
1

Minimum-Delay Service Provisioning in
Opportunistic Networks

Andrea Passarella, Mohan Kumar, Marco Conti and Eleonora Borgia

Abstract—Opportunistic networks are created dynamically by exploiting contacts between pairs of mobile devices that come within
communication range. While forwarding in opportunistic networking has been explored, investigations into asynchronous service
provisioning on top of opportunistic networks are unique contributions of this paper. Mobile devices are typically heterogeneous,
possess disparate physical resources, and can provide a variety of services. During opportunistic contacts, the pairing peers can
cooperatively provide (avail of) their (other peer’s) services. This service provisioning paradigm is a key feature of the emerging
opportunistic computing paradigm. We develop an analytical model to study the behaviors of service seeking nodes (seekers) and
service providing nodes (providers) that spawn and execute service requests, respectively. The model considers the case in which
seekers can spawn parallel executions on multiple providers for any given request, and determines: i) the delays at different stages of
service provisioning; and ii) the optimal number of parallel executions that minimizes the expected execution time. The analytical model
is validated through simulations, and exploited to investigate the performance of service provisioning over a wide range of parameters.

Index Terms—Opportunistic networks, service provisioning, performance evaluation, analytical modelling
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1 INTRODUCTION

In a network with mobile devices a contact occurs when
pairs of mobile devices are within range. An opportunis-
tic network is created when several such opportunistic
contacts occur between pairs of devices, distributed in
time and space [1]. As opposed to traditional MANETs,
opportunistic networks are better equipped to deal with
prolonged and frequent disconnections and partitions,
as they exploit mobility as an opportunity rather than a
challenge.

Opportunistic networks enable the emerging concept
of opportunistic computing [2]. The key observation of
opportunistic computing is that the environment around
(mobile) users, features a steadily increasing set of het-
erogeneous resources available on fixed and mobile de-
vices with wireless networking capabilities. Resources
include heterogeneous hardware components, software
processes, multimedia content, sensors and sensory data.
While not all resources can be available on any single de-
vice, they can be collectively available to anyone through
the deployment of effective middleware in such a per-
vasive networking environment. Essentially, we envision
opportunistic computing as an evolution of distributed
computing in which resources are accessed through
opportunistic contacts, thus complementing solutions
based on well-connected networks only. Resources can
be abstracted as services that can be shared and executed
(perhaps remotely). A key research challenge for realiz-
ing the vision of opportunistic computing is therefore
a comprehensive investigation of opportunistic service
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provisioning. We investigate this novel research area, as
researchers in the past have explored i) opportunistic
networking mainly as a means for forwarding message
packets, and ii) service provisioning in well-connected
networks. Service provisioning in the framework of op-
portunistic computing enables interesting applications
such as pervasive healthcare, intelligent transportation
systems, crisis management, participatory sensing, as
discussed in [2].

We consider a very simple architecture in which nodes
can opportunistically request service executions to di-
rectly encountered peers, and collect results the next time
they encounter those peers after they have completed
the execution. Hereafter, we denote by request a request
for the execution of a given service, and by results the
output results of the service execution. The main focus
of this paper is on optimizing the way in which a seeker
(a node requiring a service) should spawn executions
onto encountered providers. Main contributions of this
paper include: i) development of a model to depict the
behavior of the service provisioning system; ii) analysis
to determine the optimal number of parallel executions
to be spawned; and iii) exhaustive simulation studies to
validate the model.

2 RELATED WORK

Service-oriented architectures have been investigated in
the area of ubiquitous and pervasive computing [3], e.g.
in [4] Ravi et al. develop a mechanism for accessing
pervasive services across the network of devices using
cell phones.

Much effort has been devoted by the research com-
munity to service composition that entails stitching to-
gether two or more basic services to create compos-
ite application level services. Essentially, there are two
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types of service composition mechanisms - static and
dynamic. In static mechanisms [5], a template with place
holders represents the user request/task as the input
to service composition while the output is a plan con-
taining services identified to populate the place holders
within the request template. For dynamic service com-
position (e.g., [6]) the description of the service and the
mechanisms employed to identify matches between a
requested service and available ones are critical to the
successful operation.

Our current work differs from this body of research as
the focus here is on opportunistic networking environ-
ments. Being the networking environment so different
and so much more challenging, we limit ourselves - for
now - to a very simple service provisioning scheme, in
which seekers can just avail of services directly provided
by encountered providers.

Service provisioning in opportunistic networks is a
challenging problem that, to the best of our knowledge,
has not been addressed yet. In a broad sense, oppor-
tunism is the key design feature in this kind of networks,
as contacts should be opportunistically exploited accord-
ing to the individual users’ goals (be it sending messages
across the network, or avail of a service not available
locally). Research on opportunistic networks has mainly
focused on routing issues (e.g. [7], [8]), mobility analysis
(e.g. [9]) and, more recently, on data-centric architectures
for content delivery (e.g., [10]).

The work presented in this paper can be seen as one
of the building blocks of the recently proposed concepts
of opportunistic computing [2] and people-centric sens-
ing [11]. The latter work already produced significant
results, but does not exploit opportunistic contacts for
service provisioning.

3 SERVICE PROVISIONING

The reference service provisioning model is as follows.
A service execution entails different phases. Upon a
contact between any two nodes, the nodes exchange
information about the services they provide and wish to
avail, decide whether to spawn a new service execution
on the encountered peer, and download results for previ-
ously spawned service executions, if any. We assume that
the seeker (node needing a service) and provider (node
providing the service) may or may not be connected
when the service is executed. We also assume that the
mobility model is such that the probability of seeker
and provider to meet again after the completion of the
service, asymptotically tends to 1 in the limit t → ∞.
We assume that nodes run the following protocol. They
keep a Service Index SI that contains service informa-
tion: available services (e.g., Sa = [S1, S3, S7]), services
needed (e.g., Sn = [S2, S8]), services whose execution is
ongoing (e.g., Sp = [S4]) and services completed (e.g.,
Sc = [S3]). During a contact time, if a pending service
of one device has been completed by the other, the
results are transferred. Then, if services needed on one

Algorithm for Node na

while na ⇔ nb do
na(SI) ↔ nb(SI) ⊲ assuming na and nb trust each other
if na(Sp) in nb(Sc) then

nb sends output(Sc) → na

end if
if nb(Sp) in na(Sc) then

na sends output(Sc) → nb

end if
if na(Sn) in nb(Sa) and worth replicating on nb then

na sends input(Sn) → nb

end if
if nb(Sp) in na(Sa) and worth replicating on na then

nb sends input(Sn) → na

end if

end while

Fig. 1. Algorithm for service provisioning.

device are available on the other, the service inputs
may be transferred, according to a local replication policy
run by the seeker. The algorithm in Figure 1 describes
this process. This algorithm just requires reliable single-
hop communications between nodes, that we assume
available.

A key part of the above protocol is the replication
policy, that is used by each seeker to decide whether
or not to spawn a service execution to an encoun-
tered provider. Uncontrolled replication may saturate
providers resources and should, in general, be avoided.
By following the replication policy, each seeker can
decide how many parallel executions to spawn in order
to minimize the service completion time without saturat-
ing providers resources. The model described hereafter
determines the optimal number of replications.

4 OPTIMAL SERVICE PROVISIONING

The analytical model presented in this paper focuses
on a tagged seeker wishing to avail of a given service,
assumed to be statistically representative for a generic
seeker. We provide a model of the expected service
time, as a function of the number of allowed parallel
executions. To better clarify the rationale of studying this
scenario, we introduce the following terminology.
(Service) Request: a service request generated at a
seeker.
(Service) Execution: an execution of a request, spawned
by a seeker on a provider.
(Service) Replicas: the set of parallel executions related
to the same request.
Execution Time: the time elapsed at the seeker from a
request generation to the reception of the results from a
particular provider.
Service Time: minimum over the execution times.

Intuitively, spawning more executions can result in a
lower service time, as the service time is the minimum
over the execution times of the replicas. However, on
the other hand, spawning more executions also increases
the computational load on the providers, and results
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in longer execution times at individual providers. This
motivates looking for the optimal number of replicas.

4.1 Replication

The (tagged) seeker manages each request as described
below. The seeker uploads the input parameters to each
encountered provider opportunistically, until either of
the following event occurs: i) it completes m uploads,
where m is the maximum number of parallel executions
a seeker can generate; or ii) it downloads the results
from a provider before generating all the m replicas.
The model provides the optimal value (mopt) of the m
parameter, i.e. the optimal number of maximum allowed
replications. The download of the output results works
similarly to the upload phase, i.e., service results are
opportunistically downloaded when the seeker meets
any provider on which an execution was spawned and
has been completed. In general, both uploads and down-
loads may take one or more contact events to complete.
In this case, on the next contact, the upload (download)
resumes from when it was stopped.

We assume that the requests generation pattern at
the seeker is independent of the encounter pattern be-
tween the seeker and the providers. This implies that
a new request may be generated before the previous
one has been served. When the seeker meets a provider,
it may upload input parameters for several (successive)
requests, all generated at the seeker itself. Similarly, it is
also possible that the seeker downloads several output
results, related to different requests served by the same
provider. Uploads and downloads are served according
to a FIFO policy.

4.2 General Model

To model the replication behavior described in Sec-
tion 4.1 we consider the scheme in Figure 2. We assume
there are N nodes in the network, and that the tagged
seeker issues requests according to a Poisson process
with rate λ. Without loss of generality, we assume that
each seeker issues requests at the same rate λ, and denote
with p(s) the probability that a node is a seeker. The case
in which the requests rate is different for each seeker is
investigated in [12]. The average number of seekers is
thus k , p(s)N . Similarly, p(p) is the probability that a
node is a provider of the sought service, and M , p(p)N
is the average number of providers.

Each horizontal pipe in Figure 2 represents a different
execution (on a different provider) for a request issued
by the tagged seeker1. Denoting by pi the probability
that only i replicas are spawned by the seeker before re-
ceiving the results back, the average number of spawned
replicas (also referred to as effective replication level) is
m∗ =

∑m
i=1 ipi.

Let us now consider the individual execution times.
For each request, pipe i corresponds to the i-th provider

1. As each pipe corresponds to a particular provider, we use these
terms interchangeably.

λ
replication

λ 1

λ 2

λ m

tagged
seeker

com
pletion

µ1

µ2

µm

1B

2B

mB

θ1

θ2

θm

m

R(m)

D1

D2

Dm

R1

R2

Rm

Fig. 2. General scheme of the replication process.

starting the computations, i.e., pipes are ordered in
increasing temporal order of computation starting times.
Each pipe consists of three stages. The first stage repre-
sents the time Bi required to complete the i-th upload
of the input parameters. The second stage represents the
time required to execute the request after it is spawned.
Note that more seekers can spawn requests on each
provider. Thus, the providers’ offered load (λi in Fig-
ure 2) is the result of the joint request pattern of all
the seekers. Finally, the third stage represents the time
required by the seeker to complete the download of the
output results from the provider corresponding to pipe
i, and is denoted by θi. The delay on the i-th pipe is thus

Ri = Bi + Di + θi i = 1, . . . m. (1)

The model firstly provides closed form expressions
for the expected execution time at each provider (ERi),
by deriving the expressions for the expected delays of
the three stages, EBi, EDi, Eθi, respectively. Then the
expected service time ER(m) is derived, accounting for
the possibility that less than m executions be generated.
The optimal number of allowed replicas is thus mopt =
arg min1≤m≤M{ER(m)}.

5 ANALYSIS

Before presenting the detailed analytical results, here are
the assumptions under which they are derived.

A1. The tagged seeker (provider) encounters any
specific provider (seeker) at the same rate at
which it encounters any given node in the
network. Furthermore, the encounter process
between the seeker (provider) and any specific
provider (seeker) is memoryless with respect to
the sequence of previously encountered nodes,
contact and inter-contact times.

A2. A contact time is always sufficient to upload the
input parameters (and to download output pa-
rameters) for all the pending requests between
the seeker and the provider.

A3. Executions on providers start after the end of
the contact time used to upload the input pa-
rameters.

A4. Inter-contact (contact) times are independent
and identically distributed (iid). Inter-contact
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and contact times are mutually independent.
A5. Both inter-contact and contact times between

pairs of nodes are exponentially distributed.

Assumptions A1, A2 and A3 can actually be relaxed
at the cost of a drastic increase of the model’s com-
plexity (see [12]). Assumption A5 is reported here for
avoiding even simple inaccuracies in the mathematical
derivations. If this assumption is dropped, the resulting
inaccuracy is very limited, as discussed in [13]2. The rest
of the analysis proceeds as follows. In general, R(m)
should be derived as the minimum over m generic
random variables (r.v.) Ri. However, to have tractable an-
alytical expressions, we compute R(m) as the minimum
over a set of exponentially distributed, independent r.v.,
with average ERi. We assess the approximation level of
this choice through validation with simulation results in
Section 6.1. Detailed discussion and derivations of the
following results are available in [13].

As a pre-requisite for the expressions of the average
delays, it is necessary to derive the average time required
by a tagged seeker to encounter a provider in a generic
set A out of all providers, either starting from a random
point in time or from the end of a contact time between
the seeker and any node. These figures are denoted by
ET (A) and EL(A), respectively, and their expressions
are provided in [13]. Exploiting assumption A1, it is easy
to show that they just depend on the cardinality of A,
and therefore are represented by ET (|A|) and EL(|A|).

The closed form expression of the delay of the first
stage of pipe i (Bi) can be derived as follows. Any new
request is generated at a random point in time with re-
spect to the underlying mobility process. The first execu-
tion is thus spawned, on average, after ET (M) seconds,
as M is the total number of providers. After spawning
each replica, the seeker has to meet a new provider on
which a replica has not already been spawned. This
occurs, on average, after EL(M − k) seconds where k is
the number of replicas already spawned. The execution
on the i-th provider starts after a time interval with
average ET (M) + iEc +

∑i−1
k=1 EL(M − k). The closed

form expression follows after routine manipulations:

EBi ≃ Ec+Et
p(p) − EcEt

Ec+Et +

+ N (Ec + Et) ln M−1
M−i , i < M (2)

EBM ≃ Ec+Et
p(p) − EcEt

Ec+Et + N (Ec + Et) [γ + ln(M − 1)] ,

where γ is the Euler constant, Ec and Et are the average
contact and inter-contact times.

As shown in Figure 2 we model the second stage of
the pipes with a queue. The service time of the queue
represents the computation time at the provider’s CPU.
To simplify the analysis, and without loss of generality,
we assume that the computation time at any provider
is exponentially distributed with average value 1/µ.
Therefore, it is possible to model the second stage of
the pipes as an M[X]/M/1 batch arrivals system, whose

2. Reference [13] is also provided as supplemental material.

average delay is as follows:

ED =
1

µ − λp(s)m∗

p(p)

+
2λm∗

p(p) (Ec + Et) + 1

2
(

µ − λp(s)m∗

p(p)

) . (3)

Furthermore, the utilisation of the providers is ρ =
λp(s)m∗

µp(p) , and thus the providers are not saturated as

long as λp(s)m∗

p(p) < µ holds. This condition confirms that
replicating too aggressively saturates the providers. We

define the saturation threshold as mc ,
µp(p)

λp(s) , and the
saturated region as the range of m values such that the
corresponding value of m∗ is greater than mc.

The average delay of the third stage can be derived
as follows. Under assumptions A2 and A3, the time
required to download a request is the time required to
meet the provider, plus a contact time. As i) a tagged
seeker meets any provider with the same probability
(according to assumption A1), and ii) the delay of the
third stage starts when the execution of the request has
been finished by the provider, the time to meet the
sought provider is ET (1), and the average delay of the
third stage is:

Eθ = ET (1) + Ec. (4)

The above results allow us to derive the optimal value
of m, i.e. mopt. We denote with pi(m

∗) the probability
that the seeker spawns only i replicas, i = 1, . . . ,m, and
with EHi(m

∗) the expected service time under the con-
dition that just i replicas are spawned. The expected ser-
vice time when a maximum of m replicas are allowed can
thus be computed as ER(m) =

∑m
i=1 pi(m

∗) · EHi(m
∗)

(the expressions for pi(m
∗) and EHi(m

∗) are derived
in [13]). The optimal value for the maximum allowed
number of replications is thus:

mopt = arg min
m=1,...,M

{

m
∑

i=1

pi(m
∗) · EHi(m

∗)

}

. (5)

For any value of m, m∗ can be found by solving the fixed
point equation m∗ =

∑m
i=1 i · pi(m

∗). From a practical
standpoint, the only complexity of the model is solving
a fixed point equation, which turns out much more
efficient than using alternative evaluation tools (such as,
for example, simulations), for a large range of relevant
system’s parameters.

6 PERFORMANCE EVALUATION

Our main performance index is the expected service
time. We compare three policies: i) in the single policy
each seeker generates a single request on the first en-
countered provider; ii) in the greedy policy each seeker
replicates each request on all providers it meets, until
the request is satisfied; this corresponds to setting the
maximum number of allowed replicas to M ; iii) in the
optimal policy the maximum number of allowed replicas
is computed according to the model.

In order to validate the analytical model, we also
developed a simulation model based on the OMNeT++
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simulator. In the simulated environment the nodes move
in a square, according to the RWP mobility model,
with the modifications described in [14] to guarantee
stationarity (the nodes’ average speed is 1.5 m/s, rep-
resentative of walking speeds). We control the density
of the network, and, thus, the value of the contact and
inter-contact times, either through the number of nodes,
or the transmission range of each node, or the size
of the simulation area (precise details are provided for
each simulation scenario). In the simulation, seekers and
providers are chosen at the beginning of each simu-
lation run according to the p(s) and p(p) parameters.
Seekers then generate requests according to a Poisson
process with configurable rate. The maximum number
of allowed replications is an input parameter for the
simulator. In the simulations, we assume that, whenever
a seeker meets a provider, it is able to upload the
service parameters for all the requests’ replica that the
provider can possibly satisfy. Finally, computation times
at providers are exponential with a configurable rate.
We repeated the simulation runs with increasing values
of m. At the end of each run, we computed the cor-
responding average service time (with 95% confidence
intervals), and we identify the optimal case as the value
of m achieving the minimum average service time. Our
studies show a very good agreement between the simu-
lation and the analysis, which allows us to conclude that
the analytical model is accurate. Note that the analytical
model provides a much more flexible tool than the
simulation model. Specifically, the inherent complexity
of the simulation model (mainly, the number of events
that are generated) makes it practically impossible to
explore the system’s behavior through simulation over
a large range of key parameters, as highlighted in the
following.

6.1 General properties

Before comparing the three policies in a number of
scenarios, in this section we discuss important general
properties of the system. To this end, we consider a sce-
nario where the average computation time at providers
is 30s (i.e., 1

µ = 30s), the request rate at seekers is
λ = 0.005 req/s, the probability of node being a provider
(p(p)) is 0.5. We show two representative cases, in which
the probability of node being a seeker (p(s)) is 0.5 and
0.8 respectively. In both cases the number of nodes is 20,
the nodes’ transmission range is 20m, and the simulation
square is 1000x1000m large. The resulting scenario is
very sparse, as nodes’ average intercontact time is about
10 minues, while the average contact duration is about
16s.

Figure 3(a) allows us to highlight two important as-
pects. First of all, the existence of a trade-off that man-
ifests itself as the number of replicas increases, and of
a corresponding optimal operating point. The analytical
curve stops when the system enters in the saturated re-
gion, as the expected service time is infinite beyond this
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Fig. 3. Representative cases of the expected service time
as a function of m. Both analytical (solid) and simulation
(dashed) curves are shown.

point. In the simulations, after this point the service time
is clearly not stationary anymore, and therefore we plot
the average over the service requests actually completed
within the simulation time, to give an indication of the
trend of the service time. Secondly, our results show that
the analytical model is able to capture the trend of the
simulation results up to the saturation point. According
to the analytical model, the system saturates as soon as
m is greater than 5, and the optimal operating point is
achieved for m = 4. Simulation results confirm this trend
with good accuracy.

Figure 3(b) shows a case in which the system never
saturates. The optimal and the greedy policies outper-
form the single policy, and produce almost equivalent
expected service times. However the optimal policy is
more efficient than the greedy policy, as it generates less
executions, and thus avoids useless resource consump-
tion. In cases such as that represented in Figure 3(b),
the plot of the expected service time flattens out after a
certain value of m, implying that there is a large range
of m values over which the service time varies very
little. Jointly with the inherent statistical fluctuations of
simulation results, which makes it difficult to compare
results when they are close, this results in the fact that
the simulation and analytical models may not always be
in good agreement as far as the optimal value of m. This
is not a matter of concern, because of the flat shape of
the expected service time curves. The analytical model
predicts with good accuracy the simulation results with
respect to the expected service time.

In general, results presented hereafter show that the
optimal policy adapts to the system’s configuration,
converging to the greedy or the single policy when
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TABLE 1
Default analysis parameters

1/µ 30s
λ 0.005 req/s
N 20

tx range 20m
Area 1000m x 1000m

avg speed 1.5m/s

p(s) 0.1,0.2,0.5,0.8

p(p) 0.1,0.2,0.5,0.8

appropriate, and achieving lower expected service times
when neither of them is the best policy.

6.2 Performance in sparse scenarios

In this section a sparse network with inter-contact time
of 10 minutes and contact time of 16s is considered. The
values used to obtain this scenario are shown in Table 1.

Figure 4(a) shows the optimal value of the maximum
allowed number of replicas for different values of seeker
and provider percentages. When the percentage of seek-
ers is small, the optimal policy is the greedy one, i.e. m is
equal to M = p(p)N . This is because the load generated
by such small number of clients is not enough to saturate
the computational resources of the providers. However,
as soon as the number of seekers increases beyond
20%, the optimal policy spawns parallel executions less
aggressively than the greedy policy. In this scenario, the
single policy is optimal just when the number of seekers
is high (beyond 50%), and the number of providers is
low (below 20%), as the number of providers is so low
that even replicating requests more than once results
in significant congestion. Finally, for a given number of
seekers, mopt increases with the number of providers, as
increasing the number of providers means increasing the
overall computational capacity of the system, and thus
shifting the saturation point towards higher replication
levels. Figure 4(a) confirms that the optimal policy au-
tonomically switches either to the greedy or the single
policy when appropriate, or works in between these two
extremes.

It is indeed counter-intuitive that, in the simulation
results, mopt increases when moving from p(s) = 0.1 to
p(s) = 0.2 both for p(p) = 0.1 and 0.2 (the two curves
at the bottom). When the number of seekers increases,
the system becomes more loaded, and thus the optimal
number of replicas should not increase (which is, by the
way, the behavior predicted by the analytical model). By
looking at the simulation results, it clearly appears that
the expected service time at p(s) = 0.1 obtained by the
optimal and greedy policies are statistically equivalent,
being both in the confidence interval of each other (and
far apart by about 1%). Therefore, the fact that for
p(s) = 0.1, the optimal policy indicated by simulations
does not correspond to the greedy policy is just an
artefact of statistical fluctuations.

Figure 4(b) shows the expected service time for the
three policies in the case of p(p) = 0.5 (similar remarks
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Fig. 4. Performance of the three policies in sparse
scenarios. For each configuration, both analytical (solid)
and simulation (dashed) curves are presented. Analytical
points are not plotted for saturated conditions.

can be done with respect to the other values of p(p),
as well). Analytical plots are drawn with solid curves,
while dashed curves represent simulation results. For
the optimal policy, the analytical and simulation curves
can hardly be distinguished, as they overlap. For the
analytical plot of the greedy policy, no result is available
for p(s) = 0.8 as the system is in the saturated region.
Before that point, also for the greedy policy the analytical
and simulation plots overlap. For p(s) ≤ 0.5, the optimal
and greedy policy coincide, and therefore the four corre-
sponding plots also overlap. As noted before, for a small
number of seekers, the optimal policy coincides with the
greedy policy. Actually, the curves of the greedy and
optimal policies almost overlap up to p(s) = 0.5 included,
as the two policies provide almost the same expected
service time in this range. However, when the number
of seekers increases beyond this point, the greedy policy
saturates the system. On the contrary, for p(s) > 0.5
the optimal policy significantly outperforms both the
single and the greedy policies. The optimal policy results
in just a slight increase of the expected service time
as the number of seekers increases. By jointly looking
at plots in Figure 4(a) and (b) it is clear that, as the
number of seekers increases, the optimal policy reduces
the number of spawned execution, and thanks to this,
limits the increase of the expected service time.

6.3 Performance with varying request loads

In this section we study the system’s sensitiveness with
respect to the request load (λ)3, i.e. for λ=0.002, 0.005,

3. Qualitatively similar results are obtained also for varying compu-
tation loads, as shown in [13].
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Fig. 5. Performance for varying request loads (λ).

0.01, 0.02, 0.05, 0.1 req/s. Figure 5(a) shows the optimal
number of replicas when the providers probability is
p(p) = 0.5, and for the extreme cases of the seekers
probability, p(s) = 0.1 and 0.8. Figure 5(b) shows the
expected service time of the optimal, single and greedy
policies for p(s) = 0.1 and p(p) = 0.5. All the other
parameters are as in Table 1. Simulation results are
presented for small values of λ only (up to λ = 0.008),
as beyond this point they are practically unmanageable.
Instead, the analytical model allows us to explore the
system’s behavior also for higher loads, and this shows
very important features.

Let us analyze the case of p(s) = 0.1, i.e. the top curve
in Figure 5(a) and Figure 5(b). As expected, for light
loads (up to λ = 0.008) the optimal and the greedy
policies coincide (i.e., mopt = M = 10). However, the
greedy policy saturates as soon as λ increases beyond
0.002 (shown by the fact that the analytical curve for
the greedy policy in Figure 5(b) stops at this point).
Between λ = 0.01 and λ = 0.1 neither the greedy nor
the single policy are optimal (i.e., 1 < mopt < M = 10),
and the optimal policy significantly outperforms both.
Finally, the optimal policy converges to the single policy
for very high load (at λ = 0.1). The analytical model
also shows that in certain cases even the single policy
saturates the system. For example, this is the case when
the seekers percentage is high (p(s) = 0.8), and the load
increases beyond 0.02. In this region (see Figure 5(a))
there is basically no policy that can avoid saturation.

6.4 Performance with varying number of nodes

In this section we study the behavior of the system for
an increasing number of nodes N , at constant density.
We specifically focus on the case of p(s) = 0.5 (Figure 6),
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Fig. 6. Optimal service time as a function of N .

which highlights general properties of the problem. A
more complete set of results is available in [13].

It is quite clear that there is a linear increase of
the expected optimal service time with N (while mopt

is found to be basically independent of N , see [13]).
This result can be justified by looking at the analytical
model presented earlier. Recall that the delay on each
pipe Ri is made up of the delay of three stages. The
delay of the first stage (EBi, Equation 2) is composed
by a part that is independent of N , and a part that
is linear with N . The delay of the second stage (ED,
Equation 3) can be shown to be slightly dependent on
N , as the only component which depends on N (m∗)
shows just a sublinear increase with N . Finally, the
delay of the third stage (Eθ, Equation 4) depends on
the expected time to meet a specific node (the provider
corresponding to the pipe), ET (1). By inspecting this
expression it appears that it linearly depends on N . We
can thus write ERi as the sum of two components, one
independent of N , and another one linear with N , i.e.,
ERi = EXi + NEYi. Furthermore, it is easy to show
that EYi can be approximated by Eθ. Assuming, again,
that the r.v. Ri are exponential, and recalling that the
optimal service time is the minimum over the delays
of mopt pipes, R(mopt) is also an exponential r.v. with
rate γR =

∑mopt

j=1
1

EXi+NEθ . Finally, it can also be shown
that, unless when the system is extremely close to the
saturation of the second stage, the factor NEθ dominates
over EXi. After simple manipulations, it results that
ER(mopt) ≈ Eθ N

mopt
holds true. This confirms the linear

dependence of ER(mopt) with N found in Figure 6(b).
Furthermore, it also justifies the fact that the slope of
the line decreases with p(p), because, for a given value
of p(s), mopt clearly increases with the average number
of providers (i.e., with p(p)).

6.5 Performance in dense scenarios

Although the main reference scenario of this work are
sparse opportunistic networks, we explore in this section
how the system behaves when the network becomes
dense, by increasing the number of nodes to 200. This
results in decreasing the average inter-contact time to
about 35s, while the average contact time is still in the
order of 15s.

Figures 7 show the optimal number of allowed replicas
and the expected service time (for p(p) = 0.5). When the
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Fig. 7. Performance in a dense scenario (N = 200).

number of nodes increases, the greedy policy is never
optimal (i.e., mopt < M ), although it achieves an ex-
pected service time comparable with that of the optimal
policy in very lightly loaded scenarios (p(s) = 0.1 and
p(p) = 0.5). For the rest of the configurations reported
in Figure 7, the greedy policy brings the system in the
saturated region. By recalling that the load on each

provider is defined by λp(s)m∗

p(p) , in the case of 200 nodes
the greedy policy generates a much higher load on each
provider, and this results in overall congestion even for
a small number of seekers.

7 CONCLUSIONS

In this paper, we investigate service provisioning in
an opportunistic networking environment, where multi-
hop communication is accomplished through a series of
opportunistic contacts, rather than through continuous
multi-hop paths. The main contributions of this paper
include: a scheme for supporting service provisioning
in opportunistic networks; an analytical model to deter-
mine the optimal number of parallel executions required
to minimize the service time without saturating the
computational resources of the providers; and results
assessing the performance of a system that replicates
executions according to the model, in comparison with
other reference policies. The developed analytical model
is validated through simulations, and used to character-
ize the system performance with respect to a number of
parameters - number of nodes, number of seekers, num-
ber of providers, and request load. In all investigated
cases, the expected service time when executions are
replicated according to the model is significantly lower
than the service time achieved by using naive policies
- working without any background information - that

either replicate requests just once, or greedily replicate
requests on all encountered providers. To the best of our
knowledge this is the first study on service provisioning
in opportunistic networks. We are extending this work
to address composability and security issues.
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