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Minimum-Delay Service Provisioning in

Opportunistic Networks

Andrea Passarella, Mohan Kumar, Marco Conti and Eleonora Borgia

Abstract

Opportunistic networks are (ad hoc) networks created dynamically by exploiting con-

tacts between pairs of mobile devices that come within communication range. This networking

paradigm overcomes main limitations of conventional MANETs, related to the fact that, due to

mobility and energy conservation issues, it is often not practical to maintain connected multi-

hop paths among nodes. While forwarding in opportunistic networking has been explored,

investigations into asynchronous service provisioning are unique contributions of this paper.

Mobile devices are typically heterogeneous, possess disparate physical resources, and

can provide a variety of services. During opportunistic contacts, the pairing peers can

cooperatively provide (avail of) its (other peer’s) services. This service provisioning paradigm

is a key feature of the emerging opportunistic computing paradigm. We develop an analytical

model to study the behaviors of service seeking nodes (seekers) and service providing nodes

(providers) that spawn and execute service requests, respectively. The model considers

the case in which seekers can spawn parallel executions on multiple providers for any

given request, and determines: i) the delays at different stages of service provisioning; and

ii) the optimal number of parallel executions that minimizes the expected execution time

without saturating providers’ resources. The analytical model is validated through simulations,

and exploited to investigate the performance of service provisioning over a wide range of

parameters.

Index Terms

Opportunistic networks, service provisioning, performance evaluation, analytical mod-

elling

✦

1 INTRODUCTION

Opportunistic networks are mobile ad hoc networks in which the existence of si-

multaneous end-to-end paths between a sender and a receiver is not assumed. An
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opportunistic contact occurs when pairs of mobile devices come within commu-

nication range of each other. An opportunistic network is created when several

such opportunistic contacts occur between pairs of devices, distributed in time and

space [1], [2]. As opposed to traditional MANETs, opportunistic networks are better

equipped to deal with prolonged and frequent disconnections and partitions, as they

exploit mobility as an opportunity rather than a challenge. Thanks to these features,

opportunistic networks are capable of supporting delay tolerant applications in mo-

bile and pervasive environments.

Opportunistic networks are the underlying enabler for the emerging concept of

opportunistic computing [3]. The key observation of opportunistic computing is that

the environment around (mobile) users features a steadily (if not exponentially)

increasing set of heterogeneous resources available on fixed and mobile devices with

wireless networking capabilities. In this context, resources include heterogeneous

hardware components, software processes, multimedia content, sensors and sensory

data. While not all resources can be available on any single device, they can be

collectively available to anyone through the deployment of effective middleware in

such a pervasive networking environment. Opportunistic computing is a natural

paradigm that allows users to avail of those resources, by exploiting the fact that

couple of devices come in contact with each other due to mobility, and can perform

opportunistic computing actions (such as invoking resources of each other or retrieve

content). In general, exploiting opportunistic contacts among nodes, complements

existing wireless infrastructure including cellular networks and WiMAX. Sometimes,

they actually represent the most natural option, as the required resource can be

available on devices nearby, and hence an opportunistic pair-wise communication

may simply be the most efficient way to access it. Essentially, we envision op-

portunistic computing and networking as evolutions of the distributed computing

and networking paradigms in pervasive environments characterized by intermittent

communication patterns.

In the envisioned opportunistic computing environment, resources can be ab-

stracted, as services that can be shared and executed (perhaps remotely). A key

research challenge for realizing the vision of opportunistic computing is therefore

a comprehensive investigation of opportunistic service provisioning. This is a new

topic in the area of opportunistic networks, as researchers in the past have explored
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opportunistic networking mainly as a means for forwarding message packets. In this

paper we start investigating this new challenging topic.

Service discovery, provisioning and composition in pervasive environments have

been investigated by many researchers in the past, and there have been several

successful implementations (see Section 2). In all past research on this topic, the

existence of traditional, wireless, mobile ad hoc, or a combination of networks has

been assumed. To the best of our knowledge, this is the first attempt at service

provisioning using only opportunistic contacts.

Service provisioning in the framework of opportunistic computing enables inter-

esting applications that have already started to emerge in the research landscape. The

MetroSense project at Dartmouth College (http://metrosense.cs.dartmouth.edu/) in-

vestigates the concept of people-centric sensing [4]. They consider an environment

similar to the one featuring opportunistic computing, and exploit mobile devices’

resources and sensory readings to infer users activities and provide improved mo-

bile social networking services to facilitate social interactions among users. Other

application areas for opportunistic computing include pervasive healthcare, where

opportunistic computing platforms can be used to implement continuous monitoring

and filtering of patient data; intelligent transportation systems, where opportunistic

computing paradigms can be used for exploiting vehicle-to-vehicle and vehicle-to-

roadside devices communications to provide infomobility services; crisis manage-

ment, where opportunistic computing paradigms can support quick establishment

of networking and computing services in emergency scenarios when the primary

infrastructures might not be available (e.g., because disrupted) or too congested.

More details and examples related to these areas can be found in [3], [5], [6], [7], [8],

[9], [10], [11], [12], [13].

As described in Section 3, we consider a very simple architecture in which nodes

can opportunistically request service executions to directly encountered peers, and

collect results the next time peers are encountered after the execution (on those peers)

has been completed. Hereafter, we denote by request a request for the execution

of a given service, and by results the output results of the service execution. The

main focus of this paper is on optimizing the way in which a seeker (a node re-

quiring a service) should spawn executions onto encountered providers. Specifically,

for each request, a seeker might spawn multiple (parallel) executions to different
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providers. Clearly, the time taken to receive the results will be the minimum of the

times taken to get results from each provider. However, uncontrolled replication of

parallel executions might lead to saturating providers’ computational resources. As,

in opportunistic networks, services are provisioned by resource limited devices, this

is a very important issue to be considered. To investigate the performance of service

provisioning in opportunistic networks, in Sections 4 and 5 a model is developed to

depict the behavior of the service provisioning system as a function of the number of

replicas spawned by seekers1. The model accounts for the effect of varying number of

seekers, providers, seekers’ request loads, providers’ computational capabilities, and

users’ mobility parameters. The model determines the optimal number of parallel

executions that a seeker should spawn in order to minimize the expected service

completion time, given the computational capabilities of the providers. The model is

validated against simulation results, showing very good accuracy, and is then used

to analyze the behavior of the service provisioning system with respect to a set of

key parameters (Section 6), spawning much larger parameters’ ranges with respect

to what is possible by simulations.

Results of our studies show that a policy using the optimal replication level indi-

cated by our model is able to greatly outperform both a policy that greedily replicates

requests on all encountered providers, and a policy that generates just a single

execution on the first encountered provider (i.e., policies that work without any

background information). We show that, for a wide range of scenarios, the optimal

policy adjusts the replication level so as to always achieve the minimum expected

service time. Unlike the other policies, the optimal policy is also able to significantly

limit the increase of the expected service time when the load on the system increases

even by orders of magnitude.

2 RELATED WORK

Service-oriented architectures have been investigated in the area of ubiquitous and

pervasive computing. The heterogeneous devices in a pervasive environment possess

varied resources and capabilities. In order to utilize the collective capabilities of all

available resources, service oriented architectures have been developed [14]. The

1. Hereafter, the terms “replicas”, “replications”, and “parallel executions” are used interchangeably.
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dynamic nature of pervasive systems makes service provisioning a challenging task.

Many solutions available for service provisioning are essentially extensions to service

discovery that introduce transparency between the user and the services. In [15] Ravi

et al., develop a mechanism for accessing pervasive services across the network of

devices using cell phones. Much effort has been devoted by the research community

to service composition in pervasive networking environment. Service composition

entails stitching together two or more basic services to create composite application

level services. Essentially, there are two types of service composition mechanisms -

static and dynamic. In static mechanisms, a template with place holders represents

the user request/task as the input to service composition while the output is a

plan containing services identified to populate the place holders within the request

template. Examples of such service composition mechanisms in pervasive systems

include [16], [17], [18]. For dynamic service composition the description of the service

and the mechanisms employed to identify matches between a requested service and

an available one are critical to the successful operation. In [19] Kalasapur et al., de-

scribe services using graph theoretic techniques to facilitate the migration of services

across devices and networks and to compose high level application services. Our

work differentiates from this body of research as none of these articles has focused on

opportunistic networking environments. All of them either consider single-hop wire-

less access to the infrastructure, or assume conventional stable connectivity among

nodes as in the MANET paradigm. Being the networking environment that different

and so much more challenging, we limit ourselves - for now - to a very simple service

provisioning scheme, in which seekers can just avail of services directly provided

by encountered providers.

Service provisioning in opportunistic networks is a challenging problem that, to

the best of our knowledge, has not been addressed yet. In a broad sense, oppor-

tunism is the key design feature in this kind of networks, as contacts should be

opportunistically exploited according to the individual users’ goals (be it sending

messages across the network, or avail of a service not available locally). Research

on opportunistic networks has mainly focused on routing issues (e.g. [20], [21], [22],

[23], [24], [25], [26], [27]), mobility analysis (e.g. [28], [29], [30], [31], [32]) and, more

recently, on data-centric architectures for content delivery (e.g., [33], [34]). To the best

of our knowledge, the problem of service provisioning during opportunistic contacts
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has not been investigated in the past.

The work presented in this paper can be seen as one of the building blocks of

the recently proposed concepts of opportunistic computing [3] and people-centric

sensing [4], [5], [6], [7]. The latter area already produced significant results, which

however are mainly focused on inferring people activities through sensors available

on single pervasive user devices (such as last-generation smartphones), and how

to exploit such information for augmented mobile social networking services. The

process necessary to perform such inferences is mainly executed on single devices,

by exploiting sensory data available on the device itself. The work presented in

this paper starts investigating opportunistic service provisioning between pervasive

devices, and is thus complementary.

3 SERVICE PROVISIONING IN OPPORTUNISTIC NETWORKS

Overall, the service provisioning model we support is as follows. A service execution

entails different phases. Upon a contact between any two nodes, the nodes exchange

information about the services they provide and wish to avail, decide whether to

spawn a new service execution on the encountered peer, and download results

for previously spawned service executions, if any. We assume that the seeker and

provider may or may not be connected when the service is executed. We also assume

that the mobility model is such that the probability of seeker and provider to meet

again after the completion of the service, if they were disconnected during the

execution, asymptotically tends to 1 in the limit t→ ∞.

From a system design standpoint, we assume that nodes in the network run the

following protocol. They keep a Service Index SI that contains service informa-

tion: available services (e.g., Sa = [S1, S3, S7]), services needed (e.g., Sn = [S2, S8]),

services whose execution is locally ongoing (pending services e.g., Sp = [S4]) and

services completed (e.g., Sc = [S3]). These data are used to manage service execution,

as follows. During a contact time, first of all, if a pending service of one device has

been completed by the other, the results are transferred. Then, if services needed on

one device are available on the other, the service inputs may be transferred, according

to a local replication policy run by the seeker. The algorithm in Figure 1 describes this

process (na ⇔ nb denotes the fact that nodes na and nb are in contact and exchange

information). Note that from a networking standpoint this algorithm just requires
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Algorithm for Node na

while na ⇔ nb do
na(SI) ↔ nb(SI) . assuming na and nb trust each other
if na(Sp) in nb(Sc) then

nb sends output(Sc) → na

end if
if nb(Sp) in na(Sc) then

nb sends output(Sc) → nb

end if
if na(Sn) in nb(Sa) then

na sends input(Sn) → nb

end if
if nb(Sp) in na(Sa) then

nb sends input(Sn) → na

end if

end while

Fig. 1. Algorithm for service provisioning during contacts.

reliable single-hop communications between nodes, that we assume available. It

is also assumed that the two nodes trust each other and exchange each other’s

information. In future work, we will address the issue of trust and authentication

related to opportunistic contacts.

A key part of the above protocol is the replication policy, that is used by each

seeker to decide whether or not to spawn a service execution to an encountered

provider. As mentioned in Section 1, uncontrolled replication may saturate providers

resources and should, in general, be avoided. By following the replication policy,

each seeker can decide how many parallel executions to spawn in order to minimize

the service completion time without saturating providers resources. Addressing this

issue is the main goal of this paper, and we address it through the analytical model

described in Sections 4 and 5. The model actually tackles a more general issue than

this, as it describes the time required by a seeker to receive results as a function of

the number of spawned replicas. The model allows us to highlight the impact of a

number of parameters characterizing the system and the networking environment,

on the system’s performance. Possible directions to further generalize the model are

discussed in Section 7.

4 MODEL FOR OPTIMAL SERVICE PROVISIONING

The analytical model presented hereafter focuses on a tagged seeker (wishing to avail

of a given service), and assumes that the seeker is allowed to spawn parallel exe-
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cutions of the service on different providers. We assume that all the seekers behave

according to the same stochastic processes (i.e., the tagged seeker is statistically

representative for a generic seeker). We provide a model of the expected service

time (i.e., the time the seeker has to wait to receive the results), as a function of the

number of allowed parallel executions. To better clarify the rationale of studying this

scenario, we introduce the following terminology.

(Service) Request: a request for a service, generated at a seeker.

(Service) Execution: an execution of a request, spawned by a seeker on a provider;

note that, following a request, a seeker may spawn multiple

parallel executions on different providers.

(Service) Replicas: the set of parallel executions related to the same request.

Execution Time: the time elapsed from when a request is generated at the seeker,

and the time when the seeker receives the results from a par-

ticular provider on which it has spawned an execution.

Service Time: the time elapsed from when a request is generated at the seeker,

and the time when the seeker receives the results from any

provider on which it has spawned an execution. Note that the

service time is the minimum of the execution times of the providers

on which a request execution is spawned.

Intuitively, spawning more executions can result in a lower service time, as the

service time is the minimum over the execution times of the replicas. However,

on the other hand, spawning more executions also increases the computational load

on the providers, and results in longer execution times at individual providers. In

the remainder of the section we describe a model to determine the optimal number of

replicas representing the optimal trade-off between the two effects described above.

Analytical results of the model are presented in Section 5.

4.1 Replication behavior

In our model, the (tagged) seeker manages each request as described below (refer

to Figure 2 for an example). Let us denote with m the maximum number of parallel

executions the seeker can generate for each request (m = 3 in the Figure). The seeker

opportunistically uploads the input parameters to all encountered providers, until

either of the following occurs: i) the seeker completes m uploads, thus generating m
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complete

t

request

download

(b) a subset of replicas are spawned

Fig. 2. Scenarios for service replication.

replicas (case in Figure 2(a)); or ii) the seeker downloads the results from a provider

before generating all the m replicas (case in Figure 2(b)). Specifically, the latter

case occurs when the seeker downloads the results from a provider that already

completed the service execution before uploading the input parameters to all the m

distinct providers. The model provides the optimal value (mopt) of the m parameter,

the optimal number of maximum allowed replications. Focusing on the maximum

number of allowed replications is the correct way of approaching the problem, as

the actual number of replications may change between each request (see Figure 2),

and is thus not a controllable parameter. The download of the output results works

similarly to the upload phase, i.e., service results are opportunistically downloaded

when the seeker meets any provider on which an execution was spawned. In general,

both uploads and downloads may take one or more contact events to complete. In

this case, on the next contact, the upload (download) resumes from when it was

stopped.

We assume that the requests generation pattern at the seeker is independent of

the encounter pattern between the seeker and the providers. This implies that a

new request may be generated before the previous one has been served (i.e., before

the seeker receives the results, or even before it finished to replicate the previous

request’s executions). Therefore, when the seeker meets a provider, it may upload

input parameters for several (successive) requests, all generated at the seeker itself.

Similarly, it is also possible that the seeker downloads, from an encountered provider,

several output results, related to different requests generated at the seeker and whose

executions has be spawned at that provider. In both cases we assume request uploads

and downloads are served according to a FIFO policy.

4.2 General Model

To model the replication behavior described in Section 4.1 we consider the scheme

in Figure 3. For the reader’s convenience, Table 4.2 summarizes all the symbols used

throughout the model.
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TABLE 1
List of symbols

Ri execution time at the i-th provider
R(m) service time when m replicas are allowed

Bi (Di, θi) delay of the first (second, third) stage of pipe i

m (mopt) maximum (optimal) number of allowed replicas
pi probability that i executions are spawned for a given request 1 ≤ i ≤ m

m∗ average number of spawned executions when m replicas are allowed
λ request rate each seeker
λi total offered load at provider i

µi service rate of provider i

N number of nodes in the network
p(s) (p(p)) probability of being a seeker (provider)
k = p(s)N average number of seekers
M = p(p)N average number of seekers

ps(A) success probability, i.e., probability of meeting a provider in the set A
T (A) time to meet any provider in the set A from a random point in time
L(A) time to meet any provider in A after the end of a contact
Et average inter-contact time between any two nodes
Ec average contact time between any two nodes

We assume that the tagged seeker issues requests according to a Poisson process

with rate λ. Although we focus on a tagged seeker, more seekers can be present.

To simplify the presentation, without loss of generality, we assume that each seeker

issues requests at the same rate λ, and denote with p(s) the probability that a node

in the network is a seeker. The case in which the requests rate is different for each

seeker is developed in [35]. If N is the number of nodes in the network k , p(s)N

is the average number of seekers. Similarly, p(p) is the probability that a node is a

provider of the sought service, and M , p(p)N is the average number of providers.

Each horizontal pipe in Figure 3 represents a different execution (on a different

provider) for a request issued by the tagged seeker2. Therefore, there are m pipes,

as a maximum of m executions can be spawned. As will be clear in the following,

the model also accounts for the cases in which less than m executions are actually

spawned. Specifically, we derive closed form expressions for pi, which denotes the

probability that a request is completed (i.e., the seeker receives the output results)

after spawning i executions (i = 1, . . . ,m). Accordingly, we will also consider in

the model the average number of spawned replicas (also referred to as effective

replication level), defined as m∗ =
∑m
i=1 ipi.

Let us now consider the individual execution times. For each request, pipe i

2. As each pipe corresponds to a particular provider, we use these terms interchangeably
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Fig. 3. General scheme of the replication process.

corresponds to the i-th provider starting the computations, i.e., pipes are ordered in

increasing temporal order of computation starting time. Each pipe consists of three

stages. The first stage represents the time required to complete the i-th upload of the

input parameters, which is throughout referred to as Bi. The second stage represents

the time required to execute the request after it is spawned. The second stage thus

models the computation at the i-th provider, and can be represented by a queue

with service rate µi, as discussed in detail in Section 5. Note that more seekers can

spawn requests on each provider. Thus, the providers offered load (λi in the Figure)

is the result of the joint request pattern of all the seekers. We will model it in detail

in Section 5.3. Finally, the third stage represents the time required by the seeker to

complete the download of the output results from the provider “corresponding” to

pipe i (i.e., the i-th provider to complete the upload of input parameters during the

first stage), and is denoted by θi. Based on these definitions, the delay on the i-th

pipe is given by

Ri = Bi +Di + θi i = 1, . . .m. (1)

The model firstly provides closed form expressions for the expected execution time

at each provider (ERi). Specifically, according to equation (1), one can derive the

expressions for the expected delays of the three stages, EBi, EDi, Eθi, respectively.

This is carried out in Sections 5.2, 5.3, and 5.4. Then, in Section 5.5 the expected

service time (denoted by ER(m)) is derived, as a function of m, by considering

all the possible completion cases (see Figure 2). Specifically, the model for ER(m)

accounts for the possibility that less than m executions be generated, i.e., that some of
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the horizontal pipes are not used. The optimal number of allowed replicas, denoted

by mopt is the value of m that minimizes ER(m), i.e., mopt = arg min1≤m≤M{ER(m)}.

5 ANALYTICAL RESULTS

Before presenting the detailed analytical results, it is worth stating the assumptions

under which they are derived.

A1. The tagged seeker encounters any specific provider at the same rate at which

it encounters any given node in the network. Therefore, the probability that

any given contact occurs with any specific node (and, as a special case, with

any specific provider) is 1/N . Furthermore, the encounter process between

the seeker and any specific provider is memoryless with respect to the

sequence of previously encountered nodes, contact and inter-contact times.

We consider the same assumptions also for the contact process between a

tagged provider and a specific seeker.

A2. A contact time is always sufficient to upload the input parameters (and

to download output parameters) for all the pending requests between the

seeker and the provider. Furthermore, while a node is engaged in a contact,

it cannot communicate with any other node in its transmission range.

A3. Executions on providers start after the end of the contact time used to

upload the input parameters.

A4. Inter-contact (contact) times are independent and identically distributed

(iid). Inter-contact and contact times are mutually independent.

A5. Both inter-contact and contact times between pairs of nodes are exponen-

tially distributed.

Assumptions A1, A2 and A3 are necessary for making the analysis tractable, and

could be released at the cost of a drastic increase of the model’s complexity. In

particular, assumption A2 is equivalent to assuming infinite bandwidth during any

contact, which is a common assumption in the literature on opportunistic networks.

This assumption could also be dropped, and load on the shared medium can be

considered. However, this comes at the cost of a huge increase in the analysis

complexity, as is shown in [35]. Note that even with a mere 11Mbps WiFi link

(whose net transport-level throughput is notoriously about 5 Mbps), in the scenario
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we consider in the analysis (in which the contacts last for about 15s), about 10MB

can be exchanged on average. Therefore, for a large range of cases, assuming infinite

bandwidth is a pretty reasonable approximation, and we prefer to keep it, to make

the analysis more readable.

Assumption A5 is necessary to derive the analytical model, and is a typical as-

sumption in the field of opportunistic networking analysis (e.g., [29], [30], [21]).

Assumption A5 is reported here for avoiding even simple inaccuracies in the math-

ematical derivations. However, the only point in the analysis where this is necessary

is to derive a minor component of the expected time to meet providers described

in Theorem 1 (see Appendix A). Therefore, even if this assumption is dropped, the

resulting inaccuracy is very limited. Furthermore, the debate whether inter-contact

times in opportunistic networks are exponential or not is still not completely settled

(see, e.g., the different conclusions drawn by [28] and [36]. Recently, the work in [37]

has analyzed some of the largest available traces (MIT Reality) and ran a χ2 test to

verify the hypothesis of inter-contact times being exponentially distributed, finding

very good statistical support for this hypothesis.

The rest of the analysis proceeds as follows. In general, R(m) should be derived

as the minimum over m generic random variables (r.v.) Ri, of which we are able to

characterize the distributions and compute closed form expressions for the expec-

tations (as shown in the following sections). However, to have tractable analytical

expressions, we compute R(m) as the minimum over a set of exponentially distributed,

independent r.v., i.e. we assume that the r.v. Ri are exponential with expected value

ERi. We assess the approximation level of this choice through validation with sim-

ulation results in Section 6.1.

As a preliminary step, in the next section we model the time required by a tagged

seeker to encountered a provider on which a request execution can be spawned.

This will be a key building block for computing the delay of the three stages in the

following sections.

5.1 Time to meet providers

The main result we derive in this section is the analytical expression of the average

time required by a tagged seeker to encounter a provider in a given set A, where A

can be any subset of the set of providers, possibly coinciding with the whole set. In
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the following of the analysis we need to distinguish whether such time intervals are

measured from a random point in time, or from the end of a contact time. Therefore,

we provide the expressions for both figures. Specifically, the following theorem holds.

Theorem 1: If contact and inter-contact times are exponentially distributed, iid3,

and mutually independent, the average time required by a tagged seeker to meet

any provider in a set A starting from a random point in time (ET (A)), and starting

after the end of a contact time (EL(A)) are, respectively

ET (A) =
Ec+ Et

ps(A)
− Ec

(

1 +
Et

Ec+ Et

)

(2)

EL(A) =
Ec+ Et

ps(A)
− Ec, (3)

where Ec and Et are the average contact and inter-contact times, and ps(A) is the

probability that a generic node encountered by the seeker belongs to A.

Proof: See Appendix A.

The expressions of ET and EL are quite intuitive. Specifically, EL is basically

made up of the average value of a geometric number of intervals with average

value Ec+Et, and success probability ps(A). The corrective term Ec in equation (3)

accounts for the fact that the time to meet a provider should not include the time

of the contact between the seeker and the provider. ET is basically similar to EL,

with a correcting term accounting for the fact that T starts at a random point in time

instead of after the end of a contact. Finally, note that, exploiting assumption A1, it

is easy to show that ps(A) just depends on the number of providers in the set (and

not on the particular providers), and is equal to |A|
N

.

5.2 Delay of the first stages

The closed form expression of the delay of the first stage of pipe i (Bi) is provided in

Lemma 1. While we provide the formal proof in Appendix B, we hereafter describe

the main line of reasoning of the proof. Any new request is generated at a random

point in time with respect to the underlying mobility process. The first execution

is thus spawned, on average, after ET (A) seconds, where A is the whole set of

3. More specifically, we mean that contact times are iid, and inter-contact times are iid. Contact times can be
clearly distributed differently from inter-contact times.
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the providers (as we have assumed that the probability of meeting each provider

is the same, we can replace the indication of A with its cardinality, and use the

notation ET (|A|) and EL(|A|)). According to assumption A3, the first replica is then

spawned at the end of the following contact time with the encountered provider.

After spawning each replica, in order to spawn the next one, the seeker has to meet

a new provider on which a replica of that request has not already been spawned.

This occurs, on average, after a time interval equal to EL(M − k) where k is the

number of replicas already spawned. Therefore, the execution on the i-th provider

starts after a time interval whose average value is ET (M) + iEc+
∑i−1
k=1EL(M − k).

The closed form expression in Lemma 1 follows after routine manipulations.

Lemma 1: The average delay of the first stage on pipe i (i = 1, . . . ,m) can be

evaluated as follows:

EBi '
Ec+ Et

p(p)
−

EcEt

Ec+ Et
+N (Ec+ Et) ln

M − 1

M − i
, i < M (4)

EBM '
Ec+ Et

p(p)
−

EcEt

Ec+ Et
+N (Ec+ Et) [γ + ln(M − 1)] .

where γ is the Euler constant (γ ' 0.577), and M = p(p)N .

Proof: See Appendix B.

Note that equation (4) requires to estimate the number of nodes in the network N

(or, more in general any two out of the triplet p(p), N,M ). When this is not practical,

Lemma 2 provides an approximated form, which is precise as long as i
2M

is close to

0 (see Appendix B).

Lemma 2: The average delay of the first stage on pipe i (i = 1, . . . ,m) can be

approximated as follows:

EBi ' i ·
Ec+ Et

p(p)
−

EcEt

Et+ Ec
. (5)

Proof: See Appendix B.

Note that the approximation of EBi provided in equation (5) is correct when i
M

is small, and predicts a linear increase of the delay with i (i.e., the provider one

considers). When i/M is small, the number of providers available to spawn the i-th

replica is approximately equal to M . In order to spawn the i-th replica, a seeker has
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to find i providers, which requires, approximately, i times the time required to find

any provider among the available M , i.e. i · Et+Ec
M/N

. Also equation (4) predicts that

EBi linearly increases with i when i/M is small. However, it provides precise results

also when i/M is not small. Intuitively, in the latter region, EBi increases more than

linearly with i, as the set of available providers becomes smaller and smaller.

5.3 Delay of the second stages

As shown in Figure 3 we model the computation process at each provider with

a queue. The service time of the queue represents the computation time at the

provider’s CPU. To simplify the analysis, and without loss of generality, we assume

that the computation time at any provider is exponentially distributed with average

value 1/µ, i.e., we assume that computation times at various providers are iid (the

case in which the rates of the computation times’ distributions are different on

different providers is considered in [35]). Note that the fact of considering a random

computation time in the model allows us to account for: i) the variability of different

providers’ CPUs; and ii) the different computations required by different requests

for a given service (e.g., because the input parameters are different). Note however

that, as the computation times are assumed iid, the delay on the second stage of a

given pipe i does not depend on the particular provider corresponding to pipe i.

According to assumption A2, when a seeker meets a provider it spawns all the

replicas it can execute on that provider. This can be nicely captured by modelling

the computation process as a batch arrival system (see, e.g., [38]). Focusing on any

particular provider, a batch (of requests) arrives whenever the provider meets a

seeker. The size of the batch is the number of requests generated for that provider

by the encountered seeker since the last time the two nodes came into contact. As we

show in Appendix C, in our model batches arrive according to a Poisson process, the

batch sizes are iid, and the computation time of each request is also an independent

r.v. As none of the involved stochastic variables depends on the particular provider

one consider, we can model the second stage of each pipe as an M[X]/M/1 system

(following the notation used in [38], where X is the r.v. denoting the size of the batch).

Accordingly, Lemma 3 provides a closed form expression for the average delay of

the second stages. For the reader’s convenience, we recall that λ is the rate of the

request generation (Poisson) process at each seeker, p(s) and p(p) are the probability of
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each node being a seeker and a provider, respectively, m∗ is the average number of

replicas actually generated for each request (when the maximum number of allowed

replicas is m), Ec and Et are the average contact and inter-contact times, respectively.

Lemma 3: The average delay of the second stages is

ED =
1

µ− λp(s)m∗

p(p)

+
2λm

∗

p(p) (Ec+ Et) + 1

2
(

µ− λp(s)m∗

p(p)

) . (6)

Furthermore, the utilisation of the providers is ρ = λp(s)m∗

µp(p) , and thus the providers

are not saturated as long as the following equation holds

λp(s)m∗

p(p)
< µ. (7)

Proof: See Appendix C.

Note that, as shown in Appendix C the term λp(s)m∗

p(p) represents the total load

on each provider which, as expected, increases with the number of actual replicas

(m∗), the requests generation rate (λ) and the probability of nodes being seekers

(p(s)), while decreases with the probability of nodes being providers (p(p)). It is also

interesting to note that, while the load does not depend on the characteristic of the

inter-contact process, the expected delay of the second stages linearly increases with

the average inter-contact time. This is a side effect of the fact that the expected delay

of a batch arrival system depends on statistics of the batch size, which increase with

the expected inter-arrival times between batches (see [38] for the details).

Also note that equation (7) already provides a limitation on the actual number of

replicas that each seeker should spawn. This confirms our initial intuition that repli-

cating executions can be an advantage just up to a certain point, as replicating too

aggressively (e.g., as in a greedy policy) saturates the providers. Note that hereafter

we define the saturation threshold as mc ,
µp(p)

λp(s)
, and the saturated region as the

range of m values such that the corresponding value of m∗ is greater than mc.

5.4 Delay of the third stages

Lemma 4 provides a closed form expression for the average delay of the third stage.

We discuss its derivation directly in the proof, as it is straightforward. Note that we
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drop the indication of the particular pipe from the notation Eθi, as the average value

does not depend on the pipe.

Lemma 4: The average delay of the third stages is

Eθ = ET (1) + Ec, (8)

where ET (1) is the average time required to meet any given provider starting from

a random point in time.

Proof: Under assumptions A2 and A3 the time required to download a request

from a given provider is the time required to meet that provider, plus a contact

time. Furthermore, as a tagged seeker meets any provider with the same probability

(according to assumption A1), the delay of the third stages of the pipes are identically

distributed, and thus the average value does not depend on the pipe. Deriving the

expression in equation (8) is straightforward by noticing that the delay of the third

stage starts when the execution of the request has been finished by the provider.

In the case of exponentially distributed contact and inter-contact times4, the time

to meet the sought provider is therefore the time required to meet any given node

starting from a random point in time, i.e., ET (1).

5.5 Optimal replication

In the previous sections we have characterized the expected execution time of re-

quests, i.e. the average time for the tagged seeker to receive the results form each

particular provider. In this section we model the expected service time, i.e. the average

time for the tagged seeker to receive the results from any provider, and show how

to select mopt, the optimal number of maximum allowed replications.

Although the seeker is allowed to spawn m replicas for each request, it may well

happen that it receives results before spawning all requests, as already discussed in

Section 4.1. Specifically, we denote with pi(m
∗) the probability that the seeker spawn

only i replicas, i = 1, . . . ,m, and with EHi(m
∗) the expected service time under

the condition that just i replicas are spawned (the dependence on m∗ is explained

immediately in the following of this section). The expected service time when a

4. As already mentioned when discussing Assumption A5, in the case of non exponential distributions,
Equation (8) is a very good approximation, as the inaccuracy is only on a small initial component of the estimated
time interval (details are presented in Appendix A.
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maximum of m replicas are allowed can thus be computed as

ER(m) =
m
∑

i=1

pi(m
∗) · EHi(m

∗) (9)

In order to expand ER(m) we need the expressions of EHi, pi and m∗, which are

provided by Lemma 5 and 6, and Theorem 2. The formal proof of the Lemma 6 and

Theorem 2 are provided in Appendix D. We provide here only the proof Lemma 5,

as it is helpful to clarify some aspects of the general line of reasoning we use also

for the other proofs, as well as the dependence of EHi and pi on m∗.

Lemma 5: The expected service time when just i replicas are spawned (i = 1, . . . ,m)

can be computed as follows:

EHi(m
∗) '

1
∑i
j=1 βj(m

∗)
, (10)

where βj(m
∗) is equal to 1

EBj+ED(m∗)+Eθ
, and EBj , ED(m∗) and Eθ are as in equa-

tion (4), (6), and (8), respectively.

Proof: Hi is the minimum over the execution times of the first i providers, i.e.,

Hi = minj=1,...,i{Rj}. As discussed in Section 4, to keep the analysis tractable we

assume that the r.v. Rj are independent and exponentially distributed with average

ERj(m
∗) = EBj + ED(m∗) + Eθ. It is well known that the minimum over a set of

independent exponential r.v. is also exponential with rate equal to the sum of the

rates of the individual r.v. (see, e.g., [39]). By defining βi(m
∗) as the rate of the r.v.

Rj (i.e., βj(m
∗) = 1

EBj+ED(m∗)+Eθ
), the rate of Hi becomes equal to

∑i
j=1 βj(m

∗), and

its average value is as shown in equation (10). The dependence of EHi on m∗ comes

from the fact that the rates βj are functions of the average delay of the second stages

ED, which is a function of m∗.

Lemma 6: The probability that the tagged seeker receives the results after spawning

exactly i executions (i = 1, . . . ,m) can be computed as follows:

p1(m
∗) =

δ1(m
∗)

δ1(m∗) + ψ2

pi(m
∗) =

δi(m
∗)

δi(m∗) + ψi+1

−
δi−1(m

∗)

δi−1(m∗) + ψi
(11)

pm(m∗) =
ψm

δm−1(m∗) + ψm
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where δi(m
∗) , 1

EHi(m∗)
, and ψi , 1

EBi
.

Proof: See Appendix D.

The expressions of pi can be found by noticing that the probability that i replicas

are spawned is the probability that the seeker has not yet received the results when

completing the upload of the input parameters on the i-th provider, but has received

the results before completing the upload of the input parameters on the (i + 1)-th

provider.

Theorem 2: The average value of the number of executions actually spawned when

m replicas are allowed (m∗) can be found by solving the following fixed point

equation:

m∗ =
m
∑

i=1

i · pi(m
∗) (12)

where pi are as in equations (11). Specifically, equation (12) admits either one or three

solutions. In the former case, the unique solution is stable. If it falls in the saturated

region, then m∗ = m (and is greater than the saturation threshold mc = µp(p)

λp(s)
). Or, it

can fall in the non-saturated region (i.e., m∗ < mc). When equation (12) admits three

solutions, one of them falls in the saturated region, and is stable, while the other

two fall in the non-saturated region, and one of them is stable.

Proof: See Appendix D.

The form of equation (12) basically comes for the definition of m∗, which is the

average value of the actual number of spawned replicas (i.e., m∗ =
∑m
i=1 i · pi).

However, as the probability of spawning a given number of replicas depend on

m∗, m∗ can only be found by solving the fixed point equation in (12). Note that

Theorem 2 guarantees that a stable solution m∗ can always be found with standard

iterative methods that are guaranteed to converge in a finite number of steps. From a

systems perspective, Theorem 2 tells that the only one case in which the system works

in saturation is when the unique solution is equal to m (in this case m∗ falls in the

saturated region). In the other cases, the fact that the fixed point equation admits one

stable solution (x1) in the non-saturated region is very important. Although another

stable solution (x2 = m) may exist in the saturated region, seekers receive results for

requests after spawning - on average - x1 executions only, and experience a finite

service time. Therefore, they never replicate executions so aggressively to make the

system operate in the saturated condition corresponding to x2.
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The results in equations (10) and (11) allows us to find the numerical solution

of m∗ for any given value of m, and thus to find the corresponding value of the

expected service time ER(m). This also provides a way to find the optimal value for

the maximum allowed number of replications, mopt, as shown in Theorem 3.

Theorem 3: The optimal value for the maximum allowed number of replications

is:

mopt = arg min
m=1,...,M

{

m
∑

i=1

pi(m
∗) · EHi(m

∗)

}

(13)

where EHi(m
∗) and pi(m

∗) are as in equations (10) and (11), and, for any value of

m, m∗ can be found by solving the following fixed point equation

m∗ =
m
∑

i=1

i · pi(m
∗) .

Proof: This is straightforward from the definition of mopt, and the results in

Lemma 5, 6, and Theorem 2.

We wish to highlight that Theorems 2 and 3 allows us to compute the optimal

operating point for seekers, in order to minimize the expected time to receive results

from providers. They are thus the main result of the model derived in this paper.

The model derived so far is very powerful to characterize the behavior of service

invocation in opportunistic networks, as we show in details in Section 6. From a

practical standpoint, the only complexity of the model is solving the fixed point

equation in (12). This must be done for increasing values of m, until the expected

service time ER(m) starts increasing. As discussed in Section 6, this turns out much

more efficient than using alternative evaluation tools (such as, for example, simula-

tions), for a large range of relevant system’s parameters.

6 PERFORMANCE EVALUATION

In this section we analyze the performance gain that can be achieved by exploiting the

results of our analytical model. Our main performance index is the expected service

time. We compare three policies: i) in the single policy each seeker generates a single

request on the first encountered provider; ii) in the greedy policy each seeker replicates

each request on all providers it meets, until the request is satisfied; this corresponds

to setting the maximum number of allowed replicas to M ; iii) in the optimal policy
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the maximum number of allowed replicas the one achieving the minimum expected

service time. The idea is thus to highlight the advantage of using an intelligent

policy based on our theoretical results with two straightforward policies that can be

implemented without any background information.

In order to validate the analytical model, we also developed a simulation model

based on the OMNeT++ simulator (http://www.omnetpp.org/). Simulation results

are presented with confidence intervals computed with 95% confidence level. In the

simulated environment the nodes move in a square, according to the RWP mobility

model, with the modifications described in [40] to guarantee that the model’s distri-

butions are stationary (the nodes’ average speed is 1.5 m/s, representative of walking

speeds). This scenario also corresponds to mobility models more realistic than RWP

such as recently proposed social-oriented mobility models (e.g., [31]), when users

belong to the same social community. We control the density of the network, and,

thus, the value of the contact and inter-contact times, either through the number

of nodes, or the transmission range of each node, or the size of the simulation

area (precise details are provided for each simulation scenario). In the simulation,

seekers and providers are chosen at the beginning of each simulation run according

to the p(s) and p(p) parameters. Seekers then generate requests according to a Poisson

process with configurable rate. The maximum number of allowed replications is an

input parameter for the simulator. In the simulations, we assume that, whenever

a seeker meets a provider, it is able to upload the service parameters for all the

requests’ replica that the provider can possibly satisfy, i.e., our simulation model

shares assumption A2 with the analytical model (recall that on overage, in our

scenario, on any contact nodes can exchange about 10MB of data). Finally, request

executions are queued at the providers according to a FIFO policy, and computation

times are exponential with a configurable rate.

The main purpose of simulation results is validating the analytical model. There-

fore, the main indices we measured are the optimal number of allowed replications

(mopt) and the optimal expected service time (ER(mopt)). The value of the allowed

replications (m) is an input parameter of the simulation runs, and we repeated the

simulation runs with increasing values of m. At the end of each run, we computed the

corresponding average service rate (with 95% confidence intervals), and we identify

the optimal case as the value of m achieving the minimum average service rate.
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Results presented hereafter show a very good agreement between the simulation

and the analysis, which allows us to conclude that the analytical model is accurate.

It is worth noting that the analytical model provides a much more flexible tool than

the simulation model. Specifically, the inherent complexity of the simulation model

(mainly, the number of events that are generated) make it practically impossible

to explore the system’s behavior through simulation over a large range of key pa-

rameters. This is possible instead by using the analytical model. For example, in

the following section we study the system behavior in dense networks, when the

number of nodes increases up to 200, or heavy-load conditions in which services

require long computation times. In these cases the simulation model becomes too

complex (in terms of execution time and memory space) to study the system, while

the analytical model allows us to completely investigate the system’s behavior.

6.1 General properties

Before comparing the three policies in a number of scenarios, in this section we

discuss important general properties of the system. To this end, we consider a

scenario where the average computation time at providers is 30s (i.e., 1
µ

= 30s), the

request rate at seekers is about 1 request every 3 minutes (precisely, λ = 0.005 req/s),

the probability of node being a provider (p(p)) is 0.5. We show two representative

cases, in which the probability of node being a seeker (p(s)) is 0.5 and 0.8 respectively.

In both cases the number of nodes is 20, the nodes’ transmission range is 20m, and

the simulation square is 1000x1000m large. The resulting scenario is very sparse,

as nodes’ average intercontact time is about 10 minues, while the average contact

duration is about 16s.

Figure 4(a) allows us to highlight three important aspects. First of all, the shape of

the curve ER(m) clearly highlights the existence of a trade-off that manifests itself as

the number of replicas increases. Increasing the number of allowed replicas allows

seekers to run more executions in parallel, and pick the minimum execution time

among the set of the replicas. On the other hand, it also increases the load at providers

and brings the system closer to the saturation point (recall equation (7)). Note that the

analytical curve stops when the system enters in the saturated region, as the expected

service time is infinite in this case. In the simulations, after this point the service time

is clearly not stationary anymore, and therefore we plot, in that region, the average
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Fig. 4. Representative cases of the expected service time as a function of m. Both
analytical (solid) and simulation (dashed) curves are shown.

over the service requests actually completed within the simulation time, to give an

indication of the trend of the service time. Secondly, this plot also motivates why

looking for the system’s optimal operating point is important. Note that the optimal

policy achieves a far lower expected service time with respect to both the single and

the greedy policy. Finally, results show that the analytical model is able to capture

the trend of the simulation results. According to the analytical model, the system

saturates as soon as m is greater than 5, and the optimal operating point is achieved

for m = 4. Simulation results confirm this trend with good accuracy.

Figure 4(b) shows a case in which the system never saturates. The plots confirms

that the analytical model is able to capture the trends of the simulation results as far

as the expected service time. Both the greedy and the optimal policies outperform

the single policy. The optimal and the greedy policies result in almost equivalent

expected service time, although the optimal point does not correspond to that of the

greedy policy. The important point to note is that in such cases the optimal policy

is anyway more efficient than the greedy policy, as it generates less executions,

and thus avoids useless resource consumption. Note that in this case (which is

representative of several configurations of the parameters we have tested) the plot

of the expected service time flattens out after a certain value of m. This means that,

in certain configurations, there is a large range of m values over which the service

time varies very little. Jointly with the inherent statistical fluctuations of simulation

results, which makes it difficult to compare results when they are close, this results

in the fact that the simulation and analytical models may not always be in good

agreement as far as the optimal value of m. This is not a matter of concern, because
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TABLE 2
Default analysis parameters

1/µ 30s
λ 0.005 req/s
N 20

tx range 20m
Area 1000m x 1000m

avg speed 1.5m/s
p(s) 0.1,0.2,0.5,0.8
p(p) 0.1,0.2,0.5,0.8

of the flat shape of the expected service time curves. As we clearly show in the

following, the analytical model predicts with good accuracy the simulation results

with respect to the expected service time.

In other cases, shown in details in the next sections, the optimal policy coincides

either with the greedy policy (typically, when the system’s load is low), or with the

single policy (typically, when the system’s load is high). In general, the results we

present hereafter show that the optimal policy adapts to the system’s configuration,

converging to the greedy or the single policy when appropriate, and achieving lower

expected service time when neither of them is the best policy.

6.2 Performance in sparse scenarios

We hereafter consider a sparse opportunistic network, in which nodes inter-contact

times are about 10 minutes, while contact times last, on average, about 16s. The

values used to obtain this scenario are shown in Table 2. This is the main scenario

we consider in our performance evaluation, as it is typical of the opportunistic

networking environment that we consider as our reference in this work.

Figure 5(a) shows the optimal value of the maximum allowed number of replicas

for different values of both the seekers and the providers probability. For a small

percentage of seekers, the optimal policy is greedy, i.e. m is equal to M = p(p)N .

This is because the load generated by such small number of clients is not enough

to saturate the computational resources of the providers. However, as soon as the

number of seekers increases beyond 20%, the optimal policy spawns parallel execu-

tions less aggressively than the greedy policy. Note that, in this scenario, the single

policy (which spawns just 1 execution for each request) is optimal just when the

number of seekers is high (beyond 50%), and the number of providers is low (below
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Fig. 5. Performance of the three policies in sparse scenarios. For each configuration,
both analytical (solid) and simulation (dashed) curves are presented. Analytical points
are not plotted for saturated conditions.

20%). In this case, the number of providers is so low that even replicating requests

more than once results in significant congestion. Finally, note that, as expected, for a

given number of seekers, mopt increases with the number of providers, as increasing

the number of providers means increasing the overall computational capacity of the

system, and thus shifting the saturation point towards higher replication levels.

An interesting remark from Figure 5(a) is the fact that a system using our model

to identify the optimal policy is able to autonomically switch either to the greedy

or the single policy when appropriate, or work in between these two extremes. Also

in this case the analytical and simulation results show good agreement. It is indeed

counter-intuitive that, in the simulation results, mopt increases when moving from

p(s) = 0.1 to p(s) = 0.2 when the provider probability is 0.1 and 0.2 (the two curves

at the bottom). When the number of seekers increases, the system becomes more

loaded, and thus the optimal number of allowed replication should not increase

(which is, by the way, the behavior predicted by the analytical model). By looking at

the simulation results, it clearly appears that the expected service time at p(s) = 0.1

obtained at the indicated optimal point, and that obtained by the greedy policy

are statistically equivalent, being both in the confidence interval of each other (and

far apart by about 1%). Therefore, the fact that for p(s) = 0.1 the optimal policy

indicated by simulations does not correspond to the greedy policy is just an artefact

of statistical fluctuations.

Figure 5(b) shows the expected service time for the three policies in the case of

p(p) = 0.5 (similar remarks can be done with respect to the other values of p(p), as

well). The figure shows the simulation plots and the corresponding analytical plots



27

for all the three policies (single, greedy, optimal). Analytical plots are drawn with

solid curves, while dashed curves represent simulation results. For the optimal policy,

the analytical and simulation curves can hardly be distinguished, as they overlap.

Furthermore, for the analytical plot of the greedy policy, no result is available for

p(s) = 0.8 as the system is in the saturated region. Before that point, also for the greedy

policy the analytical and simulation plots overlap. Furthermore, as explained below,

for p(s) less or equal to 0.5, the optimal and greedy policy coincide, and therefore

the four corresponding plots also overlap.

As noted before, for a small number of seekers, the optimal policy coincides with

the greedy policy. Actually, the curves of the greedy and optimal policies almost

overlap up to p(s) = 0.5 included, as the two policies provide almost the same

expected service time in this range. However, when the number of seekers increases

beyond this point, the greedy policy saturates the system (recall that in this case the

expected service time in the analysis is infinite, and thus the analytical curve for the

greedy policy stops at p(s) = 0.5). On the contrary, beyond p(s) = 0.5 the optimal

policy significantly outperforms both the single and the greedy policy. Also note

that the optimal policy results in just a slight increase of the expected service time

as the number of seekers increases. By jointly looking at this plot and at the plot in

Figure 5(a) one can see that, as the number of seekers increases, the optimal policy

reduces the number of spawned execution, and thanks to this, limits the increase of

the expected service time.

6.3 Performance with varying request and computation loads

In this section we study the system’s sensitiveness with respect to the request load

(λ), and the computation load of executions (1/µ). Specifically, the cases λ=0.002,

0.005, 0.01, 0.02, 0.05, 0.1 req/s and 1/µ=15, 30, 60, 90s are considered. Figure 6(a)

shows the optimal number of allowed replications for varying request loads when

the providers probability is p(p) = 0.5, and for the extreme cases of the seekers

probability, p(s) = 0.1 and 0.8. Figure 6(b) shows the expected service time of the

optimal, single and greedy policies for p(s) = 0.1 and p(p) = 0.5. The reason why we

have selected the smallest possible seekers probability will be explained immediately.

All the other parameters are as in Table 2.

First of all, note that simulation results are presented for small values of λ only (up
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Fig. 6. Performance for varying request loads (λ).

to λ = 0.008), as, beyond this point, simulation results are practically unmanageable

(due to the exponential increase of computation and memory requirements). Instead,

the analytical model allows us to explore the system’s behavior also for higher loads,

and this shows very important features.

Let us analyze the case of p(s) = 0.1, i.e. the top curve in Figure 6(a) and Figure 6(b).

As expected, for light loads (up to λ = 0.008) the optimal and the greedy policies

coincide (i.e., mopt = M = 10). However, the greedy policy saturates as soon as λ

increases beyond 0.002 (shown by the fact that the analytical curve for the greedy

policy in Figure 6(b) stops at this point). Between λ = 0.01 and λ = 0.1 neither the

greedy nor the single policy are optimal (i.e., 1 < mopt < M = 10), and the optimal

policy significantly outperforms both in terms of expected service time. Finally, the

optimal policy converges to the single policy for very high load (at λ = 0.1), i.e.,

mopt becomes equal to 1. The analytical model also shows that in certain cases even

the single policy saturates the system. For example, this is the case when the seekers

percentage is high (p(s) = 0.8), and the load increases beyond 0.02. In this region

(see Figure 6(a)) there is basically no policy that can avoid the system’s saturation.

Indeed, the case of p(s) = 0.1 is the only one in which at least the single policy can

be used at all the considered loads, and that is why this case is used for Figure 6(b).

Another way of varying the load is through the average time required by providers

to execute each request, 1/µ. Figure 7(a) shows the optimal number of allowed repli-

cations when the providers probability is 0.5, while Figure 7(b) shows the expected

service time of the three policies when p(p) and p(s) are 0.5. Note that we use only the

analytical results, as i) the analytical model has shown to be well in agreement with

simulations, and ii) for most of the cases it is practically unmanageable to obtain
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statistically sound results from simulations.

Qualitatively, Figure 7 confirms the properties already highlighted before. In gen-

eral, the optimal number of allowed replication decreases when either the computa-

tional load or the seekers probability increase (Figure 7(a)), until a point where the

optimal policy coincides with the single (e.g., for p(s) = 0.8 and 1/µ = 90s). As far

as the expected service time (Figure 7(b), note that the greedy policy saturates quite

soon (beyond 30s), and beyond this point the optimal policy outperforms either of

the other two. Also note that when 1/µ is 30s and p(s) and p(p) are 0.5, the greedy

policy is not optimal (as shown by Figure 7(a)), but achieves almost the same expected

service time of the optimal policy (as shown by Figure 7(b)). This is indeed the case

already discussed in Figure 4(b).

6.4 Performance with varying number of nodes

In this section we study the behavior of the system for an increasing number of

nodes N to study scalability properties. In this part of the analysis we keep the

density constant by scaling up the size of the simulation area with the number of

nodes. Specifically, in addition to the case N = 20 analyzed in the previous sections,

we consider the cases N = 50, 80, 100. As the density is constant, we still consider

sparse scenarios. The performance in dense scenarios is investigated in Section 6.5.

Table 3 shows the optimal values of m (the maximum allowed replications) for

the various cases considered. We will analyze the dependence of m on N in detail

later on in this section. The results clearly confirm that in several configuration

the analytical and simulation models are in good agreement, while in other cases
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TABLE 3
mopt as a function of N

N = 20 p(p) = .1 p(p) = .2 p(p) = .5 p(p) = .8
an sim an sim an sim an sim

p(s) = .1 2 1 4 3 10 10 16 16

p(s) = .2 2 2 4 4 10 8 16 16

p(s) = .5 1 1 2 2 7 6 11 11

p(s) = .8 1 1 1 1 4 3 7 5

N = 50

p(s) = .1 5 5 10 6 22 13 34 12

p(s) = .2 3 3 7 5 18 10 29 13

p(s) = .5 1 1 2 2 7 5 14 7

p(s) = .8 NaN 1 1 2 4 3 7 5

N = 80

p(s) = .1 6 6 13 13 33 14 48 14

p(s) = .2 3 3 7 5 22 14 37 17

p(s) = .5 1 1 2 2 7 5 13 8

p(s) = .8 NaN 1 1 2 4 4 7 6

N = 100

p(s) = .1 7 4 15 9 36 16 57 18

p(s) = .2 3 3 7 5 24 11 41 16

p(s) = .5 1 1 2 2 11 5 13 8

p(s) = .8 NaN 1 1 2 4 4 7 5
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Fig. 8. Optimal service time for different values of N .

they are not. When discussing the example in Figure 4(b) we explained that such

mismatches are due to the fact that, in certain configurations, the curve of the

expected service time (as a function of m) flattens out after a certain point, and

there is therefore a significant range of m values for which the expected service time

is almost constant. To confirm that this is the case, it is sufficient to analyze the

optimal service time. Specifically, Figure 8 shows the expected optimal service time

according to the analytical and simulation models for the cases N = 50, 80 and 100,

for p(p) = 0.5. Other configurations provide similar results. For the sake of space,
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these are reported in Appendix E.5. It is clear that the estimates of the simulation

and analytical models are in good agreement, which confirms that the mismatch on

the optimal values of m is not particularly significant. Finally, we have also checked

that the analytical and the simulation models agree not only on the expected optimal

service time, but also on the service time for the greedy and single policy, as in the

case of N = 20 shown in Figure 5(b).

Having further discussed the related properties of the analytical and simulation

models, we can analyze in more details the dependence of the optimal value of m

and the optimal service time on N . Specifically, in Figure 9 we consider the case of

p(s) = 0.5. It is quite clear that the optimal number of maximum replications varies

very little with N , while there seems to be a linear increase of the expected optimal

service time with N .

The latter results can be actually confirmed with simple arguments by looking at

the analytical model presented before. Recall that the delay on each pipe Ri is made

up of the delay of three stages. The delay of the first stage (Equation 4) is composed

by a part that is independent of N , and a part that is linear with N (although this

dependence disappears when i/M is small, see Equation 5). The delay of the second

stage (ED, Equation 6) can be shown to be basically independent of N . First of all,

note that the only component that may depend on N is m∗, i.e. the average number of

replicas actually generated for each request. The values of m∗ in the optimal case are

plotted in Figure 9(c), which shows just a sublinear increase with N when the number

of providers is high. We can thus reasonably approximate ED as independent of N .

Finally, the delay of the third stage (Eθ, Equation 8) depends on the expected time to

meet a specific node (the provider corresponding to the pipe), ET (1). By inspecting

the expression of ET (1) it is clear that it linearly depends on N . Summarizing, we can

write the expected delay on pipe i as the sum of two components, one independent

of N , and another one linear with N , i.e., ERi = EXi + NEYi. Furthermore, it is

easy to see that EYi is dominated by the delay of the third stage, and can thus be

approximated by Eθ. Assuming, again, that the r.v. Ri are exponential, and recalling

that the optimal service time is the minimum over the delays of mopt pipes, R(mopt)

is also an exponential r.v. with rate γR =
∑mopt

j=1
1

EXi+NEθ
. Finally, it can also be shown

5. Without loss of generality, we hereafter show results in representative configurations. The same insights can
be derived also by looking at other configurations, which are reported in Appendix E.
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Fig. 9. optimal maximum replication (mopt), optimal service time (ER(mopt)) and
effective replication level (m∗) as functions of N .

that, unless when the system is extremely close to the saturation of the second stage,

the factor NEθ dominates over EXi. After simple manipulations, it can be found that

the expected optimal service time is approximately equal to Eθ N
mopt

. This confirms

the linear dependence of ER(mopt) with N found in Figure 9(b). Furthermore, it also

justifies the fact that the slope of the line decreases with p(p), because, for a given

value of p(s), mopt clearly increases with the average number of providers (i.e., with

p(p)).

6.5 Performance in dense scenarios

Although the main reference scenario of this work are sparse opportunistic networks,

we show in this session how the system behaves when the network becomes dense.

With respect to the set of parameters in Table 2, we increase the number of nodes

to 200. This results in decreasing the average inter-contact time (Et) to about 35s,

while the average contact time (Ec) is still in the order of 15s.

Figures 10 show the optimal number of allowed replicas and the expected service

time (for p(p) = 0.5). It is interesting to note that when the number of nodes increases,
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Fig. 10. Performance in a dense scenario (N = 200).

the greedy policy is never optimal (i.e., mopt < M ), although it achieves an expected

service time comparable with that of the optimal policy in very lightly loaded sce-

narios (p(s) = 0.1 and p(p) = 0.5), while for the rest of the configurations reported in

Figure 10 the greedy policy brings the system in the saturated region. By recalling

from equation (7) that the load on each provider is defined by λp(s)m∗

p(p) , it is easy to

see that in the case of 200 nodes the greedy policy generates a much higher load

on each provider, and this results in overall congestion even for a small number of

seekers. Finally, note that also in a dense scenario the optimal policy achieves far

lower expected service time with respect to either the single and the greedy policy.

7 FUTURE DIRECTIONS

In this section some generalizations of the service provisioning models proposed in

the paper are firstly discussed. Then, we discuss some possible directions to exploit

the analytical model in distributed algorithms driving the system close to the optimal

configuration.

7.1 Generalizations

One of the generalizations of the proposed solution is the exploitation of multi-hop

opportunistic paths to extend the service provisioning capabilities. This requires non-

trivial extensions, as, upon encountering a peer, a node should decide if that peer

is a good opportunity to either forward a request or results towards the intended

final destination. The brute-force solution to this problem is clearly flooding the

network both with requests and results. To achieve a more efficient solution, we can

envision exploiting context-aware mechanisms, by which nodes can detect the fitness
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of an encountered node to carry requests/results to the intended destination. From

this standpoint, it would be possible to leverage on similar mechanisms, designed

for traditional messaging applications [20]. Such an extension would also require to

add more data to our middleware solution, in addition to the described SI field.

For example, provision can be made for including personal information of the user

(e.g., name, address, work, home) and device information (e.g., Nokia 3362 cell

phone, 2 MB memory, camera equipped, Bluetooth capable). Similarly, privacy, trust

and QoS parameters can be included if needed, and managed through appropri-

ate extensions of the presented algorithms. Likewise, with some modifications, the

service provisioning framework could also lend itself to support content sharing

applications, where the two devices exchange each other’s content indices, and

services are opportunities to disseminate the available content.

7.2 Towards approximate estimations of the optimal configur ation

The analytical model presented in this paper allows us, as shown in the previous

sections, to achieve a solid understanding of the various properties of the system.

It is therefore relevant to discuss how this model can be exploited in distributed

algorithms that drive the system in the optimal configuration. This is one of the main

subjects of future work. Different options can be already identified. One possibility

is to implement distributed algorithms so that seekers can estimate the parameters

needed to solve the model, i.e. N , p(s), p(p), Ec and ET , µ and λ. All of these param-

eters but N could be estimated by a seeker by recording information about other

encountered nodes, such as the frequency of encountering other seekers, providers,

the sampled average contact and inter-contact times, and so on. As far as the number

of nodes in the network, an interesting direction is exploiting recent proposals for

distributed counting algorithms in opportunistic networks [41].

By looking at Figure 4(a), one might suggest that an alternative possibility could

be to approximate the optimal value of m with the value immediately before the

saturation point (recall that this is defined as mc = µp(p)

λp(s)
in the model). Figure 4(a)

actually suggests that the optimal configuration point may be close enough to the

saturation threshold. There is indeed a subtlety here, as the saturation threshold

represents the maximum (average) number of effective replications for the system

not being in saturation. Therefore, mc would be an estimate for the value of m∗
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Fig. 11. Replication level in the optimal and approximate cases.

corresponding to the optimal maximum number of replications mopt, rather than for

mopt itself. From a distributed algorithm standpoint, this option would be interesting,

as it would be sufficient that each provider monitors its request’s queue, and accepts

requests for execution until it start becoming saturated.

However, preliminary results indicate that, for a significant range of parameters,

this approximation is not accurate. Specifically, Figure 11 shows the number of

replications for the cases N = 20 and N = 100 computed thorough the analytical

model, in the optimal configuration (m = mopt) and when m is set such that m∗ is

close to mc (specifically, for the maximum value of m such that m∗ < mc). Each plot

shows two couple of curves, for the minimum and maximum number of providers

(p(p) = 0.1 and 0.8, respectively). The plots clearly show that this approximation

seems to be quite accurate in some cases (mainly when the number of providers is

low), but does not seem precise at all in other cases (mainly when the number of

providers is high). This indicates that considering only the saturation point (i.e., a

first order approximation) is not enough, and more details of the analytical model

must be incorporated to achieve satisfactory approximations.

8 CONCLUSIONS

In opportunistic networks, mobile nodes communicate with each other through op-

portunistic contacts only. Multi-hop communication is accomplished through a series

of opportunistic contacts, rather than through continuous multi-hop paths. In this

paper, we investigate service provisioning in an opportunistic networking environ-

ment. The main contributions of this paper include: a scheme for supporting service

provisioning in opportunistic networks; an analytical model to determine the optimal
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number of parallel executions required to minimize the service time without saturat-

ing the computational resources of the providers; and the performance evaluation of

a system that replicates executions according to the model, in comparison with other

reference policies. The developed analytical model is validated through simulation

studies, and used to characterize the system performance with respect to a number

of parameters - number of seekers, number of providers, request load, and providers’

computational capabilities. In all investigated cases, we show that the expected

service time when executions are replicated according to the model is significantly

lower than the service time achieved by using naive policies - working without any

background information - that either replicate requests just once, or greedily replicate

requests on all encountered providers. To the best of our knowledge this is the first

study on service provisioning in opportunistic networks. We are extending this work

to address composability and security issues.
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APPENDIX A

TIME TO MEET PROVIDERS

In this Appendix we prove Theorem 1, presented in Section 5.1.

Theorem 1: If contact and inter-contact times are exponentially distributed, iid, and

mutually independent, the average time required by a tagged seeker to meet any

provider in a set A starting from a random point in time, and starting after the end

of a contact time are, respectively

ET (A) =
Ec+ Et

ps(A)
− Ec

(

1 +
Et

Ec+ Et

)

EL(A) =
Ec+ Et

ps(A)
− Ec,

where Ec and Et are the average contact and inter-contact times, and ps(A) is the

probability that a generic node encountered by the seeker belongs to A.

Proof: Let us firstly consider the case in which the request for any provider

in the set A arrives at a random point in time with respect to the seeker mobility

process. It is easy to see that the request arrives i) during a contact time with a

provider belonging to A with probability ps(A) Ec
Et+Ec

, ii) during a contact time with

any other node with probability (1−ps(A)) Ec
Et+Ec

, and iii) during an inter-contact time

with probability Et
Et+Ec

. In the first case, T (A) is clearly 0. In the second case, before

meeting a provider in A, the seeker will finish the current contact time. Thanks to

assumption A1, the probability of meeting any node in A after each inter-contact

time is ps(A). Thus, if qs(A) is a geometrically distributed r.v. with parameter ps(A)

(qs(A) ≥ 1), the time required to meet a node in A is c+ + qs(A)t + (qs(A) − 1)c

where c+ is distributed as the unfinished contact times. Thanks to assumptions A1,

A4 and A5, the r.v. qs(A), t and c are independent, and, as contact times are assumed

exponential, the average value of c+ is equal to Ec (this is the well-known waiting

time paradox, see, e.g. [42]). Therefore, the average value of T (A) in the second case

is Ec+Et
ps(A)

. Following a similar line of reasoning, in the last case the seeker will finish

the ongoing inter-contact time (whose residual length is denoted by t+), and then

go through qs(A) cycles each lasting for a contact and an inter-contact time, where

qs(A) ≥ 0, and is geometrically distributed with parameter ps(A). In the last case

the average value of T (A) is therefore 1−ps(A)
ps(A)

Ec + 1
ps(A)

Et. The final expression of
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ET (A) follows after routine manipulations. Finally, the expression of EL(A) can be

derived according the similar derivations, by noting that L(A) always starts at the

beginning of an inter-contact time.

APPENDIX B

DELAY OF THE FIRST STAGES

In this Appendix we provide the formal proof of Lemma 1.

Lemma 1: The average delay of the first stage on pipe i (i = 1, . . . ,m) can be

evaluated as follows:

EBi '
Ec+ Et

p(p)
−

EcEt

Ec+ Et
+N (Ec+ Et) ln

M − 1

M − i
, i < M

EBM '
Ec+ Et

p(p)
−

EcEt

Ec+ Et
+N (Ec+ Et) [γ + ln(M − 1)] .

where γ is the Euler constant (γ ' 0.577), and M = p(p)N .

Proof: Following the line of reasoning described in Section 5.2 it is straightfor-

ward to see that EBi = ET (M)+ iEc+
∑i−1
k=1EL(M−k) holds true. The delay (of the

first stage) on the first pipe is clearly the time required to meet one of the M providers

from a random point in time (T (M)), plus a contact time c (to upload the parameters,

according to assumption A2). The delay on the second pipe is the time required, after

the first execution has been spawned, to find another provider (among the remaining

M−1), plus another contact time c. The time to find the provider starts after the end

of a contact time, and is thus L(M − 1). The general expression for pipe i follows

immediately. The expression provided in Lemma 1 just requires some algebraic

manipulation. The only point we wish to highlight, as it involves an approximation,

is the derivation of a closed form expression for
∑i−1
k=1EL(M − k). By replacing

the expression of EL from equation (3), and recalling that, under assumption A1,

ps(M − k) is M−k
N

, this can be written as N (Ec+ Et)
∑i−1
k=1

(

1
M−k

)

− (i − 1)Ec. It is

easy to show that the term
∑i−1
k=1

(

1
M−k

)

is equal to HM−1 −HM−i, Hn being the n-th

harmonic number. Therefore, it can be approximated as ln(M − 1)− ln(M − i) when

i < M , and as γ + ln(M − 1) when i = M , from which the closed form expression in

equation (4) can be easily derived.
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The closed form expression in equation (4) provides a very good approximation of

the EBi numeric value, but requires nodes to estimate also any two figures among

M , N , and p(p). Lemma 2 provides an approximation which is still precise when the

ratio i
M

is close to 0, but which just requires an estimate of p(p).

Lemma 2: The average delay of the first stage on pipe i (i = 1, . . . ,m) can be

approximated as follows:

EBi ' i ·
Ec+ Et

p(p)
−

EcEt

Et+ Ec
.

Proof: The difference with respect to the proof of Lemma 1 is the way of approxi-

mating
∑i−1
k=1

(

1
M−k

)

. Specifically, as long as i/M is small enough, we can approximate

it, by using the Taylor expansion, as
∑i−1
k=1

1
M

(

1 + k
M

)

= i−1
M

(

1 + i
2M

)

' i−1
M

. The

expression in the lemma follows after routine manipuations.

APPENDIX C

DELAY OF THE SECOND STAGES

In this Appendix we provide the proof of Lemma 3:

Lemma 3: The average delay of the second stages is

ED =
1

µ− λp(s)m∗

p(p)

+
2λm

∗

p(p) (Ec+ Et) + 1

2
(

µ− λp(s)m∗

p(p)

) .

Furthermore, the utilisation of the providers is ρ = λp(s)m∗

µp(p) , and thus the providers

are not saturated as long as the following equation holds

λp(s)m∗

p(p)
< µ.

Proof: First of all, we prove that it is possible to model the second stages with an

an M[X]/M/1 batch arrival system. According to the definition provided in [38], in

an M[X]/M/1 the arrival of batches must be Poisson, the batch size must be iid, and

the service time of each request must be an independent exponential r.v. We prove

these three properties hereafter.

By definition we assume that the computation time of each request at each provider

is an exponentially distributed r.v. with average computation time 1/µ. Thus com-

putation times are exponential, iid and independent of the queue size.
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Batches arrive at each tagged provider when the provider encounters any seeker.

According to assumption A1 in our model the inter-contact process between a tagged

provider and any seeker in a given set is statistically equivalent to the inter-contact

process between a tagged seeker and any provider in a set of the same cardinality.

The inter-arrival time between batches is the time interval between the end of a

contact between the tagged provider and a seeker, and the end of the next contact

with any other seeker. Exploiting assumption A1, we can say that the average time

interval from the end of a contact with a seeker and the point in time when a new

seeker is encountered is equal to EL(p(s)N), p(s)N being the average number of

seekers. The average time between batches is therefore EL(p(s)N) + Ec, and is thus

equal to Ec+Et
p(s)

. As the inter-contact time between any two nodes is assumed to be

exponential, the inter-contact time between the tagged provider and any seeker is the

minimum over a set of exponential iid random variables, and it thus exponential too.

This proves that the batches inter-arrival process is Poisson with rate λX = p(s)

Ec+Et
.

Next, we have to prove that the batch size is iid. The batch size is the number of

requests a particular seeker generates for the tagged provider between two successive

contacts. Requests are generated at the seeker according to a Poisson process with

rate λ. By definition, each request is replicated, on average, m∗ times. As all providers

are encountered by the seeker with the same probability (assumption A1), requests

for the tagged provider are generated by the seeker according to a Poisson process

with rate λg = λm∗

M
(as m∗/M is the probability that a request results in an execution

on the tagged provider), and is thus memoryless. As the inter-contact time between

the seeker and the tagged provider is iid, the process describing the number of

requests generated during such inter-contact times regenerates at the beginning of

each inter-contact time, and thus the batch size is iid. We can thus conclude that it

is correct to model the second stage of the pipes as an M[X]/M/1 system.

The expected delay of the second stage is the average delay of the M[X]/M/1

system. If EW denotes its expected waiting time, ED is then EW +1/µ. EW can be

computed according to Equation 4.13(a) (page 47 of [38]) by deriving the first and

second moments of the batch size (EX and EX2), and the first and second moments

of the computation time (1/µ and 2/µ2, respectively). To compute EX and EX2 we

note that the r.v. X|τ (the batch size conditioned to an inter-contact time equal to τ )
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is Poisson with rate λgτ . Thus, we obtain:

EX|τ = λgτ

EX2|τ = (λgτ)
2 + λgτ .

By recalling that the inter-contact time between the tagged provider and a particular

seeker is exponential with average value Eτ = EL(1) + Ec = N(Ec+ Et)

EX =
∫ ∞

0
λgτf(τ)dτ = λgEτ = λgN(Ec+ Et) =

λm∗

p(p)
(Ec+ Et)

EX2 =
∫ ∞

0
λ2
gτ

2f(τ)dτ +
∫ ∞

0
λgτf(τ)dτ =

= λ2
gEτ

2 + λgEτ = 2 (λgEτ)
2 + λgEτ =

= λgN(Ec+ Et) [2λgN(Ec+ Et) + 1] =
λm∗

p(p)
(Ec+ Et)

[

2
λm∗

p(p)
(Ec+ Et) + 1

]

.

According to [38], the utilization of the providers (ρ) is as follows:

ρ = λXEX
1

µ
=
λm∗p(s)

p(p)µ
,

and the stability condition is
λm∗p(s)

p(p)
< µ .

Based on these expressions, and on the expression for EW provided in [38], the

expected delay of the second stage becomes:

ED = EW +
1

µ
=
λXEX

2
µ2

2(1 − ρ)
+

EX2 1
µ

2EX(1 − ρ)
+

1

µ
=

1

µ− λp(s)m∗

p(p)

+
2λm

∗

p(p) (Ec+ Et) + 1

2
(

µ− λp(s)m∗

p(p)

) .

APPENDIX D

OPTIMAL REPLICATION

In this Appendix we provide the proofs of Lemmas 6 and Theorems 2 and 3, which

have been presented in Section 5.5.
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D.1 Proof of Lemma 6

Lemma 6: The probability that the tagged seeker receives the results after spawning

exactly i executions (i = 1, . . . ,m) can be computed as follows:

p1(m
∗) =

δ1(m
∗)

δ1(m∗) + ψ2

pi(m
∗) =

δi(m
∗)

δi(m∗) + ψi+1

−
δi−1(m

∗)

δi−1(m∗) + ψi

pm(m∗) =
ψm

δm−1(m∗) + ψm

where δi(m
∗) , 1

EHi(m∗)
, and ψi , 1

EBi
.

Proof: Let us first consider p1, i.e., the probability that the seeker receives the

results by spawning a single execution only. This event occurs if the execution time

on the first provider (i.e., the time required to get results from the first provider)

is less than the time to upload the input parameters on the second provider, or, in

other words, if the seeker receives the results from the first provider before uploading

the input parameters to the second provider. Therefore, p1 = P [R1 < B2], as R1 is

the execution time on the first provider, and B2 is the upload time on the second

provider. By assuming that Ri and Bj are independent exponential r.v. with rates

equal to δ1(m
∗) , 1

ER1(m∗)
= 1

EH1(m∗)
, and ψ2 , 1

EB2
, respectively, we obtain (see,

e.g., [39])

p1(m
∗) =

δ1(m
∗)

δ1(m∗) + ψ2

.

To derive the expression for pi, i > 1 we make the following observations. The seeker

receives the results after spawning exactly i executions if, for each j < i, the expected

service time of the first j providers is higher than the time to upload the input

parameters on the (j + 1)-th provider, i.e., if ∀j s.t. 1 ≤ j < i ,Hj > Bj+1. In other

words, if the seeker does not receives the results from any of the first j providers

before uploading the input parameters to the (j + 1)-th provider. In addition, the

seeker must also receive the results from any of the first i providers before uploading

the input parameters to the (i + 1)-th provider, i.e., Hi < Bi+1 must hold true.

Therefore, we can write the probability of spawning exactly i executions as follows:

pi = P [H1 > B2, . . . , Hi−1 > Bi, Hi < Bi+1] . (14)
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Note that, by definition, the sequence of r.v. Hi, i ≥ 1 is non-increasing. For each

i > 1, Hi is the minimum over the first i execution times. Therefore, we can write

Hi = min
j=1,...,i

{Rj, j = 1, . . . , i} = min{Ri, Hi−1} ≤ Hi−1 .

On the other hand, the sequence of r.v. Bi is non-decreasing as, by definition, Bi

is the time to upload the parameters to the i-th provider, and, according to our

assumptions, is thus the time to meet the i-th provider after uploading the input

parameters to the (i − 1)-th provider. Thus, Bi ≥ Bi−1 holds true for each i > 1.

Based on these observations, it follows that Hi−1 > Bi ⇒ Hj−1 > Bj holds true for

all j < i. Therefore, we can rewrite equation (14) as follows:

pi = P [H1 > B2, . . . , Hi−1 > Bi, Hi < Bi+1] = P [Hi−1 > Bi, Hi < Bi+1] .

Applying the same observation, and the law of total probability, we can also write

P [Hi−1 > Bi] = P [Hi−1 > Bi, Hi < Bi+1] + P [Hi−1 > Bi, Hi > Bi+1]

= P [Hi−1 > Bi, Hi < Bi+1] + P [Hi > Bi+1] .

and thus

P [Hi−1 > Bi, Hi < Bi+1] = P [Hi−1 > Bi]−P [Hi > Bi+1] = P [Hi < Bi+1]−P [Hi−1 < Bi] .

By assuming, again, that, for any i, Hi and Bi+1 are exponential independent r.v.

with rates δi(m
∗) , 1

EHi(m∗)
, and ψi+1 , 1

EBi+1
, we obtain

pi(m
∗) =

δi(m
∗)

δi(m∗) + ψi+1

−
δi−1(m

∗)

δi−1(m∗) + ψi
.

The expression for pm can be derived following a similar line of reasoning:

pm(m∗) = P [H1 > B2, . . . , Hm−1 > Bm] = P [Hm−1 > Bm] =
ψm

δm−1(m∗) + ψm
.

Finally, we show that the expressions of pi(m
∗), i = 1, . . . ,m are a well-defined

probability distribution. To this end we show that for each i = 1, . . . ,m, 0 ≤ pi(m
∗) ≤

1 holds true, and that
∑m
i=1 pi(m

∗) = 1 also holds true.

It is easy to note from their definitions that ψi > 0 ∀i, and δi(m
∗) ≥ 0 ∀i. Specifically,

as ψi = 1
EBi

, ψi ≥ 0 holds true as long as the average contact and inter-contact times
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are finite. Furthermore, δi(m
∗) is equal to 1

EHi(m∗)
, is thus greater or equal to 0, and

is actually equal to 0 only when EHi(m
∗) is infinite. This can occur only when the

system saturates and ED(m∗) diverges. Based on this remark, we can immediately

conclude that 0 ≤ p1(m
∗) < 1 and 0 < pm(m∗) ≤ 1 hold true, and that p1(m

∗) is 0

(pm(m∗) is 1) only when the system saturates.

Let us now analyze the case of pi(m
∗) for 1 < i < m. By the definitions of EHi

and EBi, it is easy to show that, when the system is not saturated, EHi+1 < EHi ∀i

(when the system is saturated EHi = ∞ ∀i), and that EBi+1 > EBi ∀i. Thus, the

following relations also hold true:















δi+1 > δi

ψi+1 < ψi

(15)

Based on equation (15), we derive that

δi(m
∗)ψi > δi−1(m

∗)ψi+1

and we can thus show that pi(m
∗) > 0 holds true, when the system is not saturated,

for all i = 2, . . . ,m− 1:

pi(m
∗) =

δi(m
∗)

δi(m∗) + ψi+1

−
δi−1(m

∗)

δi−1(m∗) + ψi
=

δi(m
∗)ψi − δi−1(m

∗)ψi+1

(δi(m∗) + ψi+1)(δi−1 + ψi)
> 0

Furthermore, note that pi(m
∗) is equal to 0 for all i = 2, . . . ,m− 1 when the system

is saturated (as δi(m
∗ is equal to 0 for all i). Finally, also note that, as δi(m

∗)
δi(m∗)+ψi+1

is

always less than 1, also pi(m
∗) < 1 holds true.

Finally, it can also be shown that
∑m
i=1 pi(m

∗) = 1, as follows (we omit the depen-

dence on m∗ for simplicity):

m
∑

i=1

pi =
δ1

δ1 + ψ2

+

(

δ2
δ2 + ψ3

−
δ1

δ1 + ψ2

)

+ . . .+

(

δm−1

δm−1 + ψm
−

δm−2

δm−2 + ψm−1

)

+
ψm

δm−1 + ψm
=

=
δm−1

δm−1 + ψm
+

ψm
δm−1 + ψm

= 1
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D.2 Proofs of Theorem 2

Theorem 2: The average value of the number of executions actually spawned when

m replicas are allowed (m∗) is the solution of the following fixed point equation:

m∗ =
m
∑

i=1

i · pi(m
∗)

where pi are as in equations (11). Specifically, equation (12) admits either one or three

solutions. In the former case, the unique solution is stable. If it falls in the saturated

region, then m∗ = m (and is greater than the saturation threshold mc = µp(p)

λp(s)
). Or, it

can fall in the non-saturated region (i.e., m∗ < mc). When equation (12) admits three

solutions, one on them falls in the saturated region, and is stable, while the other

two fall in the non-saturated region, and one of them is stable.

Proof: The expression of m∗ follows by the definition of m∗, which is the average

number of spawned replicas. By definition, it is thus equal to
∑m
i=1 i ·pi. However, as

pi are also functions of m∗ as shown by Lemma 6, m∗ becomes the solution of the

fixed point equation m∗ =
∑m
i=1 i · pi(m

∗).

We now prove the properties of the solutions of equation (12) highlighted in the

theorem. First of all, we show that at least one solution always exists. We define f(x)

as the right-hand side of equation (12) by considering a generic variable x:

f(x) =
m
∑

i=1

i · pi(x) .

Solving the fixed point equation (12) means finding the points where f(x) intersects

the line y(x) = x. The expression of f(x) can be expanded as follows:

f(x) =
δ1(x)

δ1(x) + ψ2

+ 2

(

δ2(x)

δ2(x) + ψ3

−
δ1(x)

δ1(x) + ψ2

)

+ . . .+

+ (m− 1)

(

δm−1(x)

δm−1(x) + ψm
−

δm−2(x)

δm−2(x) + ψm−1

)

+m
ψm

δm−1(x) + ψm

= m−
δm−1(x)

δm−1(x) + ψm
− . . .−

δ1(x)

δ1(x) + ψ2

=

= m−
m−1
∑

i=1

δi(x)

δi(x) + ψi+1

(16)
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solution (x=m)

cm1 xm

y(x)=x

f(x)=m

f(1)>1

(a) mc < m

solution (x<m)

cm1 x

f(1)>1

m

f(x)=m

y(x)=x

(b) mc > m

Fig. 12. Existence of solutions for equation (12).

Equation (16) allows us to show several interesting properties, and will be used

extensively throughout the proof. For now, note that, as δi
δi+ψi+1

< 1, we can write

f(x) = m−
m−1
∑

i=1

δi(x)

δi(x) + ψi+1

> m− (m− 1) = 1 ∀x .

Furthermore, we can also say that f(x) < m in the non-saturated region (as δi(x) >

0 ∀i), and f(x) = m in the saturated region, i.e., for all x greater than mc ,
µp(p)

λp(s)
. As

f(x) is a continuous function, these two properties are sufficient to conclude that at

least one solution always exists for the fixed point equation (12). To understand this,

let us focus on Figure 12 (note that, being the average value of a r.v. distributed on

[1,m], f(x) has a physical meaning just in the interval [1,m]). When mc < m, then the

point x = m is necessarily a solution, as f(x) = m ∀x > mc. When mc > m then there

is necessarily a solution within the interval [1,m), as f(1) > 1 and f(x) < m ∀x < mc.

Next, we analyze how many solutions can exist for the fixed point equation (12).

The key part of this analysis is showing that f(x) is always monotonically increasing

and convex in [1,m). This requires some elaboration, that we provide at the end of

the proof. Before this, by exploiting this finding, it is easy to analyse the solutions

of the fixed point equation (12). Again, we can separately consider the cases mc < m

and mc > m, as shown in Figure 13.

When mc < m, we should distinguish two cases, denoted by case (i) and case

(ii) in Figure 13(a). In case (i) f(x) is greater than x in [1,mc], and thus the fixed
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point equation (12) admits only one solution m∗ = m. Note that this solution is

stable, as f(m − ε) > m − ε and f(m + ε) < m + ε ∀ε > 0 and ε is sufficiently small.

From a systems standpoint, case (i) corresponds to a situation in which the system,

as seekers are allowed to spawn up to m replicas, can only work in saturation. In

case (ii), besides the stable (saturated) solution m∗ = m, only two other solutions

exist, both falling in the interval (1,mc). The smallest solution (x1) is stable, while

the largest one (x2) is not. The fact that the fixed point equation admits one stable

solution in the non-saturated region is very important. In the average case, seekers

receive results for requests after spawning x1 executions only, and experience a finite

service time. Therefore, they will never replicate executions so aggressively to make

the system operate in the saturated condition corresponding to the solution m∗ = m.

The case when mc > m is simpler to analyse (see Figure 13(b)). As f(x) is convex

in [1,mc), there can only be one unique solution (x1) for the fixed point equation,

this solution falls in the non-saturated region (x1 < mc), and is stable. From a

systems standpoint this means that the system will always operate in this stable

(non-saturated) configuration.

The properties of the solutions highlighted so far can be also seen from a com-

plementary standpoint. When lots of replications are allowed in comparison with

the saturation point mc (i.e., case (i) of Figure 13(a)), the system inevitably works

in saturation. Solutions x1 and x2 in Figure 13(a)) appear as m is reduced. Further

reducing m results in the case in Figure 13(b), in which the replication level is so

low that saturated solutions are not possible at all.

The last part of the proof is devoted to show that f(x) is always monotonically

increasing and convex in [1,mc). To this end, we prove that ∂f(x)
∂x

> 0 and ∂2f(x)

∂x2 > 0

in [1,mc). Let us analyze ∂f(x)
∂x

first. From equation (16) we derive:

∂f(x)

∂x
= −

m
∑

i=1

∂δi(x)
∂x

ψi+1

(δi(x) + ψi+1)2
. (17)

By recalling that δi(x) is defined as
∑i
j=1 βj(x) =

∑i
j=1

1
ERj(x)

=
∑i
j=1

1
EBj+ED(x)+Eθ

(see Lemma 5 and 6), we obtain:

∂δi(x)

∂x
=

i
∑

j=1

∂βj(x)

∂x
= −

i
∑

j=1

∂ERj(x)

∂x

(ERj(x))2
= −

i
∑

j=1

∂ED(x)
∂x

(ERj(x))2
(18)
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(b) mc > m

Fig. 13. Properties of the solutions of equation (12).

By looking at equation (6), and by defining a , λp(s)

p(p) and b ,
2λ(Ec+Et)

p(p) , it is possible

to compute ∂ED(x)
∂x

as follows:

∂ED(x)

∂x
=
∂
[

bx+3
2(µ−ax)

]

∂x
=

2bµ+ 6a

[2(µ− ax)]2
> 0 . (19)

Equation (17) shows that ∂ED(x)
∂x

is finite and strictly positive in the non-saturated

region [1,mc) (note that in that region µ− ax > 0, and the saturation threshold mc is

equal to µ
a

, see equation (7)). By looking at equation (18), it follows that ∂δi(x)
∂x

< 0 ∀i,

and, by looking at equation (17), that ∂f(x)
∂x

> 0 (recall that ψi > 0 ∀i by definition).

This proves that f(x) is finite and monotonically increasing in [1,mc), and that it

diverges to +∞ in the saturation threshold mc = µ
a

.

To prove that f(x) is also convex in [1,mc) we proceed as follows. From equa-

tion (17) we can compute ∂2f(x)

∂x2 as follows:

∂2f(x)

∂x2 = −
m
∑

i=1

ψi+1

∂2δi(x)

∂x2 [δi(x) + ψi+1] − 2
[

∂δi(x)
∂x

]2

[δi(x) + ψi+1]
3 . (20)

In the following we prove that ∂2δi(x)

∂x2 < 0 ∀i in the non-saturated region. As δi(x)

and ψi are strictly positive for all i, this is sufficient to prove that f(x) is convex in

[1,mc). Actually, we prove hereafter that ∂2βj(x)

∂x2 < 0 ∀j. As δi(x) =
∑i
j=1 βj(x), this is

sufficient to our purpose.



51

By looking at equation (18), we can write ∂2βj(x)

∂x2 as follows:

∂2βj(x)

∂x2 =
2
[

∂ED(x)
∂x

]2

[ERj(x)]3
−

∂2ED(x)

∂x2

[ERj(x)]2
(21)

Therefore, ∂2βj(x)

∂x2 is strictly negative iff

[

∂ED(x)

∂x

]2

<
ERj(x)

2
·
∂2ED(x)

∂x2 (22)

From equation (19) we can derive ∂2ED(x)

∂x2 :

∂2ED(x)

∂x2 =
4a(2bµ+ 6a)

[2(µ− ax)]2
. (23)

Furthermore, we can write ERj(x) in the following form:

ERj(x) = EBj + ED(x) + Eθ = ED(x) +Qj =
Aj +Bjx

2(µ− ax)
(24)

where Qj , EBj + Eθ, Aj , 3 + 2µQj , and Bj , b − 2aQj . By substituting equa-

tions (19), (23) and (24) in equation (22) we obtain the following condition:

∂2βj(x)

∂x2 < 0 ⇔ Bj · x >
µ

a
·Bj . (25)

The last step to solve equation (25) is studying the sign of Bj in the non-saturated

region. It is easy to show that the condition Bj < 0 can be substituted as follows:

Bj < 0 ⇔
Ec+ Et

p(s)
< EBj + Eθ . (26)

We consider the approximate expression of EBj provided in equation (5). It can be

shown that this expression is actually lower than the real value of EBj . Replacing the

approximate expression of equation (5) in (26) thus results in a more tight condition

to check. It will be clear in the following that, with respect to our analysis, it is

sufficient to check this tighter (but easily to compute) condition. Specifically, from

equations (5) and (8), the condition in equation (26) becomes:

Bj < 0 ⇐ j >
p(p)

p(s)
− p(p)

[

N −
Ec(Ec+ 3Et)

(Ec+ Et)2

]

. (27)
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It is easy to show that the relation 0 ≤ Ec(Ec+3Et)
(Ec+Et)2

≤ 1.125 holds true. We can thus

approximate the condition in equation (27) as follows:

Bj < 0 ⇐ j >
p(p)

p(s)
− p(p)N =

p(p)

p(s)
(1 −Np(s)) . (28)

As j is always greater than or equal to 1, the condition in (28) is always verified if

Np(s) > 1. This is clearly always true as Np(s) is the average number of seekers, which

has to be greater than 1 for the system to have physical meaning. This shows therefore

that, for any physically meaningful instance of the system, a tighter condition, with

respect to that in equation (26), is verified, and thus also that condition is satisfied.

We can thus conclude that Bj is always negative, and therefore that the following

relation holds true:
∂2βj(x)

∂x2 < 0 ⇔ x <
µ

a
. (29)

As µ
a

is equal to the saturation threshold mc, equation (29) tells that, in the non-

saturated region, ∂2βj

∂x2 is always negative for all j. From this it follows that, in the

non-saturated region (x ∈ [1,mc)), f(x) is convex. This concludes the proof.

APPENDIX E

PERFORMANCE FOR DIFFERENT NETWORK SIZES

In this appendix we show additional results with respect to those presented in

Section 6.4, regarding the dependence of the optimal service time on the network

size.

Specifically, Figure 14 shows the expected service time of the optimal, greedy and

single policies for p(p) = 0.5 and N = 50. This confirms the agreement of the analytical

and simulation models, as it was the case of N = 20. Furthermore, Figure 15 show

the optimal expected service time according to the analytical and simulation models

for the different values of p(s) and p(p) for N = 50, confirming again the agreement

between the two models. Similar remarks can be drawn also when considering the

cases of N = 80 (Figures 16 and 17) and N = 100 (Figures 18 and 19).
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Fig. 14. Expected service time in the optimal, single and greedy policies (N =
50, p(p) = 0.5).
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(a) p(p) = 0.1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  0.2  0.4  0.6  0.8  1

se
rv

ic
e 

tim
e 

(s
)

seekers percentage (ps)

expected service time (pp=0.2)

analysis
simulation

(b) p(p) = 0.2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  0.2  0.4  0.6  0.8  1

se
rv

ic
e 

tim
e 

(s
)

seekers percentage (ps)

expected service time (pp=0.5)

analysis
simulation

(c) p(p) = 0.5
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Fig. 15. Expected service time for varying values of p(s) and p(p) (N = 50).
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Fig. 16. Expected service time in the optimal, single and greedy policies (N =
80, p(p) = 0.5).
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(a) p(p) = 0.1
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(c) p(p) = 0.5
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Fig. 17. Expected service time for varying values of p(s) and p(p) (N = 80).
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Fig. 18. Expected service time in the optimal, single and greedy policies (N =
100, p(p) = 0.5).
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Fig. 19. Expected service time for varying values of p(s) and p(p) (N = 100).


