheti
 human so
ial

network graphs where the properties of so
ial relationships are a

urately

reprodu
ed. The model goes well beyond a binary approa
h, whereby edges

between nodes, if existing, are all of the same type. It sets the properties

of ea
h so
ial link, by in
orporating fundamental results from the an-

thropology literature. The syntheti
 networks it generates a

urately re-

produ
e both the ma
ros
opi
 stru
ture (e.g., its diameter and 
lustering


oeÆ
ient), and the mi
ros
opi
 stru
ture (e.g., the properties of the tie

strength of individual so
ial links) of human so
ial networks. We 
ompare

generated networks with a large-s
ale so
ial network data set, validating

that the model is able to produ
e graphs with the same stru
tural proper-

ties of human-so
ial-network graphs. Moreover, we 
hara
terise the im-

pa
t of the model parameters on the syntheti
 graph properties.
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1 Introdu
tion

In the last de
ade the proliferation of personal mobile devi
es, e.g. the smart-

phones, led to the emergen
e of ele
troni
 pervasive so
ial networks whi
h are

drasti
ally 
hanging the way the information is 
ir
ulating. In parti
ular there is

a 
onvergen
e between the 
yber/virtual and the physi
al world. Indeed, 
ontent

generated in the physi
al spa
e produ
es out
omes in the 
yber/virtual world

and, similarly, information generated in the 
yber spa
e has immediate in
u-

en
e on the physi
al world. At the 
ore of this 
onvergen
e there are humans

whi
h, through their devi
es, transfer the information between the physi
al and

the 
yber spa
e in both dire
tions. The analysis of the human so
ial behaviour

is therefore be
oming fundamental for the development of so
ially 
entri
 plat-

forms [1℄, whereby the properties of the so
ial relationships between users are

taken into a

ount in the 
ore design of the 
ommuni
ation algorithms.



In addition, information te
hnologies 
an also be used as tools to generate

simulated so
ial environments where properties of human so
ial relationships


an be studied \in vitro", under 
ontrollable parameters. For example, a

urate

models of human so
ial networks 
an be used to study information dissemination

or opinion spreading at large s
ale and under a range of parameters' values.

In this work we present a model for the generation of syntheti
 so
ial net-

works whose stru
ture reprodu
es the main properties of human so
ial networks.

It starts from the model presented in [2℄ whi
h is able to generate single ego net-

works (a simple form of so
ial network) based on well-known results in the �eld

of anthropology. We extend the original model in order generate 
omplete so
ial

networks formed by inter
onne
t ego networks. With this purpose, the model

relies on well-known properties in the so
ial networks literature, su
h as the

\triadi
 
losure", the presen
e of bridges and geographi
al 
onstraints [3, 4℄. The

parameters of the model permit to generate di�erent so
ial networks tuning the

geographi
al 
onstraints and 
hanging the 
riteria the individuals use to 
reate

new so
ial relationships. Experimental results demonstrate that generated net-

works a

urately mat
h the properties of human so
ial networks. Spe
i�
ally,

we show that our model is able to reprodu
e both ma
ros
opi
 properties of the

network, su
h as its diameter and its 
lustering 
oeÆ
ient, but also mi
ros
opi


properties, su
h as the strength of the tie of individual so
ial links, and the


orrelation between the tie strength of di�erent so
ial links.

The use of this model for generating syntheti
 so
ial network has several

pra
ti
al appli
ations. On the one hand, it is a tool for a

urately studying

pro
esses of so
ial intera
tion via simulations. For example, it is possible to

analyse variations of the information di�usion pro
ess using di�erent settings of

the model parameters. On the other hand, the model permits the development

and the performan
e evaluation of algorithms and proto
ols for so
ially 
entri


platforms and systems.

The remainder of this paper is organised as follows: in Se
tion 2 we give an

overview of the results regarding human so
ial networks; in Se
tion 3 we sum-

marise the model for the generation of single ego networks and then we introdu
e

the new model for the generation of 
omplete so
ial networks; in Se
tion 4 we

validate our model 
omparing di�erent generated networks with a real human

network; �nally, in Se
tion 5, we draw the main 
on
lusions of our work.

2 Ba
kground and Related Work

The study 
on
erning the 
omposition and the stru
ture of human so
ial net-

works are arousing the interest of an in
reasing number of resear
hers in many

di�erent �elds [2, 3, 5{12℄. Signi�
ant attention has been devoted to ego networks,

whi
h are so
ial networks between an individual (ego) and the other people (al-

ters) the ego has a so
ial relationship with [5℄. Despite being small-size networks,

ego networks are important as they permit to fully 
hara
terise the properties

of so
ial links between individuals.
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Fig. 1: (a) Ego network stru
ture; (b) Complete so
ial network.

One of the main results about ego networks is that their stru
ture 
onsists of

a series of 
on
entri
 layers of a
quaintan
eship with in
reasing size [6℄. Based

on data 
olle
ted on real human networks, Dunbar et al. [12℄ identify four layers:

\support 
lique", \sympathy group", \aÆnity group" and \a
tive network" (the

whole ego network) with average sizes of � 5, � 12, � 35 and � 150 respe
tively.

The sizes are evaluated 
onsidering that layers are in
lusive. Sometimes in this

paper, we use the term external part of a layer in order to refer to the part of

the layer not overlapped with its inner levels (e.g., for the sympathy group it is

the part of the layer not overlapped with the support 
lique). Going from inner

to outer layers, while the number of alters in
reases, the strength of the so
ial

tie between the ego and the alters diminishes. This means that, typi
ally, an ego

has few very strong so
ial relationships in the support 
lique and a lot of weak

ties in the a
tive network (external part). The hierar
hi
al stru
ture of an ego

network is depi
ted in Figure 1(a).

It has been shown that this hierar
hi
al stru
ture and the typi
al sizes of

the layers are related to the level of emotional 
loseness (the strength of a

so
ial tie) and the 
ognitive resour
es humans allo
ate to so
ial relationships.

Intuitively, maintaining a so
ial relationship has a 
ognitive 
ost (e.g., due to

spending time together, remembering fa
ts about the alter, et
). As the total

\
ognitive 
apa
ity" humans devote to so
ial relationships is limited, the sizes

of the layers are also limited [8, 9℄. Other results regard the 
omposition of ea
h

layer of the ego network with respe
t to the gender of the alters and to the family

relationships [8, 10℄. The authors of [2℄ de�ne a model whi
h allows to generate

syntheti
 ego network graphs that satisfy all these properties. The pro
edure for

the generation of these graphs is summarised in Se
tion 3.1.

While being a very important model for studying 
ertain properties of so-


ial relationships, ego networks alone 
annot provide a 
omplete representation

of human so
ial networks. Indeed they do not 
apture the mutual relationships

between the alters or, in other words, the 
orrelation between di�erent ego net-

works. This gap 
an be �lled 
onne
ting ego networks together in order to form

a 
omplete so
ial network as shown in Figure 1(b). Due to the high 
omplexity

of 
omplete so
ial networks, the 
hara
terisation of their properties is way less

advan
ed than that of ego networks. To the best of our knowledge, three main

properties have been experimentally 
hara
terised in the literature, i.e. (i) tri-



adi
 
losure, (ii) the presen
e of bridges, and (iii) the dependen
e of so
ial links

on geographi
al distan
e.

Properties (i) and (ii) were investigated by Granovetter in [3℄. In the paper,

the author de�nes the triadi
 
losure as a property of the so
ial networks for

whi
h, if a strong so
ial tie exists between two pairs of nodes A-B and B-C,

there is, with a high probability, a tie between the nodes C-A whi
h 
loses the

triangle. The links in so
ial networks that do not take part in triangles are


alled \bridges" and, a

ording to the study in [3℄, they are mainly weak ties.

Bridges have an important role in the so
ial network stru
ture as they 
onne
t

so
ially distant parts of the network enabling to rea
h people and information

not a

essible via strong ties [3℄. The presen
e of bridges leads the diameter of the

network to be short, as in the results of the Milgram experiment [11℄. At the same

time, the triadi
 
losure property guarantees a high level of 
lusterisation. For

these reasons, human so
ial networks 
an be 
lassi�ed as small- world networks,

a

ording to the de�nition given by Watts and Strogatz [13℄.

The presen
e of geographi
al 
onstraints (iii) is another key fa
tor in the

formation of human so
ial networks. Indeed, for ea
h person, it is more likely to

have a so
ial relationship with an individual who lives 
lose to him, than to have

a tie with a person who lives far away. This hypothesis is veri�ed experimentally

by Onnella et al. in [4℄. They analysed a huge data set of so
ial intera
tions based

on mobile phone 
alls in whi
h ea
h user is tagged with the geographi
al position

where she probably lives. Plotting the frequen
ies of so
ial ties between users

whi
h live at di�erent distan
es, it emerges that the de
ay of the tie probability

follows a power-law of the form P (d) � d

��

, where d is the geographi
al distan
e

and � is the power-law exponent. Using the maximum-likelihood method, the

authors estimate � = 1:5 [4℄.

In the last �ve years, thanks to the advent of online so
ial networks (OSNs),

the analysis of large so
ial network graphs be
ame more a�ordable. Indeed most

of the re
ent work in so
ial network analysis fo
uses on the 
hara
terisation of

the global properties of a spe
i�
 OSN, su
h as Fa
ebook [14{16℄ and Twitter [17,

18℄. Some important results were obtained, e.g. the validation of the \small-world

property" [14℄, the eviden
e of the Dunbar's number [17℄ and the dis
overy of

the power-law distribution of the degree [15℄. However, these results are relevant

only for the virtual environment sin
e they are stri
tly related to the parti
ular

graph 
onsidered. In addition, these analyses and the resulting network models

typi
ally do not pay suÆ
ient attention to mi
ros
opi
 features of so
ial links,

su
h as the asso
iated tie strength, but use a binary model where links either

exist or not exist (i.e., unweighted graphs).

In this work we de�ne an original approa
h to so
ial network analysis, by

developing a model for the generation of human so
ial networks whi
h, to the

best of our knowledge, reprodu
es the key properties of human so
ial network

highlighted in the anthropology literature. In 
ontrast with lega
y studies on

OSNs we take into a

ount the so
ial aspe
ts whi
h 
hara
terise the human so
ial

networks, su
h as the strength of the ties, the 
ognitive resour
e 
onsumption of



the individuals and the 
orrelation between the strength of ties between di�erent

users.

3 The Model

The model des
ribed in this se
tion is de�ned by an iterative pro
edure able to

generate syntheti
 so
ial network graphs whi
h exhibit the typi
al features of

human so
ial networks des
ribed in Se
tion 2.

The pro
edure operates on two distin
t levels of the network stru
ture: the

lo
al level, in whi
h the ego networks are generated, and the global level, in whi
h

the ego networks are opportunely 
onne
ted to form a 
omplete so
ial network.

Based on these distin
t levels, we 
an 
onsider our model as the union of two

di�erent models: a single-ego model and a multi-ego model respe
tively.

The single-ego model is based on the work in [2℄ whi
h we summarise in

Se
tion 3.1. The multi-ego model, whi
h relies on the 
on
epts of triadi
 
losures,

bridges and geographi
al 
onstraints, is des
ribed in detail in Se
tion 3.2.

3.1 Single-Ego Model

The model assumes that ea
h ego has a �nite budget of 
ognitive resour
es

for so
ial relationships, expressed as the total time the ego devotes to so
ial

intera
tions. The algorithm adds so
ial links to an ego network, asso
iated with

the time devoted by the ego to that parti
ular relationship. The ego network

is 
ompleted when the ego's total budget is over. The model 
onsiders a three-

level stru
ture in whi
h layers are 
alled \support 
lique", \sympathy group"

and \a
tive network" with average size respe
tively 4:6, 14:3 and 132:5 (referen
e

values are given in [6℄). This stru
ture di�ers from ego network stru
ture de�ned

in Se
tion 2 by the absen
e of the \aÆnity group" layer. This is justi�ed in [2℄

by the la
k of results about its properties 
urrently available in literature.

The algorithm initialises ea
h ego i with a budget of time bdg, the size of the

sympathy group s

sym

and the size of the support 
lique s

sup

. Ea
h of these values

is drawn from a 
arefully de�ned density fun
tion (f

B

, f

S

and f

W

respe
tively).

After the initialisation, the algorithm starts 
reating new so
ial ties whi
h are


hara
terised by a 
ertain level of emotional 
loseness, extra
ted from a density

fun
tion f

E

. The level of emotional 
loseness is subsequently 
onverted into time

by a 
onversion fun
tion h, and then subtra
ted from the residual time budget

bdg

1

. New so
ial relationships are �rst in
luded in the support 
lique layer until

it rea
hes the target size, subsequently, in a similar fashion, they are in
luded in

the sympathy group (external part). For the external part of the outermost layer,

the algorithm adds new so
ial ties until the budget of time is totally exhausted.

De�nitions of the density fun
tions f

B

, f

S

, f

W

, f

E

and of the 
onversion

fun
tion h, summarised in Table 1, are dire
tly obtained from [2℄.

1

Note that the model asso
iates a level of emotional 
loseness to so
ial ties, instead of

dire
tly asso
iating a time budget, as the former is the typi
al way of 
hara
terising

the strength of so
ial ties in the anthropology literature [8, 9℄.



Table 1: Fun
tions de�nition.

Fun
tion Des
ription De�nition

f

B

Time spent by egos in so
ial a
tivity Gamma(205; 8:5264)

f

S

Sympathy group size Gamma(4:1; 3:49)

f

W

Ratio between sympathy gr. and support 
l. sizes Normal(0:3217; 0:1608)

f

E

Emotional 
loseness level

a

Normal(0:419; 0:237)

h Emotional 
loseness ! Time 
onversion fun
tion

b

h(e) = 117:18

e

a

We merged together the fun
tions de�ned in [2℄ for kin and non-kin. The limits of

the intervals of emotional 
loseness are: low

sup

= 0:8337 and low

sym

= 0:71.

b

Cal
ulated with the method des
ribed in [2℄ 
onsidering f

E

.

3.2 Multi-Ego Model

The multi-ego model is designed in order generate 
omplete human so
ial net-

works, in whi
h ea
h node represents an individual whose ego network follows the

model des
ribed in Se
tion 3.1. In the multi-ego model a node is part of several

ego networks with di�erent roles. In this se
tion we �rst present the high-level

strategies the model follows, then we des
ribe the algorithm in detail.

The model 
onsiders a human so
ial network as a large group of individuals

whi
h are inter
onne
ted by so
ial links. Intuitively, the pro
edure de�ned by the

single-ego model 
an be applied to ea
h of these individuals in order to generate

its ego network. However, applying the single-ego pro
edure, we have to take

into a

ount that ea
h new so
ial link an individual adds to its ego network,

also alters the ego network of the other individual involved in the relationship.

This means 
he
king, upon 
reation of a new link, that the properties of the

involved ego networks are preserved. In detail, we have to 
he
k that (i) the size

of the support 
lique, (ii) the size of the sympathy group, and (iii) the total

budget of time remain 
onsistent. Moreover, in order to generate 
omplete ego

networks we have to take into a

ount the additional properties des
ribed in

Se
tion 2, i.e. triadi
 
losure, presen
e of bridges and geographi
al 
onstraints.

A new so
ial link 
an be established either exploiting the triadi
 
losure

property or 
reating a bridge. The strategy to be used is randomly sele
ted

based on a given probability. In 
ase the triadi
 
losure strategy is sele
ted,

the pro
edure tries to 
lose a triangle, that is, given an origin node, it sele
ts

a node at a distan
e of 2 hops as link's destination, favouring strong tie hops.

On the 
ontrary, in 
ase the pro
edure follows the bridge 
reation strategy, the

destination node is 
hosen randomly. In both 
ases geographi
al 
onstraints have

to be respe
ted. In order to do this, we in
orporate geographi
al information into

the nodes, asso
iating to them random lo
ations in a virtual spa
e. Whatever

strategy to 
reate links is sele
ted, the model guarantees that the probability

to have a so
ial link between two nodes is proportional to a power law of the

distan
e between them. Remember this is 
onsistent with empiri
al results in

the literature [4℄.



1: pro
edure CreateSo
ialNetwork(n; p; f

D

; f

B

; f

S

; f

W

; f

E

; h)

2: for i 1; n do

3: i CreateEgo(f

B

; f

S

; f

W

)

4: i:pos Extra
tFrom(Uniform(�1; 1))

5: V  V + i

6: end for

7: for all layer l 2 fsup; sym; netg do . maintaining the ordering

8: while Open(V; l) is not empty do

9: i random sele
t in Open(V; l)

10: if Rand() < p then

11: j  ClosureSele
t(i; f

D

;Open (V; l))

12: else

13: j  BridgeSele
t(i; f

D

;Open (V; l))

14: end if

15: r NewSo
ialLink(i; j)

16: r:e Extra
tFrom(f

E

in (low

l

; up

l

))

17: update E, i:size, j:size, i:dbg and j:bdg

18: end while

19: end for

20: return V; E

21: end pro
edure

Fig. 2: Multi-ego model's algorithm.

Algorithm. The pseudo-
ode of the algorithm used for generating syntheti
 hu-

man so
ial network graphs is shown in Figure 2. The input required by the algo-

rithm 
onsists of: (i) the number of nodes in the network n; (ii) the probability p

to 
reate a new so
ial link using the triadi
 
losure property rather than 
reating

a bridge; (iii) the power-law distribution fun
tion f

D

whi
h gives the probability

to establish a so
ial link between nodes at a spe
i�
 distan
e; (iv) the parame-

ters used to de�ne the stru
ture of the single ego networks f

B

; f

S

; f

W

; f

E

; h, as

required by the single-ego model (see Se
tion 3.1).

In the �rst part of the algorithm we 
reate and initialise ea
h node i in

the network as an ego (lines 2-6). For ea
h node we �rst 
all the pro
edure

CreateEgo whi
h sets the size of the sympathy group i:s

sym

and the size of

the support 
lique i:s

sup

. It also assigns the budget of time i:bdg and initialises

the 
ounter i:size whi
h is then used to keep tra
k of the total size of the ego

network (line 3). We also assign a geographi
al position of the ego (i:pos) whi
h

is randomly sele
ted in a given spa
e whi
h, without loss of generality, we assume

mono-dimensional, 
ir
ular and in
luded in the interval between �1 and 1. This

de�nition guarantees that the distan
e between any pair of nodes is between 0

and 1 (line 4). Finally, ea
h generated ego is in
luded in the set V (line 5).

After the initialisation of the egos, we start adding so
ial links to the network.

First, we 
reate all the so
ial links belonging to all the support 
liques, then

we 
ontinue with the sympathy groups (external part), and �nally we add the

links of the a
tive networks (external part) (line 7-17). Given the layer l we are

populating, the 
reation of a new so
ial link between two nodes i and j starts

with the sele
tion of the node i, drawn randomly from the nodes labelled as open



origin node

i

k

j

nodes in set K

nodes in set J

social links

new social link

Fig. 3: Triadi
 
losure strategy.

(line 9). An \open" node is an ego whose population of the 
urrent layer l is not

yet 
ompleted

2

. The sele
tion of the nodes involved in a new so
ial link from

the open node set Open (V; l) guarantees the preservation of the ego network

properties. The fundamental part of the algorithm is the sele
tion of node j.

We use two di�erent strategies: (i) the triadi
 
losure me
hanism (pro
edure

ClosureSele
t) and (ii) the bridging (pro
edure BridgeSele
t). The former

strategy is 
hosen with a probability given by the parameter p, while the latter

with probability 1� p (lines 10-14).

The bridging, i.e. the 
reation of a bridge, is the simplest strategy. We extra
t

a node j from the open egos in the network for the 
urrent layer l, ex
luding the

nodes already 
onne
ted to i, taking into a

ount the geographi
al 
onstraints.

The probability to sele
t a node j is thus proportional to the value of the power-

law fun
tion f

D

(dis
ussed in detail at the end of the se
tion), given the distan
e

dist(i; j) between i and j. Formally,

P (j) / f

D

(dist(i; j)) j 2 Open (V; l)�Nei(i)� i (1)

where Nei(i) is the set of one-hop neighbours of node i.

If ea
h node in the network, not 
onne
ted to node i, is 
losed (not open),

node j 
an not be sele
ted. In this 
ase node i is for
ed to be 
losed. We have

experimentally 
he
ked that this 
ir
umstan
e o

urs just in a negligible number

of 
ases and that the overall results are not a�e
ted.

Using the triadi
 
losure strategy, represented in Figure 3, we �rst sele
t the

set K of the neighbours of i. From this set, we extra
t an intermediate node k

with a probability that is proportional to the tie strength e

ik

between i and k

multiplied, in order to satisfy the geographi
al 
onstraints, by a fun
tion of the

distan
e dist(i; k) (Equation 2). Given the intermediate node k and the 
urrent

layer l, we de�ne the set J as the set of open neighbours of k, with respe
t to l,

ex
luded node i and its neighbours. From the set J we extra
t node j using the

same method used for the sele
tion of node k, 
onsidering the so
ial relationship

between k and j (Equation 3).

2

In 
ase the 
urrent layer l is the support 
lique or the sympathy group, an ego i

is open if its ego network size i:size has not rea
hed the thresholds i:s

sup

or i:s

sym

respe
tively. In 
ase l is the a
tive network, i is open if it has not exhausted its time

budget i:bdg.
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If the set J is empty we go a step ba
kward and we sele
t a di�erent node k.

If, for ea
h k 
hosen, it is not possible to de�ne a non-empty set J , the pro
edure

fails and the algorithm re
overs sele
ting j using the bridging. Bridging is also

used in 
ase node i has not neighbours, i.e. the set K is empty.

The fun
tion of the distan
e we use in Equations 2 and 3 is de�ned as the

square root of the fun
tion f

D

. This de�nition guarantees that the geographi
al

distan
e between 
onne
ted nodes in the �nal network follows the power-law rule

de�ned in f

D

. In Figure 4 we show a 
omparison between a given fun
tion f

D

and the geographi
al distan
es obtained using this algorithm.

After the sele
tion of node j, a new so
ial link r between nodes i and j

is 
reated (line 15). Its emotional 
loseness r:e is extra
ted from the density

fun
tion f

E

in the same manner as in the single-ego model (line 16). Then, we

update the network adding the new so
ial relationship r to the set of links E. We

also update the egos i and j, in terms of the ego network sizes (i:size and j:size

respe
tively) and of the residual budget of time (i:dbg and j:bdg respe
tively)

(line 17). It is worth noting that this update 
an determine the transition of a

node from the open to the 
losed state, with respe
t to the 
urrent layer l.

For ea
h layer l, we generate and add new so
ial links until there are open

nodes available. When the set of the open nodes is empty, the pro
edure swit
hes

to the next layer until all the three layers are 
ompleted.

Fun
tion f

D

A

ording to the results presented in [4℄ and summarised in se
-

tion 2 the probability of 
onta
t between two users at a 
ertain distan
e follows

a power-law of the form P (d) / d

��

. In order to obtain a related probabil-

ity density fun
tion f

D

we have to introdu
e a thresholds d

min

from whi
h the

power-law hods. Moreover it has to be de�ned for the range of values of d, whi
h

is the interval (0; 1). The fun
tion, shown in Figure 4, is thus de�ned as:

f

D

(d) /

�

d

��

min

for 0 < d < d

min

d

��

for d

min

< d < 1

(4)



Experimental results in [4℄ suggest that � = 1:5. On the 
ontrary, a value

for d

min


annot be set in general sin
e it strongly depends on the geographi
al

spa
e we 
onsider and on the geographi
al distribution of the sampled popu-

lation. Note that, given the number n of nodes in the network, sin
e they are

equally distributed in the spa
e, n � d

min

is the average number of nodes within

the distan
e d

min

from any given position. Thus, given a node in the network,

the 
losest n � d

min

nodes (on average) have the same highest-probability to be

sele
ted as destination of a so
ial link. This parameter impa
ts on the 
lustering


oeÆ
ient of the network, as we highlight in se
tion 4.2.

4 Model Validation and Properties of Generated Graphs

In this se
tion we validate our model 
omparing the syntheti
 so
ial networks it

generates with a real so
ial network. In Se
tion 4.1 we des
ribe the real so
ial

network we 
onsider for the validation. In Se
tion 4.2 we 
ompare the results

with the properties of the referen
e network and we highlight how key properties

of the generated networks depend on the model parameters.

4.1 Referen
e Network

The referen
e network we use for the validation of our model is obtained from a

large data set 
rawled from a Fa
ebook regional network on April 2008

3

. As we

dis
uss in [19℄, the analysis of this data set, opportunely pro
essed, shows that it

shares similar properties with respe
t to those observed in other types of human

so
ial networks, and thus it 
an be used as a representative network to validate

our model. Note that the network resulting from this data set is of a mu
h larger

s
ale with respe
t to the ones typi
ally analysed in the anthropology literature.

It 
ontains more than 23 million so
ial links (Fa
ebook friendships), involving

more than 3 million users. For ea
h so
ial link, the data set provides the number

of so
ial intera
tions o

urred between the users. A so
ial intera
tion 
an be

either a wall post or a photo 
omment. The 
omplete analysis of this data set is

available in [19℄. Hereafter, we summarise the key out
omes of this analysis that

are then used to validate our model.

From the original data set, some users have been dismissed sin
e they were

not 
onsidered relevant, either for having too few intera
tions, or be
ause they

had joined Fa
ebook just before the beginning of the data 
olle
tion period. As

dis
ussed in [19℄ both 
ases 
an lead to biased representations of ego networks.

The new data set obtained from the sele
tion of relevant egos and the so
ial

links between them 
ontains 90; 925 users and 1; 264; 658 so
ial links.

As des
ribed in [19℄, it is possible to extra
t from the data set the frequen
y

of intera
tion between users. Sin
e there are eviden
es of a strong 
orrelation

between the intera
tion frequen
y and the strength of the so
ial tie [8℄, we 
an

3

This data set is publi
ly available for resear
h at http://
urrent.
s.u
sb.edu/

fa
ebook/, referred as \Anonymous regional network A".



Table 2: Stru
tural properties of the referen
e and generated networks.

referen
e p = 0:8 p = 0:8 p = 0:8 p = 0:5

network d

min

=

250

n

d

min

=

500

n

d

min

=

1;000

n

d

min

=

500

n

mean degree 27:82 133:91 133:94 134:00 133:86

avg. shortest path 4:06 3:40 3:26 3:11 3:12


lustering 
oeÆ
ient :109 :152 :108 :085 :079

Ja

ard (global) :038 [:001℄ :060 [:001℄ :040 [:001℄ :030 [:001℄ :030 [:000℄

Ja

ard (support 
l.) :069 [:001℄ :084 [:001℄ :071 [:001℄ :064 [:001℄ :042 [:001℄

Ja

ard (sympathy gr.) :056 [:001℄ :073 [:001℄ :059 [:001℄ :053 [:001℄ :036 [:000℄

Ja

ard (aÆnity gr.) :042 [:001℄ - - - -

Ja

ard (a
tive net.) :031 [:001℄ :059 [:001℄ :037 [:000℄ :025 [:000℄ :030 [:000℄


onsider these frequen
ies de�ne the hierar
hi
al stru
ture of ego networks. Au-

thors in [19℄ show that 4 
lusters, 
orresponding to the typi
al layers of ego

networks highlighted by Dunbar [12℄, 
an be identi�ed also in Fa
ebook ego

networks.

Relevant properties of the referen
e network are reported in the se
ond 
ol-

umn of Table 2. The high 
lustering 
oeÆ
ient (with respe
t to random networks)

and the short average path length prove that the referen
e network is \small-

world". Analysing the properties summarised in the table we have to take into

a

ount that, for te
hni
al reasons (e.g. the dis
ard of not relevant nodes), the

data set 
aptures just a random sub-sample of the so
ial links on the 
rawled

Fa
ebook networks and some of the indexes are in
uen
ed by the sampling, i.e.

the average degree and the average path length. If we had the 
omplete network,

we would most likely �nd a higher average degree and a shorter path length. On

the 
ontrary, the 
lustering 
oeÆ
ient of a network preserves its value indepen-

dently of the 
onsidered random sub-sample [20℄.

We use the Ja

ard 
oeÆ
ient to estimate the similarity of the neighbour-

hoods of two adja
ent nodes, that is to say the ego networks of two so
ially tied

individuals. This is a very important index, as it des
ribes the 
orrelation be-

tween di�erent ego networks. Capturing this aspe
t is one of the key goals of our

model. The Ja

ard 
oeÆ
ient for two sets A and B is de�ned as J(A;B) =

jA\Bj

jA[Bj

and it is also not biased by random sub sampling

4

. Sin
e 
omputing the Ja

ard


oeÆ
ient between the end-points of ea
h so
ial link in the network requires huge


omputational e�orts, we estimate its average value 
onsidering the pairs of end-

points of a sample of 10; 000 edges randomly extra
ted from the network. The

estimated average Ja

ard 
oeÆ
ient (global) is reported in Table 2 (
omputed

with 95% 
on�den
e level). A

ording to this result, 
onsidering two so
ially


onne
ted individuals, their 
ommon a
quaintan
es are, on average, 4% of the

union of their a
quaintan
es. Intuitively, individuals 
onne
ted by strong ties

4

This 
an be easily seen observing that random sampling proportionally a�e
ts both

the union and the interse
tion sets.
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Fig. 5: Clustering 
oeÆ
ient and Ja

ard indexes for di�erent (a) d

min

(with

p = :8) and (b) p (with d

min

= 500=n). 95% 
on�den
e intervals < 0:001.

should have a higher ego network similarity than individuals 
onne
ted by weak

ties. In order to verify this intuition, we sampled 10; 000 edges for ea
h layer of

the ego networks (external part) and 
omputed the Ja

ard 
oeÆ
ient between

the ego networks of the nodes at the endpoints of the links. As expe
ted, results,

reported in Table 2, 
on�rm that the similarity is higher for inner layers and

lower for outer layers. Spe
i�
ally, it drops from about 7% for the support 
lique

to about 3% for the a
tive network.

4.2 Results

The majority of the parameters for the model des
ribed in Se
tion 3 are dire
tly

inferred from the so
ial-anthropologi
al literature as dis
ussed in Se
tion 2. The

only parameters we 
an set in order to 
ondu
t experiments are: (i) the number

of nodes in the network n; (ii) the probability of sele
ting the \triadi
 
losure"

strategy, and (iii) the minimum distan
e d

min

for f

D

. In our experiments we


hoose to set n = 90; 925, whi
h is the number of nodes in the referen
e network,

while we use di�erent values for the parameters p and d

min

. The main properties

of the generated network are reported in Table 2. Note that generated networks

do not 
onsider the presen
e of the \aÆnity group" layer (see Se
tion 3.1) whi
h

we 
an assume to be merged with the \a
tive network" layer.

The values of the parameters that allow us to best mat
h the properties of

the referen
e networks are p = :8 and d

min

= 500=n (fourth 
olumn of the table).

These values mean that 80% of the so
ial relationships are established through

the triadi
 
losure me
hanism, rather than 
reating a bridge, and that, given

a node, the 500 
losest nodes (on average) have the same highest-probability

to be sele
ted as link's destination. Results show a strikingly similarity of the

so
ial stru
tures between the referen
e network and the graph generated though

the model. Indeed, both networks have the same 
lustering 
oeÆ
ient and simi-

lar Ja

ard indexes for the di�erent ego network layers. Note that dis
repan
ies

in the mean degrees and in the average shortest path length are due to the

sub-sampling of the referen
e network. Remember that, as shown in [2℄, apart

from these results for the global network, the use of the single-ego model (see

Se
tion 3.1) guarantees that well-known ego network properties are also satis-

�ed. They are the size distribution of the network and of the single layers, the




orrelation between the layer dimensions and the distribution of the emotional


loseness level.

In Table 2 we report the properties of the networks obtained with d

min

=

250=n (third 
olumn of the table) and d

min

= 1; 000=n (�fth 
olumn of the table),

maintaining p = :8. Moreover, Figure 5 (a) shows the 
lustering 
oeÆ
ient and

the Ja

ard index 
omputed between pairs of strongly-tied egos (i.e. belonging

to ea
h other support 
lique) and weekly-tied egos (belonging to ea
h other

a
tive network). Results show that redu
ing d

min

the 
lustering 
oeÆ
ient and

the similarity indexes in
rease for all layers of the network. Intuitively, this is

be
ause with smaller d

min

the set of nodes sele
ted with highest probability by

an ego (those at a maximum distan
e of d

min

) is smaller, and geographi
ally

very 
lose to the ego. This leads to higher 
lustering (and similarity).

Similarly to the geographi
al 
onstraints, also the variation of the parameter

p in
uen
es the stru
ture of the network. As shown in the last 
olumn of the

table and in Figure 5 (b), if we diminish the value of p, the 
lustering 
oeÆ
ient

and the similarity indexes de
rease. This is expe
ted as the number of links

established though the bridging in
reases, and the bridging me
hanism alone

leads to the generation of random networks without 
lusters of so
ially 
onne
ted

nodes. Note in parti
ular that when p = 0 (
orresponding to a network without

triadi
 
losures) the Ja

ard indi
es in Figure 5 (b) are the same, as in a network

without triadi
 
losures the 
orrelation between so
ial links do not depend on

the strength of the links anymore.

5 Con
lusions

In this work we de�ne a new model for the generation of so
ial network graphs,

signi�
antly extending the ego network model presented in [2℄. We introdu
e

di�erent strategies to 
ombine ego networks in order to form 
omplete so
ial

network graphs, based on well-known properties in the �eld of so
ial networks

analysis i.e. (i) the "triadi
 
losure\, (ii) the presen
e of bridges and (iii) the

geographi
al 
onstraints.

In order to validate our model, we tune the model parameters obtaining a

graph with the same stru
tural properties of a real large s
ale human network

obtained from Fa
ebook. Then, we analyse the e�e
t of key parameters on the

properties of the generated graphs, highlighting the impa
t of both geographi
al


onstraints and so
ial 
onstraints.

The results presented in the paper 
on�rm that our model leads to the gen-

eration of network graphs so
ially 
onsistent. This model 
an thus be used for

analysing through large s
ale simulation key properties of human so
ial networks

and for the development and the validation of proto
ols for so
ially-
entri
 plat-

forms.
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