
HiBOp: a History Based Routing Protocol for Opportunistic Networks

Chiara Boldrini, Marco Conti, Iacopo Iacopini, Andrea Passarella
IIT-CNR, Pisa, Italy

chiara.boldrini@iit.cnr.it, m.conti@iit.cnr.it, iacopo@whoopy.it, a.passarella@iit.cnr.it

Abstract

In opportunistic networks the existence of a
simultaneous path between a sender and a receiver is
not assumed. This model (which fits well to pervasive
networking environments) completely breaks the main
assumptions on which MANET routing protocols are
built. Routing in opportunistic networks is usually
based on some form of controlled flooding. But often
this results in very high resource consumption and
network congestion. In this paper we advocate context-
based routing for opportunistic networks. We provide
a general framework for managing and using context
for taking forwarding decisions. We propose a context-
based protocol (HiBOp), and compare it with popular
solutions, i.e., Epidemic Routing and PROPHET.
Results show that HiBOp is able to drastically reduce
resource consumption. At the same time, it
significantly reduces the message loss rate, and
preserves the performance in terms of message delay.

1. Introduction

Opportunistic networks are one of the most

interesting evolutions of classic Mobile Ad Hoc
Networks (MANET). The main assumption of
MANET environments is that a sender and a
destination are connected to the network at the same
time. If the destination is not connected when the
sender wishes to transmit messages, they get dropped
at some point of the network. However, in a pervasive
networking environment, nodes will be seldom
connectable at the same time through a multi-hop path.
For example, devices that users carry with them might
be only sporadically attached to the Internet, e.g. when
the user moves close to an Access Point. In other
words, it is foreseeable a scenario in which a large
number of wireless devices and limited-size networks
will be just occasionally connected to each other.
Opportunistic networks aim at make users able to

exchange data even in such a disconnected
environment, by opportunistically exploiting any
nearby device to move messages closer to the final
destination. To this end, legacy protocols designed for
MANET should be drastically redesigned [2],[3],[10].
Currently, envisioning routing and forwarding
protocols1 for opportunistic networks is one of the
most exciting topics [8].

In opportunistic networks, the traditional routing
paradigm of Internet and MANET, in which routes are
computed based exclusively on topological
information, is not adequate anymore. A first approach
to routing in opportunistic networks is some variation
of controlled flooding: Messages are flooded with
limited Time-To-Live (TTL), and delivered to the
destination as soon as it gets in touch with some node
that received the message during the flood [11]. More
advanced proposals replace topological information
with higher-level information, trying to limit the cost
of flooding. For example, PROPHET [5] forwards
messages through nodes with increasing probability of
encountering the destination.

More in general, we believe that topological
information should be complemented with context
awareness. Context is usually quite a loose concept in
computer engineering. We see it as a collection of
information that describes the reality in which the user
lives, and the history of social relationships among
users. For example, the context could be defined by
personal information about the user (e.g., name), about
her residence (e.g., address), about her work (e.g.,
institution), about her hobbies (e.g., address of the
sport facilities she goes to). The routing protocol
could, for example, forward via her messages destined
to people living in the same place, or in a place nearby.
Exploiting such information is somewhat embedded in
previous works on this topic. For example, PROPHET

1The distinction between routing and forwarding becomes quite

fuzzy in opportunistic networks. Therefore, we use these terms
interchangeably in the paper.

exploits the frequency of contacts between nodes.
MobySpace [4] and MV [1] exploit information about
nodes’ mobility patterns and places nodes are used to
visit. These data can be seen as context information. In
this paper we take a more comprehensive approach,
and identify the general issues and mechanisms that
are required to support context-aware routing policies.
HiBOp does not focus on a pre-defined set of context
information, but is able to exploit any information
users are willing to provide to describe their context.
The other protocols that exploit some context
information can be seen as special realizations of
HiBOp.

We identify two main issues that have to be
addressed to collect and exploit context data. Firstly,
nodes should be able to automatically learn the context
they are currently immersed in, and remember context
information they became aware of in the past (Section
3). Secondly, such context data should feed algorithms
to decide good next hops towards eventual destinations
(Section 4).

In Section 6 we evaluate HiBOp in comparison
with Epidemic Routing and PROPHET. Our results
show that exploiting context information reduces
dramatically the consumption of resources such as
memory and bandwidth (and thus, indirectly, energy
too), at the cost of a limited increase of the message
delay. This is usually fine with the class of applications
opportunistic networks should support, i.e., delay-
tolerant applications. Furthermore, the message loss
rate is significantly reduced, as well.

2. Related Work

Since routing is one of the most compelling issues

in opportunistic networks, several research groups are
working on this topic. For the sake of space, in this
section we only mention Epidemic Routing [11],
PROPHET [5], and CAR [7], which are representative
of three fundamental approaches to routing in
opportunistic networks. The reader can find a
comprehensive survey on routing protocols for
opportunistic networks in [8].

Epidemic Routing is representative of the simplest
type of routing protocols. Routing is based on pair-
wise contacts between nodes, during which nodes
exchange a summary vector containing the list of
messages stored at each node. Based on received
summary vectors, each node requests those messages it
has not yet in its buffer. Messages are delivered to the
destination when the destination meets a node carrying
the messages addressed to it. Epidemic Routing is
representative for dissemination-based routing

protocols, which essentially flood (in a controlled way)
the network to route messages. HiBOp aims at
drastically reduce the cost of such flooding by
exploiting context information. From a different
standpoint, one could note that one of the routes that
Epidemic Routing uses to deliver a message is optimal,
in the sense that it is the quickest one to deliver the
message. Identifying this route in advance clearly
requires an oracle. HiBOp exploits context information
to try to identify this particular route, thus
approximating the ideal routing algorithm.

Probabilistic Routing Protocol using History of
Encounters and Transitivity (PROPHET) is an
evolution of Epidemic Routing that introduces the
concept of delivery predictability. Delivery
predictability is the probability for a node to encounter
a certain destination. PROPHET forwarding algorithm
is similar to the Epidemic Routing one except that,
during a contact, messages are requested only if the
receiving node has greater delivery predictability for
the destination. PROPHET is representative for a class
of routing protocols that exploit some context
information to limit the Epidemic Routing flood (other
examples are MV and MobySpace). HiBOp is able to
manage and exploit far richer context information with
respect to PROPHET.

Context-Aware Routing (CAR) aims at fully
exploit context information, as HiBOp does. CAR
assumes an underlying MANET routing protocol that
connects together nodes in the same MANET cloud.
To reach nodes outside the cloud, a sender looks for
the node in its current cloud with the highest
probability of delivering the message successfully to
the destination. CAR provides a well-stated framework
to compute this probability based on context
information. HiBOp differs from CAR in a number of
ways. Firstly, nodes in CAR compute delivery
probabilities proactively, and disseminate them in their
ad hoc cloud. Therefore, context is exploited to
evaluate probabilities just for those destinations that
each node is aware of. HiBOp is more general, as it
does not necessarily require an underlying routing
protocol, and is able to exploit context also for those
destinations that nodes does not know. Furthermore,
the definition and management of context information
is not addressed in CAR, while it is a core part of
HiBOp. Indeed, CAR is more focused on defining
algorithms to combine context information (which is
assumed available in some way) to compute delivery
probabilities. Therefore, a direct comparison between
HiBOp and CAR in our scenario is not very
interesting, while it is more interesting comparing
HiBOp with Epidemic Routing and PROPHET.

Blending together features of HiBOp and CAR is an
interesting subject of future work.

3. Context creation and management

The context a user is embedded in can be seen as

made up of two main components. The first one
describes the current context of the user, while the
second one is the legacy of the context evolution over
time.

Personal Information
Name Donald
Surname Duck
Email d.duck@iit.cnr.it
Phone 340- 343439847837
NID PLNPPRXX04XX4Y

Residence
Street Feather Street, 13
City Pisa

Work
Street Moruzzi Street, 1
City Pisa
Organization CNR

Hobbies & Fun
Address Sport Street, 10
City Pisa
Association SportDuck

System Information
MAC-Bluetooth 01:23:45:67:89:AB
MAC-802.11 09:00:07:A9:B2:EB
IP-Address 168.0.3.14

Figure 1. Identity Table example

The current context of the user contains, information
about the user itself. This information is stored in the
Identity Table (IT), an example of which is shown in
Figure 1. The current context of a node also includes
information about current neighbors of the node,
achieved by exchanging ITs during pair-wise contacts.
The current context is a snapshot of the local
environment the user is currently immersed in. Based
on this snapshot, a node could be seen as a good
forwarder because, for example, one of its neighbors
lives in the same street of the destination. More in
general, HiBOp exploits the current context to evaluate
the instantaneous fitness of a node to be a forwarder.

Taking forwarding decisions based only on
instantaneous information would be very limiting.
Actually, the current context does not represent users’
behaviors and past experiences. For example, a user
can be deemed a good forwarder if every morning she
passes by the destination’s house on her way to work.
To exploit this kind of knowledge, nodes should
remember information about other users met in the
past. This is achieved through the History table, whose
structure is shown in Figure 2. At a high level, the

History table records attributes seen during the past in
the Identity Table of encountered nodes. The example
row reported in Figure 2 tells that the node has seen
the attribute “Pisa” (of class “City”). As explained in
detail in Section 3.1, the other information stored in
the History table allows HiBOp to estimate the
probability of encountering that attribute in the near
future. It is worth noting that HiBOp remember far
more than the mere identity of encountered nodes (as,
for example, PROPHET does). All attributes of
encountered users let some legacy in the HiBOp
history. This is actually a big advantage, because it
allows HiBOp to exploit similarities between
encountered users and the destination. For example, a
node can be deemed a good forwarder because it is
very likely to encounter some (unspecified) other user
that lives in the same street of the destination. Finally,
note that information stored in the History table is
periodically refreshed, as explained in Section 3.1.

Aggregate Class Pc H R

Pisa City … … …

Figure 2. History table structure

Having laid down the high-level ideas about HiBOp
context management, we provide the detailed
algorithms in the next section. For space limits, not all
details can be thoroughly explained.

3.1. Context-management algorithms

Let us firstly focus on Identity Tables. In general,

ITs can contain an extensible set of data, including
personal information, such as name and surname,
behavioral information, such as job place and hobbies,
system information, such as network addresses of
node’s network interfaces, etc. In general, is up to the
user to decide what to expose in the node’s IT. Clearly,
privacy and security issues are main concerns. We are
currently investigating how to address them. One
interesting idea could be evaluating matches on
attributes without having full information about them.
This could be achieved comparing hashes rather than
plain text values. However, privacy and security issues
need a deeper analysis and remains out of the scope of
this paper. HiBOp works with any kind of information
stored in Identity Tables (i.e., there is no limitation on
what can be stored in ITs). The only requirement is
that the set of information (possibly) stored in ITs be
unique across the network (e.g., it could be defined by
the HiBOp protocol version). This set is defined by the
names of the possible attributes of the IT (left-hand
side column of Figure 1). We assume that ITs uniquely

identify nodes in the network. In particular, the Node
IDentity (NID) field is a hash of the IT, and is used to
uniquely name a node in the network.

Nodes learn the environment around them by
exchanging ITs during Neighbor Discovery phases,
which nodes perform periodically and asynchronously
from each other. The Current Context (CC) a node is
in, is defined by the ITs of its current neighbors, which
are stored in the CC table. Specifically, the time
interval between two Neighbor Discovery phases is
called Signaling Interval. At the end of every Signaling
Interval, each node should send either its IT or its NID.
If during the last Signaling Interval it received only ITs
or NIDs of nodes that are in its Current Context, then it
simply refreshes its presence by broadcasting its NID.
Otherwise, if it received ITs or NIDs for nodes that are
not in its Current Context, it broadcasts its complete
IT. In this way, complete ITs are exchanged only
among nodes that came in contact during the last
Signaling Interval, while stable contacts among
neighbors (i.e., contacts lasting for more Signaling
Intervals) are refreshed by NIDs. An IT is removed
from the CC table when the related node is not in
contact anymore. In order to tolerate transitory
disconnections or transmission errors, an IT is
removed from the CC table after a given number of
consecutive Signaling Intervals (after a Death Interval)
during which neither ITs nor NIDs are received for
that node.

The second building block of HiBOp context
representation is the History table (Figure 2), that
stores values the node has seen in ITs of neighbors met
in the past. For example, if a node receives an IT with
a row <City, Pisa>, then there will be a row in the
History table whose Aggregate filed is “Pisa”. The
Class field is the corresponding name of the attribute
in the Identity Table (“City” in the example). The
reason why we store classes will be clear later on.
Three counters are bound to each aggregate, i.e., the
Continuity Probability (Pc), the Heterogeneity (H), and
the Redundancy (R). Pc represents the probability of
encountering a node that carries that value in its IT.
The H field contains the average number of distinct
encountered nodes, which stored that aggregate. This
field is a sort of fault tolerance index, because high
heterogeneity means that there are several distinct
chances of encountering that aggregate on distinct
nodes. The R field contains the average number of
occurrences of the aggregate within the same IT. The
redundancy information is valuable, because if a node
stores the same aggregate several times in its IT, then
its link towards that aggregate is very high.

Aggr Class Carriers Cont Count Het Count Red Count

Pisa City A,B,C 2 1 2

Figure 3. Repository table structure

The History table is built as the legacy of the evolution
of the Current Context. To dynamically update its
content, an intermediate data structure is used, called
Repository table (whose structure is shown in Figure
3). This table has an entry for each attribute the node
has recently seen. The evolution of the Repository
table can be characterized through two time interval:
the Signaling Interval marks the update time of the
Repository, while every Flushing Interval the content
of the Repository is merged into the History table. At
the end of every Signaling Interval, HiBOp scans its
Current Context, and adds a new row in the Repository
table for attributes in the Current Context that have not
yet a corresponding row in the Repository table. All
the other fields for such new rows are set to 0. Both for
new and old rows, the values of related counters are
then updated. In more details, for each attribute with a
corresponding row in the Repository field, HiBOp
executes the following steps:

• the Continuity Counter is incremented. Therefore,
the Continuity Counter stores how many times
that attribute has been seen in the Current Context
during a Flushing Interval;

• if the node whose IT stores that attribute is not
listed in the Carriers list, the Heterogeneity
counter is incremented, and the NID of the node
is added to the Carriers list. In addition, the
Redundancy counter is incremented by the
number of times that attribute appears in the IT.
Therefore, the Heterogeneity counter stores on
how many different neighbors that attribute has
been seen (during the current Flushing Interval),
while the Redundancy counter stores the total
number of entries in the Current Context that
contain that particular attribute (during the
current Flushing Interval).

Once every Repository Flushing Interval (which is an
integer number of Signaling Intervals), HiBOp uses the
data in the Repository table to update the History table.
For each value of attribute in the Repository table we
compute the corresponding Continuity Probability,
Heterogeneity, and Redundancy as explained below.
Next, we combine these results with the corresponding
values in the row associated with that attribute in the
History Table as shown in Equations (1), (2), and (3).
Specifically, a sample of Continuity Probability is
computed as

pc
(rep) =

ContCount
M

,

where M is the number of Signaling Intervals in a
Repository Flushing Interval. The sample of the
Continuity Probability is thus computed as the
probability of having seen that attribute during the
previous Flushing Interval (recall that ContCount is the
number of Signaling Intervals during which that
attribute has been seen in the Current Context). The
Continuity Probability in the History table is then
updated as follows:

Pc ← δ ⋅ Pc + 1−δ()pc
(rep) (1)

,
where δ is a classic smoothed average parameter
(0 ≤ δ ≤ 1). In a similar fashion, the Heterogeneity and
the Redundancy are updated as follows:

H ← δ ⋅ H + 1−δ()⋅ HetCount (2)

R ← δ ⋅ R + 1−δ()⋅
RedCount
HetCount

 (3)

.

The computation of the Heterogeneity is self-
explanatory from Equation (2). As far as the
Redundancy (Equation (3)), we compute a redundancy

sample as RedCount
HetCount

, and then apply again a standard

smoothed average. Dividing RedCount by HetCount
means computing the “average redundancy” of the
attribute during the Flushing Interval, i.e, the average
number of times that attribute has been seen in a single
Identity Table during the Flushing Interval.

4. Using the context for forwarding
operations

At a high level, forwarding is based on the concept

of opportunity to reach a certain destination, measured
in term of probability of carrying the message closer to
the destination. Messages are forwarded only to nodes
with higher probability of getting them closer to the
destination. This policy is not new. The novelty of
HiBOp is how context is exploited to evaluate these
probabilities. The main idea is that message sender
includes more information about the destination than a
simple network address. The sender should include
(any subset of) the destination’s Identity Table.
Delivery probabilities are evaluated based on the
match between this information and the context stored
at each encountered node (as described in Section 4.2).
High match means high similarity between the node’s
and the destination’s context. Actually, delivery

probabilities can be seen as a measure of this
similarity.

Besides this, it should be noted how HiBOp
controls message replication, which is a major
advantage over state-of-the-art solutions. Specifically,
only the sender of a message is allowed to create
multiple copies of the message (following the
algorithm described in Section 4.1). Other nodes that
carry a message compute the delivery probabilities of
encountered nodes, and do not keep copies of
forwarded messages. This allows HiBOp to control
and drastically reduce message flooding.

 Figure 4. HiBOp forwarding process

The HiBOp forwarding process can be thus
decomposed in three phases (see Figure 4):

- Emission: the sender injects the message in the
network, replicating it for the sake of reliability.

- Forwarding: exploiting nodes’ mobility and
contacts, each copy of the message proceeds in
the network towards the destination.

- Delivery: when a node carrying the message finds
the destination the process stops.

The third phase of the process is trivial and is not
discussed further. The rest of this section is thus
devoted to the Emission (Section 4.1) and Forwarding
(Section 4.2) phases. Also in this case, space
constraints do not allow us to provide a thorough
description of all details.

4.1. Emission phase

In opportunistic networks it is clearly impractical to

manage reliability via ARQ mechanisms like in the
legacy Internet (or in MANET too). Techniques such
as message replication or network coding look more
suitable. HiBOp addresses reliability by replicating
messages at the sender only. HiBOp assumes that the
application notifies a reliability requirement in terms of
maximum tolerable message loss, pl

max . Following the
mechanisms described in Section 4.2, a sender node
gets from its neighbors the probabilities of successfully
delivering the message to the final destination. Let us
denote them as psucc

(i) , where i denotes the i-th

neighbor, ordered by decreasing delivery probability,
and let us denote the delivery probability of the sender
as psucc

(0) . Assuming that these probabilities are
independent, the number of neighbors (k) to which the
message is forwarded by the original sender is
evaluated as follows:

k = min j | (1− psucc
(i))

i= 0

j

∏ ≤ pl
max

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪
.

Basically, the sender forwards the message to the
minimum number of neighbors such that the joint loss
probability is below the maximum threshold specified
by the application. If not enough neighbors are
currently available, the message is forwarded to the
available neighbors, is queued at the sender, and new
neighbors are used as soon as they become available.
Note that, to avoid flooding in case of too low delivery
probabilities, neighbors are used as forwarders just if
their delivery probability is above a threshold (set to
0.001 in our experiments).

4.2. Forwarding phase

4.2.1. Weighting attributes. The main idea of HiBOp
forwarding is evaluating delivery probabilities based
on matches between the sender information in the
message, and context information available on nodes.
It should be noted that matches should be weighted
based on the class of the matching attribute. Class
weights should represent the precision of that class in
identifying the destination. For example, a match on
the destination’s name gives far more precise
information than a match on the residence city of the
destination.

Figure 5 visually represents the qualitative ranking
of class precision we have defined for HiBOp (bigger
circles represent lower precision). The definition of the
weights we have used reflects this qualitative ranking.

Several functions can be used to assign weights to
classes based on the ranking above. In our case, named
w0 the weight of the least significant class, we have
computed other weights as wi+1 = wi + ri ⋅ β , where β
is defined as the weight increase parameter, and ri is
the maximum redundancy of the i-th class. The main
idea is that i) weights should be monotonically
increasing, and ii) the relative difference between
classes should increase if the less significant one
allows for a higher redundancy, because higher
redundancy usually means lower significance.

Figure 5. Precision of attribute classes

4.2.2. Forwarding based on Delivery Probability. A
node wishing to forward a message broadcasts a
message containing the destination information along
with its own delivery probability. Nodes that receive
such message evaluate their delivery probability and
send it back to the inquiring node (with a unicast
transmission) if it is higher than the inquiring node’s
one.

At each node, the delivery probability is computed
from three components, related to i) the node’s Identity
Table, ii) the node’s Current Context, and iii) the
node’s History. In the following we describe how
HiBOp currently exploits context information to
compute these values. Investigating alternative policies
is an interesting subject of future work.

As far as the Identity Table, the node finds those
attributes in the destination information that matches
with attributes in its IT. The delivery probability from
the IT is then evaluated as the ratio between the sum of
the weights of matching attributes, and the sum of the
weights of attributes specified in the destination
information, i.e.:

PIT =

w j
j ∈ match{ }

∑

w j
j ∈ dst _ info{ }

∑
. (4)

As far as the Current Context, recall that it is made up
of ITs of current neighbors. For each such IT the node
evaluates PIT, and the delivery probability related to
the Current Context is the maximum over these
probabilities:

PCC = max
j ∈CC

PIT
(j). (5)

Evaluating the contribution of the History to the
delivery probability requires more steps. Recall that

City
Work Org.
Association

Street
City

Full Name
Email

each aggregate in the History table comes with three
indices, i.e., the Continuity Probability (Pc), the
Heterogeneity (H), and the Redundancy (R). First of
all, HiBOp selects the aggregates that match with
destination information. For such aggregates, the R and
Pc indices are combined as follows:

Pop
(j) = Pc

(j) ⋅
R(j)

r
,

where r is the maximum possible redundancy for the
class of the j-th matching aggregate. Essentially, Pc is
scaled according to the potential redundancy that the
aggregate could achieve. Similarly to the contribution
related to the IT, the contribution related to the History
is evaluated based on the weighted mean of the Pop

(j)
values, computed as:

PH
′ =

Pop
(j) ⋅ w j

j ∈ match{ }
∑

w j
j ∈ dst _ info{ }

∑
.

The delivery probability related to the History is
evaluated by modifying PH

′ according to the H indices
of matching attributes. Specifically, HiBOp increases
PH

′ of a factor Δmax at most, scaling this factor
according to the average heterogeneity of matching
attributes (h):

PH = max 1,PH
′ + Δmax ⋅ 1− e− h −1()⎡

⎣ ⎢
⎤
⎦ ⎥

⎧
⎨
⎩

⎫
⎬
⎭

. (6)

Note that, since Δmax is scaled according to an
exponential law, the same average heterogeneity
increase results in a higher PH increase for small
values of average heterogeneity (e.g., increasing h
from 1 to 2 has a greater effect than increasing h from
10 to 11).

The delivery probability is finally computed by
combining Equations (4), (5), and (6), as follows:

P = α ⋅ PH + 1−α()⋅ max η ⋅ PCC ,PIT{ }. (7)

Equation (7) is made up of two components, weighted
with a smoothing factor α (0 ≤ α ≤ 1). The first
component is PH, which describes the legacy of the
node’s past history. The second component describes
the current status of the node’s environment. The α
factor gives more weight to past history or to the
current environment. The node’s current environment
is jointly described by PIT and PCC, which are therefore
combined together in Equation (7). The η factor (η<1)
scales down PCC with respect to PIT, because PCC is
related to a neighbor, while PIT is related to the local
node. Let assume two potential next hops A and B, and

let assume that PCC
(A) = PIT

(B). Let us also assume that
0)()()()(==== B

CC
A

IT
B

H
A

H PPPP Thus, P(A) = η ⋅ PCC
(A)

and P(B) = PIT
(B) > P(A) hold, i.e. the η factor makes

node B preferable as a next hop. This is correct,
because forwarding through A surely requires a further
hop to give the message to the A’s neighbors that
generated PCC

(A) .

5. Simulation setup

The performance of the HiBOp protocol has been

evaluated in terms of delay, buffer occupation,
message loss and amount of traffic generated in the
network. HiBOp performance has been compared to
that of Epidemic Routing (Epidemic, for short) and
PROPHET.

In order to evaluate the performance of HiBOp we
developed a custom simulator. The goal of the
simulation study is understanding which is the impact
of using context information in opportunistic networks.
Therefore, we assumed ideal wireless links with
infinite bandwidth and negligible transmission delay.
This is clearly unrealistic, but allows us to isolate the
effect of context awareness from networking effects
such as congestion, transmission errors, etc. Since
HiBOp exploits context to reduce messages’ spread in
the network, we can anticipate that neglecting
networking congestion favors Epidemic and
PROPHET. Indeed, we are neglecting additional
delays and message losses related to network
congestion, which might significantly increase delays
and message drop rates under very high traffic load
[9].

Our simulation scenario was a square of size
1250x1250m, divided in a 5x5 grid. The number of
nodes was set to 80, and the transmission range was set
to 100m. Nodes moved according to the traces
generated by Community based Mobility Model [6].
This model is quite different from traditional random
models and mimics real human movement patterns.
Every node belongs to a social community. Nodes that
are in the same social community are called friends,
while nodes in different communities are non-friends.
Nodes’ movements are determined by the attraction of
other nodes: each node moves (with a uniformly
distributed speed) towards the cell in which it has more
friends. Therefore, it's more likely that a node will be
in contact with nodes of its community, because they
spend more time together. CMM also includes the
notion of travelers that do not always move in the cell
where they have more friends. From time to time, they

move to the second most attractive cell (i.e., to the cell
in which they have the second highest number of
friends), and then get back to the most attractive cell
afterwards. Once in a while a reconfiguration occurs,
during which all groups change cell. During a
reconfiguration nodes of different groups have chances
to meet. For example, CMM allows us to model a
typical campus scenario, in which communities are
people attending the same classes, or a typical working
environment, in which communities are working
departments.

The context used in our simulation was the
personal information of the user, and the information
about its working place. To make the context coherent
with CMM, similar attributes were given to nodes
belonging to the same group. Simulation results show
that HiBOp is already able to outperform Epidemic
and PROPHET also with such limited context
information.

We considered a messaging application, and the set
of senders was chosen uniformly at random at the
beginning of the experiment. The interval between the
generation of two consecutive messages at the same
sender was modeled according to an exponential
distribution, with average 300s. Message destination
was a friend node with 50% probability, and a non-
friend node with 50% probability. Among the friends
and non-friends, the destination was chosen uniformly
at random. Messages expired after 18000s.

Each simulation ran for 90000 seconds. To gather
accurate measures about the message loss, senders
stopped generating messages 18000s before the end of
the simulation. This way, messages that had not been
delivered at the end of a simulation run had certainly
been dropped due to timeout expiration. We replicated
each simulation configuration 5 times with
independent seeds. Unless otherwise stated, results
presented hereafter are the average over the 5 replicas.

Finally, the parameters related to CMM were set as
shown in Table 1, while the parameters related to
HiBOp were set as shown in Table 2. When assessing
the sensitiveness of HiBOp to a particular parameter,
we set the other parameters as shown in this table.

Table 1. CMM parameters
Number of nodes 80
Simulation area 1250x1250m
Cells in the grid 5x5
Node speed U ∈ [2-9]m/s
Number of groups 8
Reconfiguration interval 9000s
Travelers speed 5m/s
Number of travelers 8

Table 2. HiBOp parameters
Signaling Interval 5s
pl

max 0.05
Repository Flushing Interval 1800s
δ 0.5
η 0.95
Δmax 1
α 0.5
Death Interval 10s
Default buffer size 50 messages
Default number of senders 20
Default message size 50000 B

6. Simulation Results

6.1. Unlimited buffers

In this section we don’t put any limit on the nodes’

buffer size, which is clearly the best possible
configuration for Epidemic and PROPHET. The
evolution over time of the buffer size (averaged over
all nodes) is plotted in Figure 6. It clearly shows that
Epidemic and PROPHET require about one order of
magnitude more space than HiBOp. Even though
memory is cheap nowadays, messages in Opportunistic
Networks are usually far larger than messages in IP
networks, and whole files can be accommodated in a
single message [10]. For an average message size of
1MB, nodes running Epidemic should reserve about
400MB just for routing purposes! It is therefore worth
to consider how buffer limitations impact on these
protocols’ performance. Specifically, in the following
we will use a FIFO replacement policy for managing
buffers. Investigating other (smarter) policies is out of
the scope of this paper.

Figure 6. Buffer evolution with unlimited size

Before going on, it is worth noting that the message
loss experienced by all protocols was negligible

(below 0.1%), and the HiBOp average delay was 1.71x
and 2.25x the average delay of PROPHET and
Epidemic, respectively (Table 3). Even though there is
a clear delay increase, HiBOp performance remains
acceptable even in this extremely favorable scenario
for Epidemic and PROPHET.

Table 3. Average delays with unlimited buffers
(103s)

Epidemic PROPHET HiBOp
0.6466 0.8489 1.4538

6.2. Resource Consumption

In this section we analyze the resource

consumption of HiBOp in comparison with Epidemic
and PROPHET, in terms of buffer occupation, and
traffic overhead. This evaluation is fundamental, since
one of its main goals is reducing the overhead of
previous routing.

Figure 7 shows the average buffer occupancy of the
three protocols during time, for three selected values of
the maximum buffer size, i.e., 20, 50 and 100
messages. The plot highlights that, as expected, both
Epidemic and PROPHET saturate the buffers.
Specifically, after an initial startup phase, and before
the final cool-down phase (the last 18000 seconds in
which no new message is generated), buffers are
almost always 100% full. Since the figure plots the
average buffer occupation over all nodes, this means
that all buffers in the network are saturated. HiBOp is
much less greedy in using buffer resources. The fact
that the average occupation is much lesser than the
maximum buffer size, means that the probability of
HiBOp saturating buffers is very low. As it is shown in
the next sections, the number of messages delivered by
HiBOp is even higher than the number of messages
delivered by Epidemic and PROPHET. Therefore, this
buffer occupancy comparison is even somewhat unfair
to HiBOp.

Finally, note that buffer occupancy in all cases
drops every 9000 seconds. This is because a
reconfiguration occurs every 9000 seconds. Since
during a reconfiguration nodes of different groups
have more chance to meet, this results in a message
delivery peak.

Figure 8 shows the resource consumption in terms
of networking overhead. Specifically, it plots the ratio
between the total number of bytes exchanged over the
network, and the total number of bytes successfully
delivered to destinations. Therefore, it shows how
many bytes have to be generated, on average, for each
successfully delivered byte. Note that the total number

of bytes generated includes not only the application-
level messages to be forwarded, but also the whole
routing and forwarding traffic generated by the
protocols.

Figure 7. Buffer occupation

Figure 8. Traffic overhead

Therefore, this index also accounts for the effect of
exchanging Identity Tables and using long message
headers in HiBOp, which is an additional overhead
with respect to Epidemic and PROPHET. In Figure 8,
three groups of bars are plotted for selected maximum
buffer sizes (20, 50, 100 messages). First of all, HiBOp
significantly reduces the networking overhead of
Epidemic and PROPHET. Specifically, the reduction is
in the range [32%,51%] with respect to Epidemic, and
[19%,34%] with respect to PROPHET. The
networking overhead increases with the maximum
buffer size. As shown by Figure 7, the buffer
occupancy increases with the maximum buffer size,
meaning that – on average – each node stores an
increasing number of messages to be forwarded.
Therefore, the traffic generated either to forward these
messages, or to exchange information about delivery
probabilities, increases with the maximum buffer size.

Based on Figure 7 and Figure 8, HiBOp
significantly reduces resource consumption in terms of

buffer occupancy and networking overhead. From a
complementary standpoint, this also shows that
HiBOp’s context-aware features act as an effective
congestion control system for opportunistic network.
This is a key point, as currently adopted routing
protocols tend to be very greedy in resource usage,
thus resulting in high resource congestion.

6.3. User perceived QoS

In this section we investigate the QoS perceived by

users in terms of message delay and message loss.
Specifically, Figure 9 shows the message loss of the
three protocols for varying buffer sizes. As expected,
the message loss drops as the buffer size increases,
because messages can live longer in nodes’ buffers. It
is interesting to note that HiBOp message loss is
always lower than Epidemic and PROPHET message
loss. This is not trivial, because HiBOp drastically
reduces message replication (as shown by the lower
buffer occupancy), i.e., it explores less paths towards
the destinations. Potentially, this could results in
greater message loss, if the wrong paths are chosen.
Since the message loss actually decreases with HiBOp,
this tells that i) HiBOp allows messages to live longer
in the buffers thanks to low replication, thus letting
more time for them to be delivered, and ii) HiBOp is
able to choose correct paths based on its context-aware
rules.

The performance in terms of message delay is
analyzed jointly in Table 4 and Figure 10. To make
delay distributions related to different protocols
comparable, we added samples equal to the maximum
message lifetime (18000s) for lost messages. These
samples are not plotted in the CCDFs of Figure 10,
which results in truncating the plots before the 100th
percentile.

First of all, it should be noted that these delay
values (in the order of tens of minutes) are typical in
opportunistic networks, even though they might look
fairly high. In more detail, delay is the only figure for
which HiBOp performs generally worse than Epidemic
and PROPHET. For medium (50) and large (100)
buffers, the HiBOp additional delay is respectively
14% and 84% with respect to Epidemic, and 14% and
55% with respect to PROPHET. Actually, HiBOp
outperforms both Epidemic and PROPHET for small
buffers, because of the greater share of messages
having delays greater than 18000s. By focusing on the
tail distributions, one notices that HiBOp is actually
able to reduce the high percentiles, unless for large
buffers (100). This is another effect of the greater
HiBOp reliability in delivering messages. These delay

figures can be seen as more than acceptable for HiBOp
indeed. The average delay increase is tolerable,
especially by recalling that protocols like Epidemic are
not very likely to be widely adopted, due to their
excessive overhead.

Figure 9. Message loss

Figure 10. Delay distributions

Table 4. Average message delay (103s)
 Epidemic PROPHET HiBOp

Buff = 20 2.94 2.89 2.73
Buff = 50 1.43 1.42 1.62

Buff = 100 0.79 0.93 1.44

6.4. Effect of the emission phase
configuration

In this section we investigate the impact of the

pl
max parameter, which is used by the sender during

the emission phase to decide how widely to replicate
the message. Specifically, we consider three pl

max
values, i.e., 5% (the default), 50% and 80%. Increasing
pl

max actually means replicating the message less
aggressively, and exploring less paths. The expected
effect of increasing pl

max is thus to further reduce

resource consumption, and to worsen delay and
message loss performance.

Figure 11. Buffer occupation

Table 5. Message Loss and Traffic overhead

pl
max 5% 50% 80%

Msg loss 1.53% 1.60% 2.11%

Overhea
d 37.70 33.91 27.14

Figure 12. Delay distribution

Figure 11 and Table 5 show that HiBOp resource
consumption decreases as pl

max increases.
Accordingly, the message loss (Table 5) and the delay
(Figure 12) increase with pl

max . Even though the
observed behavior matches intuition, the performance
worsening in terms of message loss and delay is lower
than what one could expect. For example, increasing
pl

max from 5% to 80% results in additional message
loss of just about 0.7%. On the positive side, HiBOp is
able to guarantee very high reliability even for loose
bounds on pl

max . However, one might wonder how
pl

max is precise in controlling the end-to-end HiBOp
reliability. This point is one of the features we are

currently investigating more deeply, in order to
improve HiBOp.

7. Conclusions and future work

In this work we have proposed a context-based

routing framework for opportunistic networks, and a
particular routing protocol (HiBOp). We have
evaluated its performance across a range of
parameters’ values, in comparison with Epidemic
Routing and PROPHET. We have shown that HiBOp
is able to drastically reduce the resource consumption,
in terms of network traffic and nodes’ buffer
occupation. At the same time, HiBOp is significantly
more reliable than Epidemic and PROPHET, as it
reduces the message loss rate. This is paid, in some
configuration, with a delay increase, that is however
tolerable for typical applications of opportunistic
networks. Finally, HiBOp is able to reduce the
probability of having very large delays.

These results clearly indicate that context-based
forwarding is a very interesting way of finding paths in
opportunistic networks. Actually, it looks like a strong
alternative to classical flooding-based protocols, and
can be seen as an effective means of controlling
congestion in these networks.

Despite this, there are a number of directions along
which HiBOp can be further investigated. Several
control knobs exists in its design, whose effects have
to be clearly investigated. For example, how to achieve
fine-grain control on end-to-end reliability is an
interesting topic. Furthermore, finding analytical
bounds for the performance of context-based
forwarding is a very exciting point. All of these aspects
are clearly out of the scope of this paper. Nevertheless,
we have already shown that exploiting context is a
powerful idea in opportunistic networks, and we have
provided a general framework for managing context,
and exploiting it to find correct paths.

Another interesting aspect is how to “bootstrap” a
network with HiBOp, i.e., how to route data when
context information is not widely available in the
network. Purposely, we have let this point out of this
paper. Indeed, in our simulations we have discarded
the initial transient phase required to spread context
information in the network, to precisely evaluate the
advantage of exploiting context information. The
performance of HiBOp when context information is
not spread widely is actually analyzed in [12]. In that
paper we deeply investigate the performance of HiBOp
with respect to a number of parameters describing the
social behavior of users. One of the main outcomes
highlighted in [12] is the fact that HiBOp becomes

efficient (i.e., it routes data with comparable delay with
respect to Epidemic and with lower overhead) even in
configurations in which context information is just
partially spread in the network. Clearly there are
corner cases in which context information cannot
circulate due to particular mobility patterns. In those
cases, HiBOp becomes less efficient than epidemic
approaches. An interesting direction to pursue is how
to design an integrated protocol that be able to exploit
context information as soon as it becomes available,
but falls back to epidemic-like routing when such
information is not available.

8. References

[1] B. Burns, O. Brock, and B. N. Levine, “MV Routing
and capacity building in disruption tolerant networks”,
Proc. of IEEE INFOCOM 2005, Miami, FL, March,
2005.

[2] K. Fall, “A delay-tolerant network architecture for
challenged internets”, Proc. of ACM SIGCOMM, 2003.

[3] S. Jain, K. Fall, and R. Patra, “Routing in a delay-
tolerant network”, Proc. of ACM SIGCOMM, 2004.

[4] J. Leguay, T Friedman, and V. Conan, “Evaluating
Mobility Pattern Space Routing for DTNs”, Proc. of
IEEE INFOCOM 2006.

[5] A. Lindgren, A. Doria, and O. Schelèn, “Probabilistic
routing in intermittently connected networks”, ACM
Mobile Computing and Communications Review, 7(3),
July 2003.

[6] M. Musolesi, C. Mascolo, “A Community Based
Mobility Model for Ad Hoc Network Research”, in
Proceedings ACM/SIGMOBILE REALMAN, 2006.

[7] M. Musolesi, S. Hailes, and C. Mascolo, “Adaptive
Routing for Intermittently Connected Mobile Ad Hoc
Networks”, Proc. of IEEE WoWMoM, 2005.

[8] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic
Networking: data forwarding in disconnected mobile ad
hoc networks”, IEEE Communications Magazine,
44(11), Nov. 2006.

[9] A. Spuropoulos, K. Psounis, and C. Raghavendra,
“Multi-copy routing in intermittently connected mobile
networks”, Tech. Rep., CENG-2004-12, USC, 2006.

[10] J. Scott, P. Hui, J. Crowcroft, C. Diot, “Haggle: A
Networking Architecture Designed Around Mobile
Users” Proc. of IFIP WONS, 2006.

[11] A. Vahdat and D. Becker, “Epidemic routing for
partially connected ad hoc networks”, Tech. Rep. CS-
2000-06, CS Dept., Duke University, 2000.

[12] C. Boldrini, M. Conti, A. Passarella, “Impact of Social
Mobiltiy on Routing Protocols in Opportunistic
Networks”, Proc. of IEEE WoWMoM 2007, Helsinki,
June 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

