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Abstract—Opportunistic networks are pervasive networks built
exclusively by users’ devices. With respect to legacy multi-hop ad
hoc networks (MANETs), opportunistic networks are much more
resilient to disconnections, long network partitions, and dynamic
reconfigurations. Therefore, they are suitable for challenged
scenarios, such as disaster areas, or rural environments. While
in MANET nodes’ mobility is an issue, in opportunistic networks
mobility is an opportunity for communication, therefore mobility
models are a key component in opportunistic networks’ research.
Improved (with respect to MANETs) users mobility models
are rapidly becoming reference tools for studying opportunistic
networks, thanks to their accuracy in matching statistical features
observed in real traces. A very interesting approach is defining
mobility patterns based on social relationships between users. In
this paper we argue that, while being a fundamental building
block, social relationships alone cannot be the only driver for
the mobility process. Users movements are also driven by the
attraction of physical locations (e.g., the house, the working
place) on users. We analyse from this standpoint the Community-
based Mobility Model (CMM), which is the reference point for
social-aware community models. We show in detail that CMM is
not able to capture locations’ attractions on users. Therefore,
we propose the Home-cell Community-based Mobility Model
(HCMM), which retains the social-aware features of CMM and,
in addition, permits to easily control the relationships between
users and their preferred physical locations.

I. INTRODUCTION

Opportunistic networks are wireless mobile networks built
entirely on users’ devices [1]. With respect to legacy
MANETs, no end-to-end path is assumed between the sender
and the receiver at the time of data generation. Paths are
built dynamically on-the-fly while messages progress towards
the destination, opportunistically exploiting contacts between
nodes. Therefore, they are much more tolerant than MANETs
to network partitions (also lasting for long times), and recon-
figurations, and are thus particularly suitable for challenged
scenarios such as disaster, emergency and rural networks.

Mobility modelling for opportunistic networks is a hot
topic in the research community. Opportunistic networks ac-
tually exploit users’ mobility to bridge disconnections and
partitions [2]. Therefore, it is of paramount importance to
identify realistic mobility models, both to drive the protocols’
design, and to provide sensible performance results. In the
last few years, there has been an increasing effort aimed
at reconsidering the MANET mobility models [3] for op-
portunistic networking scenarios. There is general agreement
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on the fact that popular models used in MANET research
(e.g., the random waypoint model) generate quite unrealistic
users’ behaviour (e.g., [4], [5]). To address this issue, mobility
models are reconsidered or re-designed based on real users’
mobility traces available to the community (e.g., through
CRAWDAD).

Several proposal ([5], [6], [7]) exploit WLAN association
traces to derive users’ association profiles and, based on
these, mobility models. The resulting models are very good
in capturing the fact that physical locations (WLAN hotspots
in this case) exert attraction on users. The work in [8] takes this
idea one step further, and provides mobility models in which
general physical locations (not necessarily WLAN access
points) exert attractions on users. Finally, authors of [9] explain
WLAN association traces with sociological-inspired concepts,
noticing that periodic association patterns follow sociological
orbits, defined by the users’ social behaviour. Exploiting this
remark, they provide a user-centric model (rather than an
“AP”-centric one as in the previous works). This body of
work is based on the fundamental observation that users are
attracted by particular physical locations, in which they tend
to preferentially spend their time. The limit we see in this
approach is the fact that it does not explain the mechanisms
resulting in the modelled mobility patterns. Therefore, it is
not clear if the resulting models are applicable to networking
scenarios other than the ones used for the initial observations
(most notably, if they are applicable to opportunistic networks
too).

Exploiting the social behaviour of users to define the
basic mechanisms of users’ movements is a very interesting
direction. To the best of our knowledge, the most advanced
proposal of this class is the work in [4], where authors
define the Community-based Mobility Model (described in
Section II-A). The most interesting feature of CMM is the
leveraging of social network theories and models [10] to define
users’ movements. Besides matching well real users’ mobility
traces [4], this approach sheds light on the features of users’
social behaviour that result in the mobility features observed
in real traces.

Despite these nice properties, in this work we show that the
original CMM proposal is not able to capture the attraction
exerted on users by physical locations. Specifically, we show
in Sections II-B and II-C that CMM shows a gregarious
behaviour, such that all users in a community tend to follow
the first user that moves outside the physical location where



the community is located. The gregarious behaviour does not
represent significant scenarios (e.g., working places), where
users roam around preferred physical places, besides being
influenced by social relationships between each other. To
address this issue, we propose the Home-cell Community-
based Mobility Model (HCMM), which joins the concepts of
CMM (for modelling social relationships between users) with
the concept of defining preferential locations in which users
tend to spend most of their time. Therefore, HCMM is a first
step towards joining together the two promising mobility mod-
elling approaches discussed above. After describing HCMM
(in Section III) we show that it still matches characteristic
features of real traces. Furthermore, we highlight that, unlike
CMM, it provides very simple knobs to control the time spent
by users in their preferred physical locations (Section III-A).

II. MODELLING BASED ONLY ON SOCIAL ATTRACTION

A. Community-based Mobility Models
In CMM [4] each node belongs to a social community

(group). Nodes that are in the same social community are
called friends, while nodes in different communities are
called non-friends. Relationships between nodes are modelled
through social links (each link has an associated weight).
At the system start-up all friends have a link to each other.
Links between non-friends are set up according to the rewiring
probability (pr) parameter. For each node, each link (towards
a friend node) is rewired (i.e., it is moved to connect the node
and a non-friend node) with probability pr. If the link has to
be rewired, the target non-friend node is randomly selected
according to a uniform distribution.

Social links are used in CMM to drive node movements.
Nodes move in a grid, and each community is initially
randomly placed in a cell of the grid. Each node movements
can be seen as a sequence of steps. At the beginning of
each step, the node selects the two components that define
the next movement: the cell towards which to move, and
the “goal” within the target cell. The target cell is selected
according to the social attraction exerted by each cell on the
node. Attraction is measured as the sum of the links’ weights
between the node and the nodes currently moving in or towards
the cell. The target cell is chosen based on the probabilities
defined by cells’ attraction (i.e., if aj is the attraction of cell
j, then the probability of selecting that cell is aj/

∑
j aj).

Finally, the “goal” within the target cell is selected according
to a uniform distribution. Speed is also selected accordingly
to a uniform distribution within a user-specified range1.

In the following we will study how a tagged node k that
goes out of its starting cell influences the movements of the
other nodes of its community. Without loss of generality,
we consider a simple scenario with two communities only,
placed in two distinct cells. At the system startup, n nodes
are placed in node k’s cell, and f · n nodes in the other cell
(hereafter, node k’s cell is denoted as starting cell, and the

1CMM also includes further mechanisms, such as reconfigurations, whose
effect is however orthogonal to what we focus on in this paper. The interested
reader is referred to [4].

other cell as destination cell), f being a parameter greater
than 0. All nodes but node k have only social links within
their community, while node k has also links with nodes in
the other community. Due to these links, node k, at some
point in time, moves to the destination cell. To investigate the
gregarious behaviour, we compute the remaining probability
(Prem), defined as the probability of no other member of
node k’s community to move towards the destination cell.
When Prem approaches 0, at least one node in the starting cell
follows node k. As will be clear from the following analysis,
this may generate an avalanche effect such that all nodes in
node k’s community follow node k in the destination cell, thus
revealing the gregarious behaviour.

We choose to study the case of a single node (k) having
links outside its community, because, as we will show ana-
lytically, it represents the weaker condition for the gregarious
behaviour to take place. Therefore, the Prem formula com-
puted in the following section is actually an upper bound of
the remaining probability achieved in the general case.

B. Gregarious Behaviour in CMM: Analytical Model
In CMM each cell Sp,q in the grid (i.e., with generic

coordinates p, q) exerts on a node i an attraction equal to

SA(i)
p,q =

∑n
j=1

j∈CSp,q

wi,j

c
(1)

with CSp,q
being the set of nodes associated to cell Sp,q (i.e.,

all nodes whose current goal is within that cell2 ), c the
number of nodes associated to Sp,q and wi,j the weight of the
link (relationship) between node i and node j. To select the
destination cell, each node i computes its attractions towards
each cell (according to Equation 1), and then selects the cell
Sp,q with probability P (s = Sp,q) = SA

(i)
p,q/

∑p×q
j=1 SA

(i)
j .

After node k starts moving outside the starting cell, each
node i of its community (i.e Ck = Ci) is attracted by the
destination cell with a social attractions equal to

SA
(i)
(dest) = wi,k/(fn + 1) (2)

and by the starting cell with a social attraction equal to

SA
(i)
(start) =

n−1∑
j=1

j∈Cstart

wi,j/(n − 1). (3)

Equations 2 and 3 already show three interesting features.
Firstly, the attraction of node k on other nodes in the same
community depends not only on the strength of the social
relationships within the community (wi,k), but also on the
number of nodes associated to the destination cell (fn + 1).
The more the nodes associated to the destination cell, the less
the attraction that k exerts on the other nodes. Secondly, it
can already be shown that we are considering a worst-case
scenario for the gregarious behaviour to occur. If several nodes
had social relationships outside their community, there would

2Note that, based on this definition, a node is associated to the destination
cell as soon as it selects that cell as its next goal.



be more nodes going outside the starting cell. The attraction
exerted by the destination cell (or the joint attraction exerted
by destination cells, more in general) on each remaining node
will be greater than SA

(i)
(dest), thus increasing the probability

of at least one such node to go out the starting cell. Finally,
it is also easy to understand that considering the remaining
probability allows us to highlight a possible avalanche effect.
When the remaining probability is close to 0, at least one
node follows node k outside the starting cell. This increases
the attraction exerted by node k’s destination cell on nodes
in the starting cell, thus further increasing the probability of
other members of node k’s community to move towards the
destination cell.

Going back to our reference scenario, the probability that a
generic node i in node k’s community goes out of the starting
cell is equal to

Pouti
=

wi,k/(fn + 1)
wi,k/(fn + 1) +

∑n−1
j=1 wi,j/(n − 1)

(4)

and thus 1 − Pouti
represents the probability that node i

remains in the starting cell at the next step. For the sake of
simplicity, we assume wi,k = wj,k = wk,∀i, j | Ci = Cj .
In addition, we approximate w � ∑

j wi,j/(n − 1), where
w denotes the average of the distribution of weights between
nodes of the same community. Equation 4 thus becomes as
follows:

Pout =
wk/(fn + 1)

wk/(fn + 1) + w
. (5)

Note that a special case is represented by n = 2. In this case,
SA

(i)
(start) is clearly 0 (just one node is in the starting cell after

node k leaves), and therefore Pout is equal to 1.
The longer node k is associated to the destination cell, the

longer other nodes have opportunities of following it. In the
worst case (from the gregarious behaviour standpoint) node k
comes back to the starting cell right after reaching the goal in
the destination cell (this corresponds to the minimum possible
time during which node k is associated to the destination cell).
The number of times a node i (in the same community of
node k) runs the next-goal selection algorithm while node k
is associated to the destination cell is thus equal to the ratio
between the average time it takes for node k to reach the goal
in the destination cell (T

(out)
) and the average time it takes for

node i to complete a random movement inside the starting cell
(T

(in)
). Under the assumption of a n×n grid and square cells,

the average length of a random movement D inside the grid
can be assumed to be proportional to the average length of a
random movement d inside a single cell, with proportionality
constant l (equal to the ratio between the edge of the grid and
the edge of the cell). If we define V as the average speed at
which nodes move, then T

(out)

T
(in) = D

V
· V

d
= D

d
= l holds true.

As there are n− 1 nodes in the starting cell (after node k’s
departure), the remaining probability can be computed as:

Prem =
[
(1 − Pout)

l
]n−1

=

[(
1 − wk/(fn + 1)

wk/(fn + 1) + w

)l
]n−1

, (6)

Parameter Value
n 10
l 5
w 0.5
wk 0.5
f 1

Fig. 1. Parameters’ default values
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Fig. 2. Prem as a function of n
and l.
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Fig. 3. Validation of the analytical
model (Prem as a function of n).
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Fig. 4. Validation of the analytical
model (Prem as a function of l).

where l is the average number of times each node in the start-
ing cell selects a new destination while node k is associated
with the destination cell, 1 − Pout is the probability of each
node to select the starting cell for the next step, and n − 1 is
the number of nodes in the starting cell after node k departure.

C. Gregarious Behaviour in CMM: Quantitative Analysis
In this section we analyse the impact of the mobility model

parameters on the remaining probability derived in Equation 6.
Unless otherwise stated, parameters are set according to Fig-
ure 1. Note that in the following we consider two alternatives
for assigning relationships between nodes (weights) before
rewiring. In the first one, weights are uniformly distributed
between 0 (not included) and 1. In the second one, weights be-
tween friends are uniformly distributed between 1−threshold
and 1, with threshold being a configurable parameter ranging
from 0 to 1. The second alternative is the one actually
implemented in CMM because it allows for controlling the
average weight within a community. Without the threshold,
the average weight between friend nodes (w) is stuck at
0.5, while, with the threshold-based approach, w is equal to
1 − threshold/2, and it thus ranges between 0.5 and 1.

Figure 2 illustrates the Prem dependence on n (the number
of the nodes of k’s community), and l (the ratio between
the movements duration outside and within a community).
Figures 3 and 4 compares selected curves from the plot in
Figure 2 (thus derived through the model) with simulation
results (confidence intervals have 90% confidence level)3.
This comparison shows that the analytical model is accurate,
particularly starting from medium values of n and l.

For small values of l, the grid has few cells and the duration
of k’s movement outside the starting cell is not so different
from the duration of nodes’ random movement inside a cell.
Thus, a generic node i has not many opportunities of going
outside the starting cell, because node k is associated with
the destination cell only for a relatively small amount of
time. The trend highlighted in Figure 2 generally holds true

3Similar curves have been derived also with respect to other parameters
analysed in the following (not reported here due to space reasons).



P
Rem

P
Rem

Fig. 5. Prem as a function of wk and w.

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

P
R
e
m

threshold

wk=1-th
wk=1-th/2

wk=1

Fig. 6. Prem as a function of the
threshold (uniform distribution of
the weights).

 0.0016

 0.008

 0.04

 0.2

 1

 0  0.2  0.4  0.6  0.8  1

P
R

em

wk

th=1
th=1/2

th=0

Fig. 7. Prem as a function of wk

(uniform distribution of the weights).

when considering the impact of l, irrespectively of the other
parameters’ configurations. Therefore, we will not analyse the
impact of l further on.

To better understand the behaviour with respect to n, let us
rewrite Equation 6, by recalling that w = wk. It is easy to show

that Equation 6 becomes Prem =
[
(1 − (1/n + 2))l

]n−1

. The

remaining probability of a single node (1−(1/n+2)) increases
with n, because a large n corresponds to a “heavy” community,
that exerts a strong attraction on its members. However, as the
number of nodes increases, it is more and more difficult that
all nodes remain in starting cell. The joint effect (shown in
Figure 2) is that Prem is significantly greater than 0 only for
small values of n.

In Figures 5, 6, and 7 we analyse how the strengths
of social relationships (modelled through the parameters wk

and w) impact on the remaining probability. Specifically, to
have a complete view across the whole parameters’ space,
in Figures 5 we explore the whole range of possible values
for the parameters, irrespective of the particular distribution
used to actually assign weights. Instead, Figures 6 and 7 show
remaining probability curves obtained when the weights are
assigned according to the uniform distribution considered in
the original CMM model, by also exploiting the threshold
parameter. Specifically, Figure 6 shows three curves, corre-
sponding to the lowest, the average and the highest value of
wk. In Figure 7 curves start at the minimum wk value, i.e.,
wk = 1 − threshold.

In Figure 5 note that, when wk is small, i.e. when node
k exerts a weak attraction on the nodes of the starting cell,
the main contribution to Prem is due to w (i.e., the attraction
between nodes in the starting cell): if w is high, nodes are
more likely to remain in their current cell. However, as soon
as wk increases beyond 0.5, Prem drops approximately to 0,
regardless of the weights between nodes of the same cell. This
is an important results, because it highlights that the gregarious
behavior is a constant in CMM model for a large range of
(wk, w) values. Remaining probabilities significantly greater
than 0 are achieved only in the region (zone A in the Figure)
with high attraction in the starting cell (high w), and low at-
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Fig. 9. Prem as a function of
f and threshold, in the worst-case
scenario (wk = 1 − threshold).

traction of the tagged node (low wk). Figures 6 and 7 show that
this combination cannot be achieved by a uniform distribution
of the weights (as in the CMM model), even by controlling
the average value through the threshold parameters. Non-
negligible remaining probabilities are exclusively achieved for
low wk values (e.g., curve wk = 1 − th in Figure 6), when
the threshold is high. As the average weight (w) is equal
to 1 − threshold/2, in this configuration w turns out to be
low. The region with maximum remaining probability in the
(wk, w) space where CMM can actually operate is thus zone
B in Figure 5, while it can never operate in zone A.

In this first set of plots we considered f equal to 1 (i.e., the
same number of nodes in the starting and destination cells).
This choice is coherent with the original implementation of the
CMM model, in which the number of nodes in each cell at
the system start up is almost the same. In real social networks,
however, non homogeneous communities are quite common.
In the following we thus investigate the gregarious behavior
with non homogeneously populated communities. Equation
2 highlights how f impacts on the social attraction of the
destination cell. When the destination cell is more populated
than the starting cell (f > 1), node k’s attraction is smoothed
out, while, when it is less populated (f < 1), the attraction is
amplified.

Figures 8 and 9 basically confirm the behaviour highlighted
before. Even when the destination cell is more populated
(f > 1), non-negligible remaining probabilities are achieved
when the attraction of the tagged node is rather weak (low wk

values). Clearly, the greater the destination cell’s population,
the lower the attraction it exerts on members of node k’s
community, the greater the remaining probability. Specifically,
we have found that the remaining probability is always greater
than 0.5 as f increases beyond 10. However, note that such
high values for f are not that sensible, as f = 10 means
that the destination community has 10 times more members
than the starting community. Finally, Figure 9 shows that, for
more sensible ranges of f , the only chance of having high
remaining probability is a very high threshold, joint with the
minimum attraction of the tagged node (wk = 1 − th), and
a densely populated destination cell (f > 1). Note that when
the threshold approaches 1, the attraction of the tagged node
becomes negligible.

The results shown in this section clearly highlight that the
gregarious behaviour is a characteristic feature of the original
Community-based Mobility Model. As discussed in Section I,
this behaviour does not represent a class of typical scenarios,
in which users move based on social relationships, but also
on attractions exerted by the physical places in which these
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social relationships usually take place (e.g., working place).
As this class of scenarios is quite large, the following section
proposes a simple modification to the original CMM to address
this point.

III. HOME-CELL COMMUNITY-BASED MOBILITY MODEL

In the Home-cell Community-based Mobility Model
(HCMM), each node is attracted by its home cell (i.e. the cell
to which its community is assigned after a reconfiguration),
based on the social attraction exerted on that node by all other
nodes that are part of its group, irrespective of the current
physical location of those nodes. In a sense, the social links
between nodes of the same group are translated in a global
attraction exerted by the group home cell. Similarly, the social
attraction towards an external cell is evaluated based on the
social relationships with nodes having their home in that cell.
When a node is in its home cell, the cell for the next movement
is selected as in CMM. However, after a node reaches a cell
which is not its home, it stays in the external cell with a given
probability (pe) for the next movement, and goes back home
with probability 1−pe. Therefore, it roams in the foreign cell
for an average number of steps equal to pe/1 − pe. HCMM
allows us to model a kind of scenario in which nodes are
attracted towards a place (e.g., their office building) in which
usually people of their group roam. Nodes are also attracted
outside that place because of social relationships between
groups, and spend some time in the foreign groups before
heading back home.

In order to prove that HCMM generates realistic movement
patterns, we analysed two properties: the contact duration,
which is the time interval in which any two devices are in
radio range, and intercontact time, defined as the time interval
between two consecutive contacts between any two nodes. In
real traces, the probability distribution of these figures shows
a heavy tail [11]. For validating HCMM we ran a simulation
with 30 nodes divided into three groups varying the rewiring
parameter. Figure 10 and 11 show that HCMM still generates
heavy-tail distributions for contact and inter-contact times,
which is required to model realistic humans movements (the
dependence of these figures on the rewiring probability is
discussed in [12]. In Figure 10 all curves overlap, i.e. the
contact duration doesn’t depend on the value of the rewiring
parameter. This is because we consider contacts between any
two nodes, that are indipendent from the time a node remains
in its group. In contrast, Figure 11 highlights the dependency
of inter-contact times from the time a node spends in the same
group. In fact, with increasing rewiring, nodes gets more and
more mixed together and the time between two consecutive
contacts tend to be smaller.

OUT

out1−p pout

p in in1−p

IN

Fig. 12. Node’s status in HCMM and CMM.

A. HCMM vs. CMM: Controlling Node Positions
In this section we compare HCMM and CMM. Specifically,

we highlight the fact that HCMM allows for a fine control
of the physical locations around which users’ roam, while
CMM does not provide any simple control parameter on this.
To this end, we generalise the analytical model presented in
Section II-B. The goal of the model we present hereafter is to
provide closed formulas for the average time spent by any node
inside and outside the starting cell (home cell in HCMM). For
ease of presentation, we still assume to have just two cells,
even though the destination cell can jointly represent all cells
other than the starting cell. We assume that all links can be
rewired at the system startup (with probability pr). Therefore,
we don’t assume any difference between a tagged node (node
k) and the other nodes anymore. We also don’t focus anymore
on the event of a particular node exiting the starting cell.

In HCMM and in CMM the status of each node can
be represented with a 2-state discrete Markov chain as in
Figure 12, where “IN” means the node is in the starting cell,
and “OUT” means it is outside the starting cell. The difference
between HCMM and CMM lies in the expressions of pin and
pout, that we will derive at the end of this section. Otherwise,
the analysis of the average time spent in the IN and OUT
states is common to CMM and HCMM.

First of all, it is straightforward deriving the
stationary distributions, πin = pin/(pin + pout), and
πout = pout/(pin + pout). The average time spent in
the IN and OUT states can be computed via the conditioned
probabilities, as follows:{

E [Tin] = πoutpin · E [Tin|EIN ]
E [Tout] = πinpout · E [Tout|EOUT ] (7)

where EIN and EOUT denote the events “the node enters the
IN state” and “the node enters the OUT state”, respectively,
while πoutpin and πinpout are the probabilities of these events.
By recalling that i) the number of steps spent in each state is
distributed according to a geometric law, ii) the duration of
each step both in the IN and OUT state can be approximated
with T

(in)
, and iii) the duration of the transitions between the

states can be approximated with T
(out)

(see Section II-B), we
can compute closed form expressions for E [Tin] and E [Tout]
as follows:{

E [Tin] = pin(1−pout)
pin+pout

· T (in)

E [Tout] = pout(1−pin)
pin+pout

· T (in)
+ pinpout

pin+pout
· 2T

(out) (8)

To specialise Equation 8 to HCMM and CMM we have
to compute the transition probabilities of the corresponding
Markov chains, hereafter referred to as p

(H)
out and p

(H)
in , and

p
(C)
out and p

(C)
in respectively. By definition, p

(H)
in is equal to

1 − pe. For the other parameters, we can use the following
line of reasoning, common to HCMM and CMM. To compute



pout, we should focus on a node inside the starting cell, and
compute the attractions of the starting and destination cells. To
compute pin, we should compute the attractions of the starting
and destination cells on a node outside the starting cell. Then,
pin and pout can be computed as follows:


pin = SA

(out)
start

SA
(out)
dest +SA

(out)
start

pout = SA
(in)
dest

SA
(in)
dest+SA

(in)
start

. (9)

Clearly, the difference between HCMM and CMM turns out
in different expressions for SAstart and SAdest.

The derivation is simpler in the case of HCMM. First of
all, it is easy to realise that the attractions of the starting and
destination cells do not depend on the fact that the node is
inside or outside the starting cell. The attraction to the starting
(destination) cell depends only on the relationships with nodes
having the starting (destination) cell as home, and on the
number of such nodes. Thus, the attractions in HCMM are
as follows:

 SA
(H)
start =

∑ n−1
j=1 wij

n � w

SA
(H)
dest =

∑ pr(n−1)
j=1 wij

fn � pr(n−1)w
fn

. (10)

Closed form expressions for the average time spent in the
IN and OUT states in HCMM can be derived by replacing
Equations 10 and 9 in Equation 8.

In the case of CMM computing attractions is more involved.
The attraction to a cell dynamically depends on the number
of nodes actually being in that cell. For the sake of simplicity,
we carry on the analysis under the hypothesis that q nodes
of the starting cell are roaming in the destination cell, and
q′ nodes of the destination cell are roaming in the starting
cell. The attraction of the destination cell on a node currently
roaming in the starting cell (and belonging to the starting
cell’s community) are computed based on the following line of
reasoning. The node is attracted to the destination cell because
nodes of its community are roaming there. Since links have
been rewired, the node has links just towards a fraction of these
nodes, i.e., towards (1−pr)q nodes, resulting in a contribution
to the attraction equal to

∑q(1−pr)
j=1 wij � q(1 − pr)w. The

node is also attracted by nodes of the destination’s community,
to which it has been rewired. The probability of the node
having been rewired to a random node of the destination
community is (n−1)pr

fn , and the number of nodes exerting such

attraction is (n−1)pr

fn (fn − q′). Based on the above line of
reasoning (applicable also to the attraction of the starting cell)
it is possible to derive the required attractions formulas for
CMM, as follows:



SA
(C,in)
start =

(n−1−q)(1−pr)+
(n−1)pr

fn q′
n−q+q′ · w

SA
(C,in)
dest =

q(1−pr)+
(n−1)pr

fn (fn−q′)
fn−q′+q · w

SA
(C,out)
start =

(n−q)(1−pr)+
(n−1)pr

fn q′
n−q+q′ · w

SA
(C,out)
dest =

(q−1)(1−pr)+
(n−1)pr

fn (fn−q′)
fn−q′+q · w

(11)
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Fig. 13. Average time in the IN and OUT states as functions of q.

In the case of CMM the closed form expression of E [Tin]
and E [Tout] is not as simple as in HCMM. The key point is
the fact that in CMM these figures depend on the dynamic
evolution of the users’ movements. Specifically, they depend
on q and q′, which are not model parameter, but change based
on the nodes movements. Therefore, in CMM it is very hard to
set model parameters to achieve a desired nodes’ behaviour as
far as nodes’ physical positions. On the other hand, in HCMM
E [Tin] and E [Tout] do not depend on the dynamic evolution
of the system, but depend only on f ,n,pr, and pe. This means
that HCMM, while retaining the social theoretical approach of
CMM, also provides simple knobs to control the time spent
by nodes in the preferred physical locations. These remarks
are confirmed by Figure 13, which plots E [Tin] and E [Tout]
for CMM and HCMM as functions of q (time is normalised
with respect to T

(in)
).

IV. CONCLUSIONS

In this paper we have provided a way to join two com-
plementary and promising approaches to realistic mobility
modelling for opportunistic networks: defining user move-
ments based on i) human social relationships, and ii) at-
tractions to users’ preferred locations. The resulting Home-
cell Community-based Mobility Model (HCMM) still shows
well known statistical features observed in real traces, and
provides simple knobs to control the time spent by users in
their preferred locations.
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