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Abstract—Adaptive Modulation and Coding (AMC) in LTE
networks is commonly employed to improve system throughput
by ensuring more reliable transmissions. Most of existing AMC
methods select the modulation and coding scheme (MCS) using
pre-computed mappings between MCS indexes and channel
quality indicator (CQI) feedbacks that are periodically sent
by the receivers. However, the effectiveness of this approach
heavily depends on the assumed channel model. In addition
CQI feedback delays may cause throughput losses. In this paper
we design a new AMC scheme that exploits a reinforcement
learning algorithm to adjust at run-time the MCS selection rules
based on the knowledge of the effect of previous AMC decisions.
The salient features of our proposed solution are: i) the low-
dimensional space that the learner has to explore, and ii) the
use of direct link throughput measurements to guide the decision
process. Simulation results obtained using ns3 demonstrate the
robustness of our AMC scheme that is capable of discovering the
best MCS even if the CQI feedback provides a poor prediction
of the channel performance.

Index Terms—LTE, channel quality, adaptive modulation and
coding (AMC), reinforcement learning, performance evaluation.

I. INTRODUCTION

The Long Term Evolution (LTE) is an acronym that refers to

a series of cellular standards developed by 3GPP to meet the

requirements of 4G systems. In particular, LTE has been de-

signed to provide high data rates, low latency, and an improved

spectral efficiency compared to previous cellular systems. To

achieve these goals LTE adopts advanced physical layer tech-

nologies, such as OFDMA and multi-antenna techniques, and

it supports new Radio Resource Management (RRM) functions

for link adaptation [1]. In particular, adaptive modulation and

coding (AMC) has been proposed for LTE, as well as many

other wireless communication systems, to increase channel

throughput [2]. In general, AMC techniques try to optimally

select the channel coding and modulation scheme (MCS),

while fulfilling a certain Block Error Rate (BLER) constraint1

by taking into account the current channel conditions and the

1The BLER for a certain user is defined as the ratio between the number of
erroneous resource blocks and the total number of resource blocks received
by that user. In the LTE standard it is mandated that the selected MCS ensures
an average BLER under the measured channel conditions lower than 10% [3].

receiver’s characteristics (e.g., antenna configuration). For LTE

downlink transmissions, traditional AMC schemes rely on the

channel quality indicator (CQI) feedbacks that are periodically

reported by the user terminals (UEs) to their base stations

(eNBs) [3]. How CQI values should be computed by the UE

using channel state information (e.g., SINR measurements)

is implementation dependent. In principle, an eNB can use

other information in addition to the CQI values reported by

UEs, such as HARQ retransmissions, to determine the selected

MCS. In practical implementations - as better explained in

Section II - the UEs directly selects the MCS value that, if used

by the eNB under the measured channel conditions, would

achieve the maximum possible throughput by guaranteeing

that the BLER is below 10%. This value is then mapped onto

a CQI value and fed back to the eNB (that translates it back

into the corresponding MCS value) [4], [5]. Therefore, the key

focus of AMC algorithms is to define how UEs can compute

MCS values that satisfy the BLER requirements.

Several technical challenges have to be addressed to design

efficient AMC solutions for LTE systems. In particular, in

practical LTE systems, the SINR values of multiple subcarriers

are aggregated and translated into a one-dimensional link

quality metric (LQM), since the same MCS must be assigned

to all subcarriers assigned to each UE. Popular methods that

are used in LTE to obtain a single effective SINR from a

vector of physical-layer measurements related to subcarriers

are the exponential effective SINR mapping (EESM) [6] or

the mean mutual information per coded bit (MMIB) [7].

Once the LQM is found, AMC schemes typically exploit

static mappings between these link quality metrics and the

BLER performance of each MCS to select the best MCS (in

terms of link throughput). In other words, for each MCS a

range of LQM values is associated via a look-up table, over

which that MCS maximises link throughput. Either link-level

simulations or mathematical models can be used to generate

such static BLER curves under a specific channel model.

Unfortunately, past research has shown that it is difficult to

derive accurate link performance predictors under realistic

channel assumptions [5], [8]–[10]. Furthermore, a simulation-

based approach to derive the mapping between LQM values



and BLER performance is not scalable since it is not feasible

to exhaustively analyse all possible channel types or several

possible sets of parameters [11]. The second main problem

with table-based AMC solutions is that a delay of several

transmission time intervals (TTIs) may exist between the time

when a CQI report is generated and the time when that CQI

feedback is used for channel adaptation. This is due to process-

ing times but also to the need of increasing reporting frequency

to reduce signalling overheads. This mismatch between the

current channel state and its CQI representation, known as

CQI ageing, can negatively affect the efficiency of AMC

decisions [12], [13]

To deal with the above issues, in this paper we propose

a new flexible AMC framework, called RL-AMC, that au-

tonomously and at run-time decides upon the best MCS (in

terms of maximum link-layer throughput) based on the knowl-

edge of the outcomes of previous AMC decisions. To this end

we exploit reinforcement learning techniques to allow each

eNB to update its MCS selection rules taking into account past

observations of achieved link-layer throughputs. Specifically,

the purpose of the decision-making agent in our AMC scheme

is to discover which is the correction factor that should be

applied to CQI feedbacks in order to guide the transmitters

in selecting more efficient MCSs. An important feature of our

proposed scheme is the use of a low-dimensional state space,

which ensures a robust and efficient learning even under time-

varying channel conditions and mobility. Through simulations

in ns3 we show that our AMC method can improve the LTE

system throughput compared to other schemes that use static

mappings between SINR and MCS both under pedestrian and

vehicular network scenarios. Furthermore, our AMC is capable

of discovering the best MCS even if the CQI feedback provides

a poor prediction of the channel performance.

Before presenting our solution, it is important to point out

that other studies [14]–[17] have proposed to use machine

learning techniques to improve AMC in wireless systems.

The main weakness of most of these solutions is to rely on

machine learning algorithms (e.g., pattern classification [15]

or SVM [14], [16]) that require large sets of training samples

to build a model of the wireless channel dynamics. Similar

to our work, the AMC scheme proposed in [17] exploits Q-

learning algorithms to avoid the use of model-training phases.

However, the MCS selection problem in [17] is defined over

a continuous state space (i.e., received SINR), and even after

discretisation a large number of states must be handled by the

learning algorithm.

The remaining of this paper is organised as follows. Sec-

tion II overviews existing proposals to implement AMC tech-

niques in LTE networks. Section III introduces the princi-

ples of reinforcement learning, and introduces the Q-learning

algorithm. Section IV describes our RL-AMC scheme. In

Section V we report simulation results to demonstrate the per-

formance improvements of the proposed scheme. Section VI

concludes the paper with final remarks.
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Fig. 1. AMC functional architecture.

II. AMC IN LTE

For the sake of illustrative purposes, in Figure 1 we show a

functional architecture for a practical AMC scheme for LTE

systems. At the receiver’s side, a first module is responsible for

processing the channel state information (e.g., per-subcarrier

received SINR values) to obtain a BLER estimation under

the assumption of a specific channel model. Specifically, the

receiver maps the channel measurements into a single link

quality metric. Then, an offline look-up table is used to map

this LQM to a BLER estimate for each MCS. These BLER

curves are used to find the highest-rate MCS index that can

satisfy a 10% BLER target. Finally, the selected MCS index

is sent in the form of a CQI feedback to the transmitter.

Based on such CQI feedback the transmitter performs resource

scheduling and MCS selection.

Most of existing research on AMC schemes for LTE is

focused on the problem of CQI calculation given a link

quality metric. As mentioned in Section I a popular and

sufficiently accurate method for LQM calculation is EESM.

For instance, the authors in [18] study the MCS performance

under an AWGN channel. Accurate packet error prediction

for link adaptation via a Gaussian approximation of coding

and decoding performance is proposed in [19]. A novel LQM

metric for link adaptation based on raw bit-error-rate, effective

SINR and mutual information is investigated in [20]. In [4]

the authors proposed MCS selection based on packet-level

effective SINR estimates rather than block-level SINR values,

and they describe different averaging schemes to map BLER

onto packet error rates. On the other hand, the authors in [5],

[21] develops statistical models of the EESM under different

channel models and use those models to analyse the through-

put of EESM-based AMC for various CQI feedback schemes.

A second group of paper studies channel predictors to deal

with the CQI ageing. The authors in [12] derive closed-form

expressions for the average throughput of an adaptive OFDMA

system under the assumption of imperfect CQI knowledge.

The performance of different CQI predictors, such as Kalman

filtering or linear prediction with stochastic approximation, are

evaluated in [13] and [22].



III. BACKGROUND ON REINFORCEMENT LEARNING (RL)

Reinforcement Learning (RL) is a popular machine learning

technique, which allows an agent to automatically determine

the optimal behaviour to achieve a specific goal based on

the positive or negative feedbacks it receives from the en-

vironment in which it operates after taking an action from a

known set of admissible actions [23]. Typically, reinforcement

learning problems are instances of the more general class

of Markov Decision Processes (MDPs), which are formally

defined through:

• a finite set S = {s1, s2,. . ., sn} of the n possible states in

which the environment can be;

• a finite set A(t) = {a1(t), a2(t),. . ., am(t)} of the m
admissible actions that the agent may perform at time t;

• a transition matrix P over the space S. The element

P (s, a, s′) of the matrix provides the probability of making

a transition to state s′∈S when taking action a∈A in state

s∈S;

• a reward function R that maps a state-action pair to a scalar

value r, which represents the immediate payoff of taking

action a∈A in state s∈S.

The goal of a MDP is to find a policy π for the decision agent,

i.e., a function that specifies the action that the agent should

choose when in state s ∈ S to maximise its expected long-

term reward. More formally, if an agent follows a policy π
starting from a certain state s at time t the policy value over

an infinite time horizon, also called the value-state function,

is simply given by

V π(s) =
∞
∑

k=0

γkrt+k , (1)

where γ ∈ [0, 1] is a discount factor that weights future

rewards. Then an optimal policy π∗ is, by definition, the one

that maximise the value-state function. As a consequence, the

policy that ensures the maximum possible expected reward,

say V ∗(s), could be obtained by solving an optimisation

problem V ∗(s) = maxπ V
π(s). If the transition matrix is

known such optimisation problem can be expressed using

a system of nonlinear equations by using techniques such

as dynamic programming [23]. However, in most practical

conditions it is hard, if not even impossible, to acquire such

complete knowledge of the environment behaviour. In this

case there are model-free learning methods that continuously

update the probabilities to perform an action in a certain

state by exploiting the observed rewards. Such methods adopt

an alternative characterisation of policy goodness based on

the state-action value function, or Q-function. Formally, the

function Qπ(s, a) computes the expected reward of taking an

action a in a starting state s and then following the policy π
hereafter. Owing to the Bellman’s optimality principle, it holds

that a greedy policy (i.e., a policy that at each state selects

the action with the largest Q-value) is the optimal policy. In

other words, it holds that V ∗(s) = maxa∈AQ∗(s, a) with

Q∗(s, a) = maxπ Q(s, a).

In this work we use a model-free solving technique for

reinforcement learning problems known as Q-learning [24],

which constructs the optimal policy by iteratively selecting

the action with the highest value in each state. The core of

this algorithm is an iterative value update rule that each time

the agent selects an action and observes a reward makes a

correction of the old Q-value for that state based on the new

information. This updating rule is given by:

Q(s, a) = Q(s, a)+α
[

r(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)
]

,

(2)

where α ∈ [0, 1] is the learning rate. Basically, the α parameter

determines the weight of the newly acquired information over

state-action value information. In our AMC framework we use

α=0.5.

The advantage of Q-learning is that it is guaranteed to

converge to the optimal policy. On the negative side, the con-

vergence speed may be slow if the state space is large due to

the exploration vs. exploitation dilemma [23]. Basically, when

in state s the learning agent should exploit its accumulated

knowledge of the best policy to obtain high rewards, but it

must also explore actions that it has not selected before to

find out a better strategy. To deal with this issue, various

exploration strategies have been proposed in the literature,

ranging from simple greedy methods to more sophisticated

stochastic techniques, which assign a probabilistic value for

each action a in state s according to the current estimation

of Q(s, a). In Section IV we discuss more in detail such

exploration strategies.

IV. AN RL-BASED AMC SCHEME (RL-AMC)

In order to apply the Q-learning approach to the MCS selection

problem it is necessary to define: i) the state space of the

problem, ii) the feedbacks that the decision agent receives

from the LTE network, and iii) the admissible actions for

the agent with the action selection strategy. In our RL-based

AMC framework, the problem state consists of CQI feedbacks

and their evolution trends. The reward is the instantaneous link

throughput obtained by a user after each transmission. Finally,

an action is the selection of a correction factor to be applied to

each CQI feedback to identify the best MCS under the current

channel conditions. In the following, we describe in details the

operations of our proposed AMC algorithm.

First of all, it is important to clarify that the AMC decision

agent interacts with the environment (i.e., the LTE network) at

discrete time instants, called epochs. At each epoch the agent

receives some representation of the LTE channel state and on

that basis selects an action. In the subsequent epoch the agent

receives a reward, and finds itself in a new state. In our AMC

framework we assume that an epoch is the time when the

UE receives a segment of data, either new or retransmitted.

Without loss of generality we also assume that the decision

agent is provided with a mapping rule that establishes a

relationship between SINR values and MCS indexes. Note that

our solution is not restricted to any specific BLER models

but an initial MCS value is only needed to bootstrap the



learning process and to reduce the size of the state space.

Thus, it is not necessary that this mapping is accurate nor

adjusted to the unique characteristics of each communication

channel. In Section V we will investigate the robustness of

our AMC scheme to inaccurate CQI representation of channel

performance.

Intuitively, a straightforward approach to define the state of

the MCS selection problem would be to use the SINR values

of received segments of data2 as state variables, as in [17].

However, the SINR is a continuos variable and it should be

discretised to be compatible with a discrete MDP formulation.

The main drawback is that a fine discretisation leads to a

large-dimensional state space, which increases convergence

and exploration times. To avoid this problem, we directly use

CQI-based metrics for the state representation. Specifically, we

adopt a two-dimensional space S={s1, s2} to characterise the

LTE communication channel. The first state variable represents

the CQI value (called CQIm) that the UE should select using

the internal look-up table that associates BLER and MCS

and received SINR. The second state variable represents the

∆CQIm value, which is defined as the difference between the

last two consecutive CQIm estimates. In other words, ∆CQIm

provides a rough indication of the trend in channel quality

evolution. For instance, ∆CQIm < 0 implies that the channel

quality is temporarily degrading.

Since the objective of the MCS selection procedure should

be to maximise the link throughput it is a natural choice

to define the reward function as the instantaneous link-

layer throughput achieved when taking action a (i.e., ap-

plying a correction factor to current CQI value taken from

the mapping function) when in state s (i.e., given the pair

{CQImt ,∆CQImt }). More precisely, we assume that the reward

value of an erroneous downlink transmission is null. On the

other hand, the reward for a successful downlink transmission

is given by

R(st1 , at1) =
TB

#TTIs in [t1, t2]
, (3)

where TB is the MAC transport block size (i.e., the number

of useful bits that could be carried in a certain number of

RBs with a certain MCS), while the denominator is the time

between the time t1 when that segment of data was first

scheduled and the time t2 when it was successfully received3.

The core of the Q-learning algorithm is represented by

the set A of admissible actions. In our learning model we

assume that an action consists of applying a correction factor

to the CQI value that is initially estimated by means of

the internal look-up table. As discussed above, the mapping

relationship between SINR values and MCS may be inaccurate

and the correction factor allows the agent to identify the best

2We recall that LTE physical layer relies on the concept of resource blocks.
A segment of data or transport block is basically a group of resource blocks
with a common MCS that are allocated to a user. Typically, a packet coming
from the upper layers of the protocol stack will be transmitted using multiple
segments of data.

3A segment of data that is discarded after a maximum number of retrans-
missions has also a null reward.

modulation and coding scheme (in the sense of maximising

the link throughput) for the given channel conditions. For

instance, it may happen that the SINR-to-MCS mapping is too

conservative for the current channel conditions and an MCS

with an higher data rate can be used without violating the

target BLER requirement. In this case the correction factor

should be positive. Furthermore, a correction factor is also

needed to compensate eventual errors due to CQI feedback

delay. More formally, we assume that an action taken by the

AMC decision agent at time t is one possible choice of an

integer number in the set (−k, . . . ,−2,−1, 0, 1, 2, . . .k), that

we denote as at in the following. This index is added to

the original CQIm value to compute the CQI to be sent to

the eNB, denoted as CQIf . The line of reasoning for this

adjustment is as follows. Let us assume that the agent state

at time t is {CQImt ,∆CQIt}. We argue that if ∆CQIt < 0
we should prefer conservative MCS selections (and thus use

values of at lower than 0) because the channel trend is

negative, while if ∆CQIt ≥ 0 we can try to use MCSs offering

higher data rates (and thus positive values for at). Recalling

that the CQI is an integer between 0 and 15 [3], this can be

expressed by writing that the CQI feedback, say CQI
f
t , that

should be sent to the eNB by the UE to guide the selection of

the MCS index for downlink transmissions at next epoch t+1
should be

CQI
f
t = max [0,min [CQImt + at, 15]] , (4)

where a ∈ [0, 1, 2, . . . k] if ∆CQIt ≥ 0 and a ∈
[−k, . . . ,−2,−1, 0] otherwise. Thus, the set of admissible ac-

tions is different whether the channel-quality trend is negative

or non-negative. Before proceeding it is useful to point out

that the choice of the k value determines how aggressively

we want to explore the problem state space. In general, the

selection of the k value could take into account the CQI

difference statistics, i.e., to what extent a current CQI may be

different from the reported CQI after a feedback delay [10].

In Section V-C we will discuss this aspect more in detail.

A very important learning procedure is the action selection

rule, i.e., the policy used to decide which specific action to

select in the set of admissible actions. As discussed in Sec-

tion III there is a tradeoff between exploitation (i.e., to select

the action with the highest Q-value for the current channel

state) and exploration (i.e., to select an action randomly). The

simplest approach (called ǫ-greedy [23]) would be to use a

fixed probability ǫ to decide whether to exploit or explore. A

more flexible policy (called softmax action-selection rule [23])

is to assign a probability to each action, basing on the current

Q-value for that action. The most common softmax function

used in reinforcement learning to convert Q-values into action

probabilities π(s, a) is the following [23]:

π(s, a) =
eQ(s,a)/τ

∑

a′∈Ωt
eQ(s,a′)/τ

, (5)

where Ωt is the set of admissible actions at time t. Note that for

high τ values the actions tend to be all (nearly) equiprobable.

On the other hand, if τ → 0 the softmax policy becomes the



same as a merely greedy action selection. In our experiments

we have chosen τ=0.5.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of our proposed

RL-AMC scheme in two different scenarios. In the first one

a fixed CQI is fed back to the eNB by each UE. Without the

use of reinforcement learning AMC necessarily selects a fixed

MCS independently of the current channel conditions. Then,

we demonstrate that our RL-based AMC is able to converge

towards the best MCS even if the initial CQI estimate are

totally wrong. In the second scenario we compare RL-AMC

against the solution described in [25], which exploits spectral

efficiency estimates to select MCS. Specifically, the spectral

efficiency of user i is approximated by log2(1+ γi/Γ), where

γi is the effective SINR of user i and Γ is a scaling factor.

Then, the mapping defined in the LTE standard [26] is used

to convert spectral efficiency into MCS indexes and, then, into

CQI feedbacks. In this case, we show that our reinforcement

learning algorithm is able to improve the accuracy of the CQI

mapping at run time.

A. Simulation setup

All the following experiments have been carried out using the

ns3 packet-level simulator, which includes a detailed imple-

mentation of the LTE radio protocol stack. As propagation

environment, we assume an Urban Macro scenario, where path

loss and shadowing are modelled according to the COST231-

Hata model [27], which is widely accepted in the 3GPP

community. The fast fading model is implemented using the

Jakes model for Rayleigh fading [28]. To limit the computation

complexity of the simulator pre-calculated fading traces are

included in the LTE model that are based on the standard

multipath delay profiles defined in [29]. In the following tests

we have used the Extended Typical Urban fading propagation

model with pedestrian (3 km/h) and vehicular (30 km/h) users’

speeds. The main LTE physical parameters are summarised

in Table I. Regarding the network topology, the considered

scenario is composed by a single cell and a number of

users, chosen in the range [10, 100], which move according a

Random Waypoint Model (RWM) [30] within the cell, if not

otherwise stated. A downlink flow, modelled with an infinite

buffer source, is assumed to be active for each UE. Finally,

the eNode B adopts the resource allocation type 0, thus only

allocating resource block groups (RBGs) to scheduled UEs.

Given the downlink system bandwidth (see Table I) a RBG

comprises two RBs [3]. RBGs are assigned to UEs following a

Round Robin (RR) scheduler that divides equally the available

RBGs to active flows. Then, all the RBs in the allocated RBGs

used the MCS index that is signalled in the last received

CQI feedback. Furthermore, the implemented version of RR

algorithm is not adaptive, which implies that it maintains the

same RBGs and MCS index when allocating retransmission

attempts.

All results presented in the following graphs are averaged

over five simulation runs with different network topologies.

TABLE I
SIMULATION PARAMETERS.

Parameter Value

Carrier frequency 2GHz

Bandwidth for downlink 5 MHz

eNB power transmission 43 dBm

Subcarrier for RB 12

SubFrame length 1 ms

Subcarrier spacing 15 KHz

Symbols for TTI 14

PDCCH & PCFICH (control ch.) 3 symbols

PDSCH (data ch.) 11 symbols

CQI reporting periodic wideband

CQI processing time 2 TTIs

CQI transmission delay 4 TTIs
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Confidence intervals are very tight and are not shown in the

figures. Each simulation run lasts 150 seconds.

B. Results for fixed CQI

In this first set of simulations we assume that ten UEs are

randomly deployed in the cell and they are static. Then an

additional tagged user is moving with pedestrian speed from

the center of the cell to its boundaries. However, independently

of the UE position the CQI feedback is constant. Then,

Figure 3 shows a comparison of the throughput achieved by

the tagged user with and without reinforcement learning. This

is obviously a limiting case which is analysed to assess the

robustness of our RL-AMC scheme even when CQI provides

a very poor prediction of channel performance. As expected

with fixed MCS the user throughput is constant when the MCS

is over provisioned, while it rapidly goes to zero after a critical

distance. On the contrary, our RL-AMC is able to discover the

correction factor that should be applied to the initial CQI to

force the selection of a more efficient MCS. In addition, the

performance of RL-AMC are almost independent of the initial

CQI value. Note that in this case RL-AMC must explore the

full range of CQI values and we set k in (4) equal to 15.

C. Results with adaptive CQI

In the following experiments we assume that each UE imple-

ments the SINR to CQI mapping described in [25]. First of all
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we consider the same network scenario as in Figure 2, i.e., ten

static UEs randomly deployed and one tagged UE moving at

pedestrian speed. Then, Figure 3 shows a comparison of the

throughput achieved by the tagged user with both SE-AMC

and RL-AMC schemes at different distances of the tagged

UE from the eNB. We can observe that the MCS selection in

SE-AMC is too conservative and this results in a throughput

loss. On the contrary, RL-AMC method is able to discover

the MCS configuration that can ensure a more efficient use

of the available channel resources. This is more evident at

intermediate distances from the eNB when short-term fading

may lead to use more frequently low-rate MCSs. As shown in

the figure, the throughput improvement varies between 20%

and 55% in the range of distances between 200 meters and

800 meters.

In the second set of simulations we consider a more dynamic

environment in which there is an increasing number of UEs in

the cell, and all the UEs are moving according to RWM with

speed 30 km/h and pause time equal to 5 seconds. Figure 4

shows a comparison of the aggregate cell throughput with

both SE-AMC and RL-AMC schemes as a function of the

network congestion (i.e., number of UEs). The results clearly

indicate that the throughput improvement provided by RL-

AMC is almost independent of the number of UEs and it is

about 10%. We can also observe the the cell capacity initially

increases when going from 10 to 20 UEs. This is due to two

main reasons. First, RR is able to allocate RBs in a more

efficient way when the number of UEs is higher. Second, the

higher the number of UEs and the higher the probability that

one of the UEs is close to the eNB and it can use high data-rate

MCSs.

To investigate more in depth the behaviour of the considered

AMC schemes, in Figure 5 we show the probability mass

function of the number of retransmissions that are needed

to successfully transmit a segment of data in a cell with 50

UEs moving as described above. We remind that the same

MCS is used for both the first transmission attempt and the

eventual subsequent retransmissions. We can observe that with
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Fig. 4. Average cell throughput as a function of the number of UEs in an
urban vehicular scenario.
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Fig. 5. Probability mass function of the number of retransmissions in an
urban vehicular scenario with 50 UEs.

RL-AMC the probability to successfully transmit a segment of

data at the first transmission attempt is slightly lower than with

SE-AMC. However, the probability of successfully transmiting

a segment of data after one or two retransmissions is higher

with RL-AMC than with SE-AMC. This confirms our previous

observation that the initial MCS selection of SE-MAC is more

conservative. On the contrary, RL-AMC is able to also explore

MCS with higher data rates when the channel conditions

are more favourable and this is beneficial for the throughput

performance. Note that this is achieved without violating the

BLER requirements imposed by the LTE standard.

VI. CONCLUSIONS

In this paper,we have presented a new AMC method for LTE

networks that is based on reinforcement learning techniques,

We have discussed how inaccurate feedbacks on channel

qualities and the complexity of modelling link performance

under realistic channel models may easily lead to inaccurate

MCS selections. By exploiting reinforcement learning, we can

significantly reduce the impact of channel prediction errors on

the performance of link adaptation. As future work we plan

to explore the use of SINR measurements for directly guiding



the MCS selection. In this case scale-spacing method have to

be designed to reduce the state space. A critical extension of

this work concerns the investigation of methods to reduce the

(typically long) convergence delays of reinforcement learning.

To this end recent advancements in RL theory, such as actor-

critic methods, will be considered.
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