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Abstract—Modeling human mobility is crucial in the per-
formance analysis and simulation of mobile ad hoc networks,
where contacts are exploited as opportunities for peer-to-peer
message forwarding. The current approach to human mobility
modeling has been based on continuously modifying models,
trying to embed in them the newest features of mobility
properties (e.g., visiting patterns to locations or inter-contact
times) as they came up from trace analysis. As a consequence,
typically these models are neither flexible (i.e., features of
mobility cannot be changed without changing the model) nor
controllable (i.e., the exact shape of mobility properties cannot
be controlled directly). In order to take into account the above
requirements, in this paper we propose a mobility framework
whose goal is, starting from the stochastic process describing
the arrival patterns of users to locations, to generate pairwise
inter-contact times and aggregate inter-contact times featuring
a predictable probability distribution. We validate the proposed
framework by means of simulations. In addition, assuming that
the arrival process of users to locations can be described by
a Bernoulli process, we mathematically derive a closed form
for the pairwise and aggregate inter-contact times, proving the
controllability of the proposed approach in this case.

I. INTRODUCTION

Modeling human mobility is crucial in performance anal-
ysis of networking protocols for mobile ad hoc networks. In
mobile ad hoc networks messages are routed by the users
of the network (which exchange them upon encounter with
other users) and eventually delivered to their destinations.
The delay experienced by messages is thus a function of
the pairwise inter-contact time, which is the time between
two consecutive contacts for a pair of nodes. Characterizing
the inter-contact time is therefore essential for modeling
the performance of networking protocols for mobile ad
hoc networks. Inter-contact times are determined by the
movement patterns of users: users visiting the same locations
will meet more frequently, and their inter-contact time will
be shorter.

The first step in modeling human mobility is to understand
how users move. Recently, starting from traces of real
user movements, there has been a huge research effort in
order to characterize the spatio-temporal (i.e, how users
travel across locations [8] [20]) and social (i.e., how long
users stay together and how long they have to wait before
meeting again [4] ) properties of human mobility. There is
a general agreement that users tend to travel most of the

time along short distances while only occasionally following
very long paths. In addition, user movements are generally
characterized by a high degree of predictability: users tend
to visit the same locations frequently, and to appear at them
at about the same time. Less clear is how inter-contact times
are characterised. Many hypotheses have been made (about
them featuring an exponential distribution [7], a Pareto
distribution [4], a Pareto with exponential cut-off distribution
[10], etc.), but the problem has yet to be solved.

Building upon the above findings, the current approach to
human mobility modeling has been so far based on trying
to reflect in the model the newest features of mobility
properties as they came up from trace analysis. Typically,
each model focuses on just a few properties of human
mobility. The class of location-based mobility models aims
to realistically represent user mobility patterns in space.
They are typically concerned with the regular reappearance
to a set of preferred locations [9] or with the length of
paths travelled by the users [14]. Similarly, there are models
mostly focused on the accurate representation of the time-
varying behavior of users, often relying on very detailed
schedules of human activities [6] [21]. Finally, the class of
social-based mobility models aims to exploit the relation
between sociality and movements, and to formalize social
interactions as the main driver of human movements [1] [2].

The disadvantage of the current approach to modeling
human mobility is that the proposed models are intrinsically
bound to the current state of the art on trace analysis, and
typically need to be redesigned from scratch any time a
new discovery is made. In addition, with current mobility
models it is typically difficult, if not impossible, to fine
tune the mobility properties (e.g., obtaining inter-contact
times featuring a probability distribution with controllable
parameters). Overall, flexibility and controllability are cur-
rently missing from available models of human mobility.
Flexibility implies allowing for different distributions of
mobility properties (e.g., return times to locations or inter-
contact times) to be used with the model. The importance
of flexibility is twofold. First, it gives the opportunity to
evaluate networking protocols in different scenarios, and test
their robustness to different mobility behaviors. Second, on
more practical terms, it allows for changing the model upon
new discoveries from trace analysis without the need to start



over from clean slate. On the other hand, controllability
relates to the capability of obtaining a predictable output
starting from a given input. This can be done only at a
coarse grain with the majority of available mobility models.
For example, in social-based mobility, where the number
of social relationships determines the shape of inter-contact
times, an appropriate configuration can lead to heavy tailed
inter-contact times [1]. However, there is no direct way for
controlling the parameters characterizing this distribution,
and a fine tuning can be attempted only with a trial-and-
error approach.

In light of the above discussion, the contribution of this
paper is twofold. First, we propose a mobility framework
aiming to be flexible and controllable (Section III). Our
framework takes as input the social graph representing the
social relationships between the users of the network and
the stochastic processes characterizing the visiting patterns
of users to locations. This information can be extracted
from available mobility traces or collected from location-
based social networking applications such as Gowalla and
Foursquare. Based on the input social graph, communities
are identified and are assigned different locations. Thus,
people belonging to the same community share a common
location where the members of the community meet. Then,
users visit these locations over time based on a configurable
stochastic process. The proposed framework thus builds a
network of users and locations (called arrival network),
where a link between a generic user i and a location l
characterizes the way user i visits location l. As emerges
from the above description, the framework combines the
social dimension of user movements together with spatial
and temporal preferences, while at the same time allowing
for flexibility in visiting patterns and in the resulting inter-
contact times (as shown in Section IV).

The second contribution of this work lies in considering a
specific instance of the framework, and analytically deriving
the relation between arrival patterns of users to locations
and the resulting pairwise and aggregate inter-contact time
distribution. In our analysis we assume that the time is
slotted, and we represent the way users arrive to locations
as Bernoulli process. We prove that when the arrival pro-
cess describing how users visit their assigned locations is
Bernoulli, then also the contact process is Bernoulli, and the
pairwise inter-contact time features a geometric distribution
whose parameter can be derived in closed form (Section
V-A). This shows that there can be a direct control on the
output of the mobility model using the proposed framework,
even if we do not have a general enough analytical model
to cover all cases.

As for aggregate inter-contact times, recently Passarella
and Conti [19] have investigated how aggregate inter-contact
times depend on the pairwise statistics from which they
originate. Understanding this dependence is extremely im-
portant, because aggregate statistics are much easier to

collect in practice than pairwise ones, and, in the past,
conclusions were often drawn from the former consider-
ing them to be representative of the latter. In this paper
we take a step further into the investigation of aggregate
and pairwise statistics by studying how individual arrival
patterns to locations affect the aggregate inter-contact time.
More specifically, we prove (Section V-B) that heavy-tailed
aggregate inter-contact times, which have emerged from
the analysis of real mobility traces [4], can be obtained
from simple heterogenous Bernoulli arrivals. This confirms
the main result in [19], i.e., that heterogeneity in pairwise
statistics can lead to aggregate statistics that are very distant
in distribution.

II. RELATED WORK

A comprehensive overview of the state-of-the-art in mo-
bility modeling was presented in [11]. The main findings
in human mobility research can be classified along the three
axes of spatial, temporal, and connectivity properties. Spatial
properties pertain to the behavior of users in the physical
space (e.g., the distance they travel), temporal properties to
the time-varying features of human mobility (e.g., the time
users spend at specific locations), connectivity properties to
the interactions between users.

Similarly, three dominating techniques have emerged in
the approaches to modeling human mobility: maps of pre-
ferred locations, personal agendas, and social graphs. The
models of the first group account for the properties charac-
terizing regular reappearance of users at the sets of preferred
locations. Their general approach is to store the maps (i.e.,
the sets) of preferred places for each of the users and to
explore them while deciding on the next destination for their
walks. The main representatives of this group are SLAW
[20] and the model proposed by Song et al. [14]. Being
able to satisfy the main spatial properties of human mobility
trajectories, these models do not pay enough attention to the
other - social and temporal - aspects of the movements.

The second class of models focuses on reproducing realis-
tic temporal patterns of human mobility explicitly including
repeating daily activities in human schedules. The most
comprehensive approach of this group is presented in [21].
The model incorporates detailed geographic topology, per-
sonal schedules and motion generator defined for more than
30 different types of activities. Although the model gives
an extremely thorough representation of human movements
in very particular scenarios, it does not explain the main
driving forces of human mobility and it is too complex for
mathematical analysis.

The most recent and most rapidly evolving trend in
modeling human mobility is based on incorporating complex
network theory and considering human relations as the main
driver of individual movements. The main idea is that the
destination for the next movement of a user depends on the
position of people with whom the user shares social ties.



Figure 1. Framework overview

The first models of this class were CMM [15] and HCMM
[1], although many others have recently been developed.

Although existing models are able to reproduce realistic
mobility trajectories in a wide range of scenarios, there is
still the need for a better understanding of the correlations
between the main characteristics of human movements, i.e.,
patterns of user co-appearance at locations and emerging
connectivity properties, i.e., inter-contact times. To the best
of our knowledge, here we present the first approach where
the time sequence of user re-appearance in shared meeting
places are explicitly modeled. Therefore, with respect to
existing models, our approach is easily customizable to any
temporal pattern of user co-appearance in locations and gives
a natural framework for the mathematical analysis of the
contact sequences between them. Additionally, we reflect
the social dimension of human mobility in the distribution
of the shared meeting places between communities of tightly
coupled users.

III. THE PROPOSED MOBILITY FRAMEWORK

In this section we introduce our mobility framework,
designed around the three main dimensions – social, spatial
and temporal – of human mobility (see Figure 1). The
social dimension is explicitly captured in the framework
by taking a graph of human social relationships as input
parameter. This graph can be any well known graph, such
as a random graph [16] or a scale-free graph [16], or it can
be extracted from real traces. Then, the framework adds the
spatial dimension to the social ties by generating an arrival
network, which is a bipartite graph that connects users and
meeting places. A link between a user and a meeting place
in the arrival network implies that the user visits that place
during its movements. We explore the fact that the structure
of communities in the social graph has a significant impact
on human mobility, thus we assign users to meeting places
such that communities of tightly connected users (cliques, in
complex network terminology) share similar meeting places.

In order to add the temporal dimension to the model, we
describe the way users visit the meeting places to which they
are connected in terms of stochastic point processes [22]. A
stochastic point process is a stochastic process that character-
izes how events (usually called arrivals) are distributed over

time. By sampling from the random variables representing
the time between consecutive arrivals, we obtain the time
sequences of the visits of a user to a given location. Then,
the contact network, i.e., the network describing the contacts
between nodes, can be obtained by assuming that two nodes
are in contact with each other if they happen to be at the
same time in the same meeting place.

A. The social dimension of human mobility

Social interactions between users have emerged as one
of the key factors defining human mobile behavior, because
individuals belong to social communities and their social ties
strongly affect their movement decisions [5]. As anticipated,
in our analysis we consider proximity-based communities,
i.e., communities whose members share a common meeting
place (e.g., office, bar, apartment). The fact that all members
of the community visit a shared meeting place implies
that users are socially connected with all other members
of the community, and, therefore, form fully connected
components (i.e., cliques) in the social graph.

Such cliques in real social networks exhibit a overlapping
and hierarchical structure [17] [18]. Each user belongs
to several overlapping cliques, representing different social
circles (e.g., friends, relatives, colleagues). On the other
hand, each clique is itself composed of a number of nested
cliques, which share additional meeting places that are not
common to all users of the parent clique. For example, a
company shares a set of offices visited by all its employees,
while each division has its own working place.

B. Adding the spatial dimension to social graphs

The goal of the proposed framework is to reflect in the
spatial behavior of users the structure of their social commu-
nities. As anticipated, we represent the relation between the
spatial and the social dimension of human mobility by means
of a bipartite graph of users and meeting places, which
we call arrival network. In the algorithm (summarized in
Table I) for generating the arrival network starting from the
input social graph we mainly need two components: a clique
finding algorithm (that also detects overlapping cliques) and
a way for reproducing hierarchical cliques.



Table I
ALGORITHM FOR BUILDING THE ARRIVAL NETWORK - INPUT: SOCIAL

GRAPH G AND REMOVAL PROBABILITY α.

1) Divide input social graph G into a set of overlapping cliques, such
that the sizes of the cliques are maximum and each link is assigned
to exactly one clique. To this aim, the BronKerbosch algorithm [3]
can be used.

2) To each clique assign a separate meeting place, i.e., create a new
meeting place and a set of links between this place and each
member of the clique in the arrival network.

3) Remove randomly each link in the social graph with probability
α, inducing emergence of new nested cliques.

4) Repeat the procedure starting from the first step, until there are no
links left in the input graph.
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Figure 2. A round of assigning social cliques to meeting place; cliques
are marked with different line styles

The first component corresponds to steps 1 and 2 in
Table I. In each round, the social graph is divided into a
set (called cover) of overlapping cliques, such that each
link of the graph is assigned to exactly one clique. To
this purpose, we use the BronKerbosch algorithm [3]. The
cover of each round tries to capture the biggest possible
cliques. For each of the newly identified cliques, we create
a new meeting place and assign all members of the clique
to the meeting place. In other words, we create a new
meeting place vertex in the arrival network and we add
links between this vertex and all members of the community.
As an example, we describe in Figure 2 how cliques are
reflected into corresponding meeting places.

The second component (step 3 in Table I) of the algorithm
for generating the arrival network allows us to generate
nested cliques. More specifically, our algorithm tries to
identify cliques of lower size nested into those identified
in the previous round. To do so, cliques are split accord-
ing to a very simple random process, according to which
every link in the social graph is randomly removed with a
constant, configurable, probability α (removal probability).
This leads to the emergence of smaller cliques, which are
indeed nested into the original ones. This simple strategy
has also the advantage of allowing for a fine control of the
number of meeting places shared by users. In fact, each link
participates into a geometrically distributed (with parameter
α) number of rounds of meeting place assignments. As each
link is assigned to at most one clique per round, also the

number of cliques that include that link will be geometrically
distributed. This implies that the pair of users i, j with which
this link is associated will share a number Lij of cliques (and
thus of meeting places) that is itself geometrically distributed
with parameter α.

The algorithm for generating the arrival network stops
(step 4 in Table I) when there are no more links to be
removed in the social graph.

1) From meeting places to geographical locations: The
analysis of the algorithm in Table I reveals that the number
of generated meeting places grows with the number of
cliques. Thus, the more cliques in the input social graph,
the more meeting places are required. The proliferation of
meeting places is not of big concern, as meeting places might
correspond to very small geographic areas (e.g., offices).
However, in order to improve the realism of the generated
scenario, we want to combine these meeting places into a
fixed number L of wider physical locations (e.g., this is
equivalent to combining offices into a business center).

To this aim, we exploit the observation that a general
urban environment is characterized by the existence of loca-
tions with an extremely large number of meeting places (e.g.,
business centers), while for the majority of locations this
number is significantly smaller (e.g., private houses). This is
conceptually similar to a power law distribution of meeting
places per location. Therefore, the grouping of the meeting
places to a given number of physical locations can be done
with the de-facto standard for reproducing such distribution,
i.e., the preferential attachment scheme [16]. In this scheme,
meeting places are one-by-one randomly attached to one of
the available locations, with the probability of selecting a
specific location being proportional to the number of places
already attached to it.
C. The temporal dimension of user visits to meeting places

The arrival network that we have built in the previous
section tells us which are the meeting places visited by
each user. Here we want to further characterize the way
users visit locations by considering the temporal properties
of such visits. To this aim, we assign to each link in the
arrival network a stochastic point process Ali that describes
the arrivals of user i to meeting place l over time. In this
work, we consider only discrete point processes, leaving the
continuous case for future work. In a discrete point process,
the time is slotted. As an example, in light of the results from
trace analysis, a single time slot can be taken to be equal to
one day.

Once we have characterized the time at which users visit
their assigned meeting places, we can build the contact graph
of the network (Figure 1). In fact, a contact between two
users happens if the two users appear in the same meeting
place at the same time slot. The contact graph can be fully
mathematically characterized (we provide an example of this
characterization in Section V for the case of arrival pro-
cesses being heterogenous Bernouilli processes) or it can be



obtained from simulations. From the simulation standpoint,
the output of the proposed framework is a contact trace in
the form <user1, user2, startTime, endTime>,
where the first two elements are the node identifiers and the
last two denote the start and end time slots of the contact.
This trace can be then fed into a networking simulator like
the ONE simulator [13].

IV. CASE STUDIES

We discussed in Section I that a desired property of
a mobility framework is its ability to reproduce different
distributions for the main mobility properties. From this
standpoint, in this section we analyze, by means of sim-
ulations, the behavior of the framework described above,
focusing on the distribution of inter-contact times that it
generates. Complementary to this, in [12] we provide a
preliminary validation of the model based on real world
mobility traces.

As we already discussed, inter-contact times play a major
role in the delay experienced by messages in mobile ad hoc
networks. The evaluation provided below, despite prelimi-
nary, clearly indicates that the proposed framework is able to
generate different distributions for the inter-contact time. In
some cases, as in the first scenario discussed below, we have
a complete understanding of how a given inter-contact time
distribution can be obtained from the input parameters of the
framework. However, the derivation of a general analytical
model relating the arrivals of users and the resulting inter-
contact times is an ongoing work.

In order to instantiate the proposed framework, we need to
define its input parameters: the social graph G, the removal
probability α, and the arrival processes Ali for each user
i visiting a location l (Table I). As input social graph we
consider two random graphs Gn1,χ1 and Gn2,χ2 of n1 = 500
and n2 = 1000 users, in which each possible edge exists
with probability χ1 = 0.2 and χ2 = 0.1, respectively. Recall
that a random graph Gni,χi

is obtained by starting with
a set of ni vertices and randomly adding edges between
each pair of vertices with probability χi [16]. We evaluate
both these two graphs when the removal probability used by
the algorithm for generating the arrival network is α1 = 0.5
and α2 = 0.2. These settings correspond to the average
number of locations shared by a pair of users (which are
geometrically distributed) equal to 1/α1 = 2 and 1/α2 = 5,
correspondingly. As a result, we obtain four arrival networks
with different structural parameters which we explore in
simulations. For each of these arrival networks, we study the
resulting inter-contact times obtained changing the arrival
processes Ali of users to meeting places. Simulations are
run for 10000 time units of simulated time, and results are
shown with a confidence level of 99.9%.

In the first experiment we model users’ arrivals to places
with Bernoulli arrival processes. In a Bernoulli process, the
probability of an arrival at a given time slot is constant

and equal to ρAl
i
, which also corresponds to the rate of the

process. Here we assign rates ρAl
i

of the Bernoulli arrival
processes such that ρAl

i
= e−

1
2Y

2

, where Y is a standard
normal random variable. These settings correspond to the
case which we mathematically characterize in Section V.
Figure 3 depicts the result of simulations for each arrival
network. For instance, Figure 3.a depicts simulation results
for the network with parameters n = 500, χ = 0.2 and
a = 0.5. As we can see from the figure, the resulting ag-
gregate inter-contact time CCDF for this network decays as
a power law with exponent γ = −2, i.e., F (τ) ∼ τ−2. In the
other arrival networks we observe similar results: while the
structural properties of the network influence the parameter
of the aggregate inter-contact time CCDF, the shape of the
distribution remains the same for all the networks, and it
can be approximated with a power law function of exponent
γ = −2.
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Figure 3. The aggregate inter-contact time for different arrival networks

In the second experiment we change the type of arrival
processes in the network and study the corresponding change
in the distribution of aggregate inter-contact times. More
specifically, we consider the case when the arrival processes
are point processes with independent uniformly distributed
intervals, i.e., the intervals between arrivals of process Ali
are drawn from a discrete uniform distribution of range
[1, b], where b = 2× b1/ρAl

i
c − 1, b c is the floor (greatest

integer) function and ρAl
i

is drawn from the same distribution
as in the first experiment (note that the average inter-arrival
of a user to a location is approximately the same as in
the previous experiment). We model two networks with
parameters {n1 = 500, χ1 = 0.2, a1 = 0.5} and {n2 = 500,
χ2 = 0.2, a2 = 0.2}. Therefore, the only difference with
respect to the first experiment is the type of arrival processes.
The results presented in Figure 4 clearly show that the



aggregate inter-contact time distribution also in this case
decays as a power law with exponent γ = −2. In other
words, this result reflects the corresponding result for the
Bernoulli arrival processes with similar distribution of the
arrival rates. Thus, it may indicate that the distribution of
the arrival rates (which is approximately the same in both
experiments and equal to ρAl

i
) plays a major role in the

emergence of the power law aggregate inter-contact times
distribution.
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Figure 4. The aggregate inter-contact time for the case of arrival processes
with independent uniformly distributed intervals

To better understand the influence of the arrival rates on
the resulting inter-contact times characteristic, in the third
experiment we simulate arrival networks where arrival pro-
cesses are Bernoulli processes, like in the first experiment,
but this time with identical rates. More specifically, we
model two networks with the same parameters {n = 500,
χ = 0.2, a = 0.5}, in which all the rates of arrival processes
are identical and equal to ρ

(1)

Al
i

= 1/2 for the first network,

and ρ
(2)

Al
i

= 1/3 for the second one. Recall that the rate
of the arrival process is the reciprocal of the average of
the inter-arrival times. Therefore, the first case corresponds
to the network where the average inter-arrival time for all
processes is equal to 1/ρ

(1)

Al
i

= 2 time units, and the second
case to the network with average inter-arrival time for all
processes equal to 1/ρ

(2)

Al
i

= 3 time units. From Figure 5
(plotted in lin-log scale) we can see that the aggregate
inter-contact times characteristic in such networks differs
from the results we obtained before. More specifically, the
resulting distribution of the aggregate inter-contact times
decays as an exponential function rather than as a power
law function. This result additionally supports the hypothesis
that the resulting aggregate inter-contact times characteristic
significantly depends on the distribution of arrival rates.

The preliminary results discussed in this section provide
an indication that the distribution of the rates of the arrival
processes plays a major role in the resulting aggregate
inter-contact times between users. Moreover, these results
allowed us to show how very different distributions for
the aggregate inter-contact times can be obtained starting
from simple Bernoulli arrival processes. This finding is very
interesting from the standpoint of a mathematical analysis
of the proposed framework, as Bernoulli processes possess
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Figure 5. The aggregate inter-contact time for arrival network with
identical arrival rates

a number of properties (e.g., single parameter, memoryless
property) that significantly simplify the analysis, as we show
in the following section.

V. ANALYTICAL MODEL FOR THE CONTACT PROCESS

In this section we show how, in a concrete instance of the
framework, we are able to analytically derive the distribu-
tions of pairwise and aggregate inter-contact times starting
from a given discrete stochastic process describing how users
visit locations, thus highlighting the controllability of the
framework. For the sake of completeness, the findings from
this section are validated in [12] by comparing analytical
results with simulations.

In the following we study the dependence between in-
dividual arrival processes of users and the corresponding
contact processes between them. A contact process describes
how users meet with each other. Assuming that two users Ui
and Uj can meet at Lij distinct meeting places, the contact
process between users i and j comprises all contacts hap-
pening at all Lij shared meeting places. The time between
consecutive contacts in the contact process defines the inter-
contact times between the pair of nodes. In the following
we also characterize the single-place contact process, as the
contact process between users Ui and Uj limited to a specific
meeting place Ml.

As anticipated, in this analysis we model arrival processes
as Bernoulli processes. We show that, if the individual arrival
processes are Bernoulli processes, then the contact process
and the single-place contact process are also Bernoulli
processes for any pair of users. As inter-arrival times for
a Bernoulli process feature a geometric distribution, we
obtain that from geometric inter-arrival times to specific
meeting places (corresponding to Bernoulli arrivals) a ge-
ometric distribution of pairwise inter-contact times follows.
Additionally, we show that the rates of the contact processes
depend on the rates of the arrival processes. Starting from
this dependence, we are able to derive analytically also the
aggregate inter-contact times as a function of the arrival
rates of users to meeting places. Specifically, we describe
the conditions for which the aggregate inter-contact time
has a power law shape.

Before proceeding to the details of our analysis, we
first introduce the notation used throughout the section. We



consider an arrival network made up of N users and L
meeting places. We assume that each user Ui visits place
Ml according to a Bernoulli process Ali with rate ρAl

i
. For

each meeting place Ml and for each pair of users Ui and Uj
we characterize the single-place contact process Clij (of rate
ρCl

ij
) and the contact process Cij of rate ρCij

, aggregated
over the Lij shared meeting places. The latter defines the
distribution of pairwise inter-contact times. We denote the
complementary cumulative distribution function (CCDF) of
the pairwise inter-contact times of rate ρ with Fρ(τ), and
that of the aggregate inter-contact times with F (τ). F (τ)
is obtained as a function of the probability density function
(PDF) of the rates of individual inter-contact times fP (ρ).
The notation is summarized in Table II. Due to space
limitations, the complete proofs for the results shown in this
section can be found in the associated technical report [12].

Table II
TABLE OF NOTATION

N number of users in the arrival network
L number of meeting places in the arrival network
Ui user i
Ml meeting place l
Lij number of shared meeting places between users Ui and Uj
Ali arrival process of user Ui to meeting place Ml

Clij single-place contact process between users Ui and Uj at
meeting place Ml

Cij contact process between users Ui and Uj
ρAl

i
rate of arrival process Ali

ρCl
ij

rate of single-place contact process Clij
ρCij

rate of contact process Cij
E[P ] expectation of the rate of pairwise inter-contact times
Fρ(τ) CCDF of individual inter-contact times τ between a pair of

nodes whose rate is equal to ρ
fP (ρ) PDF of the rates of individual inter-contact times
F (τ) CCDF of the aggregated inter-contact times

A. Contact process for a pair of users

In this section, assuming Bernoulli arrivals to locations,
we analytically characterize the contact process between a
pair of users. To this aim, consider two Bernoulli processes,
Ali and Alj , describing arrivals of users Ui and Uj in a shared
place Ml. For a Bernoulli process, the probability 0 < ρ ≤ 1
of an arrival in a time slot τ is constant (i.e., does not depend
on τ ), and is called the parameter or the rate of the process.
Moreover, time intervals between arrivals are independent
geometrically distributed random variables.

We assume that individual arrival processes are indepen-
dent, and that a contact between two users happens if both
of them decide to visit place Ml in the same time slot. Thus,
the single-place contact process Clij between user pair Ui, Uj
at meeting place Ml can be obtained from the intersection
of the individual Bernoulli arrival processes of users Ui and
Uj at meeting place Ml. An example of the intersection
of individual arrival processes is provided in Figure 6. In
the following lemma we prove that the single-place contact
process Clij is also a Bernoulli point process.
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Figure 6. The single-place contact process as an intersection of arrival
processes

Lemma 1 (Single-place contact process): The single-
place contact process Clij resulting from independent
Bernoulli arrival processes Ali and Ali, of rates ρAl

i

and ρAl
j

respectively, is a Bernoulli process of rate
ρCl

ij
= ρAl

i
× ρAl

j
.

The intuitive proof for the above lemma is that the
probability of a contact at meeting place Ml is equal to
the probability that both users are at meeting place Ml in
the same time slot. This can be obtained as the product
ρAl

i
×ρAl

j
, recalling that, for a Bernoulli process, the rate of

the process is equal to the probability of an arrival in a time
slot. A discrete stochastic process in which arrivals happen
with constant probability ρAl

i
× ρAl

j
is again a Bernoulli

process.
In the following we focus on the contact process between

a pair of users Ui, Uj , i.e., on their contacts in the Lij shared
meeting places. A contact happens between the two users in
a given time slot if they meet at least in one of the Lij
meeting places that they share. Thus, the contact process
between users Ui and Uj can be obtained merging (as shown
in [22]) their single-place contact processes (Figure 7). In
the following theorem we show that if single-place contact
processes are Bernoulli, then also the contact process is
Bernoulli.
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Figure 7. The compound contact process as a merging of single-place
contact processes

Theorem 1 (Contact process): The contact process Cij
between contacts resulting from a number Lij of individual
place contact processes Clij , which, in their turn, emerge
from Bernoulli arrival processes Ali and Alj of rates ρAl

i

and ρAl
i
, is a Bernoulli point process with the rate ρCij

=

1−
∏Lij

l=1 (1− ρAl
i
× ρAl

j
).

The intuitive proof for the above result is that the proba-
bility of at least one contact in a time slot can be computed



as one minus the probability of no contact in that time slot.
The probability of no contact in the time slot is equal to the
probability that the two users do not meet in any of their
shared meeting places. Then, Theorem 1 follows.

The contact process described in the Theorem 1 also
defines the time intervals between consecutive contacts of
a pair of users. Specifically, for a Bernoulli process the dis-
tribution of inter-contact times is geometric. We summarize
this result in the following corollary.

Corollary 1 (Pairwise inter-contact times): The inter-
contact times distribution between a pair of users Ui and
Uj , meeting at a number Lij of meeting places, and whose
arrivals to these meeting places are described as Bernoulli
arrival processes Ali and Alj of rates ρAl

i
and ρAl

i
, is

geometric with rate ρ = 1−
∏Lij

l=1 (1− ρAl
i
× ρAl

j
).

B. Aggregate contact process

In this section we describe how to derive the aggregate
inter-contact times starting from pairwise inter-contact times
featuring a geometric distribution. More specifically, we
solve a concrete case by providing the conditions on the
Bernoulli arrival processes of users to locations such that the
resulting aggregate inter-contact time distribution is heavy-
tailed. Heavy-tailed distributions for aggregate inter-contact
times are important as they have often emerged from the
analysis of real mobility traces [4]. Our derivation shows
how such heavy tailed behavior can result from simple
heterogenous Bernoulli arrival processes, which are very
convenient to deal with for mathematical analysis. This
result also confirms the main finding of [19]: very different
aggregate statistics can emerge from the heterogeneity of
simple pairwise statistics.

In order to derive the aggregate inter-contact times, we
exploit the result of the work by Passarella and Conti [19],
which describes the dependence between the aggregate inter-
contact time distribution and the inter-contact time distribu-
tions of individual pairs of users. Specifically, they consider
a heterogeneous scenario, where pairwise inter-contact times
distributions are all of the same type (e.g., exponential), but
whose parameters (the rates, in the exponential example)
are unknown a-priori. The rates of the individual contact
sequences are drawn from a given distribution, which, there-
fore, determines the specific parameters of each pair’s inter-
contact times. The model described in [19] shows that both
the distribution of the rates and the distributions of pairwise
inter-contact times impact on the aggregate distribution.
For the convenience of the reader we recall this result in
Theorem 2.

Theorem 2: In a network where the rates of pair-
wise inter-contact times are distributed according to a
continuous random variable P with density fP (ρ), the
CCDF of the aggregate inter-contact time is F (τ) =

1
E[P ]

∫∞
0
ρfP (ρ)Fρ(τ)dρ, where Fρ(τ) denotes the CCDF

of the inter-contact times between a pair of nodes whose
rate is equal to ρ.

We extend this finding to our network of interest, where
pairwise inter-contact times depend on their corresponding
arrival processes. We have shown in Corollary 1 that, for
the case of independent Bernoulli arrival processes, the
distribution of individual inter-contact times is geometric.
In other words, the shape of the pairwise inter-contact
time distribution Fρ(τ) is fixed in our model and, thus,
the resulting aggregate inter-contact times characteristic is
controlled by the distribution of the rates of individual
inter-contact times fP (ρ). This distribution, in turn, depends
on the distribution of the corresponding arrival rates. This
dependence may not be trivial in the general case.

In order to apply Theorem 2 to our case of pairwise inter-
contact times featuring a geometric distribution, we note that
a discrete random variable X featuring a geometric distribu-
tion with rate ρ can be expressed in terms of a discrete ran-
dom variable Y featuring a discrete exponential distribution.
More specifically, the CCDF of the geometric distribution
of the pairwise inter-contact times, i.e., Fρ(τ) = (1− ρ)τ ,
τ ∈ {1, 2, 3, ...}, can be re-written in a discrete exponential
form, i.e., Fλ(τ) = e−λτ , τ ∈ {1, 2, 3, ...}, by substituting
ρ = 1− e−λ, where λ ∈ (0,∞). Variables X and Y are thus
exactly the same, but written in a different form. Using this
substitution and the result in Theorem 2, in Lemma 2 we
derive under which condition for parameter λ the aggregate
inter-contact time is heavy-tailed.

Lemma 2: In a network where pairwise inter-contact
times have a discrete exponential distribution of the form
Fλ(τ) = e−λτ , τ ∈ {1, 2, 3, ...}, and parameters λ are drawn
from an exponential distribution with rate α, the aggregate
inter-contact time distribution is F (τ) = α+α2

(τ+α)(τ+α+1) .
The complete proof for the above Lemma and for all results
introduced below can be found in the associated technical
report [12].

More generally, the result in Lemma 2 says that the
aggregate inter-contact times distribution decays proportion-
ally to the power γ = −2 of τ , i.e., F (τ) ∼ 1/τ2, if the
distribution of the parameters λ of individual inter-contact
times is exponential. In the rest of the section we develop
this case and show how the exponential distribution of the
parameter of individual inter-contact times emerges in the
arrival network with independent Bernoulli arrival processes.

As we have already shown, the distribution of the pa-
rameters of pairwise inter-contact times depends on the
distribution of the corresponding arrival rates. This depen-
dence is described by Corollary 1, which after substitution
of ρCij with λ, according to what we discussed above,
takes the form λ =

∑Lij

l=1− ln(1− ρAl
i
× ρAl

j
). From this

dependence, we find a distribution of arrival rates ρAl
i

such that the conditions of Lemma 2 are satisfied, i.e., the
distribution of parameters λ of the individual inter-contact



times is exponential. To this aim, we prove the following
lemma.

Lemma 3: If individual arrival processes are independent
Bernoulli point processes, the rates ρAl

i
of the processes

are drawn such that ρAl
i
= e−

1
2Y

2

, where Y is a standard
normal random variable, and the number of shared meeting
places Lij between pairs of users is a geometric random
variable with parameter α, then the resulting pairwise inter-
contact times parameters λ are exponentially distributed with
parameter α.

A condition for Lemma 2 to be applicable is that the
number of shared meeting places between pairs of users is
geometrically distributed. Recall that this type of distribu-
tion is secured by the arrival network generating algorithm
described in Section III. Therefore, the result of Lemma 2
can be applied to the networks generated by the mobility
framework. Finally, we combine the results of Lemma 2
and Lemma 3 in the following theorem.

Theorem 3: If individual arrival processes are indepen-
dent Bernoulli point processes, the rates ρAl

i
of the processes

are drawn such that ρAl
i
= e−

1
2Y

2

, where Y is a standard
normal random variable, and the number of shared meeting
places Lij between pairs of users is a geometric random
variable with parameter α, the CCDF of the aggregated inter-
contact times is given by Lemma 2.

VI. CONCLUSIONS

In this paper we have proposed a mobility framework that,
starting from an input social graph, characterizes the way
users visit locations. The spatial dimension of mobility is
added imposing that people belonging to the same social
community are assigned the same location, which is where
the people of that community meet. Then, the way users visit
their assigned locations over time is described by means of
a stochastic process. We have shown that this framework is
flexible, i.e., is able to generate inter-contact times featuring
different distributions. Finally, assuming that users arrive to
locations according to heterogenous Bernoulli processes, we
have analytically derived the pairwise and aggregate inter-
contact times, thus showing the predictability of the model
in this case.
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