

C

Consiglio Nazionale delle Ricerche

CAMEO: a novel Context-Aware MiddlEware for
Opportunistic Mobile Social Networks

VV.. AArrnnaabboollddii,, MM.. CCoonnttii,, FF.. DDeellmmaassttrroo

IIT TR-02/2012

Technical report

Marzo 2012

Iit

Istituto di Informatica e Telematica

CAMEO: a novel Context-Aware MiddlEware for

Opportunistic Mobile Social Networks

[Technical Report]

Valerio Arnaboldi, Marco Conti, Franca Delmastro

IIT Institute, National Research Council of Italy

via G. Moruzzi, 1 - 56124 Pisa, Italy

email: firstname.lastname@iit.cnr.it

Abstract

Mobile systems are characterized by several dynamic components like
users’ mobility, devices’ interoperability and interactions among users and
their devices. In this scenario context-awareness and the emerging con-
cept of social-awareness become a fundamental requirement to develop
optimized systems and applications. In this paper we focus on a novel
category of pervasive and mobile systems designed to implement new ser-
vices and applications that improve users’ social interactions through the
use of mobile devices. Specifically, we present CAMEO, a light-weight
context-aware middleware platform designed to support the development
of real-time Mobile Social Networks (MSN). MSN extend the paradigm
of Online Social Networks with additional interaction opportunities gener-
ated by users’ mobility and opportunistic wireless communications. MSN
are aimed at creating new and on-demand virtual social networks among
mobile users which share interests, habits and needs by providing own-
generated contents and without requiring a stable Internet connection.
CAMEO provides to MSN applications a set of optimized services for the
collection and elaboration of multidimensional context information in ad-
dition to efficient opportunistic communication protocols. A prototype of
CAMEO has been implemented on Android platform.

Keywords: mobile social networks, middleware, context-aware, social-
aware, opportunistic networks

1 Introduction

Context-awareness is a fundamental requirement in the design of mobile and per-
vasive computing systems. These systems are characterized by a high dynamism
mainly due to users’ mobility, mobile devices’ interoperability, applications’ in-
teraction with the external environment and, last but not least, interactions
among users and devices. The system must be able to rapidly adapt to these
changing conditions and satisfy as much as possible the user’s requirements. In

1

Figure 1: Human, Physical and Virtual Social Networks.

this scenario the use of context information can essentially contribute to the
optimization of system’s functionalities.

In this paper we focus on a novel category of pervasive and mobile systems
designed to implement new services and applications that improve users’ social
interactions through the use of mobile devices. Currently, with the increasing
success of social networking applications and platforms, mobile users are look-
ing for systems which are able to connect them with the others, in order to
share user-generated contents to stimulate discussions on personal opinions or
share experiences. They would like to be connected anywhere and anytime,
through their personal mobile devices, as witnessed by the success of Online
Social Network (OSN) applications and their mobile extensions (more than 100
million people actively using Facebook from their mobile devices1). In OSN
users’ interactions are generally based on existing social relationships, and they
are mainly driven by common interests, creating thus virtual networks of known
users (i.e., friends or friends of friends). In fact, in this case users’ interactions
occur in the virtual world only.

In OSN, users’ interactions occur in the virtual world only. By extending
this scenario with the interaction opportunities generated by users’ mobility and
the emerging success of opportunistic wireless communications [9, 19], we can
observe a convergence of virtual and physical social networks (i.e., network of
contacts among users’ devices while users move in the physical space) [14]. In
this case users and devices that occasionally encounter in a physical location
can automatically discover their own common interests and directly generate
and share content with a peer-to-peer communication, without accessing the
Internet, creating thus a real-time mobile social network (MSN). In this way
the network of devices becomes a proxy of the networks of their human owners.
MSN are both people-centric, mapping human social interactions on the physical
network of electronic devices, and content-centric, providing efficient services
for content dissemination mainly following users’ interests. Figure 1 shows a
representation of human, physical and virtual social networks.

1http://blog.facebook.com/blog.php?post=297879717130

2

This scenario paves the way to the definition of a novel set of mobile ap-
plications designed to improve users’ social experiences by enlarging human
interactions through the use of mobile devices.

Let’s show a practical example. Currently tourists are more and more au-
tonomous in planning their trips and sharing their experiences through the Web,
but they need to search in advance for general information on dedicated web-
sites (e.g., www.tripadvisor.com) or through their social network, in case some
of their friends has useful information on that topic. In this way they can ac-
cess information that has been generated in the past and which is typically not
tailored on the current user context. Simply moving around the city, they can
encounter people that have just visited interesting attractions and that can pro-
vide them useful information not available on the Internet (e.g., “At 3PM there
was 2 hours queue to visit Colosseum”, or “Yesterday dinner at that restaurant
X was awful!”). A context-aware dissemination of this kind of information can
help interested users to re-schedule their visit, further optimizing their time and
avoiding unpleasant experiences.

Mobile Social Networks can also assume an important role in the definition
of novel solutions for resource/information sharing in mobile systems. Let’s
consider the emerging trend of Participatory Sensing applications [6]. Users
generate contents related to air pollution, traffic monitoring, risky areas in a
participatory fashion by exploiting their own resources (e.g., embedded sensors
and camera) and then data is stored on a web server to be shared with others.
These applications are typically web-based and exploit the single user with his
smartphone as a sensor node to collect the data from the environment. In this
way they neglect possibilities offered by the direct interactions among mobile
users and their devices. Opportunistic communications and MSN can further en-
rich participatory sensing applications through the cooperative use of resources
belonging to physically connected devices (i.e., devices that are within the same
wireless communication range). For example, if node A measures a temperature
of 30 ◦C but it is not able to measure the environmental humidity, it can ask this
data to node B, which has the humidity sensor embedded in the smartphone.
Then node A can locally correlate the collected information. In the same way a
node can delegate to another node the computation of a complex operation or
the collection and elaboration of data provided by external sources unreachable
from the local device. In this case the MSN offers an opportunistic computing
service [15].

Several other application domains can be improved by exploiting MSN: from
environmental monitoring to personal safety by generating a real-time network
of social support for risky situations (e.g., alert generated by a Personal Health
System and forwarded to the MSN, advertisement of polluted city areas for
asthmatic patients). In all these scenarios the main target is to improve users’
experiences encouraging users’ and devices’ interactions aimed at sharing useful
information/resources for activities organization and life management in gen-
eral. To this aim it is essential to exploit multi-dimensional context information
(including users’ profile, generated contents, social interactions and information
related to the surrounding environment) in order to provide highly personalized,
efficient and effective services in a really dynamic environment.

In this paper we present CAMEO, a light-weight context-aware middleware
platform designed to support the development of MSN applications on top of
opportunistic networks. In Section 2 we provide a detailed definition of context

3

and context-awareness for MSN. Then, in Sections 3 we present CAMEO soft-
ware architecture. Section 4 describes the main Android components used in
the implementation and the description of the test application used to validate
the prototype and its performances. The technical specification of CAMEO
is presented in Section 5 with a detailed description of software packages and
classes definition. Sections 6 and 7 describe the implementation of CAMEO
MSN APIs, responsible for the management of the interactions between MSN
applications and CAMEO. Finally, conclusions are presented in Section 8.

2 Context-awareness in opportunistic MSN

Currently the success of mobile applications and systems is directly tied to their
potential impact on single individuals, groups of people sharing common inter-
ests and/or habits and, as a final goal, all the members of society. For this reason
there are several application domains in which both research organizations and
IT companies are investing by developing even more sophisticated mobile appli-
cations and systems, from personal health and family life to environment and
social inclusion. Each of these areas contributes to improve the general well-
being condition of people and their quality of life (see figure 2). The general
paradigm of MSN can cover all these areas developing specific applications for
each of them, but mobile systems’ features can be further optimized by a general
platform able to integrate and correlate context information derived from differ-
ent application domains. For this reason CAMEO introduces a general notion
of context defined as well-being context, which provide a two-fold awareness to
the mobile system, context- and social-awareness, by correlating local informa-
tion of both user and his device (like user’s profile, interests, activities and local
resources) with information derived from other users and devices, aimed at defin-
ing communication patterns among devices and social interactions among users.
In this way, context information is used to optimize both lower-layer services,
like networking and resources sharing, and upper-layer MSN applications.

It is worth noting that the ensemble of a user and his mobile devices repre-
sents the core entity of MSN to which we refer with the term “node”. We define
the context of a node as the integration of three main components: the local
context, the external context and the social context (see Figure 3).

The local context represents all the information related to the local user and

Figure 2: Well-being application domains.

4

Figure 3: Well-being context.

his mobile devices including:

• the user’s personal profile (i.e., all the information that describes interests
and behavior of the user, like type and place of work, habits, life style,
timetables). This information is generally provided directly by the user
through dedicated interactions with the mobile device and its applications
(e.g., through a digital agenda).

• the information collected by phone-embedded sensors (e.g., GPS, cameras,
accelerometer, sound sensor), generally related to user’s activity recogni-
tion and sensing of the external environment;

• information related to the mobile device resource management (e.g., bat-
tery level, available storage capacity, CPU occupancy, tasks management);

• context information specified by each application running on the mobile
device (e.g., attributes of contents generated by specific MSN applications,
like comments in Tourist-MSN or physiological parameters of Personal
Health Systems, interests of users in specific contents).

The external context represents the set of information derived by external
sources with respect to the user’s mobile device. These sources are generally
fixed or mobile stations aimed at monitoring specific parameters (e.g., air pol-
lution, noise level, security cameras). This information can be integrated with
participatory sensing data to improve the accuracy and fairness of detected
information.

Finally, to better understand the definition of social context it is necessary to
explain the reference scenario in terms of network of nodes. As previously cited,
in MSN physical interactions among electronic devices within the same wireless
transmission range (i.e., 1-hop wireless communications) reflect the physical
proximity of users carrying the connected devices, creating thus (ephemeral) so-
cial physical communities. At the virtual layer, users are then grouped in virtual
communities referring to their interests, habits or personal profiles. Due to users’
mobility, physical communities can be characterized by a high dynamism, caus-
ing temporary and partial overlaps between physical and virtual communities.

5

Figure 4: Example of physical communities with traveler nodes.

Connections among separate physical communities can be established through
traveler nodes (i.e., nodes that while moving become members of multiple physi-
cal communities), which can be used as message ferries to disseminate content to
interested users/devices that could never be directly connected with the source
of that information. Figure 4 shows a simple example in which nodes belonging
to the same physical community are characterized by different interests (high-
lighted with different colors), defining thus different virtual communities. Nodes
moving between these physical communities can be used to carry data relevant
to the different virtual communities they are in touch with.

The social context of a node represents the local view of the network ob-
tained through 1-hop data exchange between nodes of the same social physical
community. Specifically, by exchanging local context information among 1-hop
neighbors, each node has a view of its current social context in terms of identi-
fication of its neighbors and their local context. In addition, since some nodes
travel from a physical community to another, they collect social context in-
formation related to different physical communities. In our scenario, as it is
generally assumed in the mobile social network literature [11], a home physical
community is associated with each node, representing the community in which
it spends more time and has stronger social links, while the traveling condition
of a node is considered as a temporary visit to other communities driven by its
social links.

The exchange of local context information allows also the local node to iden-
tify the virtual communities of its neighbors, grouping context information that
identifies the same virtual community (e.g., tourists visiting Rome during Christ-
mas holidays). In this way each node can maintain a map of encountered nodes
belonging to different virtual and physical communities to develop optimized
content dissemination protocols. To this aim, the social context of each node is
composed of the social context related to its current physical community, and
the historical social context related to nodes encountered in previously visited
physical communities.

The aggregation and possible correlations of the three components of well-
being context (local, external and social) allows the development of optimized
MSN applications and services, making them able to identify the current situ-
ation the local node is immersed in and to take autonomous decisions for the

6

Figure 5: CAMEO software architecture.

entire system optimization.

3 CAMEO Software Architecture

CAMEO is designed as a light-weight and modular software architecture able
to manage the multidimensional notion of well-being context.

As shown in Figure 5, CAMEO architecture is represented by a single soft-
ware package containing two subpackages: Local Resource Management
Framework (LRM-Fw), aimed at implementing features strictly related to
the interaction with the local resources of the device, both hardware (e.g., em-
bedded sensors, capacity, battery) and software (e.g., communication primitives
and programming libraries), and Context-Aware Framework (CA-Fw),
aimed at storing, elaborating and disseminating all the context information.
In addition, CAMEO provides an API toward MSN applications and it directly
interacts with an external module for user profile definition called User Profile
Module.

7

3.1 Local Resource Management Framework

LRM-Fw is composed of three software modules:

Network Manager. In order to deploy real-time social networks, mobile
devices must be able to exploit all the opportunities to communicate and ex-
change data through opportunistic communications. Therefore, the systemmust
be able to interact with all the available wireless communication interfaces in
order to decide the best communication medium under specific conditions. For
this reason the Network Manager is responsible for the interaction of CAMEO
with the wireless communication interfaces available on the mobile device (e.g.,
WiFi ad hoc, WiFi infrastructured, Bluetooth). It is also in charge of notifying
other interested CAMEO components (specifically, the Transmission Manager)
about the status of the connectivity between the local mobile device and his
neighbors (e.g., wifi link status and quality information, Bluetooth active/not
active status).

Transmission Manager. After the Network Manager has selected the
wireless interface for the transmission of a specific message (both middleware or
application messages), the Transmission Manager is in charge of establishing the
communication channel between a source and a destination node through the
use of standard communication primitives (e.g., socket, TCP/UDP protocols
and related parameters). It also receives notification messages from the Net-
work Manager in case of link errors or disconnection events toward the message
destination node.

Database Manager. It is responsible for the interaction of LRM-Fw with
the SQL database through operating system primitives. The database allows
the permanent storage of selected context data to maintain the historical context
profile and the definition of relationships among the context entities.

Device Context Provider. It is in charge of collecting context data de-
rived from internal components of the mobile phone (e.g., embedded sensors,
storage capacity level, battery level, resources consumption). Data specifica-
tion and related parameters (e.g., sampling frequency for GPS or accelerometer,
CPU occupancy threshold) are provided by the interaction of this module with
the CA-Fw, following the directions provided by upper-layer applications or in-
ternal modules. Device Context Provider must be able to elaborate and combine
data collected from multiple sources (either internal or external to the mobile
device), generally characterized by proprietary data formats. In order to pro-
vide a uniform data format for sensors’ readings, CAMEO integrates Device
Context Provider functionalities with SensorML standard [13]. SensorML de-
fines a standard model (called Observations & Measurements) to express data
observations collected from sensors, enabling interoperability between different
components. In addition, SensorML enriches the information related to obser-
vations with performance characteristics (like accuracy, and threshold values)
and information related to sensors’ discovery, location of sensor observations as
well as processing of low-level sensor observations. SensorML is part of Sensor
Web Enablement (SWE) framework [20], aimed at defining a standard model
and encoding for the interoperability of sensor webs. Although SensorML is
designed for the web, its extreme modularity makes it suitable also for mobile
systems.

LRM-Fw directly interacts with operating system primitives and program-

8

ming libraries to access native functions like multi-thread and client-server com-
munication protocols. For this reason, its implementation depends on the choice
of the mobile device and its operating system. In CAMEO implementation we
decided to use Google Nexus One smartphones running Android 2.2 due to the
current success of this platform, but it can be easily adapted to other mobile
platforms.

3.2 Context-Aware Framework

CA-Fw represents the core of CAMEO, being responsible for the collection and
management of all the context information (local, external and social) and the
development of internal context-based services (e.g., context aware forwarding
protocols, context-based resource sharing services). It is composed of the fol-
lowing software modules:

Beaconing Module. It is responsible for the neighbor-discovery procedure
inside the current physical community and the periodical exchange of context in-
formation among 1-hop neighbors. It allows each node to build up and maintain
its social context. In order to avoid the periodically sending of large quantity
of data, the Beaconing Module implements an optimized procedure based on a
consistency check of Context Manager data structures. This procedure will be
explained in detail after the description of Context Manager functionalities.

Forwarding Manager. It is responsible for the implementation of end-to-
end communications. Specifically, it is designed to implement optimized for-
warding protocols for opportunistic networks to successfully deliver a message
to a multi-hop destination in case of intermittent connectivity (e.g., HiBOp
forwarding protocol [10]).

Application Manager. It is in charge of establishing a communication
channel between each MSN application and CAMEO through MSN API (see
Section 4.1)

Context Manager. The main functionalities of Context Manager can be
summarized in the following points: i) efficient storage and update of local, ex-
ternal and social components of well-being context; ii) elaboration of context in-
formation through the implementation of context-based utility functions. These
features represent the core of context- and social-awareness implementation for
both services and applications. Specifically, the result of an utility function can
represent the utility degree of a content for a specific set of remote nodes, the
ability of the local node to satisfy a remote request of resource sharing or the
identification of the best next-hop neighbor to forward a message to a specific
destination node. Currently, CAMEO prototype implements the utility func-
tion designed for content dissemination on opportunistic networks as detailed
in Section 3.4.

For context storage and update, the Context Manager implements three
separate data structures in order to provide efficient and reliable access methods
to context information:

well-being Local Context table (wbLC): it contains the context infor-
mation related to local context components divided in the following subtables:
User Profile derived from ContextManager interactions with the User Profile

9

Module2 (see Figure 5); Application/Service Context specified by each applica-
tion developed on top of CAMEO and by single internal services; Device Context
derived from the interaction of ContextManager with DeviceContextProvider;
External Context as the set of information received from external sources, e.g.
through sensing applications. This data structure encompasses the original no-
tions of local and external context defined in Figure 3.

current community Social Context table (ccSC): it contains the list
of current 1-hop neighbors of the local node and their context information dis-
seminated through periodical beaconing messages.

historical Social Context table (hSC): it contains the list of commu-
nities previously visited by the local node associated with a timestamp as the
temporal information of the last visit and a counter to maintain the number of
visits in a predefined period of time. In addition, for each visited community
hSC maintains the list of encountered nodes and their context. This informa-
tion is essential to implement social-oriented policies (which will be described in
more details in Section 3.4) for the evaluation of context-based utility functions.
Due to its nature, this data structure needs non-volatile storage.

The content of ccSC represents thus a snapshot of the physical community
of the local node in a specific instant. To collect this information, the beaconing
procedure is in charge of efficiently exchanging relevant information of wbLC
among the physical neighbors. Specifically, we assume that the Device context
component of wbLC is not exchanged with other neighbors due to its real-time
nature. In fact, Device context information is locally elaborated to evaluate the
feasibility of specific actions (e.g., the local node receives a download request
from a neighbor and it checks its local resources, like battery lifetime, before
accepting and managing it), or represents information related to embedded sen-
sors measurements, which generally has a limited temporal validity. Therefore,
due to these strict time constraints, the validity of Device context is not compat-
ible with the transmission over the network. Another component that does not
necessarily require the periodical dissemination on the network is the External
context. This information can be added to beaconing messages in case a service
or an upper-layer application running on neighbors’ nodes is interested in it
(e.g., participatory and urban sensing applications). In this case it is necessary
an explicit request by the application.

As far as the remaining wbLC components, they are disseminated by the
Beaconing module with the following optimized procedure. Each node main-
tains a data structure for each context, representing the history of the changes
made to that specific context. Each entry of this history is associated with a
version number. Each beacon message contains the node identifier and a set of
these version numbers, one for each context component. Every beacon interval
Tb the Beaconing Module broadcasts a beacon message to 1-hop neighbors. Each
neighbor checks in its data structures (ccSC and hSC) if it already has some
information related to the sender node and, in case, if the stored context version
corresponds to the version number embedded in the message. In case the neigh-
bor has no context data related to the remote node, it directly sends a request

2We decided to design this module externally to CAMEO since it can be implemented
as a stand-alone application dedicated to the collection of user’s personal information inde-
pendently of the running applications and services. However, the information provided by
User Profile Module are integrated in wbLC with information provided by other services and
applications that are mainly related to the user’s interests, habits and so on.

10

message for the entire context. Otherwise, in case one of more version numbers
do not correspond with those embedded in the message, it sends a request to
the remote node specifying the version numbers it owns. Then, the remote node
replies with the only context updates made after the received version number.
In this way, the contexts are synchronized incrementally, reducing the amount
of data periodically exchanged and reducing network overhead. Moreover, to
ensure the scalability of the system, when the versions’ history grows beyond
a predefined limit, all the entries are collapsed into a unique version number,
so that a limited amount of data is required to maintain an efficient context
synchronization.

3.3 Community Detection

The dynamic identification of both current physical and virtual community
of a node still represents an open research issue. In the last few years sev-
eral algorithms for physical community detection have been presented in liter-
ature [16–18, 22] mainly based on the analysis of contact duration and number
of contacts between pairs of users and their devices, assuming that individuals
meet at a higher rate if they have one or more mutual friends. By correlating
this information with the local context (and in particular with the personal
user’s profile), we should be able to define cause-effect relationships for which a
specific user is in a specific physical community for a specific period of time (e.g.,
Bob is in the gym community because on Friday, 2pm he attends a yoga lesson).
As far as the virtual community detection, it mainly depends on context model-
ing and reasoning. In fact, assuming that each virtual community is identified
by a specific set of context information shared by involved users, the current
virtual community of a node can be identified analyzing the correspondence of
context values of the local node with those of nodes stored to its social context.
This is relatively easy in case of exact match of the values, but finding general
expressions for the elaboration and correlation of multidimensional information
is a complex research issue that will not be analyzed in this paper.

In order to validate CAMEO in real testbeds, we refer to the simplified sce-
nario explained in Section 2. In this case most nodes are static and only a few
of them sporadically travel from a community to another. Therefore, virtual
and physical communities of static nodes do not change and only traveler nodes
dynamically change their physical community. We assume that each node de-
clares in the User Profile a home community and each traveler node dynamically
detects its current physical community by analysing the home communities de-
clared by its neighbors. The community detection algorithm is formalized in
the next paragraphs.

Considering N as the set of nodes of the entire network, and C as the set
of physical communities declared by nodes of N , we can define the character-
istic function Ic(n, c) to indicate the membership of node n ∈ N to physical
community c ∈ C, where c ⊆ N as:

Ic(n, c) =

{

1 if n ∈ c

0 otherwise
(1)

Assuming also that Neighn,t defines the neighbor set of node n at time t

and that Cneighn,t
⊆ C is the set of communities declared by those neighbors at

11

time t, we can define the current physical community of node n at time t as

ccc(n, t) = argmax
ci∈CNeighn,t

∑

nj∈Neighn,t

Ic(nj , ci) (2)

Therefore, every time a node receives a beacon from a new neighbor,
CAMEO computes (2) through optimized accesses to CA-Fw data structures
to discover the current physical community it is immersed in. This approach
to community detection works well whenever most nodes are static or spend a
limited amount of time outside their home community.

This is a simplified solution for community detection problem that allows us
to validate the efficiency of CAMEO in detecting a change of the social context
of the local node. More advanced solutions are under investigation [12]. The
most effective will be implemented in CAMEO.

3.4 Context-based utility function for content dissemina-

tion

Generally, context-based utility functions are designed to evaluate context infor-
mation in order to optimize specific features of services or applications. Since
content dissemination represents a common functionality of MSN applications,
the definition of a context-based function to determine the utility of a content for
a set of users is essential to optimize content distribution over an opportunistic
network. In fact, the selection of content to be disseminated strictly depends on
users’ interests and nodes’ resource capabilities. In CAMEO we have exploited
the utility-based content-dissemination framework proposed in [8]. Specifically,
the utility function can be defined as follows:

U(c) = ul(c) +
∑

i6=l

ωiui(c) (3)

where ul(c) is the utility of a specific content for the local user, ui(c) is the
utility for the ith community the user is in contact with, and ωi is a weight that
defines the willingness of the user to cooperate with the ith community (i.e., to
spend its own resources to increase content availability for that community). In
this way the local node offers its own resources to download contents available
in its current physical community which can be useful for users belonging to
previously encountered communities, assuming that in the next future the local
node will visit again those communities.

The utility function u is defined by an application or an internal service and
it is passed to the Context Manager through a dedicated interface by specifying
the set of relevant context information and their evaluation algorithm. Every
time a node changes its current physical community, the Context Manager uses
the utility functions to evaluate the usefulness of the contents available in the
new community for the node (or for the nodes it is in touch with).

A node can be characterized by different social behaviors by providing dif-
ferent weights to different communities. In [8] the authors have introduced and
investigated a set of social-oriented policies describing 5 types of behaviors: i)
Uniform Social (US), in which all the visited communities assume the same
weight; ii) Present (P), which favours only the current community; iii) Most
Frequently Visited (MFV), evaluating the frequency of community changes; iv)

12

Future (F) and Most Likely Next (MLN) which require a probabilistic predic-
tion of future visited community. Currently CAMEO supports both US and
MFV policies, leaving to upper-layer applications the evaluation of the utility
of a content for the current physical community. In fact, the applications often
require a direct interaction with the final user to select an interesting content
available on 1-hop neighbors. Therefore, as far as US, all the ω weights are set
to 1 and the Context Manager calculates the utility function for all the previ-
ously encountered communities. For MFV, the ω weights are set proportionally
to the number of visits of the local node to each community. In this way US
policy facilitates data dissemination, because each node picks up all the con-
tents found to be interesting for any previously encountered communities. On
the other hand MVF policy reduces the data dissemination rate optimizing the
local resources dedicated to preventive download procedure.

Other utility functions can be implemented by CAMEO for the optimization
of specific services and applications as further explained in section 6.

4 Android implementation

To validate CAMEO functionalities and evaluate its performances, we imple-
mented it on Android 2.2 platform. We have chosen Android due to its
constantly rising popularity and because it naturally supports Java-based dis-
tributed and concurrent applications in addition to an easy access to system
information like those related to embedded devices (such as GPS, sensors, cam-
era). To better understand our implementation choices, we briefly introduce
the definition of basic Android software components provided to developers.
For additional technical details we refer the reader to [1].

The Application Framework is the main component of Android provided to
the external developer. On top of this framework, developers can design their
own applications with the same full access to APIs used by the core applica-
tions. An Android application is composed of four components: (i) Activities,
representing the Graphical User Interface of the related application; (iii) Ser-
vices, which allow the background execution of independent tasks; (iii) Broadcast
Receivers, which listen for broadcast event communications among different ap-
plications and the other Android modules; (iv) Content Providers, which make a
specific set of application’s data available to other applications. The activation
of the three first components and their following interactions are implemented
through the intent mechanism: asynchronous messages exchanged between Ap-
plication Framework components and containing the definition of the action to
be performed.

Since CAMEO is a middleware platform supporting multiple concurrent ap-
plications, we decided to implement it as an Android Service. Thus, MSN ap-
plications, designed and developed to interact with CAMEO, are implemented
as Android applications. A single instance of CAMEO, running on a separate
process, is shared among all the applications. To support the communication be-
tween CAMEO and MSN applications, we exploit an Android technique based
on the interprocess communication paradigm (IPC). Each application can de-
fine a set of special communication interfaces visible to the other applications
by which they can exchange data. The interfaces are defined through a propri-
etary interface definition language called AIDL (Android Interface Definition

13

Language) similar to other popular languages based on CORBA or COM spec-
ifications (e.g., Java CORBA IDL [5] and C++ CORBA IDL [2]). The data
that can be transferred through AIDL interfaces is limited to Parcelable objects,
which are designed as a high-performance IPC transport objects. This mecha-
nism allows fast data exchange to the detriment of limited design flexibility due
to the lack of standard functions for the marshalling of Parcelable objects.

As far as the support for direct connection between devices, Android does
not allow the activation of Wi-Fi ad hoc mode on its devices either through the
standard graphical interface or programming libraries3. Nevertheless, due to the
open source nature of Android, it is quite simple to overcome this limitation.
Specifically, in the last few years a lot of customized aftermarket firmwares
based on Android Open Source Project (AOSP) were released by third parties.
Some of these natively supports ad-hoc mode, avoiding the developer to be
bound to the tedious work of building his own ad-hoc ready firmware. In order
to have a stable development platform and to allow fast 1-hop opportunistic
communications, we decided to install CyanogenMod 6.1.0-N1 firmware [3] on
our smartphones. CyanogenMod 6 is based on Android 2.2 AOSP code and adds
a lot of useful functionalities in addition to the ad-hoc mode support (see [3]
for details). The devices equipped with the last version of Android (4.0) and
some phones running Android 2.3 with proprietary operating system extensions
support Wi-Fi Direct standard. This standard allows terminals to communicate
directly with each other using Wi-Fi connectivity, in a way similar to ad hoc
mode. Some research work has been done to support opportunistic networking
over Wi-Fi Direct [21]. In future work we will assess the feasibility of adopting
Wi-Fi Direct as the communication standard for CAMEO-enabled devices. At
present, the pure Wi-Fi ad hoc mode provides more flexibility and a full support
for opportunistic communication paradigms.

4.1 CAMEO APIs toward MSN applications

CAMEO defines two different APIs to provide social- and context-aware func-
tionalities to MSN applications. The first one manages MSN applications re-
quests toward CAMEO, while the second one handles CAMEO notifications
toward the applications (e.g., messages, events, errors). In the following we
summarize the features provided by the two APIs; the complete specification
can be found in Sections 6 and 7.

• Registration. Each application must be registered to CAMEO in or-
der to obtain the access to all the internal functionalities. During the
registration a unique identifier is assigned to the application.

• Application Context specification. Each application specifies to
CAMEO the set of context information relevant for its execution. This
information is stored in wbLC table and disseminated over the network
through the beaconing procedure as part of the local context of the node.

• Utility function evaluation. MSN applications can ask CAMEO to
implement the algorithm for utility function evaluation. To this aim the

3This is still valid for the current version including the 2.2 stock firmware shipped with
Google Nexus One

14

application must provide to CAMEO the algorithm and related parame-
ters.

• Message sending/receiving. Applications can send/receive messages
toward remote nodes. They are notified in case of failure during a mes-
sage sending. Since Android launches an independent instance of Dalvik
JVM [4] for each process with a predefined memory size (32MB), the sys-
tem can present overload problems in case of exchange of big application
contents. To avoid this situation, CAMEO implements a file segmentation
procedure splitting the requested content into fixed length data chunks
(512Kb each). The correct reception of each chunk is acknowledged, so
that the sender node can manage automatic retransmissions of not ac-
knowledged chunks.

CAMEO notifications toward MSN applications are implemented using call-
back interfaces created during the registration procedure. To manage different
concurrent applications, CAMEO maintains the list of registered and currently
active callback interfaces assigning a logical communication port to each of them.
A special communication port is used by the Context Manager for context data
exchange over the network and its interaction with the other internal modules
of CAMEO. CAMEO notifications are related to the following events:

• Application content discovery. Every time CAMEO finds a new ap-
plication content from a remote node it informs the interested application.

• Neighbors discovery. CAMEO informs the applications when a neigh-
bor enters/exits the 1-hop area.

• Community discovery. CAMEO informs the applications when the
current community changes.

4.2 Tourist-MSN Application

Tourist-MSN [7] is a real example of MSN application developed on top of
CAMEO. It is aimed at improving people experience during tourist visits by
allowing individuals to create, collect and share useful information related to geo-
located points of interest (POIs) through opportunistic wireless communications
among their mobile devices. Tourists can create multimedia contents denoted
as posts. They are characterized by a title, a textual content (to comment or
express impressions related to the POI), and optional information like audio
files, images or videos. Posts are divided into categories (e.g., events, cultural
visits, transportation) in which users can express their interests. Tourist-MSN
implements also an opportunistic text chat that allows a limited group of users
to communicate in a quasi real-time fashion. Each chat is identified by a title
and a category.

TouristMSN specifies through MSN API the following information as Appli-
cation Context to be disseminated over the network by CAMEO: (i) title and
category for each post and chat generated by the local user; (ii) user’s interests
in specific categories of posts and chats.

Therefore, through context dissemination each node becomes aware of the
available contents in its current physical community. However, due to intermit-
tent connectivity conditions characterizing opportunistic networks, the manage-

15

ment of a real-time chat can be developed only among 1-hop neighbors. Instead
posts’ distribution results in an asynchronous content exchange. Users can in-
crease the content of a post/chat by adding their own comments. Subsequently
CAMEO distributes the updates on the network.

(a) List of posts. In green:
posts already downloaded.
In red: posts available for
download

(b) Interface for the cre-
ation of new posts

(c) Post comments

(d) Realtime opportunistic
chat

(e) Chat members (f) Add a new comment to
an existing post

Figure 6: Screenshots of Tourist-MSN Graphical User Interface

Every time a new post or a new chat matching the interests expressed by the
user becomes available from a neighbor node, CAMEO notifies the application
with an event message. The application then informs the user through the GUI
about the availability of the new content and the user can decide whether to
download the post (or join the chat room) or not. At the same time, CAMEO
evaluates the utility function for contents available in the current physical com-
munity with respect to the interests of previously encountered users by imple-
menting US and MFV social-oriented policies described in Section 3.4. Then,

16

the subset of contents that maximizes the utility satisfying local nodes’s require-
ments (e.g., memory availability, permanence time in the current community)
are downloaded.

Figure 6 shows some screenshots of Tourist-MSN application running on
Google Nexus One.

5 CAMEO Technical Specification

In this Section we give a detailed description of CAMEO software architecture,
starting from software packages up to class definition. All the classes have been
written in Java programming language for Android operating system.

CAMEO is composed of the following software packages:

• cnr.CAMEO

• cnr.CAMEO.CAFw

• cnr.CAMEO.CAFw.ContextManaging

• cnr.CAMEO.LRMFw

• cnr.Common

5.1 cnr.CAMEO

This package contains basic classes of CAMEO, such as the class of the main
GUI launched when CAMEO starts running, some custom exceptions classes
and the external module dedicated to user context management (User Profile
Module). The package is composed of the following classes:

• MainActivity: extends Activity (Android). This class represents the
main GUI of CAMEO and is the first class launched by CAMEO. The
purpose of the MainActivity class is to provide a simple graphical inter-
face by which the user can control the execution of CAMEO service (i.e.,
start and stop its execution). Moreover, the GUI contains a button by
which the user can launch the UserProfileModule Activity.

• RemoteListEntry: This class defines an entry of the Android Callback-

RemoteList, the structure where the applications callback interfaces are
maintained. CAMEO uses these callback interfaces to communicate with
the registered applications. When an application registers to CAMEO,
a RemoteListEntry is added to the RemoteCallbackList. The entry is
removed in case of application log out or crash.

• ServiceManager: extends Service (Android). It is the main component
of CAMEO as the Android Service that, running in background, provides
all context-aware and opportunistic features to the registered applications.
The ServiceManager is launched by the MainActivity and is responsi-
ble for the creation of all the components of CAMEO CA-Fw (i.e., the
ContextManager, the Forwarding module, and the Beaconing module).
The functionalities of the ApplicationManager (see Section 3.2) are im-
plemented inside the ServiceManager, indeed the ServiceManager imple-
ments the AIDL interface PlatformInterface, which provides CAMEO

17

Figure 7: cnr.CAMEO package - UML class diagram

18

MSN APIs to the applications. The ServiceManager takes also care of
the following tasks:

1. to register each application that wants to interact with CAMEO,
setting a unique identifier (i.e., a port number) for it;

2. to receive and process requests coming from the registered applica-
tions (see Section 6 for further details);

3. to notify the applications when an event occurs or a message is re-
ceived (using the identifier to select the right application). A detailed
description of this notifications can be found in Section 7.

• UserProfileModule: extends Activity (Android). This class defines the
module in charge of acquiring and managing the user profile (e.g., pref-
erences, personal profile, . . .). The UserProfileModule is a GUI compo-
nent that allows the user to insert and successively modify his personal
information into a set of pre-defined fields (e.g., name, gender, age, home
community, preferences).

• ReliableMessageNotSentException: extends Exception. This class
defines a custom exception used to handle the errors generated when
CAMEO tries to send a message using the reliable transmission proto-
col(TCP), but the TransmissionManager (package cnr.CAMEO.LRMFw)
has not been started yet or it is in idle state.

• UnreliableMessageNotSentException: extends Exception. This class
defines a custom exception used to handle errors generated when CAMEO
tries to send a message using unreliable transmission (UDP), but the
TransmissionManager (package cnr.CAMEO.LRMFw) has not been
started yet or it is in idle state.

5.2 cnr.CAMEO.CAFw

This package contains all the classes related to the Context-Aware Framework
(CA-Fw, see Section 3.2 for further details on the services provided by this
framework). The package is composed of the following classes:

• Beaconing. This class represents the BeaconingModule in charge of gener-
ating periodic messages, also known as beacons (defined by the BeaconMes-
sage class), used by CAMEO to advertise the presence of a node towards
the 1-hop neighbors in the network. Beaconing uses a Java Timer to
generate the beacons periodically and passes them to the Transmission-

Manager, which is responsible for sending the messages over the network.
Beacons are also used to disseminate the version numbers of the nodes’
contexts, informing the remote nodes of the presence of available contents.

• BeaconMessage: extends AbstractMessage. This class defines the struc-
ture of a beacon message. It contains a BeaconContent and a timestamp
that reflects the beacon creation time. The timestamp is used in con-
junction with the contexts’ version numbers. If CAMEO crashes or is
restarted, the version numbers are reset to zero. The timestamp is thus
used to identify contexts with the same version number, but with possibly
different content.

19

Figure 8: cnr.CAMEO.CAFw package - UML class diagram

20

• BeaconContent: implements Serializable. This class defines the con-
tent of a beacon message. This content is formed of a set of version num-
bers related to the contexts of the user and of the applications running on
CAMEO which a node wants to send over the network. The BeaconCon-

tent also contains the ip address of the sender, which is used as unique
identifier for the nodes.

• CALRMInterface. This interface is used for the communication between
the Local Resource Management Framework (LRMFw) and the Context-
Aware Framework (CAFw). The modules of the LRMFw can send their
notifications toward the CAFw using this interface, without knowing
which module will elaborate the requests, ensuring the modularity of the
system. It is implemented by ServiceManager.

• Forwarding. This class is designed to implement an opportunistic routing
algorithm. Currently the class is empty and CAMEO uses only 1-hop
communication. In future work we plan to implement a context-based
forwarding protocol as HiBOp [10].

• AbstractMessage: implements Serializable. This is an abstract super-
class defining a generic message, containing the properties and methods
in common between the BeaconMessage class and the Message class.

• Message: extends AbstractMessage. This class defines a message to be
exchanged over the network between applications through CAMEO. The
message has a payload field, inherited from the superclass AbstractMes-
sage. This generic payload represents the content of the message. To de-
liver the message to the right application at the destination node, CAMEO
assign a port number to each registered application and each Message is
marked with the respective port number.

5.3 cnr.CAMEO.CAFW.ContextManaging

This is a sub-package of cnr.CAMEO.CAFW containing all the classes related to
the management of context information. The content of the package is the
following:

• AbstractContext: implements Serializable. This is a superclass represent-
ing a generic context. The AbstractContext contains a version number
and an HashMap representing the key-value pairs related to a context.

• ContextManager: implements DeviceContextUpdater. This is the main
class for the management of context data. The ContextManager is re-
sponsible for the maintenance of context information related to the user,
the device and the applications involving the local node and the remote
nodes encountered in the network. It is in charge of exchanging Con-

textMessages between nodes in the network, performing the synchroniza-
tion of context data between peers. The ContextManager manages the
ContextTable, adding, updating or removing context information related
to remote nodes when needed. Moreover, it maintains the LocalContext,
containing the context data of the local node. Through the DeviceCon-

textUpdater the ContextManager exposes the methods used by the appli-
cations to modify the local device context. The ContextManager checks

21

Figure 9: cnr.CAMEO.CAFw.ContextManaging package - UML class diagram
(1)

22

Figure 10: cnr.CAMEO.CAFw.ContextManaging package - UML class diagram
(2)

23

the beacons received from the Beaconingmodule to find if a neighbor has
entered or quit the 1-hop area. When a new neighbor is detected, the Con-
textManager adds an entry to the ContextTable. Then, it periodically
checks the ccSC table (see Section 3.2 for further details) to determine if
a neighbor has left the 1-hop area. The ContextManager also evaluates,
after an explicit request received from an application, the utility of one
or more application content for one or more nodes of a community or a
set of communities using the utility function provided by the application
and adopting the social-oriented polices required by the application (see
Section 3.4). The ContextManager is also responsible for the discovery of
the current community of the local node.

• ContextMessage: implements Serializable. This class defines a special
type of message used to exchange context information between nodes in
the network. The Beaconing module advertises available context data
inside the 1-hop neighborhood. If a node finds new available context in-
formation from a new neighbor, or a new version of a context from a
known neighbor, it sends a request to the remote node through a Con-

textMessage, eventually indicating the version of the context it already
has to perform an incremental synchronization. The node which receives
a context request sends its whole context (or part of it with respect to
the version number received from the other node) to the requester, using
a ContextMessage. The ContextMessage is used both for user contexts
and application contexts.

• ContextTable. This class represents the data structure holding the con-
text information related to remote nodes. Specifically, this class imple-
ments both the data structures defined as ccSC and hSC (see Section 3.2).
The ccSC table is implemented as a Java Map object, where the ip address
of the remote nodes is used as index of the table and each entry contains
the context data of the remote node. When a new neighbor is detected,
the ContextManager notifies the ContextTable, which adds an entry to
the ccSC table. If the beacons of a neighbor are not received for a certain
period of time, the ContextManager asks the ContextTable to remove
the respective entry from the ccSC table. In this case the ContextTable

moves the information related to the node that has left the 1-hop area
from the ccSC table to the hSC table. The hSC table is implemented as a
SQLite database and accessed by CAMEO using the SQLite APIs offered
by Android. The ccSC and the hSC are also accessed by the ContextMan-
ager during the evaluation of the utility function for a given application
content.

• LocalContext: extends AbstractContext. The LocalContext represents
the context information related to the local node, including the application
contexts and the user context. It is the implementation of the well-being
Local Context table (wbLC) (see Section 3.2 for further details). This data
structure is implemented as a set of Java HashTable, each of which repre-
sents a context (i.e., user, device, external and application) and contains
its key-value pairs. The information of the LocalContext is sent to the
other nodes in the network using BeaconMessage and ContextMessage

objects. When the ContextManager receives a ContextMessage with a

24

request for a certain context with a specified version number, the Local-

Context checks if the version number and the timestamp provided by the
remote node are valid, then it returns the subset of information required
by the remote node to synchronize its context data with the local data.
Each change related to the data of a certain local context is tracked within
a Java TreeMap object called history, so that each entry of the history,
indexed by a version number, points toward the key-value pairs modified
during the update. Each application can provide multiple updates at the
same time to avoid frequent context updates which can lead to network
congestion due to the potentially large amount of data to be exchanged for
the synchronization procedure. Subsequent updates of the same context
key-value pairs are collapsed into the last version number of the history

data structure to reduce the dimension of the TreeMap. If the number of
updates of a context data exceeds a pre-defined threshold, all the versions
are collapsed into the last version number of the history.

• NodeContext: implements Serializable. The NodeContext class defines
a wrapper for all the context information related to a remote node and
represents a generic entry for the hSC of the ContextTable object. The
NodeContext object contains the user context and the list of application
contexts related to a remote node.

• RemoteContext: extends AbstractContext. This class defines a generic
context related to a remote node. A Remote context contains the key-
value pairs that defines the context.

• TableEntry: implements Serializable. This class represents an entry
of the ccSC table, indexed inside the ContextTable with the ip address
of the respective remote node. Each TableEntry contains a NodeContext

object and a timestamp, used to discover a neighbor out event (in case
the beacons of a certain remote node are not received for a pre-defined
period of time).

• DeviceContextUpdater. This interface allows the ContextManager to
update the status of the local device context following the input of Local
Resource Management Framework .

5.4 cnr.CAMEO.LRMFw

This package contains all the classes concerning the Local Resource Management
Framework of CAMEO. This framework is in charge of performing all the lower
level tasks, such as the exchange of messages over the network, the management
of the wireless network interface, the management of the SQLite database and
the access to the information related to the hardware sensors of the mobile
device. The package is composed of the following classes:

• ContextProvider: extends Thread, implements DCPContextManagerLis-
tener. The ContextProvider is in charge of acquiring information re-
garding the context of the device, including sensors data, battery status,
memory usage, etc. The ContextProvider periodically checks the status

25

Figure 11: cnr.CAMEO.LRMFw package - UML class diagram (1)

26

Figure 12: cnr.CAMEO.LRMFw package - UML class diagram (2)

of different hardware components with different sample rates. These pa-
rameters are defined by the ContextManager class of the CA-Fw based
also on applications’ requirements.

• DBAdapter: extends SQLiteOpenHelper (Android). This class contains
all the methods used to access and manage the SQLite databases.

• DCPContextManagerListener. This interface allows the ContextManager
to retrieve information concerning the device, gathered through the Con-

textProvider.

• LRMCAInterface. This interface defines the methods to be used by the
CAFw to communicate with the LRMFw.

• NetworkManager. It interacts with Android to manage the wireless net-
work interface. It can request Android to activate/deactivate the network
interface and it listens for status changes of the interface.

• OutgoingReliableMsgInfo. This class represents a generic message
stored inside the outgoing queue of the TransmissionManager. Each of
these messages has a destination address, a port (used by CAMEO to
identify the destination application) and a payload containing the mes-
sage itself. This class is related to a message to be sent using the reliable
communication protocol (TCP).

27

• OutgoingUnreliableMsgInfo. This class represents a generic message
stored inside the outgoing queue of the TransmissionManager. Compared
with the OutgoingReliableMsgInfo, this class concerns unreliable com-
munications (UDP).

• TransmissionManager: implements LRMCAInterface. The Transmis-

sionManager is responsible for the data transmission over the network.
It provides two different types of communication: reliable and unreliable.
The former uses Java ServerSocket and Socket objects, while the latter
uses DatagramSocket objects for data exchange. The TransmissionMan-

ager maintains two messages queues (for reliable and unreliable commu-
nication respectively).

5.5 cnr.CAMEO.LRMFw.Sensors

This package contains all the classes aimed at managing the collection of data
coming from the different hardware sensors. The names of the classes are self-
explanatory. The content of the package is the following:

• AccelerometerManager

• GyroscopeManager

• LightManager

• MagneticFieldManager

• OrientationManager

• ProximityManager

• PressureManager

• TemperatureManager

5.6 cnr.CAMEO.common

This package contains the classes shared between CAMEO and MSN applica-
tions, which must be imported by applications as external libraries to allow the
application’s access to CAMEO functionalities.

• ApplicationContext: implements Serializable. This class represents
the context related to a specific application as key-value pairs directly
specified by the application. Each application can store or retrieve its
own ApplicationContext object using CAMEO MSN API.

• ContentEvaluator: implements Serializable. This class is aimed at
giving a simple way to define a set of criteria to be used by the ContextMan-
ager during the evaluation of the utility function. Each application can
create its own ContentEvaluator, defining a list of fields (called evalua-
tors) which represents the tags of the application contents to be matched
with the respective preferences of the user. The application can weight
the different evaluators with a value between 0 and 1. The utility function
is computed as the weighted sum of the binary results of the matches of

28

Figure 13: cnr.CAMEO.Common package - UML class diagram

29

the fields defined by the evaluators. For example, an hypothetical appli-
cation exchanging music content over the network defines two evaluators,
named “genre” and “format” respectively, the former mapping the musi-
cal genre of an audio file with the preference of the user regarding musical
genres and the latter identifying a link between the file format of the ap-
plication content (e.g., mp3, wav, . . .) and the preferred format of the
user. The ContextManagermatches the values mapped by the evaluators,
returning 1 if the value related to the content and the preference of the
user match, and 0 otherwise. The utility function calculated by the Con-

textManager for this application would be the sum of the values returned
by the match of the two evaluators multiplied by their respective evaluator
weights, then multiplied by the weight given to the community to which
the involved nodes belong to, defined by the chosen social-oriented policy
(see Section 3.4).

• LocalMessage: implements Parcelable (Android). This class defines the
format of the messages exchanged between the applications and CAMEO.
A LocalMessage can be an application request sent by the applications
toward CAMEO or a CAMEO event sent toward the applications. A
LocalMessage contains a TYPE field, which determines the type of request
or notification. It contains also additional information (e.g., an application
message to be sent over the network or additional parameters required by
some requests) placed in two different optional fields. The first field is
called content and is used for local communication, while the second field
is called payload and it is used for remote communication. The different
types of LocalMessage are explained in more details in Section 6.

In addition, CAMEO provides two AIDL interfaces to manage the commu-
nication between the middleware platform and each MSN application. Specifi-
cally:

• MSNInterface (AIDL). This interface contains the methods offered by
CAMEO to the applications. The application directly uses MSNInterface
object to call CAMEO methods.

• CallbackInterface (AIDL). This interface defines the methods called by
CAMEO to send various notifications to the applications. The application
must implement this interface and pass the instantiated object to CAMEO,
which uses it to send each notification to the application.

These interfaces are detailed in the following Sections.

6 MSN Interface

MNS interface provides the following functionalities to MSN applications.

6.1 Register with CAMEO

• Name of the service primitive: RegisterClient

• Description: This method allows an application to register with
CAMEO. CAMEO approves the registration if the port specified by the

30

application is not yet in use, otherwise it denies the registration. If the
registration is approved, CAMEO adds the interface provided by the ap-
plication during the registration to the callback interface list and uses it to
communicate back to the application. A registered application can access
the services provided by CAMEO, using all the other methods described
in this Section. If an application is not registered, it can only use the Reg-
isterClient primitive. A call to any other method will cause CAMEO
to reply with an error message.

• Type: Confirmed, Synchronous, Local

• Semantics: The primitive shall provide the following parameters:

1. Port (input)

– Type: integer

– Accepted values: a valid integer

– Description: The port number used as unique ID to redirect
the notifications and the messages received by CAMEO over the
network to the right application.

2. Callback (input)

– Type: CallbackInterface

– Accepted values: a valid CallbackInterface object

– Description: This is the interface that the application must pro-
vide to CAMEO in order to register. CAMEO uses these inter-
faces to communicate back with the applications.

3. LocalMessage (output)

– Description: This is the returned value containing the result of
the registration procedure.

– Returned value: FAILED if the registration procedure has failed
or SUCCESS otherwise.

• When generated: This primitive is generated when an application wants
to register with CAMEO.

• Effects of receipt: The receipt of this primitive by the ServiceManager
(which implements the PlatformInterface interface) causes CAMEO to
start the registration process. The ServiceManager checks if the port
provided by the application is already in use. If this is the case it denies
the registration, otherwise it accepts it.

6.2 Send a Generic Local Request

• Name of the service primitive: SendLocalRequest

• Description: This is a generic primitive provided by CAMEO to allow
the applications to request various types of services.

• Type: Confirmed, Local

• Semantics: The primitive shall provide the following parameters:

31

1. request (input)

– Type: LocalMessage

– Accepted values: a valid LocalMessage object

– Description: This parameter contains the specification of the re-
quest that the application wants to send to CAMEO. The request
type is specified inside the field TYPE of the LocalMessage ob-
ject. Additional content required by some requests can be placed
inside the field Content of the LocalMessage object.

2. LocalMessage (output)

– Description: This is the returned value containing the result of
the request.

– Returned value: FAILED if the request has failed or SUCCESS

otherwise.

• When generated: This primitive is generated when an application wants
to request a service to CAMEO.

• Effects of receipt: The receipt of this primitive by the ServiceManager
(which implements the PlatformInterface interface) causes CAMEO to
evaluate and perform the actions required by the application, depending
on the type of request the applicationhas made. The different types of
requests that the application can send to CAMEO are listed below:

6.2.1 Unregister with CAMEO

• TYPE of LocalMessage: UNREGISTER APP

• Description: This type of local request is used by the applications that
want to cancel their registration with CAMEO.

• Additional parameters: none

• When generated: This local request is generated when an application
wants to unregister with CAMEO.

• Effects of receipt: The receipt of this primitive by the ServiceManager
causes CAMEO to unregister the application and return a LocalMessage

object with the TYPE field set to SUCCESS.

6.2.2 Update Application Context

• TYPE of LocalMessage: UPDATE APP CONTEXT

• Description: This type of local request is used by the applications that
want to update their application context (i.e., add, modify or delete the
key-value pairs of the context data).

• Additional parameters: The application context that the application
wants to store instead of the original one, saved into an ApplicationCon-

text object.

• When generated: This local request is generated when an application
wants to update its application context stored inside CAMEO.

32

• Effects of receipt: The receipt of this primitive by the ServiceManager
causes CAMEO to update the context information related to the applica-
tion that called the primitive. CAMEO distributes the new application
context over the network, adding a new version number and performing
the operations described in Section 5.3 regarding the LocalContext class.
The request always returns a LocalMessage with the field TYPE set to
SUCCESS

6.2.3 Get User Context

• TYPE of LocalMessage: GET USR CONTEXT

• Description: This type of local request is used by the applications that
want to retrieve the user context information.

• Additional parameters: none

• When generated: This local request is generated when an application
wants to read the user context information.

• Effects of receipt: If the user context has been set, the ServiceManager
returns it to the application inside the field CONTENT of a LocalMessage

object with the TYPE field set to SUCCESS. If the user context does not
exist the ServiceManager replies to the application with a LocalMessage

with the field TYPE set to FAILED.

6.2.4 Get Device Context

• TYPE of LocalMessage: GET DEV CONTEXT

• Description: This type of local request is used by the applications that
want to retrieve the device context information.

• Additional parameters: none

• When generated: This local request is generated when an application
wants to read the device context information.

• Effects of receipt: If the device context has been set, the ServiceMan-

ager returns it to the application inside the field CONTENT of a LocalMes-

sage object with the TYPE field set to SUCCESS. If the device context does
not exists the ServiceManager replies to the application with a LocalMes-
sage with the field TYPE set to FAILED.

6.2.5 Get Application Context

• TYPE of LocalMessage: GET APP CONTEXT

• Description: This type of local request is used by the applications that
want to retrieve its own context information.

• Additional parameters: none

• When generated: This local request is generated when an application
wants to read its own context information.

33

• Effects of receipt: If the application context has been set, the Ser-

viceManager returns it to the application inside the field CONTENT of a
LocalMessage object with the TYPE field set to SUCCESS. If the applica-
tion context does not exists the ServiceManager replies to the application
with a LocalMessage with the field TYPE set to FAILED.

6.2.6 Get Remote Application Context

• TYPE of LocalMessage: GET REMOTE APP CONTEXT

• Description: This type of local request is used by the applications thats
want to retrieve the application context information of a remote node.

• Additional parameters: The ip address of the remote node of which
the application wants to retrieve the application context.

• When generated: This local request is generated when an application
wants to read an application context of a remote node.

• Effects of receipt: If the application context has been set for the given
ip address, the ServiceManager returns it to the application inside the
field CONTENT of a LocalMessage object with the TYPE field to SUCCESS.
If the application context does not exists for the specified ip address, the
ServiceManager replies to the application with a LocalMessage with the
field TYPE set to FAILED.

6.2.7 Get Remote Contexts For a Given Community

• TYPE of LocalMessage: GET CONTEXTS OF COMMUNITY

• Description: This type of local request is used by the applications that
want to retrieve the context information of all the nodes belonging to a
selected community.

• Additional parameters: A string representing the unique identifier of
the community for which the application wants to retrieve the context
information.

• When generated: This local request is generated when an application
wants to read the context data related to all the nodes of a given commu-
nity. This situation usually occurs when the application wants to evaluate
the utility function for a given application content with respect to the
interests of the nodes of a specific community.

• Effects of receipt: If the given community identifier is valid and the set
of contexts related to that community inside CAMEO is not empty, the
ServiceManager returns the related context information to the applica-
tion in the field CONTENT of a LocalMessage object with the TYPE field
set to SUCCESS. If there is no information inside CAMEO regarding the
given community, the ServiceManager replies to the application with a
LocalMessage with the field TYPE set to FAILED.

34

6.2.8 Evaluate The Utility For One or More Application Contents

• TYPE of LocalMessage: EVALUATE UTILITY

• Description: This type of local request is used by the applications that
want to obtain an evaluation of the utility function for one or more appli-
cation contents with respect to the interests of the nodes of a previously
encountered community.

• Additional parameters: A List of ids related to the application contents
for which the application wants to evaluate the utility, a utility function
expressed by a list of ContentEvaluator and an integer specifying the
preferred social-oriented policy.

• When generated: This local request is generated when an application
wants to obtain an evaluation of the utility function for one or more ap-
plication content.

• Effects of receipt: The ServiceManager asks the ContextManager to
calculate the result of the utility function for the given content ids. The
content properties are retrieved from the remote contexts stored inside
CAMEO. The ContentEvaluator is used to match the properties of the
given contents with the preferences of the user, found inside the local user
context. To better understand how the ContextManager calculates the
utility of the given contents see Section 5.6. If the contents ids passed by
the requester application are valid and are known to CAMEO, the Ser-

viceManager replies to the application with a list containing the results
of the utility function evaluations indexed by the content id. The result is
placed in the field CONTENT of a LocalMessage object with the TYPE field
to SUCCESS. If the content ids are not valid or unknown to CAMEO, the
ServiceManager replies to the application with a LocalMessage with the
field TYPE set to FAILED.

6.3 Send a Message Over The Network

• Name of the service primitive: SendMessage

• Description: This method allows an application to send a customized
message over the network to another node running an application using
the same communication port as the sender.

• Type: Confirmed, Asynchronous, Remote

• Semantics: The primitive shall provide the following parameters:

1. packet (input)

– Type: LocalMessage

– Accepted values: a valid LocalMessage with the boolean field
NET MESSAGE set to TRUE and the field PAYLOAD set with the con-
tent which the application wants to send over the network.

– Description: This is the content of the message to be sent over
the network.

35

2. dest (input)

– Type: ip address

– Accepted values: any valid ip addresses

– Description: This is the ip address of the destination.

3. broadcast (input)

– Type: boolean

– Accepted values: { true,false }

– Description: Whether or not the packet must be sent to all the
nodes in the 1-hop area (like a beacon)

4. result (output)

– Type: boolean

– Accepted values: { true,false }

– Description: True if the message is successfully processed by the
TransmissionManager. False in case of errors.

• When generated: This primitive is generated when an application wants
to send a message to one or more nodes in the network. It is typically
used to exchange application contexts.

• Effects of receipt: The receipt of this primitive by the ServiceManager
causes CAMEO to pass the message to the ForwardingManager, which cal-
culates the best next hop for the delivery of the message and then passes
the message to the TransmissionManager, which sends the message over
the network toward the destination. If the TransmissionManager has
not been started yet or is in idle state, a ReliableMessageNotSentExcep-

tion (or a UnreliableMessageNotSentException in case of a broadcast
message) is thrown.

7 Callback Interface

Each application must extend CallbackInterface, implementing the methods
called by CAMEO to notify events. During the registration procedure each
application passes its custom CallbackInterface to CAMEO. CAMEO main-
tains a list of CallbackInterface in a dedicated data structure. An entry of
this list is removed when the respective application logs out or crashes. The list
is indexed by the application identifier. CAMEO sends two different types of no-
tifications: (i) broadcast notifications (i.e., events to be sent to all the registered
applications); (ii) direct notifications (i.e., events, errors or messages destined to
a specific application). When CAMEO sends a notification, it passes to the ap-
plications a LocalMessage object, containing the details of the occurred event.
In the following we provide a detailed description of the methods defined by the
CallbackInterface.

7.1 Receive a Generic Asynchronous Event

• Name of the method: onNewEvent

36

• Description: This is a generic method used by CAMEO to notify differ-
ent types of events.

• When generated: This method is invoked by CAMEO to notify the
applications about an event occurred.

• Parameters returned by CAMEO: a LocalMessage containing the
details of the notification. The different types of notifications are identified
by the field TYPE of the returned LocalMessage. The types of event defined
by CAMEO are the following:

– LINK LOSS : Generated by the NetworkManager when the status of
the network interface changes from CONNECTED to DISCONNECTED. No
extra parameters.

– LINK RESUME : Generated by the NetworkManagerwhen the status
of the network interface changes from DISCONNECTED to CONNECTED.
No extra parameters.

– NEIGHBOR IN : Generated by the ContextManager when a new
neighbor joins the 1-hop area. The ip address of the new neighbor is
passed inside the payload.

– NEIGHBOR OUT : Generated by the ContextManager when a
known neighbor leaves the 1-hop area. The ip address of the neighbor
is passed inside the payload.

– COMMUNITY CHANGED : Generated by the ContextManager

when the actual community changes. The unique identifier of the
new community is passed inside the payload.

– NEIGHBOR CONTEXT UPDATED : Generated by the Con-

textManager when new information regarding a neighbor context is
available. This information can refer to both user and application
contexts. Thanks to this notification the applications can discover
new contents available for downloading from remote nodes. The
ip address of the neighbor and the version numbers related to its
contexts, received from the Beaconing module, are passed to the
application inside the payload object.

7.2 Receive a Message From a Remote Node

• Name of the method: onReceivedMessage

• Description: This notification informs the applications about the pres-
ence of an incoming message from a remote node.

• When generated: This method is invoked by CAMEO when it receives
a message for a specific application from a remote node.

• Parameters returned by CAMEO: a LocalMessage containing the
content of the message and the ip address of the sender.

37

8 Conclusions

The main novelty of CAMEO is a light-weight context-aware middleware plat-
form to allow easy and efficient development of MSN applications in oppor-
tunistic networks. In this paper we provided a detailed description of CAMEO
architecture and the technical specification of its software components. The
prototype has been tested and evaluated through an experimental testbed. Per-
formance results showed the efficiency of CAMEO in collecting and managing a
multidimensional context and supporting the development of a real example of
MSN applications dedicated to tourists. Currently we are extending CAMEO in
several directions. We are analyzing the applicability of a context model based
on CML language to improve reasoning capabilities of CAMEO and identify
possible extensions in the context definition. Concurrently, we are integrating
SensorML standard in the Device Context Provider module in order to imple-
ment a uniform data format for sensors’ readings. This will allow CAMEO to
provide additional functionalities for the automatic characterization of a node
context based on sensor readings.

References

[1] Android developer guide. URL http://developer.android.com/guide/

topics/fundamentals.html

[2] C++ corba idl. URL http://www.omg.org/spec/CPP/1.2

[3] Cyanogenmod 6.1.0-n1 firmware. URL http://wiki.cyanogenmod.com/

index.php?title=CyanogenMod 6 Changelog

[4] Dalvik java virtual machine. URL http://code.google.com/p/dalvik/

[5] Java corba idl. URL http://www.omg.org/spec/I2JAV/1.3

[6] Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L.,
Kansal, A., Madden, S., Reich, J.: Mobiscopes for human spaces. IEEE Per-
vasive Computing 6(2), 20–29 (2007). DOI http://doi.ieeecomputersociety.
org/10.1109/MPRV.2007.38

[7] Arnaboldi, V., Conti, M., Delmastro, F.: Implementation of CAMEO : a
Context-Aware MiddlEware for Opportunistic Mobile Social Networks. In:
12th IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WOWMOM), BEST DEMO AWARD (2011)

[8] Boldrini, C., Conti, M., Passarella, A.: ContentPlace: social-aware data
dissemination in opportunistic networks. In: ACM MSWiM, pp. 203–210.
ACM, Vancouver, British Columbia, Canada (2008). DOI http://doi.acm.
org/10.1145/1454503.1454541

[9] Boldrini, C., Conti, M., Passarella, A.: Context and resource awareness
in opportunistic network data dissemination. In: IEEE AOC Workshop
(2008)

38

[10] Boldrini, C., Conti, M., Passarella, A.: Exploiting users social relations to
forward data in opportunistic networks: The HiBOp solution. Pervasive
and Mobile Computing 4(5), 633–657 (2008)

[11] Boldrini, C., Passarella, A.: Hcmm: Modelling spatial and temporal prop-
erties of human mobility driven by users’ social relationships. Computer
Communications 33(9), 1056–1074 (2010)

[12] Borgia, E., Conti, M., Passarella, A.: Autonomic detection of dynamic
social communities in opportunistic networks. In: Med-Hoc-Net, pp. 142–
149. IEEE (2011)

[13] Botts, M., Robin, A.: Open Geospatial Consortium Inc . Sensor Model
Language (SensorML) Implementation Specification (2007)

[14] Conti, M., Das, S.K., Bisdikian, C., Kumar, M., Ni, L.M., Passarella, A.,
Roussos, G., Tröster, G., Tsudik, G., Zambonelli, F.: Looking ahead in
pervasive computing: Challenges and opportunities in the era of cyber-
physical convergence. Pervasive and Mobile Computing 8(1), 2–21 (2012)

[15] Conti, M., Kumar, M.: Opportunities in Opportunistic Computing. Com-
puter 43(1), 42–50 (2010). DOI 10.1109/MC.2010.19

[16] Danon, L., Dı́az-Guilera, A., Duch, J., Arenas, A.: Comparing commu-
nity structure identification. Journal of Statistical Mechanics: Theory and
Experiment 9, 10 (2005)

[17] Hui, P., Crowcroft, J., Yoneki, E.: Bubble rap: Social-based forwarding
in delay tolerant networks. In: the 9th ACM international symposium on
Mobile ad hoc networking and computing, pp. 241–250. ACM (2008)

[18] Newman, M.E.J.: Detecting community structure in networks. The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems 38(2),
321–330 (2004)

[19] Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data for-
warding in disconnected mobile ad hoc networks. Communications Maga-
zine, IEEE 44(11), 134–141 (2006)

[20] Percivall, G., Reed, C., Davidson, J.: Open Geospatial Consortium Inc .
Sensor Web Enablement : Overview And High Level Architecture . (2007)

[21] Trifunovic, S., Distl, B., Schatzmann, D.: WiFi-Opp: ad-hoc-less oppor-
tunistic networking. Proceedings of the 6th (2011). URL http://dl.acm.

org/citation.cfm?id=2030664

[22] Yoneki, E., Hui, P., Chan, S.Y., Crowcroft, J.: A socio-aware overlay for
publish/subscribe communication in delay tolerant networks. In: the 10th
ACM Symposium on Modeling, analysis, and simulation of wireless and
mobile systems. ACM (2007)

39

	facsimile cover_TR.pdf
	Consiglio Nazionale delle Ricerche
	Iit

