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Abstract 
 

In opportunistic networks the existence of a 
simultaneous path between a sender and a receiver is 
not assumed. This model (which fits well to pervasive 
networking environments) completely breaks the main 
assumptions on which MANET routing protocols are 
built. Routing in opportunistic networks is usually 
based on some form of controlled flooding. But often 
this results in very high resource consumption and 
network congestion. In this paper we advocate context-
based routing for opportunistic networks. We provide 
a general framework for managing and using context 
for taking forwarding decisions. We propose a context-
based protocol (HiBOp), and compare it with popular 
solutions, i.e., Epidemic Routing and PROPHET. 
Results show that HiBOp is able to drastically reduce 
resource consumption. At the same time, it 
significantly reduces the message loss rate, and 
preserves the performance in terms of message delay. 
 

1. Introduction 
 
Opportunistic networks are one of the most 

interesting evolutions of classic Mobile Ad Hoc 
Networks (MANET). The main assumption of 
MANET environments is that a sender and a 
destination are connected to the network at the same 
time. If the destination is not connected when the 
sender wishes to transmit messages, they get dropped 
at some point of the network. However, in a pervasive 
networking environment, nodes will be seldom 
connectable at the same time through a multi-hop path. 
For example, devices that users carry with them might 
be only sporadically attached to the Internet, e.g. when 
the user moves close to an Access Point. In other 
words, it is foreseeable a scenario in which a large 
number of wireless devices and limited-size networks 
will be just occasionally connected to each other. 
Opportunistic networks aim at make users able to 

exchange data even in such a disconnected 
environment, by opportunistically exploiting any 
nearby device to move messages closer to the final 
destination. To this end, legacy protocols designed for 
MANET should be drastically redesigned [2],[3],[10]. 
Currently, envisioning routing and forwarding 
protocols1 for opportunistic networks is one of the 
most exciting topics [8]. 

In opportunistic networks, the traditional routing 
paradigm of Internet and MANET, in which routes are 
computed based exclusively on topological 
information, is not adequate anymore. A first approach 
to routing in opportunistic networks is some variation 
of controlled flooding: Messages are flooded with 
limited Time-To-Live (TTL), and delivered to the 
destination as soon as it gets in touch with some node 
that received the message during the flood [11]. More 
advanced proposals replace topological information 
with higher-level information, trying to limit the cost 
of flooding. For example, PROPHET [5] forwards 
messages through nodes with increasing probability of 
encountering the destination. 

More in general, we believe that topological 
information should be complemented with context 
awareness. Context is usually quite a loose concept in 
computer engineering. We see it as a collection of 
information that describes the reality in which the user 
lives, and the history of social relationships among 
users. For example, the context could be defined by 
personal information about the user (e.g., name), about 
her residence (e.g., address), about her work (e.g., 
institution), about her hobbies (e.g., address of the 
sport facilities she goes to). The routing protocol 
could, for example, forward via her messages destined 
to people living in the same place, or in a place nearby. 
Exploiting such information is somewhat embedded in 
previous works on this topic. For example, PROPHET 

                                                           
1The distinction between routing and forwarding becomes quite 

fuzzy in opportunistic networks. Therefore, we use these terms 
interchangeably in the paper. 



exploits the frequency of contacts between nodes. 
MobySpace [4] and MV [1] exploit information about 
nodes’ mobility patterns and places nodes are used to 
visit. These data can be seen as context information. In 
this paper we take a more comprehensive approach, 
and identify the general issues and mechanisms that 
are required to support context-aware routing policies. 
HiBOp does not focus on a pre-defined set of context 
information, but is able to exploit any information 
users are willing to provide to describe their context. 
The other protocols that exploit some context 
information can be seen as special realizations of 
HiBOp. 

We identify two main issues that have to be 
addressed to collect and exploit context data. Firstly, 
nodes should be able to automatically learn the context 
they are currently immersed in, and remember context 
information they became aware of in the past (Section 
3). Secondly, such context data should feed algorithms 
to decide good next hops towards eventual destinations 
(Section 4). 

In Section 6 we evaluate HiBOp in comparison 
with Epidemic Routing and PROPHET. Our results 
show that exploiting context information reduces 
dramatically the consumption of resources such as 
memory and bandwidth (and thus, indirectly, energy 
too), at the cost of a limited increase of the message 
delay. This is usually fine with the class of applications 
opportunistic networks should support, i.e., delay-
tolerant applications. Furthermore, the message loss 
rate is significantly reduced, as well. 

 

2. Related Work 
 
Since routing is one of the most compelling issues 

in opportunistic networks, several research groups are 
working on this topic. For the sake of space, in this 
section we only mention Epidemic Routing [11], 
PROPHET [5], and CAR [7], which are representative 
of three fundamental approaches to routing in 
opportunistic networks. The reader can find a 
comprehensive survey on routing protocols for 
opportunistic networks in [8]. 

Epidemic Routing is representative of the simplest 
type of routing protocols. Routing is based on pair-
wise contacts between nodes, during which nodes 
exchange a summary vector containing the list of 
messages stored at each node. Based on received 
summary vectors, each node requests those messages it 
has not yet in its buffer. Messages are delivered to the 
destination when the destination meets a node carrying 
the messages addressed to it. Epidemic Routing is 
representative for dissemination-based routing 

protocols, which essentially flood (in a controlled way) 
the network to route messages. HiBOp aims at 
drastically reduce the cost of such flooding by 
exploiting context information. From a different 
standpoint, one could note that one of the routes that 
Epidemic Routing uses to deliver a message is optimal, 
in the sense that it is the quickest one to deliver the 
message. Identifying this route in advance clearly 
requires an oracle. HiBOp exploits context information 
to try to identify this particular route, thus 
approximating the ideal routing algorithm. 

Probabilistic Routing Protocol using History of 
Encounters and Transitivity (PROPHET) is an 
evolution of Epidemic Routing that introduces the 
concept of delivery predictability. Delivery 
predictability is the probability for a node to encounter 
a certain destination. PROPHET forwarding algorithm 
is similar to the Epidemic Routing one except that, 
during a contact, messages are requested only if the 
receiving node has greater delivery predictability for 
the destination. PROPHET is representative for a class 
of routing protocols that exploit some context 
information to limit the Epidemic Routing flood (other 
examples are MV and MobySpace). HiBOp is able to 
manage and exploit far richer context information with 
respect to PROPHET. 

Context-Aware Routing (CAR) aims at fully 
exploit context information, as HiBOp does. CAR 
assumes an underlying MANET routing protocol that 
connects together nodes in the same MANET cloud. 
To reach nodes outside the cloud, a sender looks for 
the node in its current cloud with the highest 
probability of delivering the message successfully to 
the destination. CAR provides a well-stated framework 
to compute this probability based on context 
information. HiBOp differs from CAR in a number of 
ways. Firstly, nodes in CAR compute delivery 
probabilities proactively, and disseminate them in their 
ad hoc cloud. Therefore, context is exploited to 
evaluate probabilities just for those destinations that 
each node is aware of. HiBOp is more general, as it 
does not necessarily require an underlying routing 
protocol, and is able to exploit context also for those 
destinations that nodes does not know. Furthermore, 
the definition and management of context information 
is not addressed in CAR, while it is a core part of 
HiBOp. Indeed, CAR is more focused on defining 
algorithms to combine context information (which is 
assumed available in some way) to compute delivery 
probabilities. Therefore, a direct comparison between 
HiBOp and CAR in our scenario is not very 
interesting, while it is more interesting comparing 
HiBOp with Epidemic Routing and PROPHET. 



Blending together features of HiBOp and CAR is an 
interesting subject of future work. 

 

3. Context creation and management 
 
The context a user is embedded in can be seen as 

made up of two main components. The first one 
describes the current context of the user, while the 
second one is the legacy of the context evolution over 
time. 

Personal Information 
Name Donald 
Surname Duck 
Email d.duck@iit.cnr.it 
Phone 340- 343439847837 
NID PLNPPRXX04XX4Y 

Residence 
Street Feather Street, 13 
City Pisa 

Work 
Street Moruzzi Street, 1 
City Pisa 
Organization CNR 

Hobbies & Fun 
Address Sport Street, 10 
City Pisa 
Association SportDuck 

System Information 
MAC-Bluetooth 01:23:45:67:89:AB 
MAC-802.11 09:00:07:A9:B2:EB 
IP-Address 168.0.3.14 

Figure 1. Identity Table example 

The current context of the user contains, information 
about the user itself. This information is stored in the 
Identity Table (IT), an example of which is shown in 
Figure 1. The current context of a node also includes 
information about current neighbors of the node, 
achieved by exchanging ITs during pair-wise contacts. 
The current context is a snapshot of the local 
environment the user is currently immersed in. Based 
on this snapshot, a node could be seen as a good 
forwarder because, for example, one of its neighbors 
lives in the same street of the destination. More in 
general, HiBOp exploits the current context to evaluate 
the instantaneous fitness of a node to be a forwarder. 

Taking forwarding decisions based only on 
instantaneous information would be very limiting. 
Actually, the current context does not represent users’ 
behaviors and past experiences. For example, a user 
can be deemed a good forwarder if every morning she 
passes by the destination’s house on her way to work. 
To exploit this kind of knowledge, nodes should 
remember information about other users met in the 
past. This is achieved through the History table, whose 
structure is shown in Figure 2. At a high level, the 

History table records attributes seen during the past in 
the Identity Table of encountered nodes. The example 
row reported in Figure 2 tells that the node has seen 
the attribute “Pisa” (of class “City”). As explained in 
detail in Section 3.1, the other information stored in 
the History table allows HiBOp to estimate the 
probability of encountering that attribute in the near 
future. It is worth noting that HiBOp remember far 
more than the mere identity of encountered nodes (as, 
for example, PROPHET does). All attributes of 
encountered users let some legacy in the HiBOp 
history. This is actually a big advantage, because it 
allows HiBOp to exploit similarities between 
encountered users and the destination. For example, a 
node can be deemed a good forwarder because it is 
very likely to encounter some (unspecified) other user 
that lives in the same street of the destination. Finally, 
note that information stored in the History table is 
periodically refreshed, as explained in Section 3.1. 

Aggregate Class Pc H  R  

Pisa City … … … 

Figure 2. History table structure 

Having laid down the high-level ideas about HiBOp 
context management, we provide the detailed 
algorithms in the next section. For space limits, not all 
details can be thoroughly explained. 
 
3.1. Context-management algorithms 

 
Let us firstly focus on Identity Tables. In general, 

ITs can contain an extensible set of data, including 
personal information, such as name and surname, 
behavioral information, such as job place and hobbies, 
system information, such as network addresses of 
node’s network interfaces, etc. In general, is up to the 
user to decide what to expose in the node’s IT. Clearly, 
privacy and security issues are main concerns. We are 
currently investigating how to address them. One 
interesting idea could be evaluating matches on 
attributes without having full information about them. 
This could be achieved comparing hashes rather than 
plain text values. However, privacy and security issues 
need a deeper analysis and remains out of the scope of 
this paper. HiBOp works with any kind of information 
stored in Identity Tables (i.e., there is no limitation on 
what can be stored in ITs). The only requirement is 
that the set of information (possibly) stored in ITs be 
unique across the network (e.g., it could be defined by 
the HiBOp protocol version). This set is defined by the 
names of the possible attributes of the IT (left-hand 
side column of Figure 1). We assume that ITs uniquely 



identify nodes in the network. In particular, the Node 
IDentity (NID) field is a hash of the IT, and is used to 
uniquely name a node in the network. 

Nodes learn the environment around them by 
exchanging ITs during Neighbor Discovery phases, 
which nodes perform periodically and asynchronously 
from each other. The Current Context (CC) a node is 
in, is defined by the ITs of its current neighbors, which 
are stored in the CC table. Specifically, the time 
interval between two Neighbor Discovery phases is 
called Signaling Interval. At the end of every Signaling 
Interval, each node should send either its IT or its NID. 
If during the last Signaling Interval it received only ITs 
or NIDs of nodes that are in its Current Context, then it 
simply refreshes its presence by broadcasting its NID. 
Otherwise, if it received ITs or NIDs for nodes that are 
not in its Current Context, it broadcasts its complete 
IT. In this way, complete ITs are exchanged only 
among nodes that came in contact during the last 
Signaling Interval, while stable contacts among 
neighbors (i.e., contacts lasting for more Signaling 
Intervals) are refreshed by NIDs. An IT is removed 
from the CC table when the related node is not in 
contact anymore. In order to tolerate transitory 
disconnections or transmission errors, an IT is 
removed from the CC table after a given number of 
consecutive Signaling Intervals (after a Death Interval) 
during which neither ITs nor NIDs are received for 
that node. 

The second building block of HiBOp context 
representation is the History table (Figure 2), that 
stores values the node has seen in ITs of neighbors met 
in the past. For example, if a node receives an IT with 
a row <City, Pisa>, then there will be a row in the 
History table whose Aggregate filed is “Pisa”. The 
Class field is the corresponding name of the attribute 
in the Identity Table (“City” in the example). The 
reason why we store classes will be clear later on. 
Three counters are bound to each aggregate, i.e., the 
Continuity Probability (Pc), the Heterogeneity (H), and 
the Redundancy (R). Pc represents the probability of 
encountering a node that carries that value in its IT. 
The H field contains the average number of distinct 
encountered nodes, which stored that aggregate. This 
field is a sort of fault tolerance index, because high 
heterogeneity means that there are several distinct 
chances of encountering that aggregate on distinct 
nodes. The R field contains the average number of 
occurrences of the aggregate within the same IT. The 
redundancy information is valuable, because if a node 
stores the same aggregate several times in its IT, then 
its link towards that aggregate is very high. 

Aggr Class Carriers Cont Count Het Count Red Count 

Pisa City A,B,C 2 1 2 

Figure 3. Repository table structure 

The History table is built as the legacy of the evolution 
of the Current Context. To dynamically update its 
content, an intermediate data structure is used, called 
Repository table (whose structure is shown in Figure 
3). This table has an entry for each attribute the node 
has recently seen. The evolution of the Repository 
table can be characterized through two time interval: 
the Signaling Interval marks the update time of the 
Repository, while every Flushing Interval the content 
of the Repository is merged into the History table. At 
the end of every Signaling Interval, HiBOp scans its 
Current Context, and adds a new row in the Repository 
table for attributes in the Current Context that have not 
yet a corresponding row in the Repository table. All 
the other fields for such new rows are set to 0. Both for 
new and old rows, the values of related counters are 
then updated. In more details, for each attribute with a 
corresponding row in the Repository field, HiBOp 
executes the following steps: 

• the Continuity Counter is incremented. Therefore, 
the Continuity Counter stores how many times 
that attribute has been seen in the Current Context 
during a Flushing Interval; 

• if the node whose IT stores that attribute is not 
listed in the Carriers list, the Heterogeneity 
counter is incremented, and the NID of the node 
is added to the Carriers list. In addition, the 
Redundancy counter is incremented by the 
number of times that attribute appears in the IT. 
Therefore, the Heterogeneity counter stores on 
how many different neighbors that attribute has 
been seen (during the current Flushing Interval), 
while the Redundancy counter stores the total 
number of entries in the Current Context that 
contain that particular attribute (during the 
current Flushing Interval). 

Once every Repository Flushing Interval (which is an 
integer number of Signaling Intervals), HiBOp uses the 
data in the Repository table to update the History table. 
For each value of attribute in the Repository table we 
compute the corresponding Continuity Probability, 
Heterogeneity, and Redundancy as explained below. 
Next, we combine these results with the corresponding 
values in the row associated with that attribute in the 
History Table as shown in Equations (1), (2), and (3). 
Specifically, a sample of Continuity Probability is 
computed as 

pc
(rep ) =

ContCount
M

, 



where M is the number of Signaling Intervals in a 
Repository Flushing Interval. The sample of the 
Continuity Probability is thus computed as the 
probability of having seen that attribute during the 
previous Flushing Interval (recall that ContCount is the 
number of Signaling Intervals during which that 
attribute has been seen in the Current Context). The 
Continuity Probability in the History table is then 
updated as follows: 

Pc ← δ ⋅ Pc + 1−δ( )pc
(rep) (1)

, 
where δ is a classic smoothed average parameter 
( 0 ≤ δ ≤ 1). In a similar fashion, the Heterogeneity and 
the Redundancy are updated as follows: 

H ← δ ⋅ H + 1−δ( )⋅ HetCount  (2)
 

R ← δ ⋅ R + 1−δ( )⋅
RedCount
HetCount

 (3)

. 

The computation of the Heterogeneity is self-
explanatory from Equation (2). As far as the 
Redundancy (Equation (3)), we compute a redundancy 

sample as RedCount
HetCount

, and then apply again a standard 

smoothed average. Dividing RedCount by HetCount 
means computing the “average redundancy” of the 
attribute during the Flushing Interval, i.e, the average 
number of times that attribute has been seen in a single 
Identity Table during the Flushing Interval. 
 

4. Using the context for forwarding 
operations 

 
At a high level, forwarding is based on the concept 

of opportunity to reach a certain destination, measured 
in term of probability of carrying the message closer to 
the destination. Messages are forwarded only to nodes 
with higher probability of getting them closer to the 
destination. This policy is not new. The novelty of 
HiBOp is how context is exploited to evaluate these 
probabilities. The main idea is that message sender 
includes more information about the destination than a 
simple network address. The sender should include 
(any subset of) the destination’s Identity Table. 
Delivery probabilities are evaluated based on the 
match between this information and the context stored 
at each encountered node (as described in Section 4.2). 
High match means high similarity between the node’s 
and the destination’s context. Actually, delivery 

probabilities can be seen as a measure of this 
similarity. 

Besides this, it should be noted how HiBOp 
controls message replication, which is a major 
advantage over state-of-the-art solutions. Specifically, 
only the sender of a message is allowed to create 
multiple copies of the message (following the 
algorithm described in Section 4.1). Other nodes that 
carry a message compute the delivery probabilities of 
encountered nodes, and do not keep copies of 
forwarded messages. This allows HiBOp to control 
and drastically reduce message flooding. 

 Figure 4. HiBOp forwarding process 

The HiBOp forwarding process can be thus 
decomposed in three phases (see  Figure 4): 

- Emission: the sender injects the message in the 
network, replicating it for the sake of reliability. 

- Forwarding: exploiting nodes’ mobility and 
contacts, each copy of the message proceeds in 
the network towards the destination. 

- Delivery: when a node carrying the message finds 
the destination the process stops. 

The third phase of the process is trivial and is not 
discussed further. The rest of this section is thus 
devoted to the Emission (Section 4.1) and Forwarding 
(Section 4.2) phases. Also in this case, space 
constraints do not allow us to provide a thorough 
description of all details. 
 
4.1. Emission phase 

 
In opportunistic networks it is clearly impractical to 

manage reliability via ARQ mechanisms like in the 
legacy Internet (or in MANET too). Techniques such 
as message replication or network coding look more 
suitable. HiBOp addresses reliability by replicating 
messages at the sender only. HiBOp assumes that the 
application notifies a reliability requirement in terms of 
maximum tolerable message loss, pl

max . Following the 
mechanisms described in Section 4.2, a sender node 
gets from its neighbors the probabilities of successfully 
delivering the message to the final destination. Let us 
denote them as psucc

(i) , where i denotes the i-th 



neighbor, ordered by decreasing delivery probability, 
and let us denote the delivery probability of the sender 
as psucc

(0) . Assuming that these probabilities are 
independent, the number of neighbors (k) to which the 
message is forwarded by the original sender is 
evaluated as follows: 

k = min j | (1− psucc
(i) )

i= 0

j

∏ ≤ pl
max

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
. 

Basically, the sender forwards the message to the 
minimum number of neighbors such that the joint loss 
probability is below the maximum threshold specified 
by the application. If not enough neighbors are 
currently available, the message is forwarded to the 
available neighbors, is queued at the sender, and new 
neighbors are used as soon as they become available. 
Note that, to avoid flooding in case of too low delivery 
probabilities, neighbors are used as forwarders just if 
their delivery probability is above a threshold (set to 
0.001 in our experiments). 
 
4.2. Forwarding phase 

 
4.2.1. Weighting attributes. The main idea of HiBOp 
forwarding is evaluating delivery probabilities based 
on matches between the sender information in the 
message, and context information available on nodes. 
It should be noted that matches should be weighted 
based on the class of the matching attribute. Class 
weights should represent the precision of that class in 
identifying the destination. For example, a match on 
the destination’s name gives far more precise 
information than a match on the residence city of the 
destination. 

Figure 5 visually represents the qualitative ranking 
of class precision we have defined for HiBOp (bigger 
circles represent lower precision). The definition of the 
weights we have used reflects this qualitative ranking. 

Several functions can be used to assign weights to 
classes based on the ranking above. In our case, named 
w0  the weight of the least significant class, we have 
computed other weights as wi+1 = wi + ri ⋅ β , where β 
is defined as the weight increase parameter, and ri is 
the maximum redundancy of the i-th class. The main 
idea is that i) weights should be monotonically 
increasing, and ii) the relative difference between 
classes should increase if the less significant one 
allows for a higher redundancy, because higher 
redundancy usually means lower significance. 

 
Figure 5. Precision of attribute classes  

 
4.2.2. Forwarding based on Delivery Probability. A 
node wishing to forward a message broadcasts a 
message containing the destination information along 
with its own delivery probability. Nodes that receive 
such message evaluate their delivery probability and 
send it back to the inquiring node (with a unicast 
transmission) if it is higher than the inquiring node’s 
one. 

At each node, the delivery probability is computed 
from three components, related to i) the node’s Identity 
Table, ii) the node’s Current Context, and iii) the 
node’s History. In the following we describe how 
HiBOp currently exploits context information to 
compute these values. Investigating alternative policies 
is an interesting subject of future work. 

As far as the Identity Table, the node finds those 
attributes in the destination information that matches 
with attributes in its IT. The delivery probability from 
the IT is then evaluated as the ratio between the sum of 
the weights of matching attributes, and the sum of the 
weights of attributes specified in the destination 
information, i.e.: 

PIT =

w j
j ∈ match{ }

∑

w j
j ∈ dst _ info{ }

∑
. (4)

As far as the Current Context, recall that it is made up 
of ITs of current neighbors. For each such IT the node 
evaluates PIT, and the delivery probability related to 
the Current Context is the maximum over these 
probabilities: 

PCC = max
j ∈CC

PIT
( j ). (5)

Evaluating the contribution of the History to the 
delivery probability requires more steps. Recall that 

City 
Work Org. 
Association 

Street 
City 

Full Name 
Email 



each aggregate in the History table comes with three 
indices, i.e., the Continuity Probability (Pc), the 
Heterogeneity (H), and the Redundancy (R). First of 
all, HiBOp selects the aggregates that match with 
destination information. For such aggregates, the R and 
Pc indices are combined as follows: 

Pop
( j ) = Pc

( j ) ⋅
R( j )

r
,  

where r is the maximum possible redundancy for the 
class of the j-th matching aggregate. Essentially, Pc is 
scaled according to the potential redundancy that the 
aggregate could achieve. Similarly to the contribution 
related to the IT, the contribution related to the History 
is evaluated based on the weighted mean of the Pop

( j )  
values, computed as: 

PH
′ =

Pop
( j ) ⋅ w j

j ∈ match{ }
∑

w j
j ∈ dst _ info{ }

∑
.  

The delivery probability related to the History is 
evaluated by modifying PH

′ according to the H indices 
of matching attributes. Specifically, HiBOp increases 
PH

′ of a factor Δmax  at most, scaling this factor 
according to the average heterogeneity of matching 
attributes ( h): 

PH = max 1,PH
′ + Δmax ⋅ 1− e− h −1( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (6)

Note that, since Δmax  is scaled according to an 
exponential law, the same average heterogeneity 
increase results in a higher PH  increase for small 
values of average heterogeneity (e.g., increasing h  
from 1 to 2 has a greater effect than increasing h  from 
10 to 11). 

The delivery probability is finally computed by 
combining Equations (4), (5), and (6), as follows: 

P = α ⋅ PH + 1−α( )⋅ max η ⋅ PCC ,PIT{ }. (7)

Equation (7) is made up of two components, weighted 
with a smoothing factor α ( 0 ≤ α ≤ 1). The first 
component is PH, which describes the legacy of the 
node’s past history. The second component describes 
the current status of the node’s environment. The α 
factor gives more weight to past history or to the 
current environment. The node’s current environment 
is jointly described by PIT and PCC, which are therefore 
combined together in Equation (7). The η factor (η<1) 
scales down PCC with respect to PIT, because PCC is 
related to a neighbor, while PIT is related to the local 
node. Let assume two potential next hops A and B, and 

let assume that PCC
(A ) = PIT

(B ). Let us also assume that 
0)()()()( ==== B

CC
A

IT
B

H
A

H PPPP  Thus, P(A ) = η ⋅ PCC
(A ) 

and P(B ) = PIT
(B ) > P(A )  hold, i.e. the η factor makes 

node B preferable as a next hop. This is correct, 
because forwarding through A surely requires a further 
hop to give the message to the A’s neighbors that 
generated PCC

(A ) . 
 

5. Simulation setup 
 
The performance of the HiBOp protocol has been 

evaluated in terms of delay, buffer occupation, 
message loss and amount of traffic generated in the 
network. HiBOp performance has been compared to 
that of Epidemic Routing (Epidemic, for short) and 
PROPHET. 

In order to evaluate the performance of HiBOp we 
developed a custom simulator. The goal of the 
simulation study is understanding which is the impact 
of using context information in opportunistic networks. 
Therefore, we assumed ideal wireless links with 
infinite bandwidth and negligible transmission delay. 
This is clearly unrealistic, but allows us to isolate the 
effect of context awareness from networking effects 
such as congestion, transmission errors, etc. Since 
HiBOp exploits context to reduce messages’ spread in 
the network, we can anticipate that neglecting 
networking congestion favors Epidemic and 
PROPHET. Indeed, we are neglecting additional 
delays and message losses related to network 
congestion, which might significantly increase delays 
and message drop rates under very high traffic load 
[9]. 

Our simulation scenario was a square of size 
1250x1250m, divided in a 5x5 grid. The number of 
nodes was set to 80, and the transmission range was set 
to 100m. Nodes moved according to the traces 
generated by Community based Mobility Model [6]. 
This model is quite different from traditional random 
models and mimics real human movement patterns. 
Every node belongs to a social community. Nodes that 
are in the same social community are called friends, 
while nodes in different communities are non-friends. 
Nodes’ movements are determined by the attraction of 
other nodes: each node moves (with a uniformly 
distributed speed) towards the cell in which it has more 
friends. Therefore, it's more likely that a node will be 
in contact with nodes of its community, because they 
spend more time together. CMM also includes the 
notion of travelers that do not always move in the cell 
where they have more friends. From time to time, they 



move to the second most attractive cell (i.e., to the cell 
in which they have the second highest number of 
friends), and then get back to the most attractive cell 
afterwards. Once in a while a reconfiguration occurs, 
during which all groups change cell. During a 
reconfiguration nodes of different groups have chances 
to meet. For example, CMM allows us to model a 
typical campus scenario, in which communities are 
people attending the same classes, or a typical working 
environment, in which communities are working 
departments. 

The context used in our simulation was the 
personal information of the user, and the information 
about its working place. To make the context coherent 
with CMM, similar attributes were given to nodes 
belonging to the same group. Simulation results show 
that HiBOp is already able to outperform Epidemic 
and PROPHET also with such limited context 
information. 

We considered a messaging application, and the set 
of senders was chosen uniformly at random at the 
beginning of the experiment. The interval between the 
generation of two consecutive messages at the same 
sender was modeled according to an exponential 
distribution, with average 300s. Message destination 
was a friend node with 50% probability, and a non-
friend node with 50% probability. Among the friends 
and non-friends, the destination was chosen uniformly 
at random. Messages expired after 18000s. 

Each simulation ran for 90000 seconds. To gather 
accurate measures about the message loss, senders 
stopped generating messages 18000s before the end of 
the simulation. This way, messages that had not been 
delivered at the end of a simulation run had certainly 
been dropped due to timeout expiration. We replicated 
each simulation configuration 5 times with 
independent seeds. Unless otherwise stated, results 
presented hereafter are the average over the 5 replicas. 

Finally, the parameters related to CMM were set as 
shown in Table 1, while the parameters related to 
HiBOp were set as shown in Table 2. When assessing 
the sensitiveness of HiBOp to a particular parameter, 
we set the other parameters as shown in this table. 

Table 1. CMM parameters 
Number of nodes 80 
Simulation area 1250x1250m 
Cells in the grid 5x5 
Node speed U ∈ [2-9]m/s 
Number of groups 8 
Reconfiguration interval 9000s 
Travelers speed 5m/s 
Number of travelers 8 

 

Table 2. HiBOp parameters 
Signaling Interval 5s 
pl

max  0.05 
Repository Flushing Interval 1800s 
δ 0.5 
η 0.95 
Δmax  1 
α 0.5 
Death Interval 10s 
Default buffer size 50 messages 
Default number of senders 20 
Default message size 50000 B 

 

6. Simulation Results 
 

6.1. Unlimited buffers 
 
In this section we don’t put any limit on the nodes’ 

buffer size, which is clearly the best possible 
configuration for Epidemic and PROPHET. The 
evolution over time of the buffer size (averaged over 
all nodes) is plotted in Figure 6. It clearly shows that 
Epidemic and PROPHET require about one order of 
magnitude more space than HiBOp. Even though 
memory is cheap nowadays, messages in Opportunistic 
Networks are usually far larger than messages in IP 
networks, and whole files can be accommodated in a 
single message [10]. For an average message size of 
1MB, nodes running Epidemic should reserve about 
400MB just for routing purposes! It is therefore worth 
to consider how buffer limitations impact on these 
protocols’ performance. Specifically, in the following 
we will use a FIFO replacement policy for managing 
buffers. Investigating other (smarter) policies is out of 
the scope of this paper. 

 
Figure 6. Buffer evolution with unlimited size 

Before going on, it is worth noting that the message 
loss experienced by all protocols was negligible 



(below 0.1%), and the HiBOp average delay was 1.71x 
and 2.25x the average delay of PROPHET and 
Epidemic, respectively (Table 3). Even though there is 
a clear delay increase, HiBOp performance remains 
acceptable even in this extremely favorable scenario 
for Epidemic and PROPHET. 

Table 3. Average delays with unlimited buffers 
(103s) 

Epidemic PROPHET HiBOp 
0.6466 0.8489 1.4538 

 
6.2. Resource Consumption 

 
In this section we analyze the resource 

consumption of HiBOp in comparison with Epidemic 
and PROPHET, in terms of buffer occupation, and 
traffic overhead. This evaluation is fundamental, since 
one of its main goals is reducing the overhead of 
previous routing. 

Figure 7 shows the average buffer occupancy of the 
three protocols during time, for three selected values of 
the maximum buffer size, i.e., 20, 50 and 100 
messages. The plot highlights that, as expected, both 
Epidemic and PROPHET saturate the buffers. 
Specifically, after an initial startup phase, and before 
the final cool-down phase (the last 18000 seconds in 
which no new message is generated), buffers are 
almost always 100% full. Since the figure plots the 
average buffer occupation over all nodes, this means 
that all buffers in the network are saturated. HiBOp is 
much less greedy in using buffer resources. The fact 
that the average occupation is much lesser than the 
maximum buffer size, means that the probability of 
HiBOp saturating buffers is very low. As it is shown in 
the next sections, the number of messages delivered by 
HiBOp is even higher than the number of messages 
delivered by Epidemic and PROPHET. Therefore, this 
buffer occupancy comparison is even somewhat unfair 
to HiBOp. 

Finally, note that buffer occupancy in all cases 
drops every 9000 seconds. This is because a 
reconfiguration occurs every 9000 seconds. Since 
during a reconfiguration nodes of different groups 
have more chance to meet, this results in a message 
delivery peak. 

Figure 8 shows the resource consumption in terms 
of networking overhead. Specifically, it plots the ratio 
between the total number of bytes exchanged over the 
network, and the total number of bytes successfully 
delivered to destinations. Therefore, it shows how 
many bytes have to be generated, on average, for each 
successfully delivered byte. Note that the total number 

of bytes generated includes not only the application-
level messages to be forwarded, but also the whole 
routing and forwarding traffic generated by the 
protocols. 

 
Figure 7. Buffer occupation 

 
Figure 8. Traffic overhead 

Therefore, this index also accounts for the effect of 
exchanging Identity Tables and using long message 
headers in HiBOp, which is an additional overhead 
with respect to Epidemic and PROPHET. In Figure 8, 
three groups of bars are plotted for selected maximum 
buffer sizes (20, 50, 100 messages). First of all, HiBOp 
significantly reduces the networking overhead of 
Epidemic and PROPHET. Specifically, the reduction is 
in the range [32%,51%] with respect to Epidemic, and 
[19%,34%] with respect to PROPHET. The 
networking overhead increases with the maximum 
buffer size. As shown by Figure 7, the buffer 
occupancy increases with the maximum buffer size, 
meaning that – on average – each node stores an 
increasing number of messages to be forwarded. 
Therefore, the traffic generated either to forward these 
messages, or to exchange information about delivery 
probabilities, increases with the maximum buffer size. 

Based on Figure 7 and Figure 8, HiBOp 
significantly reduces resource consumption in terms of 



buffer occupancy and networking overhead. From a 
complementary standpoint, this also shows that 
HiBOp’s context-aware features act as an effective 
congestion control system for opportunistic network. 
This is a key point, as currently adopted routing 
protocols tend to be very greedy in resource usage, 
thus resulting in high resource congestion. 

 
6.3. User perceived QoS 

 
In this section we investigate the QoS perceived by 

users in terms of message delay and message loss. 
Specifically, Figure 9 shows the message loss of the 
three protocols for varying buffer sizes. As expected, 
the message loss drops as the buffer size increases, 
because messages can live longer in nodes’ buffers. It 
is interesting to note that HiBOp message loss is 
always lower than Epidemic and PROPHET message 
loss. This is not trivial, because HiBOp drastically 
reduces message replication (as shown by the lower 
buffer occupancy), i.e., it explores less paths towards 
the destinations. Potentially, this could results in 
greater message loss, if the wrong paths are chosen. 
Since the message loss actually decreases with HiBOp, 
this tells that i) HiBOp allows messages to live longer 
in the buffers thanks to low replication, thus letting 
more time for them to be delivered, and ii) HiBOp is 
able to choose correct paths based on its context-aware 
rules. 

The performance in terms of message delay is 
analyzed jointly in Table 4 and Figure 10. To make 
delay distributions related to different protocols 
comparable, we added samples equal to the maximum 
message lifetime (18000s) for lost messages. These 
samples are not plotted in the CCDFs of Figure 10, 
which results in truncating the plots before the 100th 
percentile. 

First of all, it should be noted that these delay 
values (in the order of tens of minutes) are typical in 
opportunistic networks, even though they might look 
fairly high. In more detail, delay is the only figure for 
which HiBOp performs generally worse than Epidemic 
and PROPHET. For medium (50) and large (100) 
buffers, the HiBOp additional delay is respectively 
14% and 84% with respect to Epidemic, and 14% and 
55% with respect to PROPHET. Actually, HiBOp 
outperforms both Epidemic and PROPHET for small 
buffers, because of the greater share of messages 
having delays greater than 18000s. By focusing on the 
tail distributions, one notices that HiBOp is actually 
able to reduce the high percentiles, unless for large 
buffers (100). This is another effect of the greater 
HiBOp reliability in delivering messages. These delay 

figures can be seen as more than acceptable for HiBOp 
indeed. The average delay increase is tolerable, 
especially by recalling that protocols like Epidemic are 
not very likely to be widely adopted, due to their 
excessive overhead. 

 
Figure 9. Message loss 

 
Figure 10. Delay distributions 

Table 4. Average message delay (103s) 
 Epidemic PROPHET HiBOp 

Buff = 20 2.94 2.89 2.73 
Buff = 50 1.43 1.42 1.62 

Buff = 100 0.79 0.93 1.44 
 

6.4. Effect of the emission phase 
configuration 

 
In this section we investigate the impact of the 

pl
max  parameter, which is used by the sender during 

the emission phase to decide how widely to replicate 
the message. Specifically, we consider three pl

max  
values, i.e., 5% (the default), 50% and 80%. Increasing 
pl

max  actually means replicating the message less 
aggressively, and exploring less paths. The expected 
effect of increasing pl

max  is thus to further reduce 



resource consumption, and to worsen delay and 
message loss performance. 

 
Figure 11. Buffer occupation 

Table 5. Message Loss and Traffic overhead 

pl
max  5% 50% 80% 

Msg loss 1.53% 1.60% 2.11% 

Overhea
d 37.70 33.91 27.14 

 

 
Figure 12. Delay distribution 

Figure 11 and Table 5 show that HiBOp resource 
consumption decreases as pl

max  increases. 
Accordingly, the message loss (Table 5) and the delay 
(Figure 12) increase with pl

max . Even though the 
observed behavior matches intuition, the performance 
worsening in terms of message loss and delay is lower 
than what one could expect. For example, increasing 
pl

max  from 5% to 80% results in additional message 
loss of just about 0.7%. On the positive side, HiBOp is 
able to guarantee very high reliability even for loose 
bounds on pl

max . However, one might wonder how 
pl

max  is precise in controlling the end-to-end HiBOp 
reliability. This point is one of the features we are 

currently investigating more deeply, in order to 
improve HiBOp. 

 

7. Conclusions and future work 
 
In this work we have proposed a context-based 

routing framework for opportunistic networks, and a 
particular routing protocol (HiBOp). We have 
evaluated its performance across a range of 
parameters’ values, in comparison with Epidemic 
Routing and PROPHET. We have shown that HiBOp 
is able to drastically reduce the resource consumption, 
in terms of network traffic and nodes’ buffer 
occupation. At the same time, HiBOp is significantly 
more reliable than Epidemic and PROPHET, as it 
reduces the message loss rate. This is paid, in some 
configuration, with a delay increase, that is however 
tolerable for typical applications of opportunistic 
networks. Finally, HiBOp is able to reduce the 
probability of having very large delays. 

These results clearly indicate that context-based 
forwarding is a very interesting way of finding paths in 
opportunistic networks. Actually, it looks like a strong 
alternative to classical flooding-based protocols, and 
can be seen as an effective means of controlling 
congestion in these networks. 

Despite this, there are a number of directions along 
which HiBOp can be further investigated. Several 
control knobs exists in its design, whose effects have 
to be clearly investigated. For example, how to achieve 
fine-grain control on end-to-end reliability is an 
interesting topic. Furthermore, finding analytical 
bounds for the performance of context-based 
forwarding is a very exciting point. All of these aspects 
are clearly out of the scope of this paper. Nevertheless, 
we have already shown that exploiting context is a 
powerful idea in opportunistic networks, and we have 
provided a general framework for managing context, 
and exploiting it to find correct paths. 

Another interesting aspect is how to “bootstrap” a 
network with HiBOp, i.e., how to route data when 
context information is not widely available in the 
network. Purposely, we have let this point out of this 
paper. Indeed, in our simulations we have discarded 
the initial transient phase required to spread context 
information in the network, to precisely evaluate the 
advantage of exploiting context information. The 
performance of HiBOp when context information is 
not spread widely is actually analyzed in [12]. In that 
paper we deeply investigate the performance of HiBOp 
with respect to a number of parameters describing the 
social behavior of users. One of the main outcomes 
highlighted in [12] is the fact that HiBOp becomes 



efficient (i.e., it routes data with comparable delay with 
respect to Epidemic and with lower overhead) even in 
configurations in which context information is just 
partially spread in the network. Clearly there are 
corner cases in which context information cannot 
circulate due to particular mobility patterns. In those 
cases, HiBOp becomes less efficient than epidemic 
approaches. An interesting direction to pursue is how 
to design an integrated protocol that be able to exploit 
context information as soon as it becomes available, 
but falls back to epidemic-like routing when such 
information is not available. 
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