CAMEO Software Architecture and APIs:
Technical Specification

Valerio Arnaboldi, Marco Conti, Franca Delmastro

HT Institute, National Research Council of Italy
via G. Moruzzi, 1 - 56124 Pisa, Italy
email: firstname.lastname@iit.cnr.it

Abstract

Mobile systems are characterized by several dynamic components like
users’ mobility, devices’ interoperability and interactions among users and
their devices. In this scenario context-awareness and the emerging concept
of social-awareness become a fundamental requirement to develop optimized
systems and applications. CAMEO is a light-weight context-aware middle-
ware platform for mobile devices designed to support the development of
real-time Mobile Social Networks (MSN) applications. MSN extend the
paradigm of Online Social Networks with additional interaction opportuni-
ties generated by the users’ mobility and opportunistic wireless communi-
cations among users which share interests, habits and needs. Specifically,
CAMEO is designed to collect and reason upon multidimensional context
information, derived by the local device, the local user and their physical in-
teractions with other devices and users. It provides a common API to MSN
applications through which they can exploit context- and social-aware func-
tionalities to optimize their features. CAMEO has been implemented on An-
droid platform together with a real example of MSN application. Validation
and performance evaluation have been conducted through an experimental
testbed. This report describes the technical specifications of CAMEQ’s soft-
ware architecture and related APIs and must be considered as additional
material to the work presented in [1].

Keywords: mobile social networks, middleware, context-aware,
social-aware, opportunistic networks

1. CAMEQO Software Architecture: the high-level description

CAMEQO is a context- and social-aware middleware platform designed to
efficiently support the development of Mobile Social Network applications,
belonging to heterogeneous domains (e.g., health and well-being, work life,
social support). It is designed as a light-weight and modular software archi-
tecture consisting of a single software package containing two subpackages
(as shown in Figure 1):

e Local Resource Management Framework (LRM-Fw), aimed at
implementing features strictly related to the interaction with the local
resources of the device, both hardware (e.g., embedded sensors) and
software (e.g., communication primitives and programming libraries).
It is also in charge of managing the interactions between the node
and the remote sources (e.g., single external sensors, sensors networks,
centralized repositories)

e Context-Aware Framework (CA-Fw), aimed at storing and pro-
cessing all the collected context information.

In addition, CAMEO provides an API towards MSN applications and
it directly interacts with an external module for the user’s profile definition
called User Profile Module.

1.1. Local Resource Management Framework

LRM-Fw is composed of three software modules:

Network Manager. In order to deploy real-time MSN, CAMEOQO allows
mobile devices to exploit all the opportunities to communicate and exchange
data through opportunistic communications. To this aim, the Network Man-
ager interacts with all the available wireless communication interfaces (e.g.,
WiFi ad-hoc, WiFi infrastructure mode, Bluetooth) selecting the best com-
munication medium under specific conditions. It is also in charge of notifying
other interested CAMEQO components (specifically, the Transmission Man-
ager) about the status of the connectivity between the local mobile device
and her neighbors (e.g., WiFi link status and quality information, Bluetooth
active/not active status).

Transmission Manager. After the Network Manager has selected the
wireless interface for the transmission of a specific message (either middle-
ware or application messages), the Transmission Manager is in charge of
establishing the communication channel between a source and a destination

Opportunistic MSN Applications

1 Personal .
Tourist-MSN Health System Urban Sensing ‘ }

- — - -

CAMEO MSN API

oo | ‘ | i

Forwarding
Manager

Application
Manager

CA-Fw

Context B i
Manager Module

e

Network

‘

@ User Profile Module

. Transmission

Device Context | |
Manager

Provider

‘ @ Operating System % @

Manager Administrator

LRM-Fw

Database ‘

Figure 1: CAMEO software architecture.

node through the use of standard communication primitives (e.g., socket,
TCP/UDP protocols and related parameters). It also receives notification
messages from the Network Manager in case of link errors or disconnection
events towards the message destination node.

Database Manager. It is responsible for the interaction of LRM-Fw
with a SQL database that implements the CML model of CAMEOQO well-being
context described in [1].

Device Context Provider. It is in charge of collecting context data
derived from internal components of the mobile phone (e.g., embedded sen-
sors, storage capacity level, battery level, resources consumption). Data
specification and related parameters (e.g., sampling frequency for GPS or
accelerometer, CPU occupancy threshold) are provided by the interaction
of this module with the CA-Fw, following the directions provided by upper-
layer applications or internal modules. In addition, Device Context Provider
is able to manage data collected from heterogeneous sources (either inter-
nal or external to the mobile device) as specific support to participatory
and opportunistic sensing services. It is worth noting that both embedded
and external sensors are generally characterized by proprietary specifica-
tions and data formats. Thus, in order to guarantee the interoperability
of CAMEO with those sources, we defined a new light-weight standard

for efficiently identifying and encoding heterogeneous sensing information
on mobile devices, called Sensor Mobile Enablement (SME). SME is im-
plemented in CAMEO as a software library managed by Device Context
Provider. SME is compliant with OGC Sensor Web Enablement (SWE)
standards [2] designed for web services dedicated to collect sensing data.
In this way CAMEO is also able to establish bidirectional communications
with sensor web services and to forward this information to the opportunis-
tic network. We recently presented SME and its integration in CAMEO
in [3], demonstrating the efficiency of SME for sensing data management.

1.2. Context-Aware Framework

CA-Fw represents the core of CAMEOQO, being responsible for the
collection, management and processing of all the context information
(local, external and social) and the development of internal context- and
social-aware services (e.g., forwarding protocols, resource sharing services).
It is composed of the following software modules:

Beaconing Module. It implements the periodical context exchange
among 1-hop neighbors. This procedure allows CAMEO to discover new
neighbors inside the current physical community and to build up and main-
tain the social context of the local node. Only a subset of the local context
components are disseminated through the network. Specifically, the device
context is not exchanged with other neighbors due to its real-time nature.
In fact, it represents local measurements of internal resources with limited
temporal validity, and it is generally locally processed to evaluate the fea-
sibility of specific actions (e.g., the local node receives a download request
from a neighbor and it checks its local resources, like battery lifetime, before
accepting and managing it). As far as the sensing context is concerned, only
a summary of the available information on the local node is included in the
beaconing message so that interested nodes and applications can directly
request specific information. In order to avoid the periodical transmission
of large quantity of data, the Beaconing Module implements an optimized
data exchange procedure.

Forwarding Manager. It is responsible for the implementation of end-
to-end communications. Specifically, it is designed to implement optimized
forwarding protocols for opportunistic networks to successfully deliver a mes-
sage to a multi-hop destination in case of intermittent connectivity (e.g.,
HiBOp forwarding protocol [4]).

Application Manager. It is in charge of establishing a communication
channel between each MSN application and CAMEO through MSN APT (see

Sections 1.3 and ?77?).

Context Manager. The main functions of Context Manager can be
summarized in the following points: i) management of the well-being local,
external and historical contexts; ii) interaction with the Database Manager
to retrieve/store context data from/to the database; iii) implementation of
algorithms and procedures for context reasoning, identification of specific
situations and related middleware adaptations as detailed in Section ?77.

In order to provide efficient and reliable access methods to context in-
formation at run time, Context Manager implements four separate data
structures that partially reflect the database content:

well-being Local Context (wbLC): it contains the context informa-
tion related to local context components divided in the following structures:
User Profile derived from Context Manager interactions with the User Pro-
file Module! (see Figure 1); Application/Service Context specified by each
application developed on top of CAMEO and by single internal services;
Device Context derived from the interaction of Context Manager with De-
viceContextProvider. The latter contains all the information related to the
device’s status, such as sensor’s data and the available resources.

External Context (EC): it contains references to the external context
types available in the database (e.g., pollution data, noise data, weather
data). In this way, EC maintains a list of the available sensing services on
the local node and a set of pointers to the respective data actually stored in
the local database. Since the external context can be represented by a huge
quantity of data, it is not efficient to manage it at run time through simple
data structures.

current community Social Context (ccSC): it contains the list of
current 1-hop neighbors of the local node and their context information
disseminated through periodical beaconing messages. The content of ccSC
represents thus a snapshot of the physical community of the local node in a
specific instant.

historical Social Context (hSC): it contains the list of communities
previously visited by the local node associated with a timestamp as the tem-
poral information of the last visit and a counter to maintain the number of

!We decided to design this module externally to CAMEOQ since it can be implemented
as a stand-alone application dedicated to the collection of user’s personal information
independently of the running applications and services. However, the information provided
by User Profile Module are integrated in wbL.C with information provided by other services
and applications that are mainly related to the user’s interests, habits and so on.

visits in a predefined period of time. In addition, for each visited community
hSC maintains the list of encountered nodes and their context. This infor-
mation is essential to implement social-oriented policies for the evaluation of
context-based utility functions (see [1] for details). Information in hSC are
periodically updated, maintaining at run time a subset of all the historical
context based on predefined configuration parameters (e.g. time threshold,
frequency). All the other information are stored in the database.

1.8. CAMEQO APIs towards MSN applications

CAMEO APIs provides a full access to CAMEOQO context- and social-
aware functionalities for the development of MSN applications. Since the
communication between CAMEO and MSN applications is bidirectional, we
define two distinct APIs for applications’ requests and CAMEQO notifica-
tions (e.g., messages, events, errors). In the following we provide a high-
level description of the possible interactions between MSN applications and
CAMEOQ. The complete specification of CAMEQO APIs can be found in Sec-
tion 2. A practical example of MSN application and its implementation is
then presented in Section 1.5.

e Registration. Each application must register to CAMEOQO in order
to access its internal functionalities. During the registration a unique
identifier is assigned to the application and a callback interface is es-
tablished. In the case an application is interested in an internal or
remote service provided by CAMEO (e.g., embedded sensing features
or remote connections to external sensing services), it must specify the
type of service it is interested in during the registration procedure, so
that CAMEO will be able to satisfy its request.

e Application Context specification. Each application specifies the
set of context information relevant for its execution in order to be
evaluated by CAMEQO Context Manager. This information character-
izes the running application on the local node and it is disseminated
over the network through the beaconing procedure as part of the local
context.

e Utility function evaluation. Each MSN application can define an
algorithm for the evaluation of the utility of a specific content. The
utility function is expressed in the form of a set of criteria to be applied
to a given content through logic operations. The application can ask
CAMEO to evaluate the utility function by passing the utility function,

the id of the content to be evaluated (stored by CAMEQ) and the social
policy.

e Message sending/receiving. MSN applications can send/receive
messages through peer-to-peer communications and they are notified
in case of failure during a message sending®. Through these messages
applications can send /receive messages using their own communication
protocols, as well as messages to request the exchange of context data
(both local and remote) and services.

CAMEO notifications towards MSN applications are implemented using
the callback interfaces created during the registration procedure. To manage
different concurrent applications, CAMEQO maintains the list of registered
and currently active callback interfaces assigning a logical communication
port to each of them. A special communication port is used by Context
Manager for the context exchange over the network and its interactions
with the other CAMEO internal modules. CAMEOQO notifications are related
to the following events:

e New application content discovery. Every time CAMEOQ finds a
new application content from a remote node it informs the interested
application.

e New service discovery. Every time CAMEO finds a new service
available on a remote node (including sensor web services or external
sensing devices) it informs the interested applications. In case of a
sensing service, CAMEO informs the interested applications by send-
ing them the description and the capabilities of the involved sensors.

e New neighbor discovery. CAMEO informs the applications when
a neighbor enters/exits the 1-hop area.

e New community detection. CAMEOQO informs the applications
when the community detection algorithm results in a physical com-
munity change.

2In case of exchange of large application contents, system’s primitives for the standard
message exchange can present overload problems due to the predefined memory size as-
signed to each Android process (32MB). To overcome this issue, CAMEO implements a
file segmentation procedure splitting the requested content into fixed length data chunks
(512Kb each). The correct reception of each chunk is acknowledged, so that the sender
node can manage automatic retransmissions of not acknowledged chunks.

1.4. Android implementation

To validate CAMEO functionalities and evaluate its performances, we
implemented it on Android 4.2.1 platform. We have chosen Android due
to its constantly rising popularity and because it naturally supports Java-
based distributed and concurrent applications in addition to an easy access
to system information like those related to embedded devices (such as GPS,
sensors, camera). To better understand our implementation choices, we
briefly introduce the definition of basic Android software components pro-
vided to developers. For additional technical details we refer the reader
to [5].

The Application Framework is the main Android component provided
to the external developer. On top of this framework, developers can design
their own applications with the same full access to APIs used by the core
applications. An Android application is composed of four components: (i)
Activities, representing the Graphical User Interface of the related applica-
tion; (iii) Services, which allow the background execution of independent
tasks; (iii) Broadcast Receivers, which listen for broadcast event communi-
cations among different applications and the other Android modules; (iv)
Content Providers, which make a specific set of application’s data available
to other applications. The activation of the three first components and their
following interactions are implemented through the intent mechanism: asyn-
chronous messages that are exchanged between the Application Framework
components, containing the definition of the action to be performed.

Since CAMEQ is a middleware platform supporting multiple concurrent
applications, we decided to implement it as an Android Service. Thus, MSN
applications, designed and developed to interact with CAMEQ, are imple-
mented as Android applications. A single instance of CAMEQ, running on a
separate process, is shared among all the applications. To support the com-
munication between CAMEQO and MSN applications, we exploit an Android
technique based on the interprocess communication paradigm (IPC). The in-
terfaces defined for IPC are based on Android Interface Definition Language
(AIDL) similar to other popular languages based on CORBA or COM speci-
fications (e.g., Java CORBA IDL [6] and C++ CORBA IDL [7]). The data
that can be transferred through AIDL interfaces is limited to Parcelable
objects, which are designed as a high-performance IPC transport objects.
This mechanism allows fast data exchange to the detriment of limited de-
sign flexibility due to the lack of standard functions for the marshalling of
Parcelable objects.

Regarding CAMEO support for direct communication between devices,
the current implementation uses WiFi ad-hoc mode, configurable only

through customized firmwares requiring root access to the device. To solve
this issue, we are working to support communication based on WiFi Direct
standard [8], natively supported by the latest versions of Android.

1.5. Tourist-MSN Application

To better understand how to develop a real MSN application on top of
CAMEO, we present the Tourist-MSN [9]. It is aimed at improving people
experience during tourist visits by allowing individuals to create, collect
and share useful information, related to geo-located points of interest (POIs).
Contents are exchanged through opportunistic communications among users’
mobile devices. Tourist-MSN provide users with two main functionalities:

e the generation and sharing of multimedia contents, denoted as post
and characterized by a title, a textual content (to comment or express
impressions related to the POI), and optional information like audio
files, images or videos. Posts are divided into categories (e.g., event,
cultural visit, transportation, restaurants) in which users can express
their interests.

e real-time textual communications through an opportunistic text chat
inside a limited group of users in proximity. Each chat is identified by
a title and a category.

Tourist-MSN specifies (through MSN API) the following information as
application context to be disseminated over the network by CAMEOQO beacon-
ing procedure: (i) title and category of each post and chat generated by the
local user; (ii) user’s interests in specific categories of posts and chats. In this
way, each node becomes aware of other nodes running Tourist-MSN in its
current physical community and the list of available contents. Even though
each node maintains a historical profile of neighbors and contents encoun-
tered in different physical communities, the management of a real-time chat
is limited to the current physical community due to intermittent connectiv-
ity conditions characterizing opportunistic networks. However, since posts’
distribution results in an asynchronous content exchange, Tourist-MSN pro-
vides CAMEO with the utility function algorithm designed to implement
the context- and social-aware dissemination of posts among different physi-
cal communities. Moreover, since users can increase the content of a post by
adding their own comments, CAMEQ is also able to manage and distribute
the content updates to the interested nodes.

Every time a new post or a new chat matching the interests expressed
by the local user becomes available in the neighborhood, CAMEQ notifies

fo]s] B & O E @ 1216eu [ae B EQE@ 35w

i o]s] B @ 12:44em
i

% B

Claudio wrote: I definitely agree! I

Post title had a really tasty steak for dinner!

Valerio wrote: The local wine is
pretty good as well! :-)

Franca wrote: The meals are too
expensive! For sure you can get
the same quality for lower prices...

English v

(a) List of available posts. (b) Interface for the cre- (¢) Post comments
In green: posts already ation of new posts

downloaded. In red:

posts available for down-

load

o8] BB D@ 128w

Type here

Bob joined the chat room
Franca joined the chat room
Bob left the chat room

You wrote: Any one selling tickets
for Arcade Fire concert???

Valerio wrote: Not me... I'm afraid
those tickets are sold outl... Sorry..

Franca wrote: You might find
some at the main gate some hour
before the event begins... the
price will be higher though! Good
luck!

(d) Real-time opportunis-
tic chat

Figure 2: Screenshots of Tourist-MSN Graphical User Interface

10

Tourist-MSN with an event message. The application then notifies the user
through the GUI about the availability of the new content and the user can
decide whether to download the post (or join the chat room) or not. In case
the local node experiences a community change and there is one or more
new available contents, CAMEO evaluates the Tourist-MSN utility function
on each content with respect to the interests of users previously encoun-
tered in a different physical community by implementing Uniform Social
(US) or Most Frequently Visited (MFV) social-oriented policies described in
[1]. CAMEO provides then the application with a ranked list of the avail-
able contents and checks the feasibility of the related download procedures
with respect to the local node’s physical requirements (e.g., memory avail-
ability, permanence time in the current community). In case a new content
with a higher utility becomes available but additional resources are required,
CAMEO will discard the content with minor utility. The main purpose of
this mechanism is to maximize the utility of contents to be disseminated in
the network following specific social-oriented policies. Figure 2 shows some
screenshots of Tourist-MSN application running on Google Nexus One.

In the following we present some code snippets related to the develop-
ment of main Tourist-MSN operations. As a first step, Tourist-MSN starts
using CAMEO establishing a connection between its Service component and
CAMEO platform.

@0verride
public int onStartCommand(Intent i, int startId, int flags) {
Log.i(tag, "Connecting to CAMEOD...");

//Connect to CAMEQ and start it if not already running
bindService(new Intent("cnr.CAMEO.PLATFORM"),

CAMEOConnection, Context.BIND_AUTO_CREATE);
return START_STICKY;
}

Then, Tourist-MSN has to make a specific registration request to
CAMEO in order to have full access to CAMEO functionalities (e.g., to
send and receive messages over the network, to exploit content dissemina-
tion protocols). In the following code we report the basic instructions used
by Tourist-MSN to require a registration, providing a logical port and a call-
back interface used by CAMEO for event notifications and replies. Note that
the variable called CAMED represents the interface used by Tourist-MSN to in-
teract with CAMEOQO. Once connected, Tourist-MSN can use local messages
with predefined values to access CAMEO functionalities (in the example
below Tourist-MSN asks CAMEO for the local user’s context).

11

@0verride
public void onServiceConnected(ComponentName name,
IBinder service) {
CAMEO = PlatformInterface.Stub.asInterface(service);
if (!'registered) {
try {
resp = CAMEQO.registerClient (PORT, callback);

if (resp.getType() == LocalMessage.SUCCESS) {
registered = true;
key = (Long) resp.getContent();
try {
resp=CAMEQ.sendLocalRequest (new LocalMessage(
LocalMessage.GET_USR_CONTEXT, key));

As far as CAMEO notifications are concerned, Tourist-MSN must define
the events for which it wants to be notified and the subsequent operations
by using the callback interface defined during the registration procedure.
In the example below, Tourist-MSN is notified by CAMEO when a new
message is received, thus it must implement onReceiveMessage function
specifying the operations to be executed for each type of message received.

private final CallbackInterface.Stub callback =
new CallbackInterface.Stub() {
Q@0verride
public void onReceiveMessage(LocalMessage packet,
byte[] source) throws RemoteException {
TouristMessage msg = (TouristMessage) packet.getPayload();
switch (msg.getType()) {
case TouristMessage.CHAT_MESSAGE:
String chatMSG=(String)msg.getContent();

As a last example, we show in the following how Tourist-MSN specifies
its utility function to CAMEQ. The application can request CAMEO to
evaluate the utility function after a specific event (e.g., new available content,
community change). In general, the utility function is expressed as a list of
criteria to be applied to a given content and its properties through a logical
operation. Each criterion is independently evaluated, then the results of all

12

the criteria are combined together as a weighted sum (according to the given
weights and the specific social policy), to obtain the overall utility of the
content. As an example, in the following piece of code, Tourist-MSN specifies
the utility function as a match between the property “category” of a post
and the interest of the user, defined by the preference value “museum”, and
it requests CAMEO to evaluate it every time a new content is available in
the neighborhood. If the result of the logical operation is true, the criterion
assumes the value specified by the last parameter (weight) passed to the
function addEvaluationCriterion (1 in this case).

private final CallbackInterface.Stub callback =
new CallbackInterface.Stub() {
@0verride

//property = ’category’, preference = ’museum’
//opType = ’match’, weight = 1
utilityFunction = new ContentEvaluator ()
.addEvaluationCriterion(property, preference,
opType, weight);
socialPolicy = 1 //MFV policy
public void onReceiveMessage(LocalMessage packet,
byte[] source) throws RemoteException {
TouristMessage msg = (TouristMessage) packet
.getPayload();
switch (msg.getType()) {
case TouristMessage.NEW_POST:
CAMEOD.evaluateUtility(utilityFunction,
msg.getId(), socialPolicy)

2. CAMEQO Technical Specification

In this Section we give a detailed description of CAMEQO software ar-
chitecture, starting from software packages up to class definition. All the
classes have been written in Java programming language for the Android

OS.
CAMEO is composed of the following software packages:

e cnr.CAMEO
e cnr.CAMEO.CAFw

13

e cnr.CAMEO.CAFw.ContextManaging
e cnr.CAMEO.LRMFw

e cnr.Common

2.1. enr.CAMEO

This package contains basic classes of CAMEOQ, such as the class of the
main GUI launched when CAMEO starts running, some custom exceptions
classes and the external module dedicated to the user context management
(User Profile Module). The package is composed of the following classes:

e MainActivity: extends Activity (Android). This class represents the
main GUI of CAMEO and it is the first class launched by CAMEOQO.
The purpose of the MainActivity class is to provide a simple graphi-
cal interface by which the user can control the execution of CAMEO
service (i.e., start and stop its execution). Moreover, the GUI con-
tains a button by which the user can launch the UserProfileModule
Activity.

e RemoteListEntry: This class defines an entry of the Android Call-
backRemoteList, the structure where the applications callback inter-
faces are maintained. CAMEQ uses these callback interfaces to com-
municate with the registered applications. When an application reg-
isters to CAMEOQO, a RemoteListEntry is added to the RemoteCall-
backList. The entry is removed in case of application log out or
crash.

e ServiceManager: extends Service (Android). It is the main com-
ponent of CAMEO as the Android Service that, running in back-
ground, provides all context-aware and opportunistic features to the
registered applications. The ServiceManager is launched by the Main-
Activity and is responsible for the creation of all the components
of CAMEO CA-Fw (i.e., the ContextManager, the Forwarding mod-
ule, and the Beaconing module). The functionalities of the Applica-
tionManager (see Section 1.2) are implemented inside the Service-
Manager, indeed the ServiceManager implements an AIDL interface
called PlatformInterface, which provides access to CAMEO MSN
APIs to the applications. The ServiceManager takes also care of the
following tasks:

1. to register each application that wants to interact with CAMEO,
setting a unique identifier (i.e., a port number);

14

<<Java Class>>

<<Java Class>>
@ ReliableMessageNotSentException

cnr CAMED

<<Java Class>>

@ MainActivity
cnr.CAMED

%F tag: String o

% gerialVersionUID: long
Object: Object
o dest_ip: InetAddress

@ UserProfileModule
cnr CAMED

o context: HashMap<Chject, Object>

& MainActivity ()
@ onCreate(Bundle)void

& ReliableMessagehotSentException(Ohject InetAddress)
@ getMessageObject():Object
@ getDest_ip(:InetAddress

o tag: String
picture: byte[]
name: EditText

o

age: EditText

<<Java Class>>

cnr CAMED

[c] UnreliableMessageNotSentException

mail: EditText
community: EditText
avatar. ImageView

oooo

o

% gerialVersionUID: long
o messageObject: Object
o dest_ip: InstAddress

o broadcast: boolean

o androidContext: Context

& UserProfileModuls ()
@ onCreate(Bundle):void
@ loadOldState():void

@ isBroadcast():boolean
@ getMessageObject():Object
@ getDest_ip(:InetAddress

& UnreliableMessageNotSentException(Object InstAddress boolean)

@ changePicture(View):void

@ getRealPathFramURI(Uri): String
@ onActivityResult(int,int Intent):void
@ readDefaultPict():void

<<Java Class>>
(© MyRemotecCallbackList<E>
enr.CAMEQ
o size: int
& MyRemoteCallbackList()
@ register(E):boolean
@ unregister(E):boolean
@ onCallbackDied(E):void

-clients

<<Java Class>>
(@ RemoteListEntry
cnr.CAMEO

o port: int

o key: lon

o callback: Callbackinterface

@ getPort(jint

@ setPort(int):void

@ getKey():long

@ setKey(long):vaid

@ getCallback():Callbackinterface

@ setCallback(Callbackinterface):void
& RemoteListEntry(int lang,Callbackinterface)
@ clone():RemoteListEntry

@ asBinder():[Binder

0«

-portinterfaces
keyinterfaces

<<Java Class=>
@ serviceManager
cnr.CAMEO

o CM: ContextManager

o FW: Forwarding

o TM: LRMCAInterface

o BE: Beaconing

o started: hoolean

o gen: Random

o cal: Calendar

o tag: String

o clientRegistredEvent: RegistredEvent_Client
o clientsMewEvent: NewEventCallbackList
% usedPorts: boolean|

< platformBinder. Stub

o receiver: BroadcastReceiver

& SeniceManager()

@ onCreate(j:void

@ onStatCommand(lntent,int,int):int

@ loadFilterSettings(ContextManager):void

@ onDestroy():vaid

g getClient(long): RemoteListEntry

g getClientFromPort(int): RemoteListEntry
sendBroacast(RemoteCallbackList<RemotelistEntry> LocalMessage):void
sendBroadcastEvent(LocalMessage)void
sendDefaultSensorEvent(LocalMessage):void
sendMewSensorEvent(LocalMessage String long,DeviceEvent|]):void
onBind{Intent):1Binder
sendDeviceEvent(DeviceContext Integer, String, Long DeviceEvent([]j:void
newMeighbour(inetAddress RemoteContext):void
comunityChanged(String):void
neighbourContextUpdated{inetAddress Remaote Context):void
notifyMessageReliable(Cbject InstAddress)void
notifyMessageUnreliable(AbstractMessage InetAddress)void
notifyConnectionLoss():void

notifyConnectionResume():void

neighbourDut(InetAddress)void
notifyMessagetoApp(Object int InstAddress) void

=

PO OO DDDDDOEEE

Figure 3: cnr.CAMEO package - UML class diagram

15

2. to receive and process requests coming from the registered appli-
cations (see Section 3 for further details);

3. to notify the applications when an event occurs or a message is
received (using the identifier to select the right application). A
detailed description of this notifications can be found in Section 4.

e UserProfileModule: extends Activity (Android). This class defines
the module in charge of acquiring and managing the user profile (e.g.,
preferences, personal profile, ...). The UserProfileModule is a GUI
component that allows the user to insert and successively modify his
personal information into a set of pre-defined fields (e.g., name, gender,
age, home community, preferences).

e ReliableMessageNotSentException: extends Exception. This class
defines a custom exception used to handle the errors generated
when CAMEO tries to send a message using the reliable trans-
mission protocol (TCP), but the TransmissionManager (package
cnr. CAMEO.LRMFw) is not active or it is in idle state.

e UnreliableMessageNotSentException: extends Exception. This
class defines a custom exception used to handle errors generated when
CAMEQO tries to send a message using unreliable transmission (UDP),
but the TransmissionManager (package cnr.CAMEO.LRMFw) has
not been started yet or it is in idle state.

2.2. enr.CAMEO.CAFw

This package contains all the classes related to the Context-Aware Frame-
work (CA-Fw, see Section 1.2 for further details on the services provided by
this framework). The package is composed of the following classes:

e Beaconing. This class represents the BeaconingModule in charge of
generating periodic messages, also known as beacons (defined by the
BeaconMessage class), used by CAMEO to advertise the presence of
a node and its context towards the 1-hop neighbors in the network.
Beaconing uses a Java Timer to generate the beacons periodically
and passes them to the TransmissionManager, which is responsible
for sending the messages over the network.

e BeaconMessage: extends AbstractMessage. This class defines the
structure of a beacon message. It contains a BeaconContent and a
timestamp that reflects the beacon creation time. The timestamp is

16

<<Java Class>>

(© Message

cnr CAMED CAFw
% serialVersionUID: long
o opportunisticPort: int
o payload: Object

@ setOpportunisticPort(int):void
@ getPayload(): Object

@ setPayload{Thject)void

@ toString(): String

<<Java Class>>
@ AbstractMessage
cnr CAMEQ CAFw

5 serialVersionUID: lon
W TYPE BEACON. int
W TYPE MESSAGE: int

<<Java Class>>
(@ Beaconing
cnr.CAMED.CAFw

o tag: String
o TM: LRMCAlntedace
o CM: ContextManager

<<Java Class=>
(® BeaconContent
cnr CAMEO CAFw

@ setlifetime(int):void

@ setHopCount(int):void

@ getType():int

@ getlifetime():int

@ getHopCount():int

o getPayload(): Object

o setPayload{Object):void|

& Message() ”St!‘PE int o isEmpty: hoolean

& Message(int) Y lifetime: int % BEACOMING INITIAL DELAY: int
& Message(int, Object) o hopCount: int % BEACOMING INTERVAL: int

@ getOpportunisticPort():int & Abstracthessage(int) o beaconTimer: Timer

& Beaconing(ContextManager LRMCAInterface)
setTimeStamp(leng):void
getTransmissionManager(): LRMCAInterface
setTransmissionManager{LRMCAInterface).void
getBeaconPayload():BeaconContent
getTimeStamp():long

getCM(): ContextManager

% serialVersionUID: long

o usrVersion: int

o devVersion: int

o appsVersions: HashMap<Integer Integer>
o filterlD: String

& BeaconContent()

& BeaconContent(intint HashMap<Integer Integer>)
@ getUsiVersion(): int

setUsiVersion(int):void

getDewwersion():int

setDewwersion(int):void

getFilterlD): String

setFilterD(String):void
getAppVersions():HashMap<integer Integers>
setAppsWersions(HashMap<Integer Integer=):void
addAppWersion(int,int):void
removeAppWersion(int):boolean
hasApps():boolean

toString(): String

200000 OO D DD

-payload

\SJ serialVersionUJID: lon
0. o timeStamp: long

<<Java Interfaces=>
@ CALRMinterface
cnr CAMEQ .CAFw

setCM(ContextManager):void

startSenvice():void
stopSemnice():void

PCCOCOCPOOOOOD®

notifyBeacon(inetAddress BeaconMessage):void

updateBeaconContent(BeaconContent):void

-beacon .1

<<Java Class=>
© BeaconMessage
cnr.CAMEQ.CAFw

@ getTimeStamp():long

@ setTimeStamp(long):void

& BeaconMessage()

& BeaconMessage(BeaconContent)
@ getPayload():BeaconContent

@ setPayload{Object) void

@ toString(}:String

<<Java Class>>
@ Forwarding
cnr CAMED.CAFw

o CM: ContextManager
o PAL: LRMCAInterface
o OM: SeniceManager
< tag: String

notifyMessageReliable(Object InetAddress)void

notifyConnectionLoss():void
notify ConnectionResume():void

)

notifyMessageUnreliable{AbstractMessage, InetAddre ss)void

& Forwarding(SenviceManager,ContextManager, LRMCAInterface)

@ sendMessage(Object,InetAddress,int,boolzan):void
@ notifyMessage(Message InstAddress) void

@ getCM():ContextManager

@ setCM({ContextManager):void

@ getTM{:LRMCAInterface

@ setTM{LRMCAInterface):void

@ getSM():SericeManager

@ setSM(SeniceManager):void

Figure 4: cnr. CAMEO.CAFw package - UML class diagram

17

used in conjunction with the contexts’ version numbers included in the
BeaconContent.

e BeaconContent: implements Serializable. This class defines the
content of a beacon message. This content is formed of a set of ver-
sion numbers related to user’s and applications’ context running on
CAMEOQO and they are defined to optimize the dissemination of con-
text’s updates on the network. If CAMEQ crashes or is restarted, the
version numbers are reset to zero. In this case, the timeout contained
in the BeaconMessage is thus used to identify contexts with the same
version number, but with possibly different content. BeaconContent
also contains the IP address of the sender, which is used as the unique
node’s identifier.

e CALRMInterface. This interface is used for the communication be-
tween the Local Resource Management Framework (LRMFw) and the
Context-Aware Framework (CAFw). The modules of the LRMFw can
send their notifications towardsthe CAFw using this interface, without
knowing which module will elaborate the requests, ensuring the mod-
ularity of the system. It is implemented by ServiceManager.

e Forwarding. This class is designed to implement an opportunistic
routing algorithm. Currently the class is empty and CAMEO uses
only 1-hop communication. In future work we plan to implement a
context-based forwarding protocol as HiBOp [4].

e AbstractMessage: implements Serializable. This is an abstract
superclass defining a generic message, containing the properties and
methods in common between the BeaconMessage class and the Mes-
sage class.

e Message: extends AbstractMessage. This class defines a message to
be exchanged over the network between applications through CAMEOQO.
The message has a payload field, inherited from the superclass Ab-
stractMessage. This generic payload represents the content of the
message. To deliver the message to the right application at the desti-
nation node, CAMEOQO assigns a port number to each registered appli-
cation and each Message is marked with the respective port number.

2.8. enr.CAMEOQO.CAFW.ContextManaging

This is a sub-package of cnr.CAMEQ.CAFW containing all the classes re-
lated to the management of context information. The content of the package

18

<<Java Class>>
© ContextManager
enr.CAMEQ.CAFw ContextManaging

<<Java Class>>
® RemoteContext
enr.CAMEQ.CAFw ContextManaging

o tag: String

% CM_PORT: int

% COMMUNITY STABLE DELAY: int
checkNeighboursTimer: Timer

beaconer: Beaconing

farwarding: Forwarding
devContextProvider: DCPContextManagerListener
oppManager: SeniceManager

contexts: ContextTable
localDeviceContext: Map<Object Object>
beaconState: BeaconContent
androidContext: Context

database: DBAdapter

community: String

shiftingCommunity: String

of STABILTY THREADS: int

a netFilter: Filter

o PP PODDDODDODDOOODO

o

@ incStabilityThreads():void

@ decStabilityThreads():void

@ getStabilityThreads():int

@ updateDeviceContext(Map<Object Object>):void

& ContextManager(Forwarding,SernviceManager,Beaconing, Context Filter DBAdapter)
setUpFilter(String List<String>):void

stopFilter():void

startAll():void

stopAll{):void

updateDB():void

getNodeContext(InstAddress): NodeContext
getNodesOfCommunity (int, String): ArrayList<NodeContext>
setVersionsReq(inetAddress TableEntry BeaconContent):HashMap<Integer Integer>
notifyBeacon(instAddress BeaconContent long):void
receiveMessage(Object InetAddress)void
getNextHop(inetAddress):InetAddress

registerAppl(int):void

unregisterAppl(int):void
updateApplContext(ApplicationContext,int):void

getUsrContext(): ApplicationContext
getDeviceContext():ApplicationContext
getAppContext(int):ApplicationContext
evaluateltility(List< Object> int): Map<Object Double>
getCommunities Subset(): List<String>

getContentinfo(Cbject Map<Object Object>):Map<Cbject Object>
getContentLtilityFarCommunity (ContentEvaluator Map<Object, Object> String,int): Double
getContext{LocalContext): ApplicationContext
updateContext(boolean HashMap<Object, Object>):LocalContext
updatelserContext(HashiMap<Object, Object>)void
evaluateCommunity():void

getActualComm():String

updateCommunities(String):void

= startCacheCleaner():void

@ loadUsrContext():void

= loadState():int

= saveState():void

E¢CEEOCEEOCOCOOOOOOOOROOEOOOO

[

%F serialVersionUID: long

o isFullContext: hoolean

& RemoteContext()

@ update(RemoteContext)void

& clean()void

@ getValue(Object): Object

< setValue(Object, Object) void

< sefValues(HashMap<Object, Object=):void
@ getValues():HashMap<Object, Object>

< setlsFullContext{boolean): RemoteContext
@ isEmpty():boolean

<<Java Class>>
G AbstractContext
enr.CAMEQ.CAFw ContextManaging
5 serialMersionUID: long
< version: int
< pairs: HashMap<Object, Object>
& AbstractContext()
@ getVersion()int
o getValue(Object) Object
<f* setValue(Object, Object) void
< setValues(HashMap<Object, Object>) void
@ toString():String

m\oa 1-appContexts\0..*

<<Java Class>>
@ LocalContext
enr.CAMEQ.CAFw ContextManaging

5 serialVersionUID: long

o history: TreeMap<Integer HashMap<Object, Object>>
o cleanupPaoint: int

% MULL PERCENTAGE BOUND: short

o nullReferences: int

& LocalCaontext()

@ getPairs():HashMap<Object, Object>

@ getSubset(int) RemoteContext

@ getValue(Object): Object

@ removeFromHistory (Object,int):void
addToHistory(HashMap<Object Object> int boolean):void
setValue(Object, Object)void
setValues(HashMap<Object,Object>):void
contains(Object):boolean

cleanup(int):boclean

e ¢ ¢m

-device/0..1

<<Java Class>>
® Contextvalue
cnr.CAMED CAFw ContextManaging
& age: int
& value: Object
& ContextValug(int,Object)
@ toString():String

Figure 5: cnr. CAMEO.CAFw.ContextManaging package - UML class diagram (1)

19

<<Java Class=>

<<Java Class>> (® ContextTable
e ContextMessage cnr.CAMEQ CAFw Contextianaging
cnr CAMED CAFw ContextManaging 5 MAIN TABLE: int
% serialVersionUID: long % MAIN_LIFE TIME: long
% USER: int % MAIN_START DELAY: int
% DEVICE: int &F MAIN_DELAY: int
% APPS: int % CACHE TABLE: int
o remoteState: BeaconContent % CACHE LIFE TIME: long
o contexts: Serializable] 5F CACHE START DELAY: int
o request: boolean % CACHE DELAY: int
& ContextMessage(boolean) % PORT RANGE: int
@ setRequest(BeaconContent):void o table: DBAdapter
@ getRequest():BeaconContent & ContextTable(Context DBAdapter)

@ getUserContext():RemateContext

@ getDeviceContext():RemoteContext

@ getAppsContexts():HashMap<integer RemoteContexts
@ setUsrContext(RemoteContext):void

@ setDevContext(RemoteContext):vaid

@ setAppContexts(HashMap<Integer RemoteContext=):void getAndCacheEntry(InetAddress): TableEntry

@ getContext(int): Object removeAppContext(inetAddress int TableEntry):void
m setContext(int, Object):void @ toString(): String

@ isRequest():boolean

updateEntry(InetAddress ModeContext)void
addEntry(InetAddress TableEntry):boolean
removeEntry(InetAddress) boolean
isAliveMNode(InetAddress):boolean
getEntry(InetAddress): TableEntry

o000 OO®®

@ getNodesRunningApp(int): ArrayList<NodeContext=>
© toString():String o getModesOfCommunityRunningApp(int String): ArrayList<ModeContext>
= addToCache(InetAddress TableEntry) void
@ cachelsEmpty():boolean
@ cachelterator():lterator<Entry<InetAddress TableEntry==
@ getAllRemoteContexts(int):Map<Object Object>
<<Java Class>> @ refreshCache():void
® TableEntry -zache
cnr CAMED CAFw CortextManaging 0.
% serialVersionUID: long
o timeStamp: leng
o lastTimeSeen: long <<Java Class>>
& TahleEntry(NodeContext) © NodeContext i
@ setGlobalContext(NodeContext):void = cnr..CAMEO.CAFw.Camex‘lMamagmg
@ getGlobalContext():NodeContext serialVersionUID: long
@ updateUsrContext(Remote Context):vaid a usr: RemoteContext
@ updateDevContext(RemoteContext):void ~globalContext ° dev‘_Remme.Context
© updateAppContext(int RemoteConte xt):void o applications: HashMap<Integer RemoteContext>
@ hasAppContext(int):boalean & ModeContext(RemoteContext Remate Context HashMap<Int...
© toString():String 0..17] & ModeContext()
a getlastTimeSeen():long @ setAppContext(RemoteContext,int):void
@ setlastTimeSeen(long):void o getUsrContextVersion():int
@ updatelastTimeSeen():void @ getDevContextVersion():int
@ setTimeStamp(long):void @ getApplicationVersion(int):int
@ getTimeStamp():long @ getUsr):RemoteContext
@ setUsr(RemoteContext):void
@ getDev(:RemoteContext
@ setDev(RemoteContext):void
@ getApplication(int): RemoteContext
<<Java Interface=> @ getApplications():HashMap<Integer RemoteContext>
@ DeviceContextUpdater @ setApplications(HashMap<Integer RemoteContext=):void
cnr CAMED CAFw ContextManaging © hasAppsContexts(:boolzan
@ updateDeviceContext(Map<Object Object=) void 6 toString(-String

Figure 6: cnr. CAMEO.CAFw.ContextManaging package - UML class diagram (2)

20

is the following:

e AbstractContext: implements Serializable. This is a superclass rep-
resenting a generic context. The AbstractContext contains a version
number and an HashMap representing the key-value pairs related to a
context.

e DeviceContextUpdater. This interface allows the ContextManager
to update the status of the local device context following the input of
Local Resource Management Framework .

e ContextManager: implements DeviceContextUpdater. This is the
main class for the management of context data. The ContextManager
is responsible for the maintenance of context information related to the
user, the device and the applications involving the local node and the
remote nodes encountered in the network. It is in charge of exchang-
ing ContextMessages between nodes in the network, performing the
synchronization of context data between peers. The ContextManager
manages the Context, adding, updating or removing context informa-
tion related to remote nodes when needed. Moreover, it maintains
the LocalContext, containing the context data of the local node and
the External Context, containing context data coming from external
sources. Through the DeviceContextUpdater, the ContextManager
exposes the methods used by the applications to modify the local de-
vice context. The ContextManager checks the beacons received from
the Beaconing module to find if a neighbor has entered or quit the
1-hop area. When a new neighbor is detected, the ContextManager
adds an entry to the Context. Then, it periodically checks the ccSC
(see Section 1.2 for further details) to determine if a neighbor has left
the 1-hop area. The ContextManager also evaluates, after an explicit
request received from an application, the utility of one or more ap-
plication content for one or more nodes of a community or a set of
communities by using the utility function provided by the application
and by adopting the social-oriented polices required by the applica-
tion. The ContextManager is also responsible for the discovery of the
current community of the local node. As far as the external context
is concerned, the ContextManager receives from the applications the
type of external context they are interested in at the registration time.
Then, it informs the underlying framework (LRMF - see Section 2.4) by
passing the external context types required by the applications. The
ContextManager is notified by the underlying framework when new

21

external sensing services are available and it informs the interested ap-
plications. The applications can decide to directly contact the sensing
services to receive the related data, by sending special messages to
CAMEO through the API, as specified in 3. These messages are pro-
cessed by the ContextManager, which checks the ExternalContext
data structure before passing the request to the underlying framework
and, in case the requested information is already in the local memory,
it passes it to the application.

ContextMessage: implements Serializable. This class defines a spe-
cial type of message used to exchange context information between
nodes in the network. The Beaconing module advertises available con-
text data inside the 1-hop neighborhood. If a node finds new available
context information from a new neighbor, or a new version of a context
from a known neighbor, it sends a request to the remote node through
a ContextMessage, eventually indicating the version of the context
it already has to perform an incremental synchronization. The node
which receives a context request sends its whole context (or part of it
with respect to the version number received from the other node) to
the requester, using a ContextMessage. The ContextMessage is used
for user, application, and external context components.

Context. This class represents the data structure holding the con-
text information related to remote nodes. Specifically, this class im-
plements the data structures defined as ccSC, hSC and EC (see Sec-
tion 1.2). The ccSC data structure is implemented as a Java Map
object, where the IP address of the remote nodes is used as an index
and each entry contains the context data of the remote node. When
a new neighbor is detected, the ContextManager notifies the Context
object, which adds an entry to the ccSC. If the beacons of a neigh-
bor are not received for a certain period of time, the ContextManager
asks the Context object to remove the respective entry from the ccSC.
In this case the Context object moves the information related to the
node that has left the 1-hop area from the ccSC to the hSC. The ccSC
and the hSC are also accessed by the ContextManager during the
evaluation of the utility function for a given application content. The
Context object maps the data in the persistent storage, maintained
by the LRMFw.

LocalContext: extends AbstractContext. The LocalContext rep-
resents the context information related to the local node, including

22

the application and the user context. It is the implementation of the
well-being Local Context (wbLC). This data structure is implemented
as a set of Java HashTable, each of which represents a context (i.e.,
user, device and application) and contains its key-value pairs. The
information of the LocalContext is sent to the other nodes in the
network using BeaconMessage and ContextMessage objects. When
the ContextManager receives a ContextMessage with a request for a
certain context with a specified version number, the ContextManager
checks if the version number and the timestamp provided by the re-
mote node are valid, then it returns the subset of information required
by the remote node to synchronize its context data with the local data.
Each change related to the data of a certain local context is tracked
within a Java TreeMap object called history, so that each entry of the
history, indexed by a version number, points towardsthe key-value
pairs modified during the update. Each application can provide multi-
ple updates at the same time to avoid frequent context updates which
can lead to network congestion due to the potentially large amount of
data to be exchanged for the synchronization procedure. Subsequent
updates of the same context key-value pairs are collapsed into the last
version number of the history data structure to reduce the TreeMap
size. If the number of updates of a context data exceeds a pre-defined
threshold, all the versions are collapsed into the last version number
of the history.

ExternalContext: extends AbstractContext. This class defines the
structure of the External Context data structure (EC). It contains
information regarding data collected from external components, such
as wearable sensors or fixed sensing stations. It is exchanged with
remote nodes similarly to the LocalContext. The ExternalContext
object maps the data in the database related to the external context,
maintained by the LRMFw.

NodeContext: implements Serializable. The NodeContext class de-
fines a wrapper for all the context information related to a remote
node and represents a generic entry for the hSC of the Context ob-
ject. The NodeContext object contains the user context and the list
of application contexts related to a remote node.

RemoteContext: extends AbstractContext. This class defines a
generic context related to a remote node. A Remote context contains
the key-value pairs that defines the context.

23

<<Java Class=>
@ UnreliableReceiver
cnr.CAMED LRMFw

4 socket: DatagramSocket
& UnreliableReceiver()

@ interrupt():void -unrél i
@ run():void i}
= closeSocket():veid -
~unRecSenica,0..1
<<Java Class>>
@ UnreliableReceiverService
cnr CAMEO LRMFw
o receivedPacket: DatagramPacket
& UnreliableReceiverSenice(DatagramPacket)
@ run{):void
eliabl

<<Java Class>> 0
® UnreliableSender
cnr CAMED LRMFw
a socket: DatagramSocket
& UnreliableSender()

@ interrupt():vaid
@ run(}:void
@ closeSocket():void

<<Java Class>>

(@ ReliableReceiver
cnr.CAMED LRMFw

& socket: SeverSocket

<<Java Class>>
© TransmissionManager
enr CAMED LRMFw

% tag: String

o UNRELIABLE QUEUE CAPACITY: int
o RELIABLE QUEUE CAPACITY: int
“ UNRELIABLE PCORT: int

% RELIABLE PORT. int

o olManager: CALRMInterface

o |ocallP: InetAddress

o gueuesAreAccepting: boolzan

& TransmissionManager(CALRMInterface)

@ start()void

@ stop():void

@ sendReliable{AbstractMessage InetAddress)void

@ sendUnreliable{AbstractMessags InstAddress boolzan):void
& getlocallpAddress():InetAddress

ender

treliableSender

<<Java Class>>
(© ReliableSender
cnr . CAMED LRMFw

4 socket: Socket

e
K] & ReliableSender()

@ interrupt():void
éB—/ @ run():void

@ clossSocket():void

<<Java Interface>>
@ LRMCAInterface
cnr CAMED LRMFw

@ start():void
@ stop():vaid

@ sendReliable(AbstractMessage InetAddress)void
@ sendUnreliable(AbstractMessage InetAddress boolean)void

-reliableQueue 0.

-unreliableQueuel0..*

<<Java Class>>

& ReliableReceiver()
@ interrupt():void

@ run{):void

@ closeSocket():void

<<Java Class>>
© OutgoingUnreliableMsginfo
enr CAMEQ LRMFw

© OoutgeingReliableMsginfo
cnr.CAMED LRMFw

~relRecSemvice\D..1

<<Java Class>>

© ReliableReceiverService

enr CAMEQ LRMFw

o obj: Object

o dest_ip: InetAddress
o broadeast: boolean
o port: int

o obj: Object
o dest_ip: InetAddress
o port: int

o connectionSocket: Socket

& ReliableReceiverSenice(Socket)

@ run{)void

a° OutgoingUnreliableMsglnfo(Cbject InetAddress boolean int)

& getObj():Object
& getDestlp():InetAddress
& getBroadeast(:boolean

a getPon()int

a° OutgoingReliablzMsgInfo(Object InetAddress int)

& getObj():Object
& getDestlp():InetAddress
a getPon()int

Figure 7: cnr. CAMEO.LRMFw package - UML class diagram (1)

e CcscEntry: implements Serializable. This class represents an entry
of the ccSC data structure, indexed inside the Context object with the
IP address of the respective remote node. Each CcscEntry contains
a NodeContext object and a timestamp, used to discover a neigh-
bor_out event (in case the beacons of a certain remote node are not
received for a pre-defined period of time).

2.4. enr.CAMEO.LRMFw

This package contains all the classes concerning the Local Resource Man-
agement Framework of CAMEQ. This framework is in charge of performing
all the lower level tasks, such as the exchange of messages over the network,
the management of the wireless network interface, the management of the

24

<<Java Class>>
(© contextProvider
cnr CAMED LRMFw

% BATTERY LEVEL: String

% BATTERY WOLTAGE: String

% BATTERY TEMP: String

% BATTERY STATUS: String

% BATTERY TECHNOLOGY: String
% BATTERY HEALTH: String

% 05 NAME: String

% 05 WERSION: String

% JAVA VERSION: String

% USER MAME: String

% AVAILABLE MEM: String

% LOW MEM: String

% THRESHOLD MEM: String

o CM: DeviceContextUpdater

o activeSensors: HashMap<Sensor,Boolean>
o androidContext: Context

o task: Timer

o BatteryReceiver: BroadcastReceiver

<<Java Class>>
® DBAdapter
cnr CAMEO LRMFw

“f TAG: String

“f DATABASE NAME: String

“f DATABASE VERSION: int

“f NODE_ID: String

“f APP_CONTEXT ID: String

f COMMUNITY 1D: String

“f CREATE COMMUNITY TABLE: String
“f CREATE NODE TABLE: String

“f CREATE APP CONTEXT TABLE: String
o db: SQliteDatabase

& ContextProvider(Context DeviceContextUpdater)
setActive(List<Sensor=):void

@ setlnactive(List<Sensor=):void

@ startContextRetrieving():void

@ stopContextRetrieving():void
@
1]

(]

run():void

setSysteminfo():void

<<Java Interface>>
O DCPContextManagerListener
cnr.CAMEOD LRMFw

@ sethActive(List<Sensor>).void
@ setlnactive(List<Sensor>)void
@ startContextRetrisving():void
@ stopContextRetrieving():void

& DBAdapter(Contex)

@ onCreate(SQLiteDatabase):void

@ onlpgrade(SQLiteDatabase,int,int):void

a visitCommunity(String):long

a insertMewNode(InetAddress String, TableEntry):long
a updateMode(InetAddress String TableEntry): int

a insertMewAppContext(InetAddress, Ohject int):long
a updateAppContext(inetAddress, Object,int):int

a deleteMNode(InetAddress):hoolean

a delsteAppContext(inetAddress int):boolean

a getNumCfvisits(String): int

a getNodeEntry(InstAddress): TableEntry

a getNodesOfCommunity(String):List<InetAddress>
a getNodeslPOfCommunityRunningApp(int String): List<InetAddress=>
a getNodeslPRunningApp(int):List<lnetAddress>

a containsNode(InstAddress):boolean

a containsAppContext(InetAddress,int):boolean

a containsCommunity(String): boolzan

a getMFVCommunities(String): List<String>

a clearDB():void

&f serialize(Object):byte|

& unserialize(byte[]): Object

Figure 8: cur. CAMEO.LRMFw package - UML class diagram (2)

25

SQLite database and the access to the information related to the hardware
sensors of the mobile device. The package is composed of the following
classes:

e ContextProvider: extends Thread, implements DCPContextMan-
agerListener. The ContextProvider is in charge of acquiring in-
formation regarding the context of the device, including sensors data,
battery status, memory usage, etc. The ContextProvider periodi-
cally checks the status of different hardware components with different
sample rates. These parameters are defined by the ContextManager
class of the CA-Fw based also on applications’ requirements. In ad-
dition, the ContextProvider autonomously look for external sensor
data from fixed stations or sensors connected to the device, according
to the types of sensor specified by the running applications. It man-
ages the communications between the device and the external sources,
by implementing different communication standards, including Sensor
Mobile Enablement [3], as described in Section 1. When it discovers
new available external sensor data, it notifies the upper layer, which
eventually informs the interested applications. If the upper layer needs
to download external context data from remote sources, it informs the
ContextProvider, which starts the download and passes the obtained
data to the CAFw.

e DBAdapter: extends SQLiteOpenHelper (Android). This class con-
tains all the methods used to access and manage the SQLite database
defining the model of well-being context.

e DCPContextManagerListener. This interface allows the ContextMan-
ager to retrieve information concerning the device, gathered through
the ContextProvider.

e LRMCAInterface. This interface defines the methods to be used by
the CAFw to communicate with the LRMFw.

e NetworkManager. It interacts with Android to manage the wireless
network interface. It can request Android to activate/deactivate the
network interface and it listens for status changes of the interface.

e OutgoingReliableMsgInfo. This class represents a generic message
stored inside the outgoing queue of the TransmissionManager. Each
of these messages has a destination address, a port (used by CAMEO
to identify the destination application) and a payload containing the

26

message itself. This class is related to a message to be sent using the
reliable communication protocol (TCP).

OutgoingUnreliableMsgInfo. This class represents a generic mes-
sage stored inside the outgoing queue of the TransmissionManager.
Compared with the OutgoingReliableMsgInfo, this class concerns
unreliable communications (UDP).

TransmissionManager: implements LRMCAInterface. The Transmis-
sionManager is responsible for the data transmission over the network.
It provides two different types of communication: reliable and unreli-
able. The former uses Java ServerSocket and Socket objects, while
the latter uses DatagramSocket objects for data exchange. The Trans-
missionManager maintains two messages queues (for reliable and un-
reliable communication respectively).

2.5. ecnr.CAMEO.LRMFw.Sensors

This package contains all the classes aimed at managing the collection of
data coming from the different hardware sensors (embedded in the mobile
device). The names of the classes are self-explanatory. The content of the
package is the following:

AccelerometerManager
GyroscopeManager
LightManager
MagneticFieldManager
OrientationManager
ProximityManager
PressureManager

TemperatureManager

2.6. cnr.CAMEQO.common

This package contains the classes shared between CAMEO and MSN
applications, which must be imported by applications as external libraries
to allow the application’s access to CAMEQ functionalities.

27

<<Java Class>>
(© ApplicationContext
cnr.Common

% serialVersionUID: long

o valuePairs: HashMap<Object, Object>
o nullReferences: ArrayList<Object>

o comparator: Comparator<Object>

& ApplicationContext()

@ getValue(Object): Object
getComparator(): Comparator<Object>
addValue(Object, Object)void

removeyalus(Object):void

isEmpty():boolzan
update(Platforminterface long):void

OO OOOOO

@ getValuesMap():Map<Chject, Object>
@ clean()void
@ toString():String

addvalues(Set<Entry<Cbject, Object>>):void

removevalues(Set<Entry<Object Object>>):void

getValues(): Set<Map.Entry<Object, Object>>

<<Java Class>>
@ InternalComparator
cnr Common
5 serialVersionUID: long
& InternalComparator()
@ compare(Object, Object):int

-evaluators

<<Java Class>>
® LocalMessage

cnr.Common

<<Java Class>>
® Evaluatoer
cnr.Commen

5 serialVersionUID: long
o propertyTag: Object

o preferenceTag: Object
o weight: double

o netMessage: boolzan

% UNREGISTER APP: hyte

% UPDATE APP CONTEXT: byte

% GET USR CONTEXT: byte

% GET DEV CONTEXT: byte

% GET APP_CONTEXT: byte

% GET REMOTE APP CONTEXT: byte
% GET CONTEXTS OF COMUMITY: byte
% EVALUATE UTILITY: byte

% SUCCESS: byte

% FAILED: byte

S LINK_LOSS: byts

%F LINK_RESUME: byte

% NEIGHBOUR IN: byte

% NEIGHBOUR OUT: byte

% COMMUNITY CHANGED: byte

% NEIGHBOUR COMTEXT UPDATED: byte

o type: byte

o content: Serializable

o applicationkey: long

o payload: byte[]

o payloadSize: int

% CREATOR: Creator<Localllessage>

& Evaluator(Chbject Object double)
@ getPropertyTag(): Object

@ getPreferenceTag(): Object

@ getWeight():double

<<Java Class>>
@ ContentEvaluator
cnr Commaon

% gerialVersionUID: long
% TAG: String
o contentlD: Object

& ContentEvaluator()

@ getlterator():lterator<Evaluators
@ setContentID(Ohbject):void
@ getContentlD():Object

@ addEvaluationCriteria(Object, Object, double):void
@ addEvaluationCriteria(Object, Object):void

& LocalMessage()

& LocalMessage(byte)

& LocalMessage(byte long)

& LocalMessage(byte Serializable)
& LocalMessage(byte,Serializable,long)
@ getStringType(): String

& LocalMessage(Parcel)
isWalidType(byte) boolzan
hasMetwarkContents():boolzan
isRequest(:boolean
getType(:byte
setType(byte):LocalMessage
getApplicationkey():long
setApplicationkey(long):veid
getContent(): Object
setContent(Serializable):void
getPayload(): Object
setPayload(Object):void
setPayloadBytes(byte[]):void
getPayloadBytes():byte[]
getPayloadSize():int
setPayloadSize():void

@ toString(): String

@ describeContents():int

@ writeToParcel(Parcelint):void
@ setErmor(String):LocalMessage
& getBytes(Object):byte

& getObject(byte[]): Object

@ getEror(): String

eecCcOCOCOOOOOOOOOOER

Figure 9: cnr. CAMEO.Common package - UML class diagram

28

e ApplicationContext: implements Serializable. This class repre-
sents the context related to a specific application as key-value pairs
directly specified by the application. Each application can store or re-
trieve its own ApplicationContext object using CAMEO MSN API.

e ContentEvaluator: implements Serializable. This class is aimed
at giving a simple way to define a set of criteria to be used by the
ContextManager during the evaluation of the utility function. Each
application can create its own ContentEvaluator, defining a list of
fields (called evaluators) which represents the tags of the application
contents to be matched with the respective preferences of the user. The
application can weight the different evaluators with a value between 0
and 1. The utility function is computed as the weighted sum of the bi-
nary results of the matches of the fields defined by the evaluators. For
example, a hypothetical application exchanging music content over the
network defines two evaluators, named “genre” and “format” respec-
tively, the former mapping the musical genre of an audio file with the
preference of the user regarding musical genres and the latter identify-
ing a link between the file format of the application content (e.g., mp3,
wav, ...) and the preferred format of the user. The ContextManager
matches the values mapped by the evaluators, returning 1 if the value
related to the content and the preference of the user match, and 0
otherwise. The utility function calculated by the ContextManager for
this application would be the sum of the values returned by the match
of the two evaluators multiplied by their respective evaluator weights,
then multiplied by the weight given to the community to which the
involved nodes belong to, defined by the chosen social-oriented policy
(see [1] for the detailed algorithm).

e LocalMessage: implements Parcelable (Android). This class defines
the format of the messages exchanged between the applications and
CAMEO. A LocalMessage can be an application request sent by the
applications towards CAMEO or a CAMEOQO event sent towards the ap-
plications. A LocalMessage contains a TYPE field, which determines
the type of request or notification. It contains also additional infor-
mation (e.g., an application message to be sent over the network or
additional parameters required by some requests) placed in two differ-
ent optional fields. The first field is called content and it is used for
local communication, while the second field is called payload and it is
used for remote communication. The different types of LocalMessage

29

are explained in more details in Section 3.

In addition, CAMEOQO provides two AIDL interfaces to manage the com-
munication between the middleware platform and each MSN application.
Specifically:

e MSNInterface (AIDL). This interface contains the methods offered by
CAMEDO to the applications. The application directly uses MSNInter-
face object to call CAMEQO methods.

e CallbackInterface (AIDL). This interface defines the methods called
by CAMEO to send various notifications to the applications. The
application must implement this interface and pass the instantiated
object to CAMEQ, which uses it to send each notification to the ap-
plication.

These interfaces are detailed in the following sections.

3. MSN Interface

MNS interface provides the following functionalities to MSN applica-
tions.

8.1. Register with CAMEO

e Name of the service primitive: RegisterClient

e Description: This method allows an application to register with
CAMEO. CAMEO approves the registration if the port specified by
the application is not yet in use, otherwise it denies the registration.
The application can provide the types of external sensing services it is
interested in. If CAMEOQO already has some information about the spec-
ified sensing service types in the local memory, it generates a series of
NEW_REMOTE_SERVICE_AVAILABLE events (see 4 for further de-
tails). CAMEO adds the interface provided by the application during
the registration to the callback interface list and uses it to communi-
cate back to the application. A registered application can access the
services provided by CAMEOQ, using all the other methods described
in this Section. If an application is not registered, it can only use
the RegisterClient primitive. A call to any other method will cause
CAMEO to reply with an error message.

e Type: Confirmed, Synchronous, Local

30

e Semantics: The primitive shall provide the following parameters:

1. Port (input)
— Type: integer
— Accepted values: a valid integer

— Description: The port number used as unique ID to redirect
the notifications and the messages received by CAMEOQO over
the network to the right application.

2. Eaternal Context Type (input)
— Type: string
— Accepted values: a valid external context type
— Description: The external context type in which the appli-
cation is interested. It is used by CAMEO to decide which
kind of external context to forward to the application in case
the node encounters external sources of sensor data.
3. Callback (input)
— Type: CallbackInterface
— Accepted values: a valid CallbackInterface object

— Description: This is the interface that the application must
provide to CAMEQ in order to register. CAMEOQO uses these
interfaces to communicate back with the applications.

4. LocalMessage (output)

— Description: This is the returned value containing the result
of the registration procedure.

— Returned value: FAILED if the registration procedure has
failed or a list of ids related to the external context data
locally available otherwise.

e When generated: This primitive is generated when an application
wants to register with CAMEO.

e Effects of receipt: The receipt of this primitive by the ServiceM-
anager (which implements the PlatformInterface interface) causes
CAMEO to start the registration process. The ServiceManager
checks if the port provided by the application is already in use. If
this is the case it denies the registration, otherwise it accepts it.

31

3.2. Send a Generic Local Request

e Name of the service primitive: SendLocalRequest

e Description: This is a generic primitive provided by CAMEO to
allow each application to request various types of services.

e Type: Confirmed, Local

e Semantics: The primitive shall provide the following parameters:

1. request (input)
— Type: LocalMessage
— Accepted values: a valid LocalMessage object
— Description: This parameter contains the specification of the
request that the application wants to send to CAMEQO. The
request type is specified inside the field TYPE of the LocalMes-
sage object. Additional content required by some requests
can be placed inside the field Content of the LocalMessage
object.
2. LocalMessage (output)
— Description: This is the returned value containing the result
of the request.
— Returned value: FAILED if the request has failed or SUCCESS
otherwise.

e When generated: This primitive is generated when an application
wants to request a service to CAMEO.

e Effects of receipt: The receipt of this primitive by the ServiceM-
anager (which implements the PlatformInterface interface) causes
CAMEO to evaluate and perform the actions required by the applica-
tion, depending on the type of request the application has made. The
different types of requests that the application can send to CAMEO
are listed in the following.

3.2.1. Unregister with CAMEQO
e TYPE of LocalMessage: UNREGISTER_APP

e Description: This type of local request is used by the applications
that want to cancel their registration with CAMEO.

e Additional parameters: none

32

When generated: This local request is generated when an applica-
tion wants to unregister with CAMEO.

Effects of receipt: The receipt of this primitive by the ServiceM-
anager causes CAMEO to unregister the application and returns a
LocalMessage object with the TYPE field set to SUCCESS.

3.2.2. Update Application Context

TYPE of LocalMessage: UPDATE_APP_CONTEXT

Description: This type of local request is used by the applications
that want to update their application context (i.e., add, modify or
delete the key-value pairs of the context data).

Additional parameters: The application context that the applica-
tion wants to store instead of the original one, saved into an Applica-
tionContext object.

When generated: This local request is generated when an applica-
tion wants to update its application context stored inside CAMEO.

Effects of receipt: The receipt of this primitive by the ServiceM-
anager causes CAMEO to update the context information related to
the application that called the primitive. CAMEOQ distributes the new
application context over the network, adding a new version number
and performing the operations described in Section 2.3 regarding the
LocalContext class. The request always returns a LocalMessage with
the field TYPE set to SUCCESS.

3.2.8. Get User Context

TYPE of LocalMessage: GET_USR_CONTEXT

Description: This type of local request is used by the applications
that want to retrieve the user context information.

Additional parameters: none

When generated: This local request is generated when an applica-
tion wants to read the user context information.

Effects of receipt: If the user context has been set, the Service-
Manager returns it to the application inside the field CONTENT of a
LocalMessage object with the TYPE field set to SUCCESS. If the user
context does not exist, the ServiceManager replies to the application
with a LocalMessage with the field TYPE set to FAILED.

33

3.2.4. Get Device Context

TYPE of LocalMessage: GET DEV_CONTEXT

Description: This type of local request is used by the applications
that want to retrieve the device context information.

Additional parameters: none

When generated: This local request is generated when an applica-
tion wants to read the device context information.

Effects of receipt: If the device context has been set, the Service-
Manager returns it to the application inside the field CONTENT of a
LocalMessage object with the TYPE field set to SUCCESS. If the device
context does not exists the ServiceManager replies to the application
with a LocalMessage with the field TYPE set to FAILED.

3.2.5. Get Application Context

TYPE of LocalMessage: GET_APP_CONTEXT

Description: This type of local request is used by the applications
that want to retrieve their own context data.

Additional parameters: none

When generated: This local request is generated when an applica-
tion wants to read their own context data.

Effects of receipt: If the application context has been set, the Ser—
viceManager returns it to the application inside the field CONTENT of
a LocalMessage object with the TYPE field set to SUCCESS. If the ap-
plication context does not exists the ServiceManager replies to the
application with a LocalMessage with the field TYPE set to FAILED.

3.2.6. Get Remote Application Context

TYPE of LocalMessage: GET_REMOTE_APP_CONTEXT

Description: This type of local request is used by the applications
that want to retrieve the application context information of a remote
node.

Additional parameters: The IP address of the remote node of which
the application wants to retrieve the application context.

34

When generated: This local request is generated when an applica-
tion wants to read an application context of a remote node.

Effects of receipt: If the application context has been set for the
given IP address, the ServiceManager returns it to the application
inside the field CONTENT of a LocalMessage object with the TYPE field
to SUCCESS. If the application context does not exists for the speci-
fied IP address, the ServiceManager replies to the application with a
LocalMessage with the field TYPE set to FAILED.

3.2.7. Get Remote Contexts For a Given Community

TYPE of LocalMessage: GET_CONTEXTS_OF_COMMUNITY

Description: This type of local request is used by the applications
that want to retrieve the context information of all the nodes belonging
to a selected community.

Additional parameters: A string representing the unique identi-
fier of the community for which the application wants to retrieve the
context information.

When generated: This local request is generated when an applica-
tion wants to read the context data related to all the nodes of a given
community. This situation usually occurs when the application wants
to evaluate the utility function for a given application content with
respect to the interests of the nodes of a specific community.

Effects of receipt: If the given community identifier is valid and
the set of contexts related to that community inside CAMEO is not
empty, the ServiceManager returns the related context information to
the application in the field CONTENT of a LocalMessage object with the
TYPE field set to SUCCESS. If there is no information inside CAMEO
regarding the given community, the ServiceManager replies to the
application with a LocalMessage with the field TYPE set to FAILED.

3.2.8. Get Sensing Service Data

TYPE of LocalMessage: GET_SENSING_SERVICE DATA

Description: This type of local request is used by the applications
that want to retrieve sensing data from a sensing service on a remote
node.

35

Additional parameters: An ID representing the unique identifier of
the sensing service.

When generated: This local request is generated when an applica-
tion wants to obtain sensing data from a sensing service on a remote
source. The application receives a notification from CAMEO when
a new sensing service is available from a remote source (according to
the sensing services types specified by the application). hence, the
application can use this request to contact the external source and to
obtain the external sensing data.

Effects of receipt: The requested data is downloaded by CAMEO
(or retrieved from persistent memory in case they had been already
downloaded) and are passed to the application inside the field CON-
TENT of a LocalMessage object with the TYPE field to SUCCESS. If the
requested context data do not exists (or the remote service is not avail-
able anymore), the ServiceManager replies to the application with a
LocalMessage with the field TYPE set to FAILED

8.2.9. Evaluate The Utility For One or More Application Contents

TYPE of LocalMessage: EVALUATE UTILITY

Description: This type of local request is used by the applications
that want to obtain an evaluation of the utility function for one or
more application contents with respect to the interests of the nodes of
a previously encountered community.

Additional parameters: A list of ids related to the application con-
tents for which the application wants to evaluate the utility, a utility
function expressed by a list of ContentEvaluator and an integer spec-
ifying the preferred social-oriented policy.

When generated: This local request is generated when an applica-
tion wants to obtain an evaluation of the utility function for one or
more application content.

Effects of receipt: The ServiceManager asks the ContextManager
to calculate the result of the utility function for the given content ids.
The content properties are retrieved from the remote contexts stored
inside CAMEOQO. The ContentEvaluator is used to match the proper-
ties of the given contents with the preferences of the user, found inside
the local user context. To better understand how the ContextManager

36

calculates the utility of the given contents see Section 2.6. If the con-
tents ids passed by the requester application are valid and are known
to CAMEO, the ServiceManager replies to the application with a list
containing the results of the utility function evaluations indexed by the
content id. The result is placed in the field CONTENT of a LocalMes-
sage object with the TYPE field to SUCCESS. If the content ids are
not valid or unknown to CAMEQ, the ServiceManager replies to the
application with a LocalMessage with the field TYPE set to FAILED.

3.8. Send a Message Over The Network

e Name of the service primitive: SendMessage

e Description: This method allows an application to send a customized
message over the network to another node running an application using
the same communication port as the sender.

e Type: Confirmed, Asynchronous, Remote

e Semantics: The primitive shall provide the following parameters:

1. packet (input)
— Type: LocalMessage

— Accepted values: a valid LocalMessage with the boolean field
NET_MESSAGE set to TRUE and the field PAYLOAD set with the
content which the application wants to send over the network.

— Description: This is the content of the message to be sent
over the network.

2. dest (input)

— Type: IP address

— Accepted values: any valid IP addresses

— Description: This is the IP address of the destination.
3. broadcast (input)

— Type: boolean

— Accepted values: { true,false }

— Description: Whether or not the packet must be sent to all
the nodes in the 1-hop area (like a beacon)

4. result (output)
— Type: boolean
— Accepted values: { true,false }

37

— Description: True if the message is successfully processed by
the TransmissionManager. False in case of errors.

e When generated: This primitive is generated when an application
wants to send a message to one or more nodes in the network. It is
typically used to exchange application contexts.

e Effects of receipt: The receipt of this primitive by the ServiceMan-
ager causes CAMEO to pass the message to the ForwardingManager,
which calculates the best next hop for the delivery of the message and
then passes the message to the TransmissionManager, which sends
the message over the network towardsthe destination. If the Trans-
missionManager has not been started yet or is in idle state, a Re-
liableMessageNotSentException (or a UnreliableMessageNotSen—
tException in case of a broadcast message) is thrown.

4. Callback Interface

Each application must extend CallbackInterface, implementing the
methods called by CAMEO to notify events. During the registration pro-
cedure each application passes its custom CallbackInterface to CAMEO.
CAMEO maintains a list of CallbackInterface in a dedicated data struc-
ture. An entry of this list is removed when the respective application logs
out or crashes. The list is indexed by the application identifier. CAMEO
sends two different types of notifications: (i) broadcast notifications (i.e.,
events to be sent to all the registered applications); (ii) direct notifications
(i.e., events, errors or messages destined to a specific application). When
CAMEO sends a notification, it passes to the applications a LocalMessage
object, containing the details of the occurred event. In the following we
provide a detailed description of the methods defined by the CallbackIn-
terface.

4.1. Receive a Generic Asynchronous FEvent

e Name of the method: onNewEvent

e Description: This is a generic method used by CAMEO to notify
different types of events.

e When generated: This method is invoked by CAMEO to notify the
applications about an event occurred.

38

e Parameters returned by CAMEQO: a LocalMessage containing the
details of the notification. The different types of notifications are iden-
tified by the field TYPE of the returned LocalMessage. The types of
event defined by CAMEOQ are the following:

— LINK_LOSS: Generated by the NetworkManager when the sta-
tus of the network interface changes from CONNECTED to DISCON-
NECTED. No extra parameters.

— LINK_RESUME: Generated by the NetworkManager when the
status of the network interface changes from DISCONNECTED to
CONNECTED. No extra parameters.

— NEIGHBOR_IN: Generated by the ContextManager when a new
neighbor joins the 1-hop area. The IP address of the new neighbor
is passed inside the payload.

— NEIGHBOR_OUT': Generated by the ContextManager when a
known neighbor leaves the 1-hop area. The IP address of the
neighbor is passed inside the payload.

— COMMUNITY_CHANGED: Generated by the ContextManager
when the actual community changes. The unique identifier of the
new community is passed inside the payload.

— NEW_CONTENT_AVAILABLE: Generated by the ContextMan-

ager when a new content is available from a remote node.

— NEW_REMOTE_SERVICE_AVAILABLE: Generated by the
ContextManager when a new service is available from a remote
node. The service can also be a sensing service from an external
source matching the preferences of the application.

— NEIGHBOR_CONTEXT_UPDATED: Generated by the Con-
textManager when new information regarding a neighbor con-
text is available. This information can refer to both user and
application contexts. Thanks to this notification the applications
can discover new contents available for downloading from remote
nodes. The IP address of the neighbor and the version numbers
related to its contexts, received from the Beaconing module, are
passed to the application inside the payload object.

4.2. Receive a Message From a Remote Node

e Name of the method: onReceivedMessage

39

e Description: This notification informs the applications about the
presence of an incoming message from a remote node.

e When generated: This method is invoked by CAMEO when it re-
ceives a message for a specific application from a remote node.

e Parameters returned by CAMEQO: a LocalMessage containing the
content of the message and the IP address of the sender.

5. Conclusions

In this report we presented CAMEOQO technical specifications, highlight-
ing requirements and procedures to implement efficient MSN applications
exploiting context- and social-awareness features. CAMEOQO is able to col-
lect, manage and reason upon multidimensional context information, derived
both from physical and virtual worlds, characterizing the user’s profile, her
social behavior, the available services and resources and the surrounding
environmental conditions. Several application domains can benefit from the
analysis and correlation of this context information, contributing to the gen-
eral well-being condition of users and their society. Results presented in
[1] showed the efficiency of CAMEO in collecting and managing well-being
context and supporting the development of MSN applications through real
experiments. Currently we are extending CAMEOQ in several directions, from
the efficient management of heterogeneous context information (mainly re-
lated to heterogeneous sensing devices) up to the implementation of services
based on the emerging paradigm of opportunistic computing. We are also
designing efficient reasoning techniques to make the system able to provide
personalized and situation-aware feedback to applications and final users.

40

References

1]

2]

3]

V. Arnaboldi, M. Conti, F. Delmastro, Cameo: a novel context-aware
middleware for opportunistic mobile social networks, Pervasive and Mo-
bile Computingdoi:http://dx.doi.org/10.1016/j.pmj.2013.09.010.

G. Percivall, C. Reed, J. Davidson, Open Geospatial Consortium Inc
. Sensor Web Enablement : Overview And High Level Architecture .
(2007).

V. Arnaboldi, M. Conti, F. Delmastro, G. Minutiello, L. Ricci, Sensor
Mobile Enablement (SME): a Light-Weight Standard for Opportunistic
Sensing Services, in: International Workshop on the Impact of Human
Mobility in Pervasive Systems and Applications, 2013.

C. Boldrini, M. Conti, A. Passarella, Exploiting users social relations to
forward data in opportunistic networks: The HiBOp solution, Pervasive
and Mobile Computing 4 (5) (2008) 633-657.

Android developer guide.
URL http://developer.android.com/guide/topics/fundamentals.
html

Java corba idl.
URL http://wuw.omg.org/spec/I2JAV/1.3

C++ corba idl.
URL http://www.omg.org/spec/CPP/1.2

Wifi alliance: Wifi direct specifications.
URL http://www.wi-fi.org/discover-and-learn/wi-fi-direct

V. Arnaboldi, M. Conti, F. Delmastro, Implementation of CAMEO : a
Context-Aware MiddlEware for Opportunistic Mobile Social Networks,
in: 12th IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WOWMOM), BEST DEMO AWARD, 2011.

41

