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Abstract
     

In this paper we deal with energy-efficient data 

collection in sparse sensor networks with data mules. 

We analyze the problem of optimal data transfer from 

sensors to data mules, and derive an upper bound for 

the performance of ARQ-based data-transfer 

protocols. This analysis shows that protocols currently 

used have low performance, which results in 

unnecessary energy consumption. Based on these 

results we define and evaluate an Adaptive Data 

Transfer (ADT) protocol that is able to combine 

efficiency and adaptability to external conditions. 

Simulation results show that ADT not only reduces 

significantly the average data-transfer time in 

comparison with previous protocols, but also provides 

quasi-optimal performance. In addition, it is able to 

react quickly to variations in the external conditions 

and adapt to new conditions in a limited time. 

 

1. Introduction 
The set of potential applications of wireless sensor 

networks is extremely large. However, environmental 

monitoring represents a class of applications that can 

particularly benefit from sensor networks [9]. In such 

applications a large number of sensor nodes is typically 

deployed over a geographical area to form a dense ad 

hoc network. Sensors use multi-hop communication to 

send data acquired from the external environment to an 

Access Point (AP) in the infrastructure (or a sink 

node). However, many environmental monitoring 

applications, such as monitoring of weather condition 

in large parks, air quality in urban areas, terrain 

conditions for precision agriculture, and so on, do not 

require a fine-grain sensing and, thus, a sparse sensor 

network would be enough. This reduces costs since a 

lower number of devices is needed. However, as the 

distance between neighboring nodes becomes larger 

and larger, the communication is no longer possible, or 

                                                           
Work funded partially by the IST program of the European 

Commission under the FET-SAC HAGGLE project, and partially by 

the Italian Ministry for Education and Scientific Research (MIUR) 

under the FIRB ArtDeco and PRIN WiseMaP projects. 

requires too much energy. In other scenarios, the 

monitored area can be far away from the nearest AP, 

and deploying additional sensors for relaying data 

becomes too costly.  

 

Figure 1. Data Mule Architecture. 

Data collection in such sensor networks can be 

achieved more efficiently by using data mules (or 

mules for short), i.e., mobile elements that carry data 

from static sensors to an infra-structured AP [5] (see 

Figure 1). Depending on the application scenario, 

mules may be either part of the external environment 

(e.g., buses, cabs, or walking people), or part of the 

network infrastructure (e.g., mobile robots). They visit 

static sensors at predictable or random times 

(depending on their nature and mobility pattern), pick 

up data, and carry them to an AP.  

Mules are assumed to be power renewable, while 

static sensors are typically energy-constrained. 

Therefore, both the mule discovery process (by which a 

sensor detects that a mule is within its communication 

range), and the data transfer process (by which the 

sensor transfers its data to the mule) must be energy 

efficient to prolong the lifetime of sensors. As the radio 

component is usually the major source of energy 

consumption, the total time during which the radio 

must be on should be minimized. The design of the 

mule discovery protocol is beyond the scope of this 

paper. Here we just assume that the discovery protocol 

allows a timely mule detection. This is usually achieved 

by letting the mule broadcast beacon messages 

periodically. The sensor is typically on a low duty 

cycle while waiting for the mule, and switches the radio 
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to the fully operational mode as soon as it receives a 

beacon [5, 11]. 

In this paper we focus on the energy efficiency of 

the data-transfer protocol. A major contribution of this 

work is the analysis of the optimal ARQ-based data-

transfer protocol, which provides an upper bound for 

any ARQ-based data-transfer protocol. We show that 

currently used protocols are very simple, at the cost of 

low performance in terms of energy consumption 

(expressed as duration of the data transfer). Based on 

this result, we propose the Adaptive Data Transfer 

(ADT) protocol that reduces significantly the time 

required by a sensor to transfer its messages to the 

mule, performing remarkably close to the optimal case. 

At the same time, ADT is able to adapt to variations in 

the external conditions. 

The rest of the paper is organized as follows.  

Section 2 describes the related work. Section 3 

analyzes the problem of optimal data transfer in sensor 

networks with data mules. Section 4 is devoted to the 

ADT protocol description and evaluation. Section 5 

concludes the paper. 

 

2. Related Work 
The bibliography on wireless sensor networks is 

extremely large. However, we focus here on sensor 

networks with mobile elements for data collection. The 

data mule model was first proposed independently in 

[2] and [10] to address the problem of energy-efficient 

data collection in sparse sensor networks. In [5] the 

model is evaluated by analysis and simulation. The 

authors investigate the impact on the data success rate, 

latency, and energy cost of a large set of operating 

parameters (e.g., data generation rate, sensor buffer 

size, sensor duty cycle, mule inter-arrival distribution, 

bit rate, transmission range). In certain application 

scenarios multiple mules may be required to meet 

performance requirements. In [6] the authors 

investigate the benefits of using load balancing 

techniques to assign sensors to mules when multiple 

mules are used.  

A key ingredient for energy-efficient data collection 

is the communication protocol used for transferring 

data from the sensor to the mule. A protocol is 

proposed in [2] which relies on the assumption of 

circular transmission range, negligible message loss 

rate within the transmission range, and predictable 

mule arrival times. This communication model is 

clearly not realistic. The experimental analysis in [1] 

has shown that, as expected, the transmission range is 

not circular. In addition, the message loss probability 

depends on the mule position, and  – at a very fine 

granularity – does not decrease monotonically with the 

sensor-mule distance. Nevertheless, – at a coarser time 

granularity – the message loss can be assumed as a 

monotonically decreasing function. Specifically, when 

the mule is within the transmission range of the sensor, 

but very far from it, the message loss probability may 

be so high to make the available throughput extremely 

low. On the other hand, when the mule is close to the 

sensor the message loss probability becomes very low 

and the communication very efficient. The ADT 

protocol proposed in this paper is based on the lesson 

learned from the experimental analysis in [1]. 

A simple stop-and-wait data transfer protocol is 

used in [7, 11]. The static sensor starts transmitting as 

soon as it discovers the mule in its proximity. No 

information about the mule location is exploited 

because such information may not be available in all 

systems. And, when available, it may be unreliable due 

to variations in the wireless channel, multi-path effects, 

and inaccuracies in the estimation procedure. The ADT 

protocol uses an ARQ-based communication scheme 

like the protocol in [11].  However, its design leverages 

the analytical study of the optimal case also provided in 

this paper. With respect to a stop-and-wait scheme, we 

show that a window size larger than one increases the 

available throughput and reduces the duration of the 

data transfer (and, thus, energy consumption). The 

ADT protocol too does not rely on information about 

the mule position. However, the sensor tries to guess 

the time instant when the mule will be at the minimum 

distance from it. Then, it transmits its data around the 

expected minimum-distance point. Clearly, this allows 

ADT to exploit better (and, usually, the best) channel 

conditions (see below for details).   

An important issue in the design of a data transfer 

protocol for sensor networks with mules is the mule’s 

behavior. In fact, it is important to know the mule inter-

arrival distribution, and whether or not the mule’s 

motion can be controlled in some way. In [2] the 

authors assume predictable mule arrival times. This 

simplifies the discovery process and helps scheduling 

data transmissions. Other papers assume that the mule 

speed can be controlled by the mule itself [11]. Finally, 

when sensor nodes have different data generation rate 

some sensors may need to be visited more frequently 

than others. To face this problem several scheduling 

algorithms have been proposed [3, 4, 11]. The basic 

idea is to schedule the visits of the mule to sensors in 

such a way to avoid buffer overflows at sensors. In this 

paper, to make the analysis as general as possible, we 

assume random mule arrival times, and no control on 

the mule’s motion. We do not address the problem of 

mule’s movements scheduling as we focus on the data 

transfer phase. 



 

 

3. Optimal Data Transfer 
In this section we analyze the problem of data transfer 

from an ideal point of view. Specifically, we define an 

optimal ARQ-based data-transfer protocol that 

minimizes energy consumption at the sensor node, and 

evaluate its performance. The purpose of this analysis 

is to derive an upper bound for the performance of 

ARQ-based protocols. To simplify the analysis, but 

without losing in generality, in the following we will 

refer to the scenario shown in Figure 2. We consider a 

single static sensor and a single mule moving along a 

linear path at a fixed vertical distance (Dy) from the 

sensor (this is a reasonable assumption if we consider 

that the contact time between the sensor and the mule is 

typically short). In addition, we will assume a constant 

mule’s speed. Throughout we will consider the 

horizontal distance Dx as negative when the mule is 

approaching the static sensor, and positive in the 

reverse direction. Under the assumption of constant 

speed v, the time needed by the mule to cover a 

distance Dx is given by 
v

D
t x

x = . 

 

Figure 2. Reference scenario. 

3.1 Problem formulation 
We start our analysis from the evidence that in a real 

environment the message loss has a very irregular 

behavior. As shown by the experimental data in Figure 

3 [1], the message loss probability decreases with the 

sensor-mule distance, (but not monotonically), and, in 

general, it is not symmetric with respect to the 

minimum-distance point, i.e., Dx=0 (even though it can 

be reasonable assumed as approximately symmetric in 

many practical cases). 

Intuitively, to minimize the data transfer time (and, 

hence, energy consumption) the sensor should transmit 

its data in the time interval with minimum message loss 

probability, i.e., around the minimum-distance point. 

More formally, the optimal data-transfer problem can 

be stated as follows. Let ( )tTh denote the instantaneous 

throughput available on the wireless link at time t , and 
B the amount of data (in number of messages) to be 

transferred from the sensor to the mule during the 

contact. To minimize the data transfer time we need to 

find the minimum time interval (t1, t2) that allows the 

correct transmission of all B messages. This can be 

formalized as follows: 
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dttTh  is the amount of data than can be 

transferred in the time interval (t1, t2).  
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Figure 3. Message loss behavior in a real 

environment. 

3.2 Throughput Model 
The available throughput ( )tTh  in (1) depends on the 

specific communication protocol that is used. We 

consider here an ARQ-based scheme with window size 

w and selective retransmission
1
. In such a protocol the 

sensor transmits w  consecutive fixed-size data 

messages and, then, stops waiting for an ack from the 

mule. The ack informs that the mule is still within the 

communication range, and also notifies which 

messages have been received correctly. The subsequent 

window is thus used by the sensor partly for re-

transmitting messages lost in the previous round, and 

partly for transmitting new messages. To derive the 

available throughput we will assume in the following 

that the time is slotted and each communication 

window consists of w  time slots for message 

transmissions from the sensor to the mule, and one 

more slot for ack transmission in the reverse direction 

(see Figure 4). The following notations will be used 

throughout: 

 

δ  Maximum time required to transmit a message 

or an ack (slot size); 

wT  duration of a communication window including 

                                                           
1
 A similar protocol with w=1 has been used in [11]. In that 

protocol the sensor starts transmitting messages as soon as it 

discovers the data mule in its communication range. 



 

the ack message  ( ( ) δ⋅+= 1wTw
); 

( )tN i
 number of messages successfully transferred in 

the thi −  slot of the window centered at time t ; 

)(tN  number of messages successfully transferred in 

the entire window centered at time t ; 

( )tp  loss probability experienced by a message 

transmitted by the sensor node at time t ; 

( )tq  loss probability experienced by an ack or 

beacon message transmitted by the mobile 

mule at time t . 
 

 
Figure 4. Window around time t. 

Let us focus on a single window of size w  centered 

around a generic time t , as shown in Figure 4 (we 

assume that w is an even number). Given the small 

duration of each single slot we also assume that the loss 

probability is constant within the slot. Instead, 

messages transmitted in different slots within the same 

window will experience different loss probabilities, i.e., 
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The ack message will experience a loss probability 

given by 
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From the sensor’s point of view, a message 

transmitted during the slot starting at time δit +  

(where i  is an integer number in the range 
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in the generic time slots is thus 
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And the number )(tN  of messages transferred in the 

whole window centered at time t  is given by: 
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From Equation (4) we can derive the instantaneous 

throughput ( )tTh . For simplicity we approximate 

( )tTh with the throughput achieved in the 

communication window centered at time t , i.e., in the 

time interval 
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Hence, equation (1) can be re-written as: 
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Real message loss functions ( )tp  have a very irregular 

behavior (see Figure 3). To simplify our analysis we 

derived an analytically-tractable loss model on the 

basis of the message losses measured in [1]. By using 

the least square interpolation method, we derived a 

polynomial interpolation of real probability loss 

functions. Then, we used simulation to assess the 

accuracy of our loss model, and decide the degree of 

the polynomial function. We compared the 

performance of an ARQ-based data-transfer protocol, 

like the one described above, when using the real loss 

curve and polynomial model, respectively. The 

comparison was done in terms of percentage of 

messages successfully transferred from the sensor to 

the mule, for different number of messages to transfer 

(B). We found that a 2-degree polynomial model is 

precise enough for our purposes, as it provides a 

sufficient accuracy while keeping the complexity low. 

Therefore, hereafter we will assume  

01

2

2)( atatatp +⋅+⋅=                      (7) 

where coefficients a0, a1, a2 depend on the specific 

scenario (i.e., mule’s speed v, distance Dy), and are 

reported in Table 1 for the case Dy=15 m.  

 



 

Table 1. Coefficient values for different mule’s 

speeds (Dy=15 m). 
Coefficient v=3.6 Km/h v=20 Km/h v=40 Km/h 

a0 0.133 0.364 0.405 

a1 (s
-1) 0 0 0 

a2 (s
-2) 0.000138 0.0109 0.0502 

 

3.3 Performance Analysis 
To assess the effectiveness of the optimal data-

transfer approach, in this section we compare the 

performance of two ARQ-based protocols using 

different approaches for choosing the transmission 

interval. The first protocol, throughout referred to as 

optimal protocol, follows the optimal approach and 

selects the transmission interval according to equation 

(6). In the second protocol, throughout referred to as 

naive protocol, the sensor node starts transmitting as 

soon it detects the data mule within its communication 

range. Protocols following the naïve approach are 

largely used in literature due to their simplicity [2, 11]. 

The data transfer time for the naïve protocol is still an 

interval (t1, t2) such that  
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           (8)  

However, now t1 coincides with the time instant when 

the sensor node discovers the mule, and the interval (t1, 

t2) is not, in general, the minimum one. 

 

Table 2. General Parameter Settings 
Parameter Value 

Vertical distance (Dy) 15 m 

Bit rate 19.2 kbps 

Message size 20 bytes 

Frame size (data + control information) 36 bytes 

time slot (δ ) 50 msec 

 

In the following analysis we will use the parameter 

values in Table 2 (which refer to the Mote platform) 

and assume ( ) ( )tqtp = , for any t . As a preliminary 

step, we validate by simulation the analytical models 

(6) and (8). To this end, we implemented the above 

data transfer protocols in the TOSSIM simulation tool 

[8], and ran several experiments by using the 

replication method with a confidence level of 90%. 

Message-loss probabilities were generated according to 

the polynomial model (7). 

Figure 5 shows the average data-transfer time as a 

function of the window size when the mule’s speed is 

40 Km/h and B=10 messages. We also performed other 

experiments with different values for B and v (3.6 and 

20 Km/h). The results are not reported here for the sake 

of space, but they are (qualitatively) similar to those in 

Figure 5. For both protocols, there is a strong 

agreement between analytical and simulation results. 

Therefore, in the remaining part of this section we will 

refer to analytical results only. 
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Figure 5. Analytical and simulation results 

when the mule speed is 40 km/h. 
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Figure 6. Average transfer times for different B 

values with the optimal and naïve protocols.  
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Figure 7. Slowdown in the average transfer 

time provided by the optimal protocol. 

Figure 6 compares the average times required by 

the optimal and naïve protocols for the reliable transfer 

of the same amount of data. As expected, the average 



 

data-transfer time is always much shorter with the 

optimal protocol. For a given B value, the difference is 

in the order of seconds (tens of seconds when the 

mule’s speed is 3.6 Km/h). The same behavior is also 

highlighted in Figure 7 showing the slowdown, i.e., the 

ratio between the average transfer time of the naïve and 

optimal protocols. The slowdown may be up to several 

times (even 20 when the mule’s speed is 3.6 Km/h) 

especially when the amount of data to transfer is small. 

In such a case the transfer time is very short compared 

with the contact time and, hence, the optimal protocol 

can transmit when the message loss is very low. When 

the required transfer time is comparable with the 

contact time, the intervals selected by the optimal and 

naive protocols tend to overlap, and both protocols 

exhibit similar performance. 

From the above figures we can also observe that the 

window size has a significant impact on the average 

duration of the data transfer. Intuitively, a larger 

window size reduces the overhead related to the 

acknowledgement and, thus, increases the available 

throughput. On the other hand, a very large window 

size may not be appropriate as the purpose of acks in 

this context is not acknowledging the correct reception 

of data messages by the mule, but also notifying the 

sensor that the mule is still within the communication 

range.  

 

4. Adaptive Data Transfer Protocol 
4.1 Rationale 

The optimal protocol outperforms significantly the 

naïve protocol. However, it is unpractical because all 

the assumptions it relies upon are rarely (or never) met 

in practice. First, the message loss probability may not 

be available. Even if available, it is subject to frequent 

changes due to variations in temperature, humidity, 

meteorological conditions, and so on. Finally, the real 

contact time may be shorter than that derived 

theoretically from the message loss function.  Sensors 

typically operate on a low duty cycle while waiting for 

the mule arrival and, hence, they could miss some 

initial beacons.  

  On the other hand, the naïve approach is practical and 

robust even if it provides very low performance. In this 

section we try to combine the efficiency of the optimal 

approach and the robustness of the naïve approach by 

designing a new protocol called Adaptive Data-

Transfer (ADT) protocol. Like the optimal and naïve 

protocols, it uses an ARQ scheme for data transfer. 

The main assumption of the ADT protocol is that 

the minimum message loss between the mule and the 

sensor occurs at the minimum distance point, and that 

the mule’s passage on this point occurs exactly at mid 

contact time. ADT also assumes that the message loss 

curve is approximately symmetric with respect to the 

mid contact point. Based on these assumptions, ADT 

transfers the messages during a symmetric time interval 

centered on the (estimated) mid contact point, which 

approximates the optimal time interval (t1,t2) derived by 

the optimal (unfeasible) protocol.  

 

4.2 Protocol Description 
The ADT protocol includes a startup phase and a 

steady phase. The startup phase provides an estimate of 

the contact time, i.e., the time interval during which the 

mule will remain in the communication range of the 

static sensor. This information will then be used to 

optimize the data transfer process during the steady 

phase. The two phases could be partially overlapped. 

However, for simplicity, in the following we will 

assume them as completely separated.  

The startup phase spans one or more mule’s 

passages. At each passage the sensor measures the time 

interval between the reception of the first and last 

beacons from the mule. These measures are then used 

to derive an estimate of the contact time. As the 

external condition may vary over time, this estimate is 

updated periodically during the steady phase (every 
CTT  

mule’s passages), as follows 

  ( ) ( ) ( ) ( )nCTnCTnCT CTCT

∧∧

⋅−+=+ αα 11              (9) 

where ( )nCT
∧

 ( )( )nCT  is the contact time estimated 

(measured) at round n, and 
CTα a real value in [0,1].  

In the steady phase the ADT protocol works as 

follows. Initially, the sensor is on a low duty cycle to 

save energy. Upon receiving a beacon from the mule it 

switches to the fully operational mode, and estimates 

the expected data transfer time (DTT), i.e., the time 

needed to transfer all the messages in the buffer. To 

simplify the description we assume here that the 

amount of data to transfer is the same in all successive 

passages. At the first passage the expected DTT is 

conservatively taken equal to the estimated contact 

time. In subsequent passages, it is calculated on the 

basis of actual DTTs measured in previous rounds, as 

( ) ( ) ( ) ( )mDTTmDTTmDT DTTDTT

∧∧

⋅−+=+ αα 11    (10) 

where ( )mDTT
∧

 ( )( )mDTT  is the data transfer time 

estimated (measured) at round m, and 
DTTα a real value 

between 0 and 1. However, if in the previous passage it 

was not possible to transfer all the messages in the 

buffer, 
∧∧

= CTDTT  is used. Assuming that the reception 

time of the first beacon is used as the time origin, the 

data transfer should start after a waiting time 



 

2

∧∧

−
=

DTTCT
WT . If WT  is greater than the sum of the 

delays required by the radio to transition from the 

active to the sleep mode (T_OFF) and back again 

(T_ON), the sensor puts the radio in sleep mode for a 

time ( )ONTWT _−  to save energy  

The next step consists in transferring data to the 

mule. The sensor node transmits back to back a number 

of messages equal to the window size (W_SIZE) and, 

then, stops waiting for an ack from the mule. If the ack 

is not received within a pre-defined timeout, the sensor 

increases a counter (missed_acks), and retransmits all 

messages. After ACK_MAX consecutive missed acks 

the sensor assumes that the mule has exited the 

communication range and stops the data transfer. If the 

ack is received on time the missed_acks counter is 

reset. Each ack includes a bitmap specifying messages 

received correctly by the mule. Such messages are thus 

removed from the buffer, while the other messages will 

be retransmitted in the next window. The process goes 

on until all messages have been transmitted, or 

ACK_MAX consecutive missed acks have been 

detected, or the estimated residual contact time is less 

than Tw. If all messages in the buffer have been 

transferred the sensor calculates the total DTT 

(difference between the initial and final transmission 

times) that will be used to derive
∧

DTT at the next 

round.  

 

4.3 Performance Evaluation 
To compare the performance of ADT with those of the 

naïve and optimal protocols, we implemented ADT in 

the TOSSIM simulator, and ran a set of experiments 

using the parameter settings shown in Table 2 and 

Table 3. The message loss probability was generated 

according to the polynomial model derived above
2
. 

 

Table 3. ADT Parameter Settings. 

T_ON=T_OFF=1.5 ms W_SIZE=8 

TCT=10 missed_acks=3 

CTα =0.8 
DTTα =0.5 

 

Figure 8 compares the temporal behavior of the 

three protocols (the startup phase of ADT is omitted). 

In the first part of the experiment (until the 50
th
 

passage) the mule moves at a speed of 40 Km/h, and 

the optimal protocol is perfectly tuned to the external 

message loss conditions. Specifically, it uses the 

polynomial model (7) with appropriate coefficients 

(those related to 40 Km/h in Table 1) to predict the 

                                                           
2 As above, we used the replication method with 90% confidence 

level to derive confidence intervals, and assumed ( ) ( )tqtp = . 

data transfer time and decide the initial transmission 

instant. The naïve protocol requires the largest data-

transfer time because it transmits in the initial part of 

the contact time, when the message loss rate is high. 

ADT initially performs as the naïve protocol as it 

cannot rely on information about previous data 

transfers. After few passages, however, ADT converges 

to a quasi-optimal behavior. 

We also investigated how the three protocols react 

to changes in the external conditions. To this end we 

introduced some variations in the external conditions. 

After the 50
th
 passage the mule’s speed changes from 

40 Km/h to 20 Km/h (the message loss curve and 

contact time vary accordingly). Finally, after the 100
th
 

passage the speed changes back to 40 Km/h. Figure 8 

shows how each of the three protocols reacts to such 

variations. When v decreases from 40 to 20 Km/h, the 

data transfer time of the naïve protocol increases 

because the contact time is now longer and the sensor 

starts transmitting when the mule is at a higher distance 

than before. Therefore, it experiences a greater loss 

rate. The optimal protocol is not aware of the variation 

and, thus, remains tuned to the previous conditions 

(i.e., data transfer times are still predicted according to 

the message loss model related to 40 Km/h). This 

results in increased data-transfer times. The ADT 

behavior is more complex to analyze. Just after the 

variation has occurred, ADT behaves close to the 

wrongly-tuned optimal protocol. This is because the 

estimate of the contact time is recalculated every TCT 

mule’s passages. In the experiment shown in Figure 8 

TCT is set to 10, and the variation in the mule’s speed 

occurs just after the contact time has been recalculated. 

Under these conditions the protocol realizes that the 

contact time has changed only after TCT passages 

(reaction latency). In general, the duration of the 

reaction latency is, on average, equal to half TCT. After 

the reaction latency the protocol progressively adapts 

to new conditions and reduces the data transfer time 

towards a quasi-optimal steady-state value. A 

significant decrease in the data-transfer time can be 

observed at every TCT passages (e.g., 60, 70, 80). This 

is because at these passages the contact time is 

recalculated and, thus, a more accurate estimate is 

available. Finally, when the mule’s speed is set back to 

40 Km/h, both the naïve and optimal protocols 

immediately switch back to the initial behavior. The 

ADT protocol experiences the reaction latency and a 

subsequent transient phase towards the quasi-optimal 

behavior. From Figure 8 it clearly emerges that the 

average data-transfer delay required by ADT is 

considerably lower than that of the naïve protocol. 

Also, ADT is auto-tuning, and always tends to a quasi-



 

optimal behavior under varying external conditions. 

Thus, ADT is a valid approximation of the optimal (but 

unfeasible) protocol. 

Finally, we have also measured the length of the 

initial transient phase required by ADT to learn the 

data-transfer time from scratch. This interval depends 

on a number of parameters such as contact time (i.e., 

mule’s speed), number of messages to transfer (B), 

DTTα  value. In our experiments we measured the initial 

transient phase as the interval between the start of the 

steady phase and the time when the fluctuations of the 

data-transfer time are less than 10% of the steady-state 

value. Table 4 shows the average duration of the initial 

transient phase, expressed in number of mule’s 

passages, for different parameter settings. The initial 

transient phase becomes longer and longer as the ratio 

between the data-transfer time (which depends on B) 

and the contact time (which is related to the inverse of 

v) decreases. This can be explained by observing that 

expected data-transfer times are obtained by (10) using 

the (estimated) contact time as the initial value. If the 

contact time is large, with respect to the data transfer 

time, it affects a large number of predictions, resulting 

in a longer transient phase. 
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Figure 8. Behavior of the three protocols. 

In all the experiments summarized in Table 4 we 

used 5.0=DTTα  to predict the data transfer time at each 

passage. By tuning 
DTTα  appropriately we can control 

the protocol behavior during the initial transient phase. 

If we use a large 
DTTα  value (e.g., 9.0=DTTα ) ADT 

converges quickly to the optimal behavior, but 

successive data-transfer times have large fluctuations. 

On the other hand, a small 
DTTα  value (e.g., 

DTTα =0.1) 

provides a slower convergence to the optimal behavior 

but, also, smaller fluctuations. 

 

5. Conclusions 
In this paper we have analyzed the problem of optimal 

data transfer in sensor networks with data mules. 

Currently used (naïve) protocols are inefficient from an 

energy consumption standpoint. We have proposed the 

ADT protocol, showing that its energy consumption is 

just slightly higher with respect to the optimal (but 

unfeasible) case. We have performed our analysis by 

considering sparse sensor networks where nodes are 

considerably far apart from each other. Currently, we 

are extending our protocol to  manage the more general 

case where sensors are deployed in such a way to form 

local clusters (with a cluster-head in charge of 

collecting data from other nodes in the cluster, and 

transferring them to the mule), and the amount of data 

to transfer may be different in different passages. Also 

we are working on analyzing the effects of the mule 

discovery protocol on the data transfer protocol. 
 

Table 4. Duration of the initial transient phase 

in the ADT protocol (Dy=15 m, 
DTTα =0.5). 

v B=10 B=40  B=100 

3.6 Km/h 16.6 ±2.4 12.9 ± 2.0 8.1 ± 1.2 

20 Km/h 5.9 ±1.5 4.7 ± 0.9 - 

40 Km/h 5.6 ± 0.9 - - 
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