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Abstract. Human social relationships are a key component of emerging
complex techno-social systems such as socially-centric platforms based
on the interactions between humans and ICT technologies. Therefore,
the models of human social relationships are fundamental to characterise
these systems and study the performance of socially-centric platforms
depending on the social context where they operate. The goal of this pa-
per is presenting a generative model for building synthetic human social
network graphs where the properties of social relationships are accurately
reproduced. The model goes well beyond a binary approach, whereby edges
between nodes, if existing, are all of the same type. It sets the properties
of each social link, by incorporating fundamental results from the an-
thropology literature. The synthetic networks it generates accurately re-
produce both the macroscopic structure (e.g., its diameter and clustering
coefficient), and the microscopic structure (e.g., the properties of the tie
strength of individual social links) of human social networks. We compare
generated networks with a large-scale social network data set, validating
that the model is able to produce graphs with the same structural proper-
ties of human-social-network graphs. Moreover, we characterise the im-
pact of the model parameters on the synthetic graph properties.
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1 Introduction

In the last decade the proliferation of personal mobile devices, e.g. the smart-
phones, led to the emergence of electronic pervasive social networks which are
drastically changing the way the information is circulating. In particular there is
a convergence between the cyber/virtual and the physical world. Indeed, content
generated in the physical space produces outcomes in the cyber/virtual world
and, similarly, information generated in the cyber space has immediate influ-
ence on the physical world. At the core of this convergence there are humans
which, through their devices, transfer the information between the physical and
the cyber space in both directions. The analysis of the human social behaviour
is therefore becoming fundamental for the development of socially centric plat-
forms [1], whereby the properties of the social relationships between users are
taken into account in the core design of the communication algorithms.



In addition, information technologies can also be used as tools to generate
simulated social environments where properties of human social relationships
can be studied “in vitro”, under controllable parameters. For example, accurate
models of human social networks can be used to study information dissemination
or opinion spreading at large scale and under a range of parameters’ values.

In this work we present a model for the generation of synthetic social net-
works whose structure reproduces the main properties of human social networks.
It starts from the model presented in [2] which is able to generate single ego net-
works (a simple form of social network) based on well-known results in the field
of anthropology. We extend the original model in order generate complete social
networks formed by interconnect ego networks. With this purpose, the model
relies on well-known properties in the social networks literature, such as the
“triadic closure”, the presence of bridges and geographical constraints [3, 4]. The
parameters of the model permit to generate different social networks tuning the
geographical constraints and changing the criteria the individuals use to create
new social relationships. Experimental results demonstrate that generated net-
works accurately match the properties of human social networks. Specifically,
we show that our model is able to reproduce both macroscopic properties of the
network, such as its diameter and its clustering coefficient, but also microscopic
properties, such as the strength of the tie of individual social links, and the
correlation between the tie strength of different social links.

The use of this model for generating synthetic social network has several
practical applications. On the one hand, it is a tool for accurately studying
processes of social interaction via simulations. For example, it is possible to
analyse variations of the information diffusion process using different settings of
the model parameters. On the other hand, the model permits the development
and the performance evaluation of algorithms and protocols for socially centric
platforms and systems.

The remainder of this paper is organised as follows: in Section 2 we give an
overview of the results regarding human social networks; in Section 3 we sum-
marise the model for the generation of single ego networks and then we introduce
the new model for the generation of complete social networks; in Section 4 we
validate our model comparing different generated networks with a real human
network; finally, in Section 5, we draw the main conclusions of our work.

2 Background and Related Work

The study concerning the composition and the structure of human social net-
works are arousing the interest of an increasing number of researchers in many
different fields [2, 3, 5-12]. Significant attention has been devoted to ego networks,
which are social networks between an individual (ego) and the other people (al-
ters) the ego has a social relationship with [5]. Despite being small-size networks,
ego networks are important as they permit to fully characterise the properties
of social links between individuals.



4 N\ /_T Tie R\
Support clique 0 Ego strength
Sympathy group @ Alter
Affinity group
Active network g
c
g
a
[}
2
L J \_ Geographical distance J

Fig.1: (a) Ego network structure; (b) Complete social network.

One of the main results about ego networks is that their structure consists of
a series of concentric layers of acquaintanceship with increasing size [6]. Based
on data collected on real human networks, Dunbar et al. [12] identify four layers:
“support clique”, “sympathy group”, “affinity group” and “active network” (the
whole ego network) with average sizes of ~ 5, ~ 12, ~ 35 and ~ 150 respectively.
The sizes are evaluated considering that layers are inclusive. Sometimes in this
paper, we use the term external part of a layer in order to refer to the part of
the layer not overlapped with its inner levels (e.g., for the sympathy group it is
the part of the layer not overlapped with the support clique). Going from inner
to outer layers, while the number of alters increases, the strength of the social
tie between the ego and the alters diminishes. This means that, typically, an ego
has few very strong social relationships in the support clique and a lot of weak
ties in the active network (external part). The hierarchical structure of an ego
network is depicted in Figure 1(a).

It has been shown that this hierarchical structure and the typical sizes of
the layers are related to the level of emotional closeness (the strength of a
social tie) and the cognitive resources humans allocate to social relationships.
Intuitively, maintaining a social relationship has a cognitive cost (e.g., due to
spending time together, remembering facts about the alter, etc). As the total
“cognitive capacity” humans devote to social relationships is limited, the sizes
of the layers are also limited [8,9]. Other results regard the composition of each
layer of the ego network with respect to the gender of the alters and to the family
relationships [8,10]. The authors of [2] define a model which allows to generate
synthetic ego network graphs that satisfy all these properties. The procedure for
the generation of these graphs is summarised in Section 3.1.

While being a very important model for studying certain properties of so-
cial relationships, ego networks alone cannot provide a complete representation
of human social networks. Indeed they do not capture the mutual relationships
between the alters or, in other words, the correlation between different ego net-
works. This gap can be filled connecting ego networks together in order to form
a complete social network as shown in Figure 1(b). Due to the high complexity
of complete social networks, the characterisation of their properties is way less
advanced than that of ego networks. To the best of our knowledge, three main
properties have been experimentally characterised in the literature, i.e. (i) tri-



adic closure, (ii) the presence of bridges, and (iii) the dependence of social links
on geographical distance.

Properties (i) and (ii) were investigated by Granovetter in [3]. In the paper,
the author defines the triadic closure as a property of the social networks for
which, if a strong social tie exists between two pairs of nodes A-B and B-C,
there is, with a high probability, a tie between the nodes C-A which closes the
triangle. The links in social networks that do not take part in triangles are
called “bridges” and, according to the study in [3], they are mainly weak ties.
Bridges have an important role in the social network structure as they connect
socially distant parts of the network enabling to reach people and information
not accessible via strong ties [3]. The presence of bridges leads the diameter of the
network to be short, as in the results of the Milgram experiment [11]. At the same
time, the triadic closure property guarantees a high level of clusterisation. For
these reasons, human social networks can be classified as small- world networks,
according to the definition given by Watts and Strogatz [13].

The presence of geographical constraints (iii) is another key factor in the
formation of human social networks. Indeed, for each person, it is more likely to
have a social relationship with an individual who lives close to him, than to have
a tie with a person who lives far away. This hypothesis is verified experimentally
by Onnella et al. in [4]. They analysed a huge data set of social interactions based
on mobile phone calls in which each user is tagged with the geographical position
where she probably lives. Plotting the frequencies of social ties between users
which live at different distances, it emerges that the decay of the tie probability
follows a power-law of the form P(d) ~ d~%, where d is the geographical distance
and « is the power-law exponent. Using the maximum-likelihood method, the
authors estimate a = 1.5 [4].

In the last five years, thanks to the advent of online social networks (OSNs),
the analysis of large social network graphs became more affordable. Indeed most
of the recent work in social network analysis focuses on the characterisation of
the global properties of a specific OSN, such as Facebook [14-16] and Twitter [17,
18]. Some important results were obtained, e.g. the validation of the “small-world
property” [14], the evidence of the Dunbar’s number [17] and the discovery of
the power-law distribution of the degree [15]. However, these results are relevant
only for the virtual environment since they are strictly related to the particular
graph considered. In addition, these analyses and the resulting network models
typically do not pay sufficient attention to microscopic features of social links,
such as the associated tie strength, but use a binary model where links either
exist or not exist (i.e., unweighted graphs).

In this work we define an original approach to social network analysis, by
developing a model for the generation of human social networks which, to the
best of our knowledge, reproduces the key properties of human social network
highlighted in the anthropology literature. In contrast with legacy studies on
OSNs we take into account the social aspects which characterise the human social
networks, such as the strength of the ties, the cognitive resource consumption of



the individuals and the correlation between the strength of ties between different
users.

3 The Model

The model described in this section is defined by an iterative procedure able to
generate synthetic social network graphs which exhibit the typical features of
human social networks described in Section 2.

The procedure operates on two distinct levels of the network structure: the
local level, in which the ego networks are generated, and the global level, in which
the ego networks are opportunely connected to form a complete social network.
Based on these distinct levels, we can consider our model as the union of two
different models: a single-ego model and a multi-ego model respectively.

The single-ego model is based on the work in [2] which we summarise in
Section 3.1. The multi-ego model, which relies on the concepts of triadic closures,
bridges and geographical constraints, is described in detail in Section 3.2.

3.1 Single-Ego Model

The model assumes that each ego has a finite budget of cognitive resources
for social relationships, expressed as the total time the ego devotes to social
interactions. The algorithm adds social links to an ego network, associated with
the time devoted by the ego to that particular relationship. The ego network
is completed when the ego’s total budget is over. The model considers a three-
level structure in which layers are called “support clique”, “sympathy group”
and “active network” with average size respectively 4.6, 14.3 and 132.5 (reference
values are given in [6]). This structure differs from ego network structure defined
in Section 2 by the absence of the “affinity group” layer. This is justified in [2]
by the lack of results about its properties currently available in literature.

The algorithm initialises each ego i with a budget of time bdg, the size of the
sympathy group ssym and the size of the support clique sq,p. Each of these values
is drawn from a carefully defined density function (fg, fs and fi respectively).
After the initialisation, the algorithm starts creating new social ties which are
characterised by a certain level of emotional closeness, extracted from a density
function fg. The level of emotional closeness is subsequently converted into time
by a conversion function A, and then subtracted from the residual time budget
bdg'. New social relationships are first included in the support clique layer until
it reaches the target size, subsequently, in a similar fashion, they are included in
the sympathy group (external part). For the external part of the outermost layer,
the algorithm adds new social ties until the budget of time is totally exhausted.

Definitions of the density functions fg, fs, fw, fr and of the conversion
function h, summarised in Table 1, are directly obtained from [2].

! Note that the model associates a level of emotional closeness to social ties, instead of
directly associating a time budget, as the former is the typical way of characterising
the strength of social ties in the anthropology literature [8,9].



Table 1: Functions definition.

Function Description Definition
fB Time spent by egos in social activity Gamma(205, 8.5264)
fs Sympathy group size Gamma(4.1,3.49)
fw Ratio between sympathy gr. and support cl. sizes| Normal(0.3217,0.1608)
fE Emotional closeness level® Normal(0.419, 0.237)
h Emotional closeness — Time conversion function® h(e) = 117.18°

* We merged together the functions defined in [2] for kin and non-kin. The limits of
the intervals of emotional closeness are: lowsy, = 0.8337 and lowsym = 0.71.
b Calculated with the method described in [2] considering fz.

3.2 Multi-Ego Model

The multi-ego model is designed in order generate complete human social net-
works, in which each node represents an individual whose ego network follows the
model described in Section 3.1. In the multi-ego model a node is part of several
ego networks with different roles. In this section we first present the high-level
strategies the model follows, then we describe the algorithm in detail.

The model considers a human social network as a large group of individuals
which are interconnected by social links. Intuitively, the procedure defined by the
single-ego model can be applied to each of these individuals in order to generate
its ego network. However, applying the single-ego procedure, we have to take
into account that each new social link an individual adds to its ego network,
also alters the ego network of the other individual involved in the relationship.
This means checking, upon creation of a new link, that the properties of the
involved ego networks are preserved. In detail, we have to check that (i) the size
of the support clique, (ii) the size of the sympathy group, and (iii) the total
budget of time remain consistent. Moreover, in order to generate complete ego
networks we have to take into account the additional properties described in
Section 2, i.e. triadic closure, presence of bridges and geographical constraints.

A new social link can be established either exploiting the triadic closure
property or creating a bridge. The strategy to be used is randomly selected
based on a given probability. In case the triadic closure strategy is selected,
the procedure tries to close a triangle, that is, given an origin node, it selects
a node at a distance of 2 hops as link’s destination, favouring strong tie hops.
On the contrary, in case the procedure follows the bridge creation strategy, the
destination node is chosen randomly. In both cases geographical constraints have
to be respected. In order to do this, we incorporate geographical information into
the nodes, associating to them random locations in a virtual space. Whatever
strategy to create links is selected, the model guarantees that the probability
to have a social link between two nodes is proportional to a power law of the
distance between them. Remember this is consistent with empirical results in
the literature [4].



1: procedure CREATESOCIALNETWORK(n,p, fp, fB, fs, fw, fe,h)
2 for i + 1,n do

3 1 + CREATEEGO(fB, fs, fw)

4; i.pos < EXTRACTFROM(Uni form(—1, 1))

5: VeV

6: end for

7 for all layer [ € {sup,sym, net} do > maintaining the ordering
8: while OPEN(V, ) is not empty do

9: i < random select in OPEN(V, )

10: if RAND() < p then
11: j + CLOSURESELECT(4, fp, OPEN (V1))
12: else
13: Jj < BRIDGESELECT(i, fp, OPEN (V,1))
14: end if
15: r < NEWSOCIALLINK(Z, j)
16: r.e < EXTRACTFROM(fr in (low;, up,))
17: update E, i.size, j.size, i.dbg and j.bdg
18: end while
19: end for

20: return V| E
21: end procedure

Fig. 2: Multi-ego model’s algorithm.

Algorithm. The pseudo-code of the algorithm used for generating synthetic hu-
man social network graphs is shown in Figure 2. The input required by the algo-
rithm consists of: (i) the number of nodes in the network n; (ii) the probability p
to create a new social link using the triadic closure property rather than creating
a bridge; (iii) the power-law distribution function fp which gives the probability
to establish a social link between nodes at a specific distance; (iv) the parame-
ters used to define the structure of the single ego networks fg, fs, fw, fe, h, as
required by the single-ego model (see Section 3.1).

In the first part of the algorithm we create and initialise each node i in
the network as an ego (lines 2-6). For each node we first call the procedure
CREATEEGO which sets the size of the sympathy group i.ssym and the size of
the support clique 4.s5,p. It also assigns the budget of time i.bdg and initialises
the counter i.size which is then used to keep track of the total size of the ego
network (line 3). We also assign a geographical position of the ego (i.pos) which
is randomly selected in a given space which, without loss of generality, we assume
mono-dimensional, circular and included in the interval between —1 and 1. This
definition guarantees that the distance between any pair of nodes is between 0
and 1 (line 4). Finally, each generated ego is included in the set V' (line 5).

After the initialisation of the egos, we start adding social links to the network.
First, we create all the social links belonging to all the support cliques, then
we continue with the sympathy groups (external part), and finally we add the
links of the active networks (external part) (line 7-17). Given the layer | we are
populating, the creation of a new social link between two nodes i and j starts
with the selection of the node ¢, drawn randomly from the nodes labelled as open



@ origin node :
@ nodes in set K
e nodes in set /
—— social links

----- new social link

Fig. 3: Triadic closure strategy.

(line 9). An “open” node is an ego whose population of the current layer [ is not
yet completed®. The selection of the nodes involved in a new social link from
the open node set OPEN (V,1) guarantees the preservation of the ego network
properties. The fundamental part of the algorithm is the selection of node j.
We use two different strategies: (i) the #riadic closure mechanism (procedure
CLOSURESELECT) and (ii) the bridging (procedure BRIDGESELECT). The former
strategy is chosen with a probability given by the parameter p, while the latter
with probability 1 — p (lines 10-14).

The bridging, i.e. the creation of a bridge, is the simplest strategy. We extract
a node j from the open egos in the network for the current layer I, excluding the
nodes already connected to ¢, taking into account the geographical constraints.
The probability to select a node j is thus proportional to the value of the power-
law function fp (discussed in detail at the end of the section), given the distance
dist(i,j) between i and j. Formally,

P(j) o fp(dist(i,j))  j € OPEN (V,I) — Nei(i) — i (1)

where Nei(i) is the set of one-hop neighbours of node i.

If each node in the network, not connected to node i, is closed (not open),
node j can not be selected. In this case node i is forced to be closed. We have
experimentally checked that this circumstance occurs just in a negligible number
of cases and that the overall results are not affected.

Using the triadic closure strategy, represented in Figure 3, we first select the
set K of the neighbours of i. From this set, we extract an intermediate node k
with a probability that is proportional to the tie strength e;;, between 7 and &
multiplied, in order to satisfy the geographical constraints, by a function of the
distance dist(i, k) (Equation 2). Given the intermediate node k and the current
layer [, we define the set J as the set of open neighbours of k, with respect to [,
excluded node ¢ and its neighbours. From the set J we extract node j using the
same method used for the selection of node k, considering the social relationship
between k and j (Equation 3).

2 In case the current layer [ is the support clique or the sympathy group, an ego i
is open if its ego network size i.size has not reached the thresholds ¢.ssup Or 7.5sym
respectively. In case [ is the active network, i is open if it has not exhausted its time
budget ¢.bdg.
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P(k) x et -/ fp(dist(i, k)) k € K = Nei(i) (2)
P(j) x erj -/ fp(dist(k,j)) j€J=Nei(k)nOpPEN (V,I) —i— K (3)

If the set J is empty we go a step backward and we select a different node k.
If, for each k chosen, it is not possible to define a non-empty set J, the procedure
fails and the algorithm recovers selecting j using the bridging. Bridging is also
used in case node 7 has not neighbours, i.e. the set K is empty.

The function of the distance we use in Equations 2 and 3 is defined as the
square root of the function fp. This definition guarantees that the geographical
distance between connected nodes in the final network follows the power-law rule
defined in fp. In Figure 4 we show a comparison between a given function fp
and the geographical distances obtained using this algorithm.

After the selection of node j, a new social link r between nodes i and j
is created (line 15). Its emotional closeness r.e is extracted from the density
function fg in the same manner as in the single-ego model (line 16). Then, we
update the network adding the new social relationship r to the set of links £. We
also update the egos 7 and 7, in terms of the ego network sizes (i.size and j.size
respectively) and of the residual budget of time (i.dbg and j.bdg respectively)
(line 17). It is worth noting that this update can determine the transition of a
node from the open to the closed state, with respect to the current layer /.

For each layer I, we generate and add new social links until there are open
nodes available. When the set of the open nodes is empty, the procedure switches
to the next layer until all the three layers are completed.

Function fp According to the results presented in [4] and summarised in sec-
tion 2 the probability of contact between two users at a certain distance follows
a power-law of the form P(d) « d~%. In order to obtain a related probabil-
ity density function fp we have to introduce a thresholds d,,;, from which the
power-law hods. Moreover it has to be defined for the range of values of d, which
is the interval (0,1). The function, shown in Figure 4, is thus defined as:

d;z?n for0<d < dmzn
fol(d) o {d—‘" for dpin < d < 1 ()



Experimental results in [4] suggest that o = 1.5. On the contrary, a value
for d,;n cannot be set in general since it strongly depends on the geographical
space we consider and on the geographical distribution of the sampled popu-
lation. Note that, given the number n of nodes in the network, since they are
equally distributed in the space, n - d;iy, is the average number of nodes within
the distance d,;, from any given position. Thus, given a node in the network,
the closest n - dp,i, nodes (on average) have the same highest-probability to be
selected as destination of a social link. This parameter impacts on the clustering
coefficient of the network, as we highlight in section 4.2.

4 Model Validation and Properties of Generated Graphs

In this section we validate our model comparing the synthetic social networks it
generates with a real social network. In Section 4.1 we describe the real social
network we consider for the validation. In Section 4.2 we compare the results
with the properties of the reference network and we highlight how key properties
of the generated networks depend on the model parameters.

4.1 Reference Network

The reference network we use for the validation of our model is obtained from a
large data set crawled from a Facebook regional network on April 2008°. As we
discuss in [19], the analysis of this data set, opportunely processed, shows that it
shares similar properties with respect to those observed in other types of human
social networks, and thus it can be used as a representative network to validate
our model. Note that the network resulting from this data set is of a much larger
scale with respect to the ones typically analysed in the anthropology literature.
It contains more than 23 million social links (Facebook friendships), involving
more than 3 million users. For each social link, the data set provides the number
of social interactions occurred between the users. A social interaction can be
either a wall post or a photo comment. The complete analysis of this data set is
available in [19]. Hereafter, we summarise the key outcomes of this analysis that
are then used to validate our model.

From the original data set, some users have been dismissed since they were
not considered relevant, either for having too few interactions, or because they
had joined Facebook just before the beginning of the data collection period. As
discussed in [19] both cases can lead to biased representations of ego networks.
The new data set obtained from the selection of relevant egos and the social
links between them contains 90,925 users and 1,264, 658 social links.

As described in [19], it is possible to extract from the data set the frequency
of interaction between users. Since there are evidences of a strong correlation
between the interaction frequency and the strength of the social tie [8], we can

3 This data set is publicly available for research at http://current.cs.ucsb.edu/
facebook/, referred as “Anonymous regional network A”.



Table 2: Structural properties of the reference and generated networks.

reference| p =10.8 p=20.8 p=20.8 p=20.5

network |d, i = 22—0 Admin = %0 Admin = % Admin = 5%
mean degree 27.82 133.91 133.94 134.00 133.86
avg. shortest path 4.06 3.40 3.26 3.11 3.12
clustering coefficient .109 .152 .108 .085 .079
Jaccard (global) .038 [.001]| .060 [.001] | .040 [.001] | .030 [.001] | .030 [.000]
Jaccard (support cl.) [.069 [.001]| .084 [.001] | .071 [.001] | .064 [.001] | .042 [.001]
Jaccard (sympathy gr.)|.056 [.001]| .073 [.001] | .059 [.001] | .053 [.001] | .036 [.000]
Jaccard (affinity gr.) [.042 [.001] - - - -
Jaccard (active net.) [.031 [.001]| .059 [.001] | .037 [.000] | .025 [.000] | .030 [.000]

consider these frequencies define the hierarchical structure of ego networks. Au-
thors in [19] show that 4 clusters, corresponding to the typical layers of ego
networks highlighted by Dunbar [12], can be identified also in Facebook ego
networks.

Relevant properties of the reference network are reported in the second col-
umn of Table 2. The high clustering coefficient (with respect to random networks)
and the short average path length prove that the reference network is “small-
world”. Analysing the properties summarised in the table we have to take into
account that, for technical reasons (e.g. the discard of not relevant nodes), the
data set captures just a random sub-sample of the social links on the crawled
Facebook networks and some of the indexes are influenced by the sampling, i.e.
the average degree and the average path length. If we had the complete network,
we would most likely find a higher average degree and a shorter path length. On
the contrary, the clustering coefficient of a network preserves its value indepen-
dently of the considered random sub-sample [20].

We use the Jaccard coefficient to estimate the similarity of the neighbour-
hoods of two adjacent nodes, that is to say the ego networks of two socially tied
individuals. This is a very important index, as it describes the correlation be-
tween different ego networks. Capturing this aspect is one of the key goals of our

model. The Jaccard coefficient for two sets A and B is defined as J(A4, B) = Iﬁﬂg}

and it is also not biased by random sub sampling*. Since computing the Jaccard
coefficient between the end-points of each social link in the network requires huge
computational efforts, we estimate its average value considering the pairs of end-
points of a sample of 10,000 edges randomly extracted from the network. The
estimated average Jaccard coefficient (global) is reported in Table 2 (computed
with 95% confidence level). According to this result, considering two socially
connected individuals, their common acquaintances are, on average, 4% of the
union of their acquaintances. Intuitively, individuals connected by strong ties

* This can be easily seen observing that random sampling proportionally affects both
the union and the intersection sets.
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should have a higher ego network similarity than individuals connected by weak
ties. In order to verify this intuition, we sampled 10,000 edges for each layer of
the ego networks (external part) and computed the Jaccard coefficient between
the ego networks of the nodes at the endpoints of the links. As expected, results,
reported in Table 2, confirm that the similarity is higher for inner layers and
lower for outer layers. Specifically, it drops from about 7% for the support clique
to about 3% for the active network.

4.2 Results

The majority of the parameters for the model described in Section 3 are directly
inferred from the social-anthropological literature as discussed in Section 2. The
only parameters we can set in order to conduct experiments are: (i) the number
of nodes in the network n; (ii) the probability of selecting the “triadic closure”
strategy, and (iii) the minimum distance d,;, for fp. In our experiments we
choose to set n = 90,925, which is the number of nodes in the reference network,
while we use different values for the parameters p and d,,;». The main properties
of the generated network are reported in Table 2. Note that generated networks
do not consider the presence of the “affinity group” layer (see Section 3.1) which
we can assume to be merged with the “active network” layer.

The values of the parameters that allow us to best match the properties of
the reference networks are p = .8 and d,;, = 500/n (fourth column of the table).
These values mean that 80% of the social relationships are established through
the triadic closure mechanism, rather than creating a bridge, and that, given
a node, the 500 closest nodes (on average) have the same highest-probability
to be selected as link’s destination. Results show a strikingly similarity of the
social structures between the reference network and the graph generated though
the model. Indeed, both networks have the same clustering coefficient and simi-
lar Jaccard indexes for the different ego network layers. Note that discrepancies
in the mean degrees and in the average shortest path length are due to the
sub-sampling of the reference network. Remember that, as shown in [2], apart
from these results for the global network, the use of the single-ego model (see
Section 3.1) guarantees that well-known ego network properties are also satis-
fied. They are the size distribution of the network and of the single layers, the



correlation between the layer dimensions and the distribution of the emotional
closeness level.

In Table 2 we report the properties of the networks obtained with d,;n =
250/n (third column of the table) and d;,;,, = 1,000/n (fifth column of the table),
maintaining p = .8. Moreover, Figure 5 (a) shows the clustering coefficient and
the Jaccard index computed between pairs of strongly-tied egos (i.e. belonging
to each other support clique) and weekly-tied egos (belonging to each other
active network). Results show that reducing d,;, the clustering coefficient and
the similarity indexes increase for all layers of the network. Intuitively, this is
because with smaller d,,;, the set of nodes selected with highest probability by
an ego (those at a maximum distance of d,;,) is smaller, and geographically
very close to the ego. This leads to higher clustering (and similarity).

Similarly to the geographical constraints, also the variation of the parameter
p influences the structure of the network. As shown in the last column of the
table and in Figure 5 (b), if we diminish the value of p, the clustering coefficient
and the similarity indexes decrease. This is expected as the number of links
established though the bridging increases, and the bridging mechanism alone
leads to the generation of random networks without clusters of socially connected
nodes. Note in particular that when p = 0 (corresponding to a network without
triadic closures) the Jaccard indices in Figure 5 (b) are the same, as in a network
without triadic closures the correlation between social links do not depend on
the strength of the links anymore.

5 Conclusions

In this work we define a new model for the generation of social network graphs,
significantly extending the ego network model presented in [2]. We introduce
different strategies to combine ego networks in order to form complete social
network graphs, based on well-known properties in the field of social networks
analysis i.e. (i) the ”triadic closure, (ii) the presence of bridges and (iii) the
geographical constraints.

In order to validate our model, we tune the model parameters obtaining a
graph with the same structural properties of a real large scale human network
obtained from Facebook. Then, we analyse the effect of key parameters on the
properties of the generated graphs, highlighting the impact of both geographical
constraints and social constraints.

The results presented in the paper confirm that our model leads to the gen-
eration of network graphs socially consistent. This model can thus be used for
analysing through large scale simulation key properties of human social networks
and for the development and the validation of protocols for socially-centric plat-
forms.
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