

MOBILEMAN

IST-2001-38113
Mobile Metropolitan Ad hoc Networks

MOBILEMAN

MobileMAN Technical Evaluation

Deliverable D16

Contractual Report Preparation Date: 31 October, 2005
Actual Date of Delivery: 18 November, 2005
Estimated Person Months: 55
Number of pages: 222

Contributing Partners: Consiglio Nazionale delle Ricerche (Italy), University of
Cambridge (UK), Institut Eurecom (France), Helsinki University (Finland), NETikos
(Italy), Scuola Universitaria Professionale della Svizzera Italiana (Switzerland)

Authors: Giuseppe Anastasi, Emilio Ancillotti, Eleonora Borgia, Raffaele Bruno,
Marco Conti, Franca Delmastro, Enrico Gregori, Giovanni Mainetto, Gaia Maselli,
Antonio Pinizzotto, Giovanni Turi (CNR); Jon Crowcroft, Andrea Passarella
(Cambridge); Claudio Lavecchia, Pietro Michiardi, Refik Molva (Eurecom); Jose Costa
Requena (HUT); Piergiorgio Cremonese, Veronica Vanni (Netikos); Ralph Bernasconi,
Ivan Defilippis, Silvia Giordano, Alessandro Puiatti, (SUPSI)

Abstract: The aim of this deliverable is to present the validation results of the architecture,
protocols and services designed for the MobileMAN project. This deliverable therefore
represents the complement of Deliverable D13. Specifically, D13 presents the MobileMAN
architecture and protocols, while in this deliverable the solutions we devised are validated.
Whenever possible, our evaluations are based on measurements from real small- medium-size
testbeds. In addition, simulation results are used to study large scale networks and/or complex
mobility scenarios. Results are presented by following a bottom up approach from wireless
technologies up to the applications. The deliverable also investigates the behavior and
performance of a medium-scale MobileMAN network made of (up to) 23 nodes.

Project funded by the European
Community under the “Information
Society Technologies” Programme
(1998-2002)

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 3 of 222

Summary

The aim of this deliverable is to present the validation results of the architecture,
protocols and services designed for the MobileMAN project. This deliverable
therefore represents the complement of Deliverable D13. Specifically, D13 presents
the MobileMAN architecture and protocols, while in this deliverable the solutions we
devised are validated.

There are two main approaches in system evaluation: measurements on real
testbeds and analytical/simulation modeling. The performance study of mobile ad hoc
networks is a complex task that cannot be addressed by using a unique performance
technique but requires a careful mixing of measurements on real testbeds with
simulation/analytical studies. Whenever possible we constructed small- medium-scale
testbeds to validate our solutions by taking into consideration real scenarios.
Modeling studies have been extensively used in the protocols’ design phase, and to
study the MobileMAN system behavior in complex scenarios that are very difficult (if
not impossible) to be studied by prototypes. In the latter case, to develop and solve
our simulation models we used simulation tools.

In this deliverable we present a comprehensive overview of all the activities
we performed to validate the solutions we developed for the MobileMAN
environment. The deliverable follows a bottom up approach from wireless
technologies up to the applications. The deliverable ends with a section reporting the
experimental evaluation of a MobileMAN medium-size mobile-ad-hoc network (up to
23 nodes) which integrates the solutions we have developed.

Specifically, in Section 1, after discussing the performance modeling
techniques, we present the characteristics of the simulation framework, which extends
the Network Simulator NS-2 (v. 2.27) with a cross-layer interface (XL-interface) that
standardizes vertical interactions among protocols according to the MobileMAN
cross-layer architecture. This simulation framework has been used in successive
sections to validate our cross-layer solutions (e.g., see Reliable Forwarding and cross-
layer optimization of the Gnutella protocol).

In Section 2 we analyze and compare the performance (in multi-hop ad hoc
networks) of 802.11 card with those of the enhanced card we designed and
implemented. First we present a simulation study that shows the effectiveness of our
solutions in several scenarios that (in the literature) are known as critical for 802.11
cards. Then we present experimental results obtained in a 4-node networks. In this
network the nodes use either the 802.11 card or our enhanced card. Experimental
results confirm previous simulation studies. In addition, they point out additional
advantages of the enhanced card when used in a real environment with highly variable
channel conditions.

Section 3 is devoted to analyzing MobileMAN networking protocols that use
the one-hop transmission services provided by the network interface card to construct
end-to-end (reliable) delivery services. Specifically, we first present our experimental
results related to OLSR and AODV in small scale networks with node mobility. These
results complete the study reported in Deliverable D8. Secondly, we report the
performance results of our mechanism for reliable forwarding which exploits cross
layer interactions (REEF). This study has been performed via simulation by
exploiting our extension of the NS-2 environment. The section ends presenting

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 4 of 222

experimental results of our transport protocol, TPA. Experimental results confirm the
observations obtained via simulation and reported in Deliverable D13.

Section 4 is devoted to the interconnection of MobileMAN islands to the
Internet. Our solutions have been briefly described in Deliverable D14 where we
presented the software developed to support the interconnection. For completeness in
this deliverable we first present a refined description of our solution and then we
report the experimental results that confirm the effectiveness of our approach.

Section 5 addresses the enforcement of cooperation within a MANET.
Specifically, the section presents an in depth analysis of CORE, i.e., our mechanism
to address cooperation issues. The features of CORE are analyzed in terms of
simulation metrics that we deem relevant to assess the basic properties of a
cooperation enforcement mechanism: the energetic cost beard by CORE-enabled
nodes and the efficiency of the detection and punishment mechanisms used in CORE.
Simulation results are used to understand if and when a mechanism to distribute
reputation information could be necessary in order to improve punishment efficiency:
reputation distribution is an optional feature of the CORE mechanism and constitutes
to discriminate between CORE and other reputation-based cooperation enforcement
mechanisms.

Section 6 deals with the MobileMAN middleware platforms. Performance
studies are used to show the effectiveness of the cross-layer optimizations.
Specifically, we considered two well-known p2p platforms, Gnutella and Pastry,
which represent un-structured and structured overlays, respectively. In the case of
Gnutella the study has been performed via simulation; while for Pastry, which is part
of the MobileMAN architecture, we performed an experimental study. Specifically, in
the Pastry case, we present a set of experimental results obtained by comparing in a
small testbed the performance of Pastry with those of CrossROAD. CrossROAD is
our proposal to enhance Pastry by exploiting cross-layer interactions. Both Gnutella
and Pastry studies clearly pointed out that cross-layer optimization are mandatory to
achieve good performance in a mobile ad hoc network.

In Section 7 we investigate the quality of service experienced by the three
applications we selected to test the MobileMAN architecture: UDDI, a whiteboard
application (WB) and a VoIP session. In all cases we evaluated the application
performance when running on top of a small MobileMAN testbed. In the case of
UDDI and WB, we tested both the legacy and cross-layer architecture.

Section 8 concludes the deliverable by investigating the behavior and
performance of a medium-scale MobileMAN network made of (up to) 23 nodes.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 5 of 222

Table of Contents

1. Introduction... 8

1.1. Simulation Framework.. 9
1.1.1. The Proto Library.. 9
1.1.2. Introducing cross-layer interactions.. 10

1.2. References... 11
2. Enhanced 802.11 Card .. 13

2.1. Simulations ... 13
2.1.1. Unfairness in 802.11-based Multi-hop Networks..................................... 13
2.1.2. Related Work .. 15
2.1.3. Description of the Fair-MAC Protocol ... 16
2.1.4. Performance Evaluation.. 19

2.2. Tests .. 22
2.2.1. Hardware and Software Setup .. 22
2.2.2. Experimental results.. 26
2.2.3. Comparison with the simulations.. 30
2.2.4. Conclusions... 31

2.3. References... 31
3. Networking ... 34

3.1. Routing experiments in small scale test bed ... 34
3.1.1. Experimental Environment ... 34
3.1.2. Experimental Analysis .. 35
3.1.3. Conclusions... 43
3.1.4. References... 43

3.2. Reliable forwarding .. 44
3.2.1. Overview of REEF.. 46
3.2.2. Simulation Framework.. 48
3.2.3. Performability Evaluation... 50
3.2.4. Conclusions... 58

3.3. TPA Implementation and Preliminary Experimental Analysis 59
3.3.1. TPA protocol implementation... 60
3.3.2. Testbed description ... 64
3.3.3. Experimental results.. 64
3.3.4. Conclusions... 68
3.3.5. References... 69

4. Interconnection Ad Hoc - Internet .. 70
4.1. Architecture... 70

4.1.1. Network Model ... 71
4.1.2. Related Work .. 73
4.1.3. Protocol Descriptions.. 74
4.1.4. Proposed Architecture... 75

4.2. Evaluation ... 81
4.2.1. Performance Constraints of Internet Access... 81

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 6 of 222

4.2.2. Performance Constraints with Mobility.. 86
4.3. References... 88

5. Cooperation Mechanism: CORE .. 90
5.1. MANET simulation with CORE-enabled nodes... 91

5.1.1. CORE implementation.. 91
5.1.2. Simulation set-up .. 93
5.1.3. Simulation metrics .. 96

5.2. Simulation results.. 98
5.2.1. Energetic consumption.. 98
5.2.2. Punishment efficiency... 104

5.3. Discussion ... 111
5.4. References... 112

6. Middleware ... 113
6.1. Performance of Peer-to-peer platforms in ad hoc environments 114

6.1.1. The Gnutella protocol ... 116
6.1.2. The Pastry protocol ... 124
6.1.3. CrossROAD: a Cross-layer Ring Overlay for AD hoc Networks 130

6.2. Summary and Conclusions ... 132
6.3. References... 133

7. Applications .. 135
7.1. UDDI4m Experimental Evaluation... 135

7.1.1. Implementation model .. 135
7.1.2. Environment set-up... 137
7.1.3. Results and Discussions.. 138
7.1.4. References... 140

7.2. The Whiteboard Application... 141
7.2.1. WB integration in MANETs... 142
7.2.2. WB and its middleware support.. 143
7.2.3. Experimental Environment ... 145
7.2.4. Performance with Pastry ... 147
7.2.5. Improvements with CrossROAD.. 153
7.2.6. Conclusions and Future Works... 156
7.2.7. References... 157

7.3. VoIP .. 159
7.3.1. VoIP introduction.. 159
7.3.2. VoIP techniques .. 159
7.3.3. VoIP testbed.. 160
7.3.4. Testbed objectives... 160
7.3.5. Testbed Metrics... 161
7.3.6. Testbed layout... 163
7.3.7. Test Cases ... 165
7.3.8. Results and Analysis ... 174
7.3.9. Future work... 174
7.3.10. References... 175
7.3.11. Ethereal Analysis .. 175

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 7 of 222

8. Mobileman medium scale test bed.. 180
8.1. Experimental Environment ... 181
8.2. The network topology... 185
8.3. Routing Algorithms Experiments ... 187

8.3.1. Static Scenario .. 190
8.3.2. Mobile Scenario .. 194
8.3.3. Conclusions... 195

8.4. Middleware Experiments .. 197
8.4.1. Throughput analysis.. 199
8.4.2. Delays Analysis .. 205
8.4.3. Data Distribution in case of delayed joining of the overlay 206
8.4.4. Conclusions... 207

8.5. References... 208
8.6. Appendix A: Journal of the Experiments.. 209

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 8 of 222

1. INTRODUCTION
The aim of this deliverable is to present the validation of the architecture, protocols and
services designed for the MobileMAN project (see Deliverable D13). This validation has
been performed by studying both the performance of single protocols in isolation and by
investigating the performance of a MobileMAN system obtained by integrating our
solutions with existing algorithms/software/hardware.
There are two main approaches in system performance evaluation: the first uses
measurements on real testbeds; the second is based on a representation of the system
behavior via a model [L83] [KM88]. As already pointed out in previous deliverables,
models often introduce simplifications and assumptions that mask important
characteristics of the real protocols behavior [ABCG04, LNT02]. To avoid these
modeling approximations, simulations and analytical studies have to be complemented by
measurements on real prototypes. Testbed results are very important as they are able to
pointing out problems that cannot be detected by simulation/analytical studies. On the
other hand, measurement techniques are applied to real systems, and thus they can be
applied only when a real system, or a prototype of it, is available. This makes
measurement studies very expensive and complex and (as already pointed out in previous
deliverables) currently, only few measurements studies on real ad hoc testbeds can be
found in the literature, see e.g., [BMJ00] [APE02]. The Uppsala University APE testbed
[APE02] is one of the largest, having run tests with more than thirty nodes. In addition
constructing a real ad hoc network test-bed for a given scenario is limited in terms of
working scenarios, mobility models, etc. Furthermore, measurements are generally non-
repeatable. For these reasons, protocols scalability, sensitiveness to users’ mobility
patterns and speeds are difficult to investigate on a real testbed. Using a simulation or
analytic model, on the other hand, permits the study of system behavior by varying all its
parameters, and considering a large spectrum of network scenarios.
To summarize, the performance evaluation of a mobile ad hoc networks is a complex task
that cannot be addressed by using a unique performance technique but requires a careful
mixing of measurements on real testbeds with simulation/analytical studies.
Measurements on real testbed applied to small- medium-scale networks characterize the
behavior of the system under study in limited but realistic conditions, and also provide
important information for analytical/simulation models tuning. Simulation and analytical
models can be used both in the protocol design phase (to compare and contrast alternative
solutions) and to complement measurement results by investigating large scale networks
and/or high-mobility scenarios. Indeed, mixing measurements with simulation/analytical
studies is the approach we used for validating the MobileMAN architecture and
protocols. Whenever possible we constructed small- medium-scale testbeds to validate
our solutions by taking into consideration real scenarios. Modeling studies have been
extensively used in the protocols’ design phase and to study the MobileMAN system
behavior in complex scenarios that are very difficult (if not impossible) to be studied by
prototypes. In the latter case, to develop and solve our simulation models we used
simulation tools. The main advantage of these tools is that they provide libraries
containing pre-defined models for most communication protocols (e.g. 802.11, Ethernet,
TCP, etc.). Popular network simulators used in ad hoc networks include: OPNET [OPN],

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 9 of 222

NS-2 [NS2], Glomosim [GLOM] and its commercial version QualNet [QUAL]. They all
provide advanced simulation environments to test and debug different networking
protocols, including collision detection modules, radio propagation and MAC protocols.
In the first phases of the project we analyzed and compare all these simulation tools. As
in the last two-three years the NS-2 simulation tool emerged as the reference environment
for MANETs evaluation, we performed our recent simulation studies by exploiting the
NS-2 platform. As pointed out in Deliverable D13, we developed both legacy architecture
and more advanced architecture based on the cross layer approach. In the former case we
simply integrated in the NS-2 framework the models of the protocols we designed. On
the other hand, in order to validate the cross-layer solutions we had to in-depth modify
the NS-2 framework to support cross-layer interactions. In Section 1.1 we briefly present
the simulation framework we implemented inside NS-2 to simulate our cross-layer
architecture.

1.1. Simulation Framework
As explained in Deliverable D13, we defined an enhanced MobileMAN architecture that
exploits cross-layer optimizations by maintaining the benefits of a modular architecture.
This is achieved by introducing a cross-layer interface (XL-interface) that standardizes
vertical interactions and gets rid of tight-coupling from an architectural standpoint
[CCMT05].

Engineering the XL-interface presents a great challenge. This component must be
general enough to be used at each layer, providing a common set of primitives to realize
local protocol interactions. To support this novel paradigm we classified cross-layer
functionalities and extended standard TCP/IP protocols in order use them. The result of
this effort has been implemented in the ns2 Network Simulator, realizing a simulative
evaluation framework for the usability of the XL-interface at different layers.
In this Section we describe the realization of a simulation framework, which allowed us
to practice the usage of the XL-interface, and evaluate the performance of the resulting
solutions. Our framework targets the Network Simulator ns2 (v. 2.27), and basis on a
library of objects and abstractions provided by the Naval Research Laboratory (i.e.,
ProtoLib) [ProtoLib], which includes an implementation of the Optimized Link-State
Routing protocol (OLSR). After a concise description of ProtoLib’s features, we report
the enhancements implemented to make cross layering possible among protocol agents.

1.1.1. The Proto Library
The protocol Prototyping library (ProtoLib) [ProtoLib] is not so much a library as it is a
toolkit. The goal of the ProtoLib is to provide a set of simple, cross-platform C++ classes
that allow the development of network protocols and applications.
Although ProtoLib is principally for research purposes, the code has been constructed to
provide robust, efficient performance and adaptability to real applications. Currently,
ProtoLib supports most UNIX platforms (including MacOS X) and WIN32 platforms.
The version used in this work also supports the ns2 simulation environment.
The approach behind this environment is to provide the programmer with abstractions of
common networking objects, like network addresses, sockets and timers, which are then
mapped to a target platform with specific implementations. Hence, the main idea is to

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 10 of 222

have the programmer writing networking code using the abstractions, so as to have it
working on a significant set of real-platforms, as well as on simulation environments,
with minimal changes.
Another important feature is that the ProtoLib package comes with an implementation of
OLSR, compliant with the latest specification, and based on the above abstractions. We
modified OLSR in order to realize performance optimizations at different layers.

1.1.2. Introducing cross-layer interactions
After patching the network simulator with the ProtoLib and the OLSR extensions, we
introduced also a set of primitives to allow cross-layer interactions. It was a “natural”
choice to place the cross-layer primitives inside the ProtoLib, realizing them as
abstractions that protocols can use to share data and exchange local events. This allowed
us to be compliant with the cross-platform philosophy of the ProtoLib, directly providing
an implementation for the ns2 simulation environment. Additionally, it was a proof of
concept of the “usability” of the XL-interface.
We implemented interfaces for XL Data and XL Event objects, respectively for sharing
protocol internal data (i.e., synchronous interactions) and for subscribe/notify to internal
events (i.e., asynchronous interactions). In the following descriptions, we go through the
functionalities of the new components.

Figure 1.1. Cross-Layer Data. Figure 1.2. Cross-Layer Events.

• ProtoXLData. This is a generic class (see Figure 1.1) that identifies internal data

owned by a protocol and shared to the rest of the network stack. It offers methods to
declare ownership of the data and to specify a call-back function for “translating”
the internal data format used by the owner, in a cross-layer ontology common to the
whole stack. Other protocols access instances of this class in a read-only format.

• ProtoXLEvent. This is a generic class (see Figure 1.2) that identifies conditions or
events detected internally to the protocol, which may result of interest for the rest of
the stack. It offers methods to subscribe interest in events derived from this class, as
well as to notify occurrences of them.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 11 of 222

1.2. References
[ABCG04] G. Anastasi, E. Borgia, M. Conti, E. Gregori, “WiFi in Ad Hoc Mode: A

Measurement Study”, Proc. 2nd IEEE Conference on Pervasive Computing
and CVommunications (PerCom 2004), March 2004.

[APE02] APE: Ad hoc Protocol Evaluation testbed. Department of Computer
Systems at Uppsala, Sweden. http://apetestbed.sourceforge.net/

[CCMT05]

M. Conti, J. Crowcroft, G. Maselli, and G. Turi, “A Modular Cross-Layer
Architecture for Ad Hoc Networks,” in Handbook on Theoretical and
Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer
Networks, C. Press, Ed., July 2005.

[C04] M. Chiang, “To Layer or not to Layer: Balancing Transport and Physical
Layers in Wireless Multihop Networks,” in Proceedings of IEEE
INFOCOM 2004, Hong Kong, China, 2004.

[CSN02] K. Chen, S. H. Shah, and K. Nahrstedt, “Cross-Layer Design for Data
Accessibility in Mobile Ad Hoc Networks,” Wireless Personal
Communications, vol. 21, no. 1, pp. 49–76, 2002.

[GLOM] GloMoSim, Global Mobile Information Systems Simulation Library,
http://pcl.cs.ucla.edu/projects/glomosim/.

[KKT04] U. C. Kozat, I. Koutsopoulus, and L. Tassiulas, “A Framework for Cross-
layer Design of Energy-efficient Communication with QoS Provisioning in
Multi-hop Wireless Netwroks,” in Proceedings of IEEE INFOCOM 2004,
Hong Kong, China, 2004.

[KK03] V. Kawadia and P. R. Kumar, “A Cautionary Perspective on Cross Layer
Design.” IEEE Wireless Communication Magazine. pp. 3-11, vol. 12, no. 1,
February 2005.

[KM88] J.F. Kurose, H. Mouftah, “Computer-Aided Modeling of Computer
Communication Networks”, IEEE Journal on Selected Areas in
Communications, Vol. 6, No. 1 (January, 1988), pp. 130-145.

[L83] S.S. Lavenberg, Computer Performance Handbook, Academic Press, New
York, 1983.

[LNT02] H. Lundgren, E. Nordstron, C. Tschudin, “Coping with Communication
Gray Zones in IEEE 802.11 based Ad Hoc Networks”, Proceedings of the
ACM Workshop on Mobile Multimedia (WoWMoM 2002), Atlanta (GA),
September 28, 2002, pp. 49-55.

[NS2] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/index.html
[ProtoLib] “PROTEAN Research Group,” http://cs.itd.nrl.navy.mil/5522/.
[QUAL]

Qualnet simulator, http://www.qualnet.com/.

[SGN03] R. Schollmeier, I. Gruber, and F. Niethammer, “Protocol for Peer-to-Peer
Networking in Mobile Environments,” in Proceedings of 12th IEEE
International Conference on Computer Communications and Networks,
Dallas, Texas, USA, Oct. 2003.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 12 of 222

[YLA02] W. H. Yuen, H. Lee, and T. D. Andersen, “A Simple and Effective Cross
Layer Networking System for Mobile Ad Hoc Networks,” in Proceedings
of IEEE PIMRC 2002, Lisbon, Portugal, 2002.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 13 of 222

2. ENHANCED 802.11 CARD

2.1. Simulations
As discussed in Deliverable D10 [D10] and D13 [D13], the AOB mechanism has been
selected as the MAC protocol candidate to be adopted in the MobileMAN enhanced
802.11 card. Section 2.2 will report on the current status of this card implementation and
will show the results of experimental tests conducted in various conditions to verify the
card functionalities and the performance improvements over standard IEEE 802.11 cards.
However, in the above-mentioned deliverables it was also motivated the need for further
extending the AOB functionalities, in order to deal with the heterogeneity of the
MobileMAN environment and the multi-hop communications. In the Deliverable D10 we
have proposed an extension of the AOB protocol to solve the significant unfairness
problems that arise in single-hop networks when enhanced stations using the modified
802.11MAC protocol compete with legacy stations adopting the standard 802.11 MAC
protocol. Our approach to solve this problem is to design a component capable of
estimating how long the enhanced stations further defer their frame transmissions with
respect to the legacy stations, and then exploiting this information to enable the enhanced
stations to reclaim new transmission opportunities. Specifically, in our solution enhanced
stations earn credits when releasing transmission opportunities granted by the standard
protocol. The collected credits are a virtual currency spent by the enhanced stations to
reclaim new transmission opportunities.
In this section we want to further elaborate on these concepts to extend the AOB
mechanism in order to solve the unfairness problems that arise in multi-hop networks,
even if only enhanced stations are present. In this section we first discuss the major
unfairness causes in 802.11-based multi-hop networks. Then, we review related work to
highlight advantages and flaws of other proposals. Afterwards, we describe the extended
Fair AOB protocol, hereafter simply Fair MAC, and we present numerical results from
simulation tests to show that our scheme can achieve a better fairness than standard IEEE
802.11, while increasing the total network throughput.

2.1.1. Unfairness in 802.11-based Multi-hop Networks
Several unfairness and performance issues involving IEEE 802.11 in a multi-hop context
have been pointed out through simulation studies and experimentations [XS02, ACG03].
Many of these problems originate from the asymmetric perception of the medium
availability that nodes have in multi-hop networks. Indeed, a node perceiving no on-
going transmission tries to capture the whole channel bandwidth for its own
transmissions. A successful transmission prevents any other station in the neighborhoods
of either the transmitter or the receiver from gaining access to the medium. However, the
level of contention in those neighborhoods (i.e., the number of contending nodes in those
parts of the network) could be different, leading to an unbalanced allocation of channel
bandwidth [NKGB00]. Moreover, nodes failing to gain access to the medium are
invisible to other emitters and bandwidth-consuming nodes cannot easily be notified of

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 14 of 222

the presence of starved nodes.

Figure 2.1. Three-pairs scenario: the central emitter
contends with the two independent other

Traditionally, the most extensively investigated network scenario that introduces
unfairness is the so-called hidden terminal situation, in which two independent emitters
transmit to a common receiver, resulting in undetectable receiver-side collisions.
However, recent papers have shown that several other configurations can have even more
serious performance issues. In [ChaudetDG05a], a certain number of basic network
configurations involving a small number of nodes, which lead to severe performance
issues, have been gathered and analyzed. For instance, it is shown that long-term
unfairness occur in the three-pairs scenario depicted in Figure 2.1 in which three couples
of emitter-receiver are placed so that different pairs of nodes cannot directly
communicate, but a transmission from one pair blocks the carrier sense mechanism of its
direct neighbors. The two external pairs are totally independent, therefore their backoff
timers evolve asynchronously and their transmissions are not synchronized. In this
configuration, the central pair is disadvantaged and usually obtains a quite low bandwidth
share, as both exterior pairs need to be silent simultaneously for the central pair to
decrement a single backoff slot.

Figure 2.2. Large-EIFS problem: acknowledgments from R
trigger an EIFS timer at the first emitter, provoking unbalance.

Another subtle phenomenon that induces substantial unfairness and throughput
degradation is the disproportion between the time deferral triggered whenever a node
detects a correct frame on the channel, i.e., the DIFS time, and the one triggered
whenever a node detects an erroneous frame, i.e., the EIFS time. The network scenario
depicted in Figure 2.2 illustrates this problem, also known as Large-EIFS problem
[ZNG04]. In this case, an acknowledgment emitted by the receiver R triggers an EIFS
deferral time at the leftmost emitter. The situation is unbalanced between the two

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 15 of 222

emitters, as one has to wait a DIFS-long idle time, while the other one needs to wait an
EIFS-long idle time before decrementing any backoff slot. For other elementary
configurations negatively affected by long-term and short-term fairness issues, the reader
could refer to [ABCG04, CDG05a]. On the other hand, in more complex topologies (e.g.,
chain of nodes, grid topologies, random topologies, etc.); the resulting unfairness is often
due to a complex combination of the above-mentioned causes.
Several different MAC protocols have been proposed to alleviate the unfairness issues in
multi-hop ad hoc networks (and a comprehensive survey of them can be found in
[JLB04]), but they focus primarily on solving the hidden terminal problem [FG97]. The
most common approach has been to implement floor acquisition mechanisms based on
extensions of the basic RTS/CTS handshake. However, recent experimentations
[ABCG04, CDG2005] and simulation studies using realistic channel models [XGB03]
have shown that the RTS/CTS handshake cannot prevent all interference as expected in
theory. The reason is that the RTS/CTS handshake is effective in resolving the hidden
terminal problem only under the assumption that all hidden nodes are within the
transmission ranges of the receivers [XuGB03]. However, in IEEE 802.11-based multi-
hop networks, the interference range is much larger than the transmission ranges
[ACG03] and therefore this situation is less likely to appear. Other aspects, such as the
fact that transmission ranges are in practice much shorter than usually assumed in
simulations, also reduce the effectiveness of the RTS/CTS handshake in providing robust
estimates of the channel occupations [ACG03]. Consequently, the design of practical
solutions to eliminate the negative impact on the performance of IEEE 802.11-based
multi-hop networks of the several unfairness causes discussed in this section, is still a
totally open research area.

2.1.2. Related Work
In recent years, several algorithms and protocols have been developed to achieve fair
channel allocation in multi-hop ad hoc networks [ONKC98, NKGB00, LLB00, BWK00,
HB01, QS02, FB03]. In many of these papers, solutions have been proposed to achieve
weighted fairness, such that different traffic flows are allocated bandwidth according to
their weights. In particular, the authors of [NKGB00] proposed a mechanism for
translating an arbitrary fairness model into a corresponding backoff algorithm, but they
assumed that an ideal contention avoidance scheme is used to eliminate all
hidden/exposed sender/receiver problems. The authors of [LLB00] proposed a packet-
scheduling scheme that seeks to maximize aggregate channel allocation while providing a
minimum fair allocation of channel bandwidth. However, this is achieved by constructing
a conflict-free tree with a global exchange of topology and flow information between the
nodes. The same shortcoming of requiring the exchange of information between nodes to
either maintain the topology knowledge or to compute the fair allocation can be found in
several other papers. For instance, the authors of [ONKC98] studied a pi, j -persistent
CSMA-based backoff algorithm that achieves an equal per-flow allocation relying on
each node that regularly broadcast information on either the number of its neighbors or
the average contention period of its neighbors. More recently, the authors of [HB01]
developed an algorithm to calculate the fair shares that would enforce max-min fairness
in an ad hoc network, which needs the knowledge of the two-hop neighbors.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 16 of 222

An alternative approach employed in more recent papers is to solve the fairness issues by
maintaining the topology-transparency, i.e., implementing backoff algorithms that are
topology blind. The pioneering work for this type of schemes was [BWK00], in which a
measurement-based backoff scheme has been proposed, which adjusts the contention
windows according to the stations' fair shares. The drawback is that only frames that can
be decoded contribute to the node's traffic statistics. This results in unreliable estimates of
channel shares for stations that are external to the transmission ranges of the computing
node, but internal to its interfering range, which is a common condition in 802.11-based
multi-hop ad hoc networks, as shown in [ACG03, XGB03]. Recently, the authors of
[FB03] proposed to adjust the contention windows only according to the number of
successful transmissions carried out by each station, but the fairness improvement results
into a significant reduction of the total network throughput.
A few papers have addressed the problem of jointly achieving a fair allocation of
bandwidth and the maximization of channel utilization. The authors of [QS02] proposed
a dynamically tuning backoff algorithm that enhances the overall performance while
achieving a weighted fairness among stations, but it requires the estimate of the number
of stations in the contention area, and it is designed to work in single-hop networks, in
which there are no hidden terminals.

2.1.3. Description of the Fair-MAC Protocol
The main goal of the extensions to the AOB protocol we propose in this section is to
alleviate the problem of fairness occurring in 802.11-based multi-hop networks without
degrading the total network throughput. The design principles we follow are: i) to avoid
any exchange of information between the nodes; and ii) to rely only on topology-blind
estimates of the network status based on the standard physical carrier sensing activity.
As discussed in Deliverable D10 [D10], the AOB mechanism schedules the frame
transmissions according to the IEEE 802.11 backoff algorithm, but adds an additional
level of control before a transmission is enabled. Specifically, a transmission opportunity
already granted by the standard backoff algorithm is rescheduled by AOB, after selecting
a new backoff interval, in a probabilistic way. The probability 1− PT() of postponing a
transmission attempt is computed dynamically, and it depends on the network congestion
level, which is estimated using the utilization rate of the slots, the so-called slot
utilization. It is worth reminding that the slot utilization, also denoted as SU , is defined
as the ratio between the number of busy periods (i.e., channel occupations due to
transmissions) during the backoff interval and the total number of slots available for
transmission during the backoff interval, i.e., the sum of idle slots and busy period
[BCG04]. We have proved that the optimal slot utilization ensuring the maximization of
the network throughput, called Asymptotic Contention Limit (ACL(q)), depends only on
the average frame size q and it is independent of the number of competing stations.
Finally, as the mechanism should prevent starvation, the probability of transmission is in
addition dependent on the number of previous unsuccessful successive transmission
attempts, designed by N _ A in the following. The expression of the probability of
transmission is then given by the following equation:

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 17 of 222

 PT =1− min 1, SU
ACL(q)





















N _ A

 (1)

This expression is decreasing as the medium load increases. Transmitting frames
according to this probability leads to a near-optimal behavior in single-hop networks
composed of only cooperating stations as shown in [BCG04].
The rationale behind the AOB scheme is that a station should refrain from transmitting
whenever its transmissions could overload the network, inducing a congestion level
higher than the optimal one. However, leaving time to other contending nodes for gaining
access to the network could also help to address the fairness issues. Ideally, stations
provoking an unfair share of the channel bandwidth should release more transmission
opportunities than nodes with a lower channel share. It is obvious that a practical and
realistic solution for this problem should rely on simple, interference-resilient and
topology-independent procedures to evaluate the stations’ channel shares, as the slot
utilization. Moreover, we follow the same principle as [BWK00], in which each emitter i
considers the whole set of its neighbors as a single contending emitter. In this case, each
station has to estimate what channel share it gets and what channel share its neighbor
stations as a whole get. In the following, we denote with slot utilization internal (SUint)
the channel share that is occupied by the computing node's transmissions, and with slot
utilization external (SUext) the channel share that is occupied by its neighbor nodes'
transmissions. To compute these quantities, each station observes the channel status
during a given time window T , and it counts the if number ntx of its transmission
attempts, the number nrx of the number of channel occupations (either correct frames or
collided frames) observed by this node, and by nidle the number of slots during which the
medium has been perceived idle during this interval (including DIFS and EIFS periods).
It is straightforward to note that the total number of busy periods during the observation
time T is equal to ntx + nrx . From these measurements, the two slot utilization values are
computed as follows:

 SU int =
ntx

nidle + ntx + nrx

 (2.a)

 SUext =
nrx

nidle + ntx + nrx

 (2.b)

To obtain per-station fair allocation of the channel bandwidth, each station should
dynamically tune its contention windows such as to equalize the SU int and SUext values
(this process is somehow similar to the equalization of the normalized throughout shares
described in [BWK00]). To achieve this objective we modify the probability of
transmission used in the original AOB (see formula (1)) as follows:

 PT =1− min 1, SUint + SUext

ACL(q) − SUint



















 (3)

Expression (3) is decreasing as the medium load increases, and especially as the share of
medium load due to the computing station increases. Consequently, stations with a

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 18 of 222

disproportionate channel share are less aggressive in accessing the channel than stations
with lower channel shares. Intuitively, decreasing the probability of transmission as
medium load due to other nodes' emission increases could have the effect of accentuating
fairness issues in some cases. Nevertheless, as this expression decreases faster in function
of S _U int than in function of S _Uext , nodes responsible of unfairness are more penalized
than nodes suffering from unfairness.
Preliminary results indicated that this expression of the probability of transmission results
in an improved fairness in multi-hop configurations. However, refraining from
transmitting could cause a global throughput decrease in certain situations. To resolve
this limitation we thread the footprints of [BCG05], by introducing a credit and reward
mechanism that cooperates with the backoff procedure. The basic idea behind this
mechanism is that each station collects credits when it refrains from transmitting due to
the probability of transmission mechanism. The credits are then spent to perform backoff-
free consecutive transmissions when the emitter gains access to the medium,
compensating the eventual performance loss due to releasing transmission attempts
granted by the standard backoff protocol. In other words, the backoff-free transmission
opportunities are a sort of reward for the emitters that participate to the good operation of
the network.
When deferring a transmission, a node earns a number of credits corresponding to the
mean backoff it would have drawn, i.e., (CW −1) /2, CW representing the current
contention window (maximum backoff) value. To better adapt this scheme to the multi-
hop environment, and to deal with the asymmetric conditions in which a signal is
perceived on the medium, blocking the backoff decrease process and triggering an EIFS-
long waiting time, as in the Large-EIFS problem, a station collects credits also during the
EIFS deferral time. In particular, when an EIFS timer terminates, a node earns a number
of credits corresponding to the number of idle slots contained in the EIFS period. A
question that naturally arises is: how many credits should each node spend for a backoff-
free transmission? The credits are an average measure of time loss due to additional
backoffs; hence, the node should consume a number of credits equal to the backoff it
would have chosen to perform a regular transmission. In order to limit burst sizes, we
also define a credit cap, the maximum number of credits a node is allowed accumulating.
It is worth noting that a node transmitting a burst of frames keeps on collecting statistics,
as well as its neighbors. During this period, the number of idle slots decreases for both
sides, whereas the number of busy slots is increased by one. Consequently, at the end of
the burst, the probability of transmission of the bursting emitter is slightly lower than the
one of its neighbors.
Summarizing, the proposed extension of the AOB protocol operates as follows. When a
node gain the channel access according to the probability PT defined in (3), it is allowed
transmitting multiple frames in a single burst, which size l is dynamically computed by
using the credits owned by that node (the node contends only for the first frame
transmission in the burst, while the other l −1 are backoff-free frame transmissions
separated by a SIFS period. This is similar to the transmission process of fragmented
frames). It is worth remarking that frame bursting is a feature already implemented in the
802.11e and 802.11n extensions of the IEEE standard [XR03], although for different
purposes. The proposed credit scheme provides a mechanism to dynamically adjust the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 19 of 222

burst size such as to ensure fairness while reducing the protocol overheads.
In the next section, we evaluate the proposed mechanisms in different well-known
problematic topologies in order to understand the enhanced MAC protocol behavior and
point out its advantages and flaws, which gives indications on further improvements of
the protocol.

2.1.4. Performance Evaluation
The extension of the AOB protocol described in the previous section has been
implemented and evaluated under the network simulator ns-2 in version 2.27. In order to
evaluate only the medium access protocol performance, routing has been replaced by a
static offline routes computation based on shortest-path calculation, and ARP mechanism
has also been disabled. This way, the only traffic present in the network is due to the data
flows. IEEE 802.11 parameters have been tuned to correspond to the HR-DSSS 11 Mb/s
physical layer [I01]. All simulations are performed using 1000-bytes long payload
frames, and the sources have an infinite amount of traffic to send. Each emitter transmits
frames continuously in order to saturate the medium. In these simulations, the slot
utilization values are computed by each node using an observation period T of 50ms with
an exponentially smoothed moving average with a 10% smoothing percentage. This way,
the average slot utilization is mainly computed over a 500ms time window. In the
scenarios simulated below, in which the duration of the flows carried by the network is
infinite, the duration of the observation period has a negligible impact on the scheme
performance. Nevertheless, in more realistic situations, with frequent short-lived flows
(mice) as in wired networks the T period may have an impact on the scheme
performance. Future work will include a more thorough study of this parameter.

(a) Large-EIFS(n) (b) Grid Scenario
Figure 2.3. Topologies considered in the simulations.

The results presented in the following were obtained by averaging the throughputs
achieved by the data flows over 10 simulations in the scenarios depicted in Figures 1.1
and 1.2 and other well-known problematic topologies (see Section 2.1.1). Specifically,

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 20 of 222

we have considered two pairs placed in mutual carrier sense range to quantify the
performance enhancement achieved on a symmetric scenario in which the use of $EIFS$
deferral results in a performance decrease. We have also extended the Large-EIFS
scenario presented in Figure 2.2, by adding different numbers of left-side emitters (we
denote as Large-EIFS(n) the configuration with n left-side emitters), as depicted in Figure
2.3(a) . These extended configurations suffer from the same kind of fairness issue as the
basic scenario. Finally, we have also investigated the grid scenario depicted in Figure
2.3(b), which was also studied in [FB03]. In the grid scenario, rows are separated by
distance greater than the transmission range but still interfere, while the distance between
nodes in a row is identical and selected such that each node can interfere their two-hop
neighbors' transmissions.
Figure 2.4 shows the total network throughput achieved in the different configurations we
simulated. The first bar in a group represents the total network throughput achieved by
IEEE 802.11, the second bar represents the performance of Fair-MAC without the credit
mechanism, and the subsequent bars show the performance of Fair-MAC with different
credits cap values. Figure 2.5 shows the min-max ratio of the throughputs, i.e., the ratio of
the minimum throughput achieved in the network over the maximum throughput, which
quantifies fairness. This metric has the advantage over the usual variance to be
independent of the number of considered emitters and therefore does not mask situations
in which small amount of nodes are starved.
The extended AOB protocol, without using the credit mechanism, usually highly
improves fairness over classical IEEE 802.11, the ratio between the lowest flow and the
highest flow being improved by a factor 2 to 3 on average, this improvement reaching a
factor of 10 in the grid scenario. Using different fairness criteria (e.g., Jain’s criterion)
leads to the same fairness improvement conclusions. However, according to the modified
MAC protocol, each node refrains from transmitting in order to leave transmission
opportunities for less favored flows. This usually results in an overall performance
decrease that, in the simulated scenarios, does not go above 20% and is about 15% on
average. Activating the credit mechanism is beneficial to increase of the overall
throughput, often leading to a better use of the radio medium bandwidth than classical
802.11. In the considered scenarios, by using a credit cap of 1024 credits (corresponding
to an average maximum allowed burst size of 66 frames), we experienced a throughput
increase between 10% and 20% with respect to legacy IEEE 802.11. However, in the
Large-EIFS scenarios, increasing the credit cap value causes a degradation of the fairness
improvement, though a credit cap of 1024 credits is still capable of reducing the ratio
between the lowest and the highest throughput flows by more than a factor 2.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 21 of 222

 0

 2000

 4000

 6000

 8000

 10000

 12000

G
rid

M
ul

tip
le

 L
ar

ge
 E

IF
S

(2
 fl

ow
s

on
 le

ft)

M
ul

tip
le

 L
ar

ge
 E

IF
S

(2
 fl

ow
s

on
 le

ft)

La
rg

e
E

IF
S

T
hr

ee
 P

ai
rs

T
w

o
pa

irs

O
ve

ra
ll

th
ro

ug
hp

ut
 (

kB
/s

)
802.11

AOB
64 Credits

128 Credits
256 Credits
512 Credits

1024 Credits

Figure 2.4. Total network throughput in the considered network scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

G
rid

M
ul

tip
le

 L
ar

ge
 E

IF
S

(2
 fl

ow
s

on
 le

ft)

M
ul

tip
le

 L
ar

ge
 E

IF
S

(2
 fl

ow
s

on
 le

ft)

La
rg

e
E

IF
S

T
hr

ee
 P

ai
rs

T
w

o
pa

irs

F
ai

rn
es

s
in

de
x

802.11
AOB

64 Credits
128 Credits
256 Credits
512 Credits

1024 Credits

Figure 2.5. Fairness in the considered network scenarios.

Credit caps should therefore be properly tuned to reach the best compromise between
throughput increase and fairness improvement. Nevertheless, there is no generic proper
limitation of the burst size as the three-pairs scenario behavior illustrates. In the three-pair
scenario, increasing the number of maximum credits results in both throughput and
fairness improvements. This is due to the peculiarities of this scenario, in which the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 22 of 222

exterior pairs already transmit long bursts of frames when using classical IEEE 802.11,
therefore the credit mechanism does not affect much their performance. Ensuring a fairer
medium access means that the central pair gains access to the medium more often than
the two exterior pairs. From the overall system point of view, this results in emitting one
frame instead of two in the same time interval. That’s why credits enhance both fairness
and performance of the mechanism. The grid scenario is somehow similar to the three-
pair scenario as fairness decreases only when a too large number of credits can be
accumulated (see the 1024-credit cap case).
The foregoing results indicate that it is necessary to trade performance for fairness by
properly limiting the allowed burst size. The design of adaptive mechanisms to select the
best credit cap value, as well as of different credit evolution schemes that dynamically
adapt the credit collection to the slot utilization measures, is an ongoing research activity.

2.2. Tests

2.2.1. Hardware and Software Setup
The hardware setup of the Network Interface Card developed in the framework of the
MobileMAN project has been extensively described in Deliverable D12 [D12]. Thus, in
the following we will focus on the software components, outlining the different modules
that have been so far implemented in the enhanced card.
As explained in Section 2.1.3, the AOB protocol and its extensions are based on the
notion of slot utilization. For this reason, the first component that has been developed is
the one for the run-time estimation of this important index. Specifically, we do not
estimate the aggregate slot utilization, as done in [BCG00], [BCG04], but we split it into
two contributions: the internal slot utilization (SUint) and the external slot utilization
(SUext), such as to differentiate between the contribution to the channel occupation due to
the node’s transmissions and to its neighbors’ transmissions. This is motivated by the
need to keep our implementation as much flexible as possible, such as to allow future
modifications as the one described in Section 2.1.3. Another variation with respect to the
original AOB is the time interval over which we compute the slot utilization. In fact, the
original AOB computes the slot utilization after each backoff interval, while in our
implementation we used a constant observation period T of100ms. This choice is
motivated by the need to avoid frequent slot utilization computations, which could
interfere with the time constraints of the atomic MAC operations (e.g., RTS/CTS
exchange). Then, the SUint and SUext values are computed using the formulas (2.a) and
(2.b). It is evident that the SU used in formula (1) can be computed as the sum of SUint
and SU int . Thus, our implementation and the original AOB are equivalent. It is worth
remarking that: i) two channel occupations should be considered separated only when
they are separated by an idle period longer than the DIFS period. This guarantees that the
MAC ACK frames are not counted as channel occupations different from the data frames
they acknowledge. ii) To compute the Tidle it is necessary to count also the idle periods
during which the DIFS and EIFS timers are active, and not only the backoff idle slots.
Using formulas (2a) and (2b) we compute a single sample of the slot utilization.
However, to avoid sharp fluctuations in the slot utilization estimates we should average

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 23 of 222

these single measures. Hence, the SU index should be computed applying a moving
average window estimator to the samples. Specifically, let assume that the station is
observing the channel during the i-th observation period. Then, it follows that:

 SU int
(i)

= α1 ⋅ SU int
(i−1)

+ 1−α1()⋅ SUint
(i) (4a)

 SU ext
(i)

= α1 ⋅ SU ext
(i−1)

+ 1−α1()⋅ SUext
(i) (4b)

where α1 is the smoothing factor, SU int
(i)

 (SU ext
(i)

) is the average internal (external) slot
utilization estimated at the end of the i-th observation period, and SU int

(i) (SUext
(i)) is the

internal (external) slot utilization measured during the i-th observation period using
formula (2a) ((2b)).
Exploiting the SU estimate we can easily compute the PT using formula (1). Since the
ACL(q) value depends almost only on the average frame size q and it doesn’t depend on
the number of stations in the network, as proved in [BCG04], the ACL(q) values for
different frame sizes can be stored a priori inside the node transmitter. Similarly to the
slot utilization computed in formulas (2a) and (2b), formula (1) could induce sharp
fluctuations in the PT estimate. For this reason also to compute the average PT value it is
necessary to introduce a smoothing function. In particular, let us assume that the j-th
backoff interval is terminated (i.e., the backoff counter is zero). Then, it follows:

 PT
(j)

= α2 ⋅ PT
(j−1)

+ 1−α2()⋅ PT
(j) (5)

where α2 is the smoothing factor, PT
(j)

 is the average probability of transmission to use
when deciding whether performing the transmission attempt or not, and PT

(j) is the
probability of transmission computed according to formula (1). It is worth noting that it
should be α2 > α1 because the PT value is updated after each backoff interval, therefore
significantly more often than the SU , which is updated only after each observation
interval T (for instance, α1 = 0.9 and α2 = 0.95).
The block diagram shown in Figure 2.6 outlines the different components that have been
defined to implement the AOB MAC protocol.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 24 of 222

Figure 2.6. Block diagram of the implemented AOB
mechanism.

In the original AOB, it is only necessary to compute the PT value according to formula
(1), and to maintain the SU int and SU ext estimates using formulas (4a) and (4b). For this
reasons, the implementation of the original AOB scheme has been the first phase of the
enhanced MAC protocol implementation. However, throughout the MobileMAN project
several extensions to the basic AOB scheme have been designed and evaluated using
simulations. These extensions aim at improving the MAC protocol efficiency and at
solving unfairness problems that typically occur in multi-hop configurations and
heterogeneous environments. The details of these additional features have been reported
in previous deliverables (see Deliverables D10 [D10] and D13 [D13]) and in
Section 2.1.3 of this document. However, all these modifications are based on a common
idea, that is the estimation of the amount of channel time each station is releasing, such as
to enable the station to recuperate its released time when new transmission opportunities
are granted by the MAC protocol. The implementation of these extensions of the AOB
protocol requires designing two basic components: a module for the credit computation,
and a module for the average contention window estimation. In the following we describe
the operations performed by these two additional modules that have been implemented in
the enhanced card.

Credit Computation
 The credits are the measure of how many transmission opportunities the station has
released due to the probability of transmission. Specifically, each station earns a given
amount of credits when it releases a transmission opportunity respect to the standard
basic access mechanism, credits that can be spent to perform additional transmission
attempts. Let us assume that the j-th backoff interval is terminated (i.e., the backoff
counter is zero), and that the backoff timer was uniformly selected in the range

 0,K,CW k()−1[]. If, according to the probability of transmission, the station releases its
transmission opportunity granted by the standard backoff, the new contention window

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 25 of 222

used to reschedule the frame transmission will be CW k +1()= min 2k ,2kMAX()⋅ CWMIN .
Thus, after the virtual collision the number of credits CR owned by that station will be:

 CR = CRold + min 2k,2kmax() (6)

Average Contention Window Estimation
The credits should be used by each station to perform additional transmission attempts
using a null backoff. Specifically, let assume that the station is authorized by the standard
backoff rules to access the channel, and it decides to perform a real transmission attempt
according to the probability PT . In this case, our modified mechanism could authorize the
station to transmit multiple frames in a burst whether it owns enough credits. It is worth
pointing out that transmitting a burst of data frames is equivalent to deliver a longer
frame, because we are not introducing new collisions (the concatenated frames are
transmitted with null backoff and are separated by a SIFS , hence the collision probability
is negligible). But, how many credits would be needed to perform an additional frame
transmission? To answer to this question we need to have an estimate of the average
backoff value that the standard backoff scheme would use in the case that no filtering of
the channel access is implemented. To achieve this goal, it is necessary to remind that the
collisions can be either virtual collisions when the station voluntarily defer a transmission
attempt, or real collisions when the station perform the transmission attempt but it
doesn’t receive the MAC ACK frame. Let us assume that the total number of
transmission opportunities assigned to a station before the successful transmission is K ,
and that Krc have been the real collisions occurred. Hence, K − Krc have been the virtual
collisions, i.e., the released transmission opportunities. Denoting with CW enh

(j)
, the

average contention window estimated after the j-th successful transmission, and with
CW std

(j)
 average contention window of the equivalent standard MAC protocol estimated

after the j-th successful transmission, we have that:

CW enh
(j)

= α2 ⋅ CW enh
(j−1)

+ 1−α2()⋅ CW k()
k=1

K

∑ (7)

CW std
(j)

= α2 ⋅ CW std
(j−1)

+ 1−α2()⋅ CW k()
k=1

Krc

∑ (8)

The CW std value will be used as threshold to decide if the station has enough credits to
perform a transmission attempt.

The second phase of the enhanced MAC implementation has required the implementation
of the additional two components described above; such as to introduce the capability of
frame burst transmission in the AOB protocol. Hereafter, we indicate the AOB protocol
extended with the credit mechanism as AOB-CR.
The block diagram shown in Figure 2.7 outlines the different components that have been
defined to implement the AOB-CR MAC protocol. In particular, when the station
performs a successful transmission attempt, it should compare the available credits
against the CWstd threshold, computed according to formula (8). If CR > CWstd , the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 26 of 222

station should immediately perform a new transmission attempt separated by a SIFS
interval from the previous one. It is worth pointing out that transmitting a burst of frames
shouldn’t affect the computation of the slot utilization. This implies that the transmitter
should increment the ntx value by one when transmitting a frame burst. On the other
hand, all the other stations also will increment the nrx value by one because the frames in
the burst are separated by a SIFS interval, thus appearing to the receiver as a single
channel occupation.

Figure 2.7. Block diagram of the implemented AOB-CR mechanism.

This AOB variant has been tested in the same conditions used for the original AOB
protocol to verify that the credit mechanism can further improve the throughout
performance.

2.2.2. Experimental results
In order to validate our enhanced architecture we carried out comparative tests of the
performance achieved by the legacy IEEE 802.11 backoff mechanism and the enhanced
one. In both sets of experiments we used our WNI implementation. All the tests were
performed in a laboratory environment, considering ad hoc networks in single-hop
configurations. Nodes are communicating in ad hoc mode and the traffic was artificially
generated. In our scenarios we used a maximum of 4 stations, due to hardware
limitations. However, this is not seen as a problem, because we were already able to
demonstrate the performance of our solution and the coherence with previously
performed simulations. In Section 2.2.3 we further elaborate on this point, providing
simulation results to support our claim.
As discussed in Section 2.1.3, the average backoff value that maximizes the channel
utilization is almost independent of the network configuration (number of competing
stations), but depends only on the average packet sizes [BCG03]. Therefore, the ACL(q)
value for the frames size used in our experiments can be pre-computed and loaded in the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 27 of 222

MAC firmware. The implementation in the FPGA of the algorithm defining the ACL(q)
value in order to compute it at run-time, is an ongoing activity.
We used different scenarios (2, 3 and 4 stations), in order to study at the same time, the
performance of our implementation and the correspondence with the previous simulation
results. The stations are identically programmed to continuously send 500-bytes long
MSDUs (MSDU denotes the frame payload). The consecutive MSDU transmissions are
separated by at least one backoff interval and we did not use the RTS/CTS handshake, or
the fragmentation. The minimum contention window was set to 8 ⋅ tslot (160 µsec), and all
values were computed in stationary conditions. The nodes topology is illustrated in
Figure 2.8. All the experimental results we show henceforth were obtained by computing
the average over ten replications of the same test.

Figure 2.8. Nodes topology used in the measurements.

As already demonstrated in [BCG04] and [BCG05] the AOB mechanism introduces a
minimum overhead that could negatively affect the performance of the communications
between two stations. Thus, our first set of experiments was carried out to verify this
performance decrease in network configurations where two stations are performing either
a unidirectional or bidirectional communication, as illustrated in Figure 2.9.

STA
1

STA
2

Transmit
Path

MAC Tester via RS232

STA
1

STA
2

Transmit
Path

MAC Tester via RS232
Figure 2.9. Unidirectional and Bidirectional communications with
two stations.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 28 of 222

The results we obtained in this point-to-point configuration are reported in Table 2.1. In
particular, Ntx denotes the average number of transmission (either successes of
collisions) performed during a period T , while RC denotes the average number of
collisions suffered during a period T . Hence, the average throughput TP , expressed in
byte/s, can be computed as:

 TP =
Ntx − RC

T
⋅ MSDU . (4)

From the listed numerical results, we can observe that the throughput decrease in the case
of two competing stations is lower than 3%.

Table 2.1. Point-to-point scenario results.
Unidirectional Flow Bidirectional Flow

Standard MAC AOB MAC Standard MAC AOB MAC

SUint 0.09645 0.04114 0.05709 0.02407
SUext 0.00024 0.00040 0.05939 0.02312

PT - 0.56149 - 0.52652
Ntx 33.60193 29.88714 16.8941 15.99531
RC 0.18143 0.38419 1.16443 0.72829
TP 167100 147550 (-11.7%) 78650 76350 (-2.94%)

In the second set of experiments we considered a network configuration with 3 stations,
as depicted in Figure 2.10.

STA
1

STA
2

STA
3

Transmit
Path

MAC Tester via RS232
Figure 2.10. 3 stations scenario.

The experimental results we obtained in the 3 stations configuration are reported in Table
2.2. We can note that with three competing stations, the throughput improvement is about
5.7%. This is explained by observing that the number of collisions occurred during a T
period is four times less for the AOB MAC protocol than for the standard one.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 29 of 222

Table 2.2. 3-stations scenario results.
 Standard MAC AOB MAC

SUint 0.04585 0.01911
SUext 0.07509 0.03142

PT - 0.49922
Ntx 13.0545 11.4754
RC 2.74377 0.57712
TP 51555 54485 (+5.7%)

Finally, the last set of experiments was carried out in the 4 stations scenario depicted in
Figure 2.11.

Figure 2.11. 4 stations scenario.

The experimental results obtained in the 4 stations configurations are reported in Table
2.3. These results confirm the positive trend shown in the previous experiments, since the
throughput increase in the case of four stations is 9.4%.

Table 2.3. 4-stations scenario results.
 Standard MAC AOB MAC

SUint 0.03871 0.01517
SUext 0.09371 0.03846

PT - 0.44863
Ntx 9.91685 8.8006
RC 2.18539 0.33916
TP 38655 42300 (+9.4%)

To summarize, in Table 2.4 we report the aggregate throughput measured in the different
network configurations we have tested, considering both the AOB MAC protocol and the
AOB-CR MAC protocol.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 30 of 222

Table 2.4. Summary of experimental results: total throughput.
 2 STAs (bidir.) 3 STAs 4 STAs

Std MAC 157300 154665 154620

AOB MAC 152700
(-2.94%)

163455
(+5.7%)

169200
(+9.4%)

AOB-CR MAC 169495
(+7.75%)

170635
(+10.32)

169925
(+9.89)

The above results clearly demonstrate that the AOB MAC protocol may significantly
improve the per-station throughput as the number of stations increases, and the
throughput improvement is higher when the credit mechanism is employed in the original
AOB scheme.

2.2.3. Comparison with the simulations
We carried out experiments with up to four stations due to hardware limitations.
However, we argue that the positive trend observed in our tests will be confirmed also for
large numbers. To substantiate this statement, in this subsection we show numerical
results obtained through discrete-event simulations, considering the same parameter
setting adopted during the real tests. In particular, Figure 2.10 shows the channel
utilization of the IEEE 802:11 MAC protocol (rate 2Mbps) with and without the AOB
mechanism, versus the number of wireless stations in the network for an ideal wireless
channel, i.e., not affected by noise. In the same figure we also show the maximum
throughput achieved when the stations adopts the optimal backoff interval (computed
according to [CCG00]). The shown results refer to a payload size of 500 bytes, and were
obtained using a minimum contention window equal to 8 time slots, as in our real
experiments. From the figure, it is straightforward to note that the throughput measured
in the real tests is always lower than the one obtained through simulations. The worse
throughput performance is due to the negative impact of the radio interferences that are
present in a real environment. However, the comparison between the experimental results
reported in Table 2.4, and the simulation results shown in Figure 2.10 indicate the AOB
mechanism is quite effective in reducing the throughput degradation caused by the radio
interferences. In fact, while the theoretical throughput improvement achieved by the
AOB mechanism in a 3 stations scenario is 2.6% in the case of ideal channel conditions,
in our tests we measured an improvement of the 5.7%. Similarly, the theoretical
throughput improvement achieved by the AOB mechanism in a 4 stations scenario is
4.9%, while in our experiments we obtained a 9.4% improvement. The reason of this
better performance is that the efficiency of the AOB scheme increases as the contention
in the network increases (as shown in Figure 2.10). Since the frame losses due to channel
noise are treated by the standard MAC protocol as normal collisions, the AOB scheme
could also be useful to reduce the probability of transmitting frames that may get lost due
to the errors induced by channel noise

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 31 of 222

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

by
te

/s
)

Number of Wireless Stations

Protocol Capacity
STD 802.11

AOB

Figure 2.10. Throughput of the IEEE 802.11 protocol with and without the AOB mechanism
versus optimal value.

2.2.4. Conclusions
Experiments were carried out with the implementation of an enhanced IEEE 802.11
MAC card adopting the AOB [BCG04] backoff algorithm. The card is still fully
compatible with current implementations of the IEEE 802.11 technology because the
radio part is compliant to the 802.11 standard. However, the presented experimental
results show that the enhanced mechanism outperforms the standard 802.11 MAC
protocol in real scenarios. We have also shown that the advantages of this mechanism go
further than the high contention scenarios (e.g., ad hoc networks), for which it was
designed, because it is also effective in lessening the negative impact of the external
interferences, which traditionally decrease the performances of wireless networks in any
environment.

2.3. References

[I99] ANSI/IEEE Std. 802.11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, August 1999

[B00] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed
Coordination Function. IEEE Journal on Selected Areas in Communications,
18(9): 1787-1800, 2000

[XS01] S. Xu, T. Saadawi. Does the IEEE 802.11 MAC Protocol Work Well in
Multihop Wireless Ad Hoc Networks?, IEEE Communications Magazine,

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 32 of 222

39(6):130-137, June 2001.
[BCG00] L. Bononi, M. Conti, L. Donatiello. Design and Performance Evaluation of a

Distributed Contention Control (DCC) Mechanism for IEEE 802.11 Wireless
Local Area Networks. Journal of Parallel and Distributed Computing,
60(4):407-430, April 2000.

[BCG04] L. Bononi, M. Conti, E. Gregori. Run-Time Optimization of IEEE 802.11
Wireless LANs performance. IEEE Trans. Parallel Distrib. Syst., 15(1):66-80,
January 2004.

[CCG00] F. Calì, M. Conti, E. Gregori. Dynamic Tuning of the IEEE 802.11 Protocol to
Achieve a Theoretical Throughput Limit. IEEE/ACM Trans. Networking,
8(6):785-799, December 2000

[AMB02] A. Acharya, A. Misra, S. Bansal. A label-switching packet forwarding
architecture for multi-hop wireless LANs, in Proc. of WoWMoM 2002

[D10] MobileMAN Deliverable D10, “MobileMAN architecture, protocols, and
services – Intermediate Report”, http://cnd.iit.cnr.it/mobileMAN/pub-
deliv.html

[BCG02] R. Bruno, M. Conti, E. Gregori. Optimization of Efficiency and Energy
Consumption in p-Persistent CSMABased Wireless LANs. IEEE Trans. Mob.
Comp., 1(1):10-31, March 2002

[CGMT04] M. Conti, S. Giordano, G. Maselli, G. Turi. Cross-Layering in Mobile Ad Hoc
Network Design, IEEE Computer, 37(2):48–51, February 2004

[BCG03] R. Bruno, M. Conti, E. Gregori. Optimal Capacity of p-Persistent CSMA
Protocols. IEEE Commun. Lett., 7(3):139-141, March 2003

[BCG05] R. Bruno, M. Conti, and E. Gregori, “Distributed Contention Control in
Heterogeneous 802.11b WLANs,” in Proc. of WONS 2005, St Moritz,
Switzerland, January 19–21 2005, pp. 190–199.

[BDGP03] R. Bernasconi, I. Defilippis, S. Giordano. A. Puiatti. an enhanced MAC
architecture for multi-hop wireless networks, in Proc. of PWC2003, Venice

[FG97] G. Fullmer and J. Garcia-Luna-Aceves, “Solutions to Hidden Terminal
Problems in Wireless Networks,” in Proc. of IEEE SIGCOMM’97, Cannes,
France, September 14–18 1997, pp. 39–49.

[ABCG04] G. Anastasi, E. Borgia, M. Conti, and E. Gregori, “Wi-Fi in Ad Hoc Mode: A
Measurement Study,” in Proc. of IEEE PerCom 2004, Orlando, FL, March
14–17 2004, pp. 145–154.

[CFG05] C. Chaudet, D. Dhoutaut, and I. Guérin Lassous, “Experiments of some
performance issues with IEEE 802.11b in ad hoc networks,” in Proc. of WONS
2005, St Moritz, Switzerland, January 19–21 2005, pp. 158–163

[XGB03] K. Xu, M. Gerla, and S. Bae, “Effectiveness of RTS/CTS handshake in IEEE
802.11 based ad hoc networks,” Ad Hoc Networks, vol. 1, pp. 107–123, 2003.

[XS02] S. Xu and T. Saadawi, “Revealing the problems with 802.11 medium access
control protocol in multi-hop wireless ad hoc networks,” Computer Networks,
vol. 38, pp. 531–548, Mar. 2002.

[ACG03] G. Anastasi, M. Conti, and E. Gregori, “IEEE 802.11 Ad Hoc Networks:
Protocols, Performance and Open Issues,” in Ad Hoc Networking, New York,
NY: IEEE Press and John Wiley&Sons, 2003

[FB03] Z. Fang and B. Bensaou, “A Novel Topology-blind Fair Medium Access
Control for Wireless LAN and Ad Hoc Networks,” in Proc. of IEEE ICC
2003, Anchorage, AL, May 11–15 2003, pp. 1129–1134.

[BWK00] B. Bensaou, Y. Wang, and C. Ko, “Fair Medium Access in 802.11 based

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 33 of 222

Wireless Ad-Hoc Networks,” in Proc. of ACM MobiHoc 2000, Boston, MA,
August 11 2000, pp. 99–109.

[BH03] L. Buttyan and J. Hubaux, “Stimulating cooperation in self-organizing mobile
ad hoc networks,” ACM/Kluwer Mob. Net. and Appl. (MONET), vol. 8, no. 5,
pp. 579–592, October 2003.

[NKGB00] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan, “Achieving MAC
Layer Fairness in Wireless Packet Networks,” in Proc. of ACM MOBICOM
2000, Boston, MA, August 6–11 2000, pp. 87–98.

[CDG05] C. Chaudet, D. Dhoutaut, and I. Guérin Lassous, “Performance issues with
IEEE 802.11 in ad hoc networking,” IEEE Communication Magazine, 2005, to
appear.

[ZNG04] L. Zhifei, S. Nandi, and A. Gupta, “Improving MAC Performance in Wireless
Ad-Hoc Networks Using Enhanced Carrier Sensing (ECS),” in Proc. of IFIP
NETWORKING 2004, vol. 3042. Athens, Greece: Springer - LNCS Series,
May 9–14 2004, pp. 600–612.

[JLB04] R. Jurdak, V. Lopes, and P. Baldi, “A Survey, Classification and Comparative
Analysis of Medium Access Control Protocols for Ad Hoc Networks,” IEEE
Communications Surveys & Tutorials, vol. 6, no. 1, pp. 2–16, First Quarter
2004.

[ONKC99] T. Ozugur, M. Naghshineh, P. Kermani, and J. Copeland, “Fair media access
for wireless LANs,” in Proc. of IEEE GLOBECOM’99, Rio de Janeireo,
Brazil, December 5–9 1999, pp. 570–579.

[LLB00] H. Luo, S. Lu, and V. Bharghavan, “A New Model for Packet Scheduling in
Multihop Wireless Networks,” in Proc. of ACM MOBICOM 2000, Boston,
MA, August 6–11 2000, pp. 76–86.

[HB01] X. Huang and B. Bensaou, “On Max-Min Fairness and Scheduling in Wireless
Ad-Hoc Networks: Analytical Framework and Implementation,” in Proc. of
ACM MobiHoc 2001, Long Beach, CA, October 4–5 2001, pp. 221–231.

[QS02] D. Qiao and K. Shin, “Achieving Efficient Channel Utilization and Weighted
Fairness for Data Communications in IEEE 802.11 WLAN under DCF,” in
Proc. of IEEE IWQoS 2002, Miami Beach, FL, May 15–17 2002, pp. 227–236.

[XR03] Y. Xiao and J. Rosdahl, “Performance Analysis and Enhancement for the
Current and Future IEEE 802.11 MAC Protocols,” ACM SIGMOBILE Mobile
Comp. and Comm. Review, vol. 7, no. 2, pp. 6–19, April 2003.

[I01] ANSI/IEEE Std. 802.11b: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specification/Amendment 2: Higher-speed Physical
Layer (PHY) in the 2.4 GHz band, Nov. 2001.

[D13] MobileMAN Deliverable D13, “MobileMAN Domain Modelling”,
http://cnd.iit.cnr.it/mobileMAN/pub-deliv.html

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 34 of 222

3. NETWORKING

3.1. Routing experiments in small scale test bed
In this Section we present an experimental evaluation of full ad hoc network architecture
with particular attention to routing layers. In particular we set up a MANET prototype on
which we performed a large set of experiments. Specifically, we evaluate performance of
OLSR and AODV either in indoor and outdoor environments on networks of 2-4 hops
size with up to 8 nodes; in a first phase, we analyzed performances in case of static
networks, then we considered scenarios with low mobility. These scenarios could seem
not meaningful if compared to those simulations scenarios using hundreds of mobile
nodes, but indeed they represent realistic scenarios of few people exploiting the Ad Hoc
network to share documents. In fact, as pointed out in [GLNT] with current technology,
benefits of Ad Hoc network will vanish beyond the Ad Hoc horizon of 2-3 hops and 10-
20 nodes. Our analysis shows that with semi-static topology the proactive approach
performs much better than the reactive from the efficiency and QoS standpoint, and it
introduces a limited overhead. On the other hand, even in this simple scenario, AODV
performances are often poor introducing delays of seconds in order to ping a node few
hops away.

3.1.1. Experimental Environment
In order to compare the selected protocols we used two robust implementations (among
those available): UNIK-OLSR [OLSR] by University of Oslo-Norway, and UU-AODV
[AODV] by Uppsala University-Sweden. The measurement test-bed was based on an Ad
Hoc network made up of laptops with different capabilities running Linux and equipped
with two different wireless cards compliant to IEEE 802.11b standard working at a
constant data rate (11 Mbps). Moreover, we considered a static network where all stations
do not change their position during the experiments, introducing also scenarios with
topology changes due to nodes' connection/disconnection; in addition we performed
experiments with low mobility consisting of few nodes moving in the network during the
last of the experiment. All the indoor experiments took place at the ground floor of CNR
campus in Pisa [MMD]. The structural characteristics of the building (e.g., the variety of
materials used for walls), strictly determine the transmission coverage for nodes of a
wireless network situated within, making hence the wireless links quality varying in a
continuous and unpredictable manner. As a result the whole place can be considered a
realistic environment for testing an ad hoc network. In order to perform experiments on
string topology we also set up the network in an open field of about 300 meters long.
There were no physical obstacles (e.g., buildings, trees) among nodes, thus each couple
of adjacent stations was in line-of-sight and in their respective transmission ranges.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 35 of 222

3.1.2. Experimental Analysis
In this section we present the performance of the two routing protocols in the indoor and
outdoor scenarios, and their behavior in static and mobility conditions.

Indoor Experiments
The reference scenario for the experiments is presented in Figure 3.1. It shows a multi-
hop network of 8 nodes in which only nodes connected with lines are in direct
communication. The performance comparison is based on the following performance
indices:

• Overhead introduced in the network due to routing messages;
• Delay introduced in data transfer.

In addition to the routing protocol, we introduced some traffic at the application layer
using the ping utility. This guarantees that AODV runs in a complete manner; otherwise,
without any application-level traffic, its routing information is reduced only to Hello
packets exchanges. In our scenario, a selected node generates ping traffic towards the
remaining nodes of the network according to a random selected sequence, and precisely it
pings a node for 1 minute, and then starts pinging the next node in the sequence. We
performed two sets of experiments changing the "pinger", e.g. the node selected as the
source of ping traffic, in order to evaluate the impact of node position on the routing load.
We repeated the same set of experiments several times producing similar results, so we
present just one of them.
In the first set, the pinger was the central node E and the sequence was: A, H, D, F, G, B,
and C. The resulting behavior of the network in terms of the overhead introduced by
OLSR and AODV is presented in Figures 3.2 and 3.3, respectively. The curves show the
amount of control traffic observed by each node of the network as the sum of routing
traffic generated locally by the node and the one received from other nodes and
forwarded by it.
As it clearly appears in the graphs, the position of the node and how it is connected to the
other nodes strictly determine the control traffic observed by it. If we look at Figure 3.2
for example we can notice that curves seem to form four clusters.

Figure 3.1 Network Topology

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 36 of 222

Figure 3.2. Pinger E: OLSR Overhead

Figure 3.3. Pinger E: AODV Overhead

Specifically, node B and D observe the highest traffic of about 1.1 KBps, nodes C, E and
G have an intermediate load around 800 Bps, nodes A and F observe traffic of about 400
Bps and at last node H obtains the lowest load (300 Bps) that represents 1/4 of the traffic
load performed by B and D. Thus, we can conclude that there is a connection between the
obtained load and the role in the network graph and, more precisely, the traffic load
scales with the node's degree. Since node H is a leaf and it is connected to the network
with one link it observes the lowest load; while increasing the number of neighbors the
introduced overhead is higher. For AODV protocol (see Figure 3.3) we do not observe

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 37 of 222

the same regular relationship as pointed out previously for OLSR. For example, nodes
with the highest degree (B and E) experience an intermediate load. An explanation of this
behavior is the reactive nature of AODV protocol that makes routing overhead dependent
on the traffic flows at the application level. From the quantitative standpoint, obviously
the overhead introduced by OLSR is significantly higher than the one produced by
AODV due to the different policy to create and maintain routes. Specifically, OLSR
overhead falls in a range of [200-1200] Bps, while using AODV it is around [200-400]
Bps. However, it is important to highlight that these values reduce the available 802.11
bandwidth only of a negligible percentage, in the worst case of a quantity of 1.2 KBps.
To evaluate the delay introduced by the selected routing protocols we measured the end-
to-end latency for completing a simple ping operation between couples of nodes. In the
following analysis, we refer to results for nodes at 2 hops distance1. At the start-up, when
both protocols aren't yet stabilized and all data structures are empty, AODV suffers a
delay of 19-20 seconds to find the path toward the destination A, while OLSR requires
about 8 seconds completing the same operation. The subsequent ping operations take
about 200 msec (or less) when using OLSR (because of its frequent updates of routing
tables) and about 1 sec in case of AODV. In the last case, those performances happen
when the route has just been stored in some neighbor's cache, and hence the RREQ
doesn't need to reach the destination. Observing that the first path discovery requires
many seconds, we decided to investigate AODV's performance when routes' entries
expire in the cache, thus we introduced a sleep time of 20 seconds between two
consecutive ping operations. The measured delay is about 2 sec in almost all cases except
the node A case, where we still measure 20 sec. This difference can be explained taking
into account that when H pings nodes in the network (excluding A) AODV protocol has
already achieved a steady state since each node knows at least 1-hop neighbors due to the
Hello's exchange.

To summarize, in this experiment delays introduced by AODV are significantly
longer compared to those obtained using OLSR. Furthermore numerical results indicate
that QoS problems may occur when using the AODV protocol; applications with time
constrains may suffer a long latency to discover paths in a reactive way.
In the second set of experiments we chose the external node H as pinger. It pings
continuously (for 400 sec) the same destination A following the shortest path available in
the network (H-G-E-B-A). After x seconds from the beginning of the experiment (x
equals 250 and 180 sec in OLSR and AODV experiments, respectively), node B
disconnects itself from the network. This topology change forces the network to react,
searching for a new route in order to deliver packets to node A. After B disconnection,
packets start to follow the unique available path through nodes D and C. The results for
OLSR and AODV are summarized in Figures 3.4 and 3.5, respectively.
Referring to OLSR (see Figure 3.4), we can note a load distribution similar to the one
observed in the first set of experiments, e.g., node B and node H experience the highest
and lowest load, respectively. After node B disconnection, there is a transient phase in
which the nodes' traffic decreases (due to some missing routes); after this period, a new

1 As expected there is no difference among protocols when pinging 1-hop neighbors

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 38 of 222

steady state is achieved. In this new state, we can observe a significant decrease of the
traffic in the nodes that are connected with node B (A, E, D, C), while nodes far from the
\dead" node perform almost the previous overhead. Once again, the position of a node in
the network determines its load.

Figure 3.4. Disconnection’s event: OLSR overhead

Figure 3.5. Disconnection’s event: AODV overhead

Looking at AODV results (see Figure 3.5) we observe less marked differences in the
entire duration of the experiment. After the transient state following the B shut down, the
active nodes almost observe the same load: the traffic has a range variability of about 100
Bps. This confirms that in this case protocol overhead is correlated to the application
flow. As far as the delay is concerned, we got results similar to those observed during the
start-up phase of the first set of experiments (i.e., larger delays with AODV). Moreover,
referring to the disconnection's event, the ping operation performed while OLSR is

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 39 of 222

updating its routing tables experience a delay of about 6 sec to be completed; while
AODV introduces a delay of [9-14] sec to discover a new route to the same destination
A.

String Topology
In a third set of experiments, we compared OLSR and AODV performances in a string
topology (see Figure 3.6), both in indoor and outdoor environments. The main
performance index used in this case is the Packet Delivery Ratio, calculated as the total
number of packets received at the intended destinations and divided by the total number
of generated packets. In order to obtain an open environment aligned with the indoor
scenario (i.e., a string topology where only adjacent nodes are in the transmission range
of each other) we had to increase the distances between stations up to 70 meters, while in
indoor, due to walls, doors obstacles, they were at a distance of about 15m. The
characteristics of open spaces are quite different from indoor spaces. In both
environments, wireless links can vary frequently and rapidly in time and space due to
several factors but in the open space the node-distance increase makes the wireless links
more unstable. For example, [GKNLYE] shows with an extensive test-bed that wave's
propagation in a real environment is very complex depending on phenomena such as
background noise, obstacles' presence and orientation between sender and receiver
antennas.

Figure 3.6. String Topology

In the outdoor systems, the longer distances cause higher links variability. In addition, it
is possible that not all nodes are in the same carrier sense range [ABCG], thus the
coordination may result very complex. The outdoor testing methodology is similar to the
one adopted in the previous scenario: the sender A pings continuously each node in the
network with the sequence B, C, D. In this case the duration of each ping operation is
variable and in particularly it scales with the distance to the intended destination (i.e., 1
minute for 1-hop node, 2 min for 2-hops node and so on). Looking at the introduced
delay, the outdoor results add no new qualitative information respect of the previous
discussion; however, in outdoor, times required to complete a ping operation may further
increase due to the links variability; for example, OLSR introduces a 1 sec delay in a 3-
hops connection. In addition, in this set of experiments we introduce an evaluation of the
packet delivery ratio (PDR) for the two protocols, averaged over several repeated test-
runs (see Table 2.2.1).
Looking at the indoor results, we notice that OLSR delivers packets with high probability
to all nodes in the string topology; AODV works properly with node in 2-hops
neighborhood, but its performance decreases up to 50% of packets delivery when the
distance sender-receiver grows up to 3 hops. Currently we are investigating which

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 40 of 222

phenomena cause the enormous packet loss on AODV. Nevertheless, examining the log
files, we notice that sometimes unidirectional links between not adjacent nodes may
appear in the network. Since AODV exploits also unidirectional links, it is possible that
ICMP packets follow different paths in the end-to-end communication.

Table 3.1. Overall Packet Delivery Ratio (PDR)

 Furthermore, since these links vary with high frequency, every time they disappear a
RERR packet is generated and a new path discovery starts (we observe that several
times). If no route is found before the timeout expiration all buffered application packets
are lost. OLSR doesn't suffer this problem because only symmetrical links are considered
resulting in a more stable network. The outdoor results show a good behavior of the two
protocols only in the nearby; in fact when the sender-receiver distance increases, both
algorithms suffer significant packets' losses. The packet delivery ratio of OLSR decreases
up to 50% when it pings the farthest node D. Performances of AODV drastically
degenerate when running in outdoor environment: almost all ping operations to nodes
distant more than 1 hop failed. In addition, we run the same set of experiments varying
the data rate to 2 Mbps. In this case AODV reaches a better performance increasing its
PDR up to 0.8 when pinging node C (OLSR result is aligned with AODV), but no
improvement is obtained towards node D. It seems that in open space the reactive nature
of AODV is more penalized than the OLSR proactive one. Due to walls etc. one-hop
distances involved in indoor environment are much shorter than those used in open space,
thus a better coordination at the MAC layer guarantees a higher packets delivery. As
previously explained, in outdoor it is possible that not all nodes are in the same carrier
sense range, affecting the overall performance. Having in advance redundant routing
information, as with proactive protocols, guarantees that each node is able to create and
maintain its own view of the entire network, even in bad conditions, and consequently
delivering at least a percentage of packets successfully. Hence OLSR results more robust
than AODV in outdoor environments.

Mobility Scenarios
In this set of experiments we introduced mobile nodes in order to evaluate the impact of
the mobility on routing protocols. To this end, we used the same 4-node string topology
network as before and we performed three sets of experiments increasing the number of
mobile nodes (all the scenarios are shown in Fig.2.2.7). In this scenario the connectivity
between the sender and the receiver changes from 1 hop to 3 hops and vice-versa during
the experiments. To have a comparison between OLSR and AODV, we studied the PDR
(Packet Delivery Ratio) and the delay needed for the network's reconfiguration due to the
movements of nodes. In particular, in our scenarios, all the nodes start running the
routing protocol and, after an initial period necessary for the network topology
stabilization, node A pings continuously node D until the end of the experiment. We

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 41 of 222

repeated the same set of experiments several times; obtained results were similar, so we
present an average of them.

One may argue that similar set of experiments were already available in literature. On the
other hand we think that there are several main reasons to perform these experiments in
our environment:
1. Our cross layer architecture assumes an underlying proactive routing protocol.

Comparing AODV and OLSR performance enable us to better understand if and
how the proactive assumption impacts on the overall system performance. Previous
results [BCDP] and those presented here indicate that in small-medium scale
networks and low mobility scenarios OLSR does not penalize the system
performance;

2. Measurements related to the topology management provide a reference to
understand the behavior of the p2p protocols and, in the specific case of
CrossROAD, also give a direct measurement of the expected delays in the overlay
construction and reconfiguration. Therefore, a better understanding of the routing
protocol performance will be useful when analyzing the behavior of the p2p
platforms.

The configuration and the methodology used for the experiments follow those published
in [L05], and can be taken as a reference for our performance evaluation. In the first set
of experiments, called "Roaming node", there are 3 static nodes (B, C, D) and the
"roaming" node A. The experiment lasts 2 minutes: from the initial position W, node A
starts moving and every 20sec it reaches the next position in the line (X, Y, Z); once it
has reached the last position Z, it immediately moves in the opposite direction following
the reverse path and reaches the starting position near node D after another minute. The
second set of experiments is referred as "End node swap" due to the movement of the two
communicating nodes (A and D), while the rest of the network remains in the same
configuration. More specifically, the two end nodes maintain their initial position for the
first 20sec of the ping operation, then they start moving reaching the next position in the

Figure 3.7. Mobility scenarios

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 42 of 222

line every 20sec. The experiment lasts other 20sec after the end nodes have swapped their
positions. The last set of experiments, named "Relay swap", is similar to the previous
one: there are 2 mobile nodes in the network that change positions during the test. In this
case after 20sec from the beginning of the ping operation, central nodes start moving and
swap their positions after 20sec, then they remain in this new configuration until the
end of the experiment (it lasts 60sec). In all the performed experiments each mobile node
moves along the line with a speed of about 1m/s, since we are interested in investigating
low mobility scenarios.

Looking at the Packet Delivery Ratio index, as shown in Table 3.2, we notice that
increasing the complexity of the proposed scenarios, the performance of the two routing
protocols decreases up to about 60% of packets delivery in case of Relay swap scenario.
Specifically, in the Roaming node scenario we can note that both protocols have similar
behaviors: there is a packet loss of about 25%. Examining the log files, we observe that,
for both protocols, packet losses mainly occur when node A goes beyond position Y and
reaches the string's end; specifically this represents the time in which the connection A-D
changes from PDR Roaming node End node swap Relay swap 2-hop to 3-hop
connection, due to the loss of the direct link A-C. In the End swap scenario, the proactive
protocol performs better than the reactive protocol: delivered packets increase of 10%.
OLSR introduces the high percentage of its packet loss in the last 40sec of the test-run
when the connection becomes again a 3-hop connection; on the other hand at the
beginning of the experiment all packets were correctly received since the network was
already stabilized when data transfer started. In contrast AODV distributes uniformly its
packet loss during the entire test-run. As previously said, in the third set of experiments
the packet delivery ratio of OLSR and AODV decreases up to 66% and 60%,
respectively. In particular, from the log files we notice that packet losses occur during the
relay swap phase (i.e., from 20 to 40sec), in which only half of the number of packets
generated by node A reaches the destination successfully.
To evaluate the delay introduced by the two routing protocols due to nodes' movements,
we measured the time needed to update the routing table for OLSR and to discover new
paths to the destination for AODV. In the first scenario, when node A moves toward
position Z, OLSR requires 5sec to discover a 2-hop path to D after the direct link A-D is
lost; while it needs 10sec when the path in the connection increases from 2 to 3 hops.
AODV introduces a delay of 2sec for the first topology change, and 7sec for the second
one. Both protocols do not introduce any additional delay in the reverse path (from Z to
W position). In the End swap scenario, OLSR introduces a delay of 15sec when the
topology changes from a fully connected (each node see all the others) to a topology of
three hops. In the same topology change, AODV experiences a delay of 10sec but it also
introduces a similar delay to move from the starting configuration to a fully connected

Table 3.2. PDR in Mobility scenarios

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 43 of 222

topology. In the last scenario, during the relay movement, OLSR introduces a delay of
15sec for the routing table reconfiguration, while AODV requires 11sec to discover a
new route to the destination.

3.1.3. Conclusions
During this study a large number of experiments have been set up in order to obtain real
measurements on an ad-hoc-network architecture. In particular we describe the
performances of two routing protocols for ad hoc networks comparing them in a real Ad
Hoc network with different scenarios and environments. Our results point out severe QoS
problems, mainly when using AODV due to the reactive nature of the protocol, and
indicate that, with a proactive protocol: i) the response times are much better (200 ms vs.
2 sec when pinging 2-hops neighbors), ii) the protocol overheads, at least inside our small
network, are not heavy (i.e., in the worst case 1.2 KBps), and iii) the success of packets
delivery is higher. Furthermore, when considering higher level protocols on top of Ad
Hoc test-bed, e.g. FreePastry [BCDP], benefits in using a proactive approach are more
evident. In conclusion the use of the proactive OLSR does not penalize the system
performance either in terms of PDR and reconfiguration delays in static and low mobility
scenarios.

3.1.4. References

[LXG03] H. Lim, K. Xu, and M. Gerla, “TCP Performance over multipath routing in

mobile ad hoc networks,” in Proceedings of the IEEE International
Conference on Communications (ICC), May 2003.

[M95] J. Meyer, “Performability evaluation: where it is and what lies ahead,” in
IEEE Internation Computer Performance and Dependability Symposium
(IPDS’95), Erlangen, Germany, 1995.

[CGM] M. Conti, E. Gregori, and G. Maselli, “Reliable and Efficient Forwarding
in Ad Hoc Networks,” Ad Hoc Networks Journal, Elsevier, to appear.

[CMTG04] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-Layering in Mobile
Ad Hoc Network Design,” IEEE Computer, special issue on Ad Hoc
Networks, vol. 37, no. 2, pp. 48–51, 2004.

[CCMT05] M. Conti, J. Crowcroft, G. Maselli, and G. Turi, “A Modular Cross-Layer
Architecture for Ad Hoc Networks,” in Handbook on Theoretical and
Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer
Networks, CRC, Ed., July 2005.

[NS2] “The Network Simulator - ns-2,” http://www.isi.edu/nsnam/ns/.
[NCD] A. Nasipuri, R. Castaneda, and S. Das, “Performance of Multipath Routing

for On-Demand Protocols in Mobile Ad Hoc Networks,” ACM/Kluwer
Mobile Networks and Applications (MONET), vol. 6, no. 4, pp. 339–349,
2001.

[MD] M. Marina and S. Das, “On-demand multipath distance vector routing in
ad hoc networks.” in Proceedings of IEEE International Conference on
Network Protocols (ICNP), 2001, pp. 14–23.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 44 of 222

[ABCG] G. Anastasi, E. Borgia, M. Conti, and E. Gregori. "Wi-Fi in Ad Hoc Mode:
A Measurement Study". In Proc. of PerCom 2004, Orlando, Florida,
March 2004.

[AODV] AODV Implementation. Dep. of Information Technology, Uppsala
University (Sweden). http://user.it.uu.se/~henrikl/aodv.

[BCDP] E. Borgia, M. Conti, F. Delmastro, and L. Pelusi. “Lessons from an Ad-
Hoc Network Test-Bed: Middleware and Routing Issues”. In Ad Hoc &
Sensor Wireless Networks, An International Journal, Vol.1, Numbers 1-2,
2005.

[GKNLYE] R. S. Gray, D. Kotz, C. Newport, J. Liu, Y. Yuan, and C. Elliott.
"Experimental Evaluation of Wireless Simulation Assumptions". In Proc.
of MSWiM 2004, Venice, Italy, October 2004.

[GLNT] P. Gunningberg, H. Lundgren, E. Nordstrom, and C. Tschudin. "Lessons
from Experimental MANET Research". To appear in Ad Hoc Networks
Journal, special issue on "Ad Hoc Networking for Pervasive Systems".
M.Conti, E.Gregori (Editors).

[L04] H. Lundgren. “Implementation and Experimental evaluation of Wireless
Ad hoc Routing protocols”. PhD thesis,
http://publications.uu.se/theses/abstract.xsql?dbid=4806.

[MMD] MobileMAN Deliverables (D8, D10). http://cnd.iit.cnr.it/mobileMAN.
[OLSR] OLSR Implementation. Institute for Informatics, Oslo University

(Norway). http://www.olsr.org.

3.2. Reliable forwarding
This Section copes with performability issues of nodes communication, considering the
different causes behind service degradation (e.g. selfish/malicious nodes, network faults).
For the concept of performability we point at the definition given in [M95], where
performance refers to how effectively (i.e. throughput), or efficiently (i.e. resource
utilization) a system delivers a specified service, presuming it is delivered correctly. On
the other hand, reliability reflects the dependability (i.e. continuity) of service delivery.
We aim at optimizing both performance and reliability measures by improving i) the
throughput of data transfer (i.e. service effectiveness) through a lightweight mechanism
(i.e. system efficiency); ii) the quality of data transfer, so as to provide continuous
network connectivity (i.e. service dependability). To this end, we adopt a simple
forwarding scheme, based on multi-path routing, which estimates neighbors’ reliability
and forwards traffic on most reliable routes. The basic mechanism, called REEF
(REliable and Efficient Forwarding) [CGM], is composed by a reliability estimator and a
forwarding policy. Every node keeps a reliability index for each neighbor. This measure
is affected by all paths rooted at the pointed neighbor and is updated every time the node
sends a packet through it. The updating is positive whenever the packet delivery is
successful, negative otherwise. In order to understand whether packets get delivered, we
use end-to-end acknowledgments. If data packets are sent relying on the UDP protocol,
REEF requires the introduction of a notification system that entails the destination node

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 45 of 222

to send acknowledgments. In case data transfer relies on the TCP protocol (as considered
in this work), REEF uses TCP ACKs as delivery notifications. Although REEF works at
the network level, it can efficiently retrieve transport layer acknowledgments through a
cross-layer interaction with the transport agent. Specifically, REEF is supported by the
cross-layer architecture described in ([CMTG04] and [CCMT05]), which allows
protocols to exchange information beyond that provided by standard interfaces, and
maintaining a clean architectural modularity. After sending a packet, the sender node
waits for an ACK from the destination node, and then updates the neighbor’s reliability.
With a set of routes at hand, REEF can select the best route to forward a packet,
according to reliability estimates, which reflect the behavior so far observed.

This mechanism has shown significant improvement on network throughput when
a simplified transport protocol with acknowledgment is used [CGM]. However, the
impact on transport protocols with congestion control mechanisms, such as TCP, has not
been investigated. This is an important aspect because multi-path routing is not always
convenient in the ad hoc environment. As studied in [LXG03], and also confirmed in this
work, the plain use of multiple routes may degrade the TCP performance. This is due to
intrinsic mechanisms of the TCP protocol. When a TCP sender does not get
acknowledgment of sent packets, it reduces the congestion window, causing the
retransmission timeout to progressively enlarge, leading to high restart latency and very
poor efficiency. Another problem is that the round trip time estimation is not accurate
under multi-path routing. TCP senders may prematurely timeout packets which happen to
take the longest path. Packets going through different paths may arrive at destination out
of order and trigger duplicate ACKs, which in turn may trigger unnecessary TCP
congestion window reductions.

The first contribution of this work is a novel forwarding policy for the REEF
mechanism, which improves the network performability, taking into account the several
causes of packet dropping, as well as the above mentioned TCP limitations. The main
idea is to combine the reliability of a route with its length, so as to keep the advantages of
multi-path forwarding, necessary to tolerate network faults or intentional misbehavior,
and limit, at the same time, the drawbacks of using TCP over multiple routes.
In addition, this work provides an accurate performability analysis, which has been
carried out with the ns-2 Network Simulator, to demonstrate the effectiveness of the
forwarding mechanism, in realistic environments. To this end, we implemented a multi-
path routing protocol, and modified the forwarding agent at the network layer to include
the REEF mechanism.

Furthermore, we realized a cross-layer interaction between the forwarding and the
transport agents to make them exchange information on TCP acknowledgments. We
simulated practical situations where nodes execute file transfers (e.g. FTP) over TCP
connections. Besides totally cooperative environments, where only network faults, such
as congestion and lossy links, may affect the network performance, the mechanism has
proved effective also in presence of a variable percentage of misbehaving nodes.
Furthermore, nodes mobility is nicely tolerated.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 46 of 222

3.2.1. Overview of REEF
The forwarding mechanism is composed by a reliability estimator and a policy to forward
traffic. In the following, we first give a brief overview of the reliability estimator. For a
detailed description we point the reader at [CGM]. Then, we describe the new forwarding
policy, which is later evaluated with an extensive simulation study. Each node keeps
track of neighbors’ reliability according to its “personal” experience while transferring
data. Whenever a node communicates with another node in the network, it estimates the
reliability of the neighbor node involved in relaying its packets. Specifically, it maintains
a table of sent packets, storing also the identity of the next hop that has been charged with
forwarding the packet toward the destination. Then its reliability is estimated according
to the delivery result. If the source node receives a TCP acknowledgment, then all the
intermediate nodes have correctly forwarded the packet, and hence the reliability of the
neighbor node is positively updated. Otherwise, some node on the path misbehaved, and
the neighbor’s reliability decreases. This means that the reliability of a neighbor node
may be affected by a packet loss that was caused by another node on the path, and
quantifies the cooperation/performance/reliability so far observed for paths rooted at that
neighbor. The simplest way to estimate the reliability of a neighbor J is

()MRR JJ αα −+← 1
where α, 0≤ α ≤1, is the percentage of the previous estimate that we consider in the
current update, and M represents the present delivery outcome and may assume the
following values:





=
ds

ds
M

 fromack receives if1
 fromack receivenot does if0

As previously stated, the reliability estimator works at the network layer and uses
information coming from the transport layer. This is possible through a cross-layer
interaction between the two protocols, which bases on an innovative architecture that
standardizes vertical communication between protocols, and allows for several
performance optimizations [CMTG04][CCMT05]. In this specific case, the TCP notifies
packet acknowledgments to the forwarding agent through cross-layer events, which in
turn trigger the update of the relative reliability index. In this way, the network layer can
easily understand the packet delivery status without producing any additional overhead
(packet sniffing would result heavy).

Forwarding policy
Reliability estimates are useful to choose the best route for packet forwarding. Whenever
multiple paths are available, the route with the highest success probability is desired.
However, a forwarding policy must be defined keeping in mind also the limitations of
TCP over multi-path routing. Sending packets on routes that highly differ for the number
of hops toward the destination has proved to be detrimental for network throughput
[LXG03]. For this reason, we propose to select paths according to reliability indexes as
well as distances to the destination. In order to combine these two factors, we estimate
the average number of transmissions, in terms of hops number, to successfully deliver a
packet to its destination. Let n be the number of hops between the source and destination

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 47 of 222

nodes on a given route, and Ri the reliability index of the first node I on that route. Let us
approximate p= Ri the probability to succeed while sending a packet through node I, and
suppose to obtain a successful delivery (represented by the p factor) after k-1 failures.
Then, we estimate the average number of times the sender transmits a packet to
successfully reach the destination node as:

[] ()∑
∞

=

−−=
1

11
k

k
T pkpNE

As the packet delivery may fail at any hop on the path, we consider the distance n
between the source and the destination nodes as an upper bound for the number of
transmissions along the path, and estimate the average cost E[C] of transmitting through a
specified neighbor as:

[] ()∑
∞

=

−−≤
1

11
k

kpkpnCE

If we consider that the mean of the geometric distribution is p1 , we can re-write the
average cost as,

[]
p
nCE ≈

Thus, we define a new forwarding policy, namely performability-route (p-route), in the
following way. Given pi=Ri for each neighbor i, and ni the number of hops to reach the
destination through neighbor i, then we choose the route with the minimum cost, in terms
of number of transmissions, { }iii pnmin , and if multiple routes have the same value, we
randomly choose one of them. This choice is made on a per-packet base (as provided for
the route selection by standard forwarding agents), and is repeated by each intermediate
hop between the source and the destination nodes, whenever the routing protocols
provides only the next hop toward the destination. Furthermore, with this policy, we
consider routes that require the minimum (estimated) number of transmissions to
successfully reach the destination, and avoid next-hops that are far from the destination.

Performability requirements and goals
As previously stated, performability of data transfer involves service efficiency and
effectiveness for measuring performance, and service dependability or continuity for
judging the level of reliability. We identify the efficiency as a design requirement for the
forwarding mechanism, while service effectiveness and dependability are goals to
achieve. Service efficiency focuses on resource utilization and asks for computational
lightness. Our forwarding mechanism is based on a cross-layer architecture [CMTG04]
[CCMT05] that allows to easily retrieve transport layer acknowledgments, without any
additional effort. Furthermore, resources employed to keep and update reliability indexes
are minimal: a single value is stored for each neighbor. However, it is worth noting that
the hypothesis on multi-path routing brings some overhead in terms of network traffic.
Hence, in order to satisfy the need for service efficiency, an evaluation of resource
utilization (in terms of network resources) is necessary. To this end, we perform a

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 48 of 222

simulation study, showing that the overhead produced by multi-path and single path
routing protocols are comparable.

Service effectiveness and dependability are achieved through the multi-path
forwarding policy that distributes traffic among most successful routes and avoids
misbehaving nodes. The idea is to choose the route with a low number of hops and high
reliability, so as to minimize the number of transmissions needed to reach the destination.
The policy is such that as soon as the reliability of a path decreases, because the sender
observes packets losses, and the ratio of its distance to the destination over the reliability
of the next node is no more the most convenient, a different (more reliable) route is used,
even if it is longer. This allows going round misbehaving points, providing continuous
network connectivity. In fact, in case of nodes which are congested, selfish, or malicious,
packet dropping may lasts for a while, paralyzing the data transfer. Furthermore,
spreading traffic among routes, with the same level of success, operates a load balancing
that, in turn, reduces the possibility of congestion, as well as the motivations for selfish
behavior. As a consequence, the throughput and the quality of data transfer are increased,
thanks to a fairly distribution of traffic on different paths, and the avoidance of
misbehaving nodes that cause service interruption.

___ _____________

3.2.2. Simulation Framework
To realize a simulation framework, suitable for a complete evaluation of the reliable
forwarding components, we used the Network Simulator ns-2 (v. 2.27) [NS2], and a
library of objects and abstractions provided by the Naval Research Laboratory (i.e.,
ProtoLib), which includes an implementation of the Optimized Link-State Routing
protocol (OLSR). OLSR is a well-established proactive protocol of the MANET IETF
working group, which suites our cross-layer architecture and supports several cross-layer
optimizations ([CMTG04],[CCMT05]).
Starting from the ns-2 + ProtoLib basement, we were able to first introduce the cross-
layering concepts described in [CCMT05] and, therefore, use them to develop a reliable
forwarding agent at the network layer. As detailed in the following section, we extended
OLSR in order to have a multi-path version of it, and also re-programmed agents at
transport layer (i.e., TCP agents) so as to send cross-layer events for positive and
negative acknowledgments. We used TCP-Reno with Delayed Ack.
Furthermore, we modified the forwarding agent at the network layer in order to:
1) catch cross-layer events coming from transport agents;
2) maintain reliability tables according to the notified events, and the routes discovered

by the OLSR routing agent;
3) implement the REEF forwarding policy on the reliability tables.

Multi-Path OLSR. Performance of packet forwarding is dependent on the ability of the
REEF mechanism to utilize alternative routes when it detects non-operational ones. The
availability of redundant routes is usually not provided by common routing protocols
that, typically, build shortest-path routing tables. For this reason, we implemented a
multi-path extension of the OLSR protocol provided by the ProtoLib package.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 49 of 222

OLSR is a proactive routing protocol, based on a link state algorithm and optimized for
mobile ad hoc networks. It minimizes the overhead from flooding of control traffic by
using only selected nodes, called Multipoint Relays (MPRs), to send and retransmit
topology control (TC) messages. When a node broadcasts a packet, only its MPR set
rebroadcasts the packet, while other neighbors simply process the packet. TC messages
are sent by a node in the network to declare a set of links, called advertised link set,
which must include at least the links to all nodes of its MPR Selector set (i.e. the
neighbors which have selected the sender node as a MPR). This is sufficient information
to ensure the computation of a routing table based on a shortest path algorithm. By
increasing the amount of information included in the TC messages, and the number of
node sending them, it is possible to build a multi-path routing table. In particular, the
requirements for multi-path routing are: i) the advertised link set of the node is the full
neighbor link set; ii) besides MPRs each node having at least one neighbor must send TC
messages. In practice, these two requirements are easily satisfied by the “all links”
feature implemented in the ProtoLib’s OLSR agent.

Our contribution to realize multi-path routing was to enhance the OLSR agent
implementation with a new procedure, MakeNewMultipathRoutingTable, which is based
on breadth-first logic. The first step is to add to the routing table all symmetric neighbors
(with hop distance h=1) as destination nodes. Then, for each added route, we go through
the topology set to build all routes of length 2 (h=2). Again, starting from this new set of
routes, all routes 3-hops long are built, and so on. The procedure is repeated starting from
the set of routes just added (h=n) and building the set of routes 1-hop longer (h=n+1),
until there are no more routes to build. Obviously, in case of multiple routes to a
destination passing through the same neighbor we consider only the shortest one.

Figure 3.8 Cross-layer interactions between the
network and the transport layers.

Introducing cross-layer interactions. After patching the network simulator with the
ProtoLib and the multi-path OLSR implementation, we introduced also a set of primitives
to allow cross-layer interactions. Specifically, the realization of the forwarding
mechanism in our evaluation framework involves the introduction of a class of cross-
layer events of type Recv TCP-ack/nack, to which the forwarding agent subscribes for
notifications coming from a local TCP agent. These events notify the forwarding agent
about delivery outcomes of packets related to connections between the local host and a

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 50 of 222

foreign party. In particular, the TCP agent sends a TCP-ack event to the forwarding agent
whenever it receives a valid acknowledgment. Instead, TCP-nack events are caused by
packets retransmissions and generated when: 1) a packet timeout expires; 2) three
duplicate acknowledgments on the same packet are received. An event notification causes
the forwarding agent to update the reliability index associated to the neighbor through
which the packet passed. The update is positive for TCP-ack and negative for TCP-nack.
In order to easily relate notified events with neighbor nodes, the forwarding agent keeps a
transmission list containing for each sent packet, the TCP sequence number and flow
identity, plus the neighbor through which the packet was sent. When an acknowledgment
is notified, the forwarding agent looks for the corresponding packet in the transmission
list, in order to retrieve the neighbor that relayed it. Then, it updates the reliability index
of such neighbor according to the entity of the event. Packets are stored in the
transmission list before being sent, and removed after the reception of a Recv-ack/-nack
event. If the received ack is cumulative (i.e., it acknowledges the reception of multiple
consecutive packets), then the forwarding agent makes an update for each entry in the
transmission list with the sequence number lower or equal to the received ack.

Reliability indexes are maintained in a table containing an entry for each
neighbor. In order to keep the reliability table constantly up-to-date, we trigger an update
every time there is a change in the neighbor list. Figure 3.8 shows the resulting system
architecture, with the cross-layer interaction between the forwarding and TCP agents.

3.2.3. Performability Evaluation
To evaluate the performability of data transfer on top of REEF, we consider the following
metrics.
Overhead. Since the cost of internal computation in terms of space and energy
consumption is negligible compared to the cost of transmission, we look at the overhead
caused by extra routing messages, measured in Bytes/sec. Hence, routing overhead
represents a measure of service efficiency.
TCP sequence number. The sequence number of TCP packets acknowledged by the
destination, as function of time, is a measure of both performance and reliability. In the
first case, a comparison of TCP sequence numbers between different forwarding policies
allows to understand which one performs better (i.e. effectiveness). In the second case, a
constant increase of TCP sequence numbers shows continuous network connectivity,
while a flat line on the plot indicates an interruption of packet delivery (i.e. reliability).
Throughput. We refer to the TCP throughput as the amount of the data correctly
received by TCP destination nodes, in a time unit. This metric is useful to quantify the
effectiveness of the forwarding mechanism in presence of TCP data transfer.
In the following, we first evaluate the routing overhead produced by our multi-path
OLSR. This study is important to demonstrate that it is possible to improve TCP
performance at the expense of very low routing overhead. After demonstrating that multi-
path routing adds a reasonable amount of overhead, we investigate the impact of REEF
on TCP traffic. Performability improvements are analyzed from two perspectives. With a
transient analysis, we observe TCP connections on time intervals, in order to check
whether our policy improves the quality of TCP data transfer. On the other hand, with a

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 51 of 222

steady-state analysis, we show statistic results on general scenarios, which measure, for
example, the total network throughput by varying the percentage of misbehaving nodes,
and the nodes mobility. In order to simulate nodes misbehavior, we used the
SelectErrorModel class, provided by ns-2, which allows to selectively discarding packets,
by indicating the packet type (e.g., tcp) and the dropping frequency. Simulations are
based on TCP-Reno agents with Delayed Ack.

A. Single vs. multi-path routing
Instructing the routing agent to calculate multiple routes may cause additional overhead,
depending on the nature (proactive or reactive) of the protocol. For example, simulation
studies on reactive protocols show that there are significant advantages with multi-path
routing [NCD] [MD]. Their findings demonstrate that the number of route discoveries
and hence of routing load decreases, even though end-to-end delay of data packets
slightly increases. Further results show that multi-path routing allows achieving faster
and efficient recovery from route failures in highly dynamic networks.

In this work, we consider OLSR, a proactive routing protocol, and evaluate the
additional overhead induced by a multi-path version of it. In the implementation of the
multi-path OLSR we identified the following as the main requirements: i) the advertised
link set of the node must be the full neighbor link set; ii) besides MPRs each node having
at least one neighbor must send TC messages. Consequently, the additional overhead
produced by the multi-path version is mainly determined by the amount of increased
topology information traveling through the network, and the number of generated TC
messages. Hereafter, we go through a measurement study to quantify this overhead.
To evaluate the performance of multi-path OLSR with respect to its legacy version, we
simulated a range of network scenarios. Figure 3.9 shows the mean overhead (Bytes/sec.)
produced by the two protocols, varying the network size. This metric is measured as the
mean total number of bytes sent by all network nodes. In particular, we evaluated routing
overhead for different network sizes, respectively 10, 20, and 40 nodes. For each network
size, we created three different scenarios, with increasing routes length. To this end,
nodes are randomly placed in an area of different shapes: from a square to thin rectangles.
Results are averaged on the three scenarios. Simulation time is 900 seconds, and Hello
and TC message intervals are respectively 2 and 5 seconds. Figure 2 shows that in a static
environment, the additional overhead produced by multi-path OLSR is almost
independent of the number of nodes, and is around 15%. Considering that in the case of
40 nodes we have less than 2000 Bytes/sec of added routing load, we can state that multi-
path routing adds a reasonable amount of overhead, and hence we can have a good trade-
off between costs and benefits of our multi-path forwarding.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 52 of 222

Figure 3.9 Routing overhead in a static

network.
Figure 3.10 Simulated network.

B. The impact of REEF on TCP: A transient analysis
The objective of this evaluation is to find out whether REEF may provide higher
throughput and better network connectivity to TCP traffic, with respect to the
conventional case in which packet forwarding is based on single path routing (OLSR),
where the shortest route is always chosen. In particular, we focus on networks affected by
fault conditions and misbehaving nodes that forward traffic in an intermittent fashion.

Partially misbehaving network. With this study, we aim at evaluating REEF’s
effectiveness, investigating the quality of single TCP connections, on a time interval. To
this end, we consider a small network, composed of a dozen of nodes, with routes that are
3-4 hops long. The small size of the network allowed us to analyze in details the behavior
of single nodes and connections.

The simulated network is composed of 11 nodes, on a 600 by 600 square meters
area (see Figure 3.10). One node in the network (i.e. node 10) behaves as on/off
forwarder: it does not relay traffic, from second 100 to 200, and from 300 to 400.

This behavior can be typical of a selfish or a malicious node, as well as a fault
condition. We configured 4 TCP connections with an FTP application on top of each as
traffic generator. As FTP produces bulk data to send, it may cause situations of
congestion. In the simulation, all FTP agents start around time 60 and last for the whole
simulation run, which is 600 seconds. In particular, FTP transfers are active between
nodes 6 and 2, 1 and 6, 0 and 7, and 2 and 9. To check TCP behavior, we analyzed the
sequence number of packets received by the destination nodes (i.e. FTP clients), as
function of the application lifetime. In this way, it is possible to understand how the
forwarding policies react to nodes misbehavior, and what their impact is on active
connections.

The results from this simulation study have validated the performance
improvement achieved by the p-route policy. Besides Figure 3.11(a), which deserves to
be discussed apart, Figures 3.12(a), 3.12(b), and 3.12(b) illustrates how the p-route policy
outperforms single path forwarding. As shown by diagrams, not only p-route achieves the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 53 of 222

higher sequence number, increasing it up to 100% (Figures 3.12(b) and 3.13(b)), but it
also provides better service delivery.

(a) Node 2 is FTP client of node 6. (b) Node 6 is FTP client of node 1.

Figure 3.11. Sequence number of TCP packets received by FTP clients as function of time,
in presence of a misbehaving node.

(a) Node 7 is FTP client of node 0.

(b) Node 9 is FTP client of node 2.

Figure 3.12. Sequence number of TCP packets received by FTP clients as function of time,
in presence of a misbehaving node.

In fact, p-route offers continuous network connectivity regardless of nodes misbehavior.
It uses alternative paths, and hence avoids the delivery interruption, while the other
policy shows an evident discontinuous behavior when the selfish node discards packets:
flat lines on misbehavior intervals (i.e. 100-200s and 300-400s) indicate a complete
inability of nodes to exchange data.
Looking at the TCP connection between nodes 0 and 7 (see Figure 3.13(a)); it is evident
that both policies obtain similar results, even if in different ways. Performance on this
connection is very poor as the maximum sequence number obtained is around 600, while

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 54 of 222

the other connections get up to 8000. The reason for this behavior does not directly
depend on the applied forwarding policy. Instead, it is due to a combination of factors
such as network topology, active connections, and nodes congestion. First of all, we
remark that packet loss has detrimental effects on TCP performance, as the congestion
window is reduced and the TCP retransmission timeout becomes progressively larger
leading to high restart latency and very poor efficiency. Hence, the more packets get lost,
the higher is the degradation of the involved TCP connections. Furthermore, the
connection between nodes 0 and 7 relies on a route that is longer than the others. Packets
have to traverse more intermediate hops, increasing chances of getting into congested
nodes. In fact, most of nodes between 0 and 7 are overloaded because of the other active
FTP transfers, and hence there is no way to go around the problem. With single path
forwarding, the connection experiences long pauses that correspond to misbehavior
intervals. With p-route, connections get the best service, without transfer interruptions.
However, the last TCP sequence number is quite low. From an analysis of trace files, we
observed that the connection is affected mainly by congestion events. This causes poor
performance because the neighbors of the sender node do not have knowledge of current
network conditions. As they are not involved in end-to-end communications, they do not
update their reliability, and hence unconditionally use shorter (but congested) routes.
Analyzing more in details the TCP connection between node 0 and 7, the sender can
communicate with the receiver through neighbor nodes 3, 5, and 1. In case the delivery
relies on neighbor 3, this must choose one route toward the destination. As all neighbors
of node 3 have the same reliability, node 3 chooses 6 or 10 as they provide a shorter
route. Unfortunately, both of them are not reliable, because the former is overloaded and
the latter is misbehaving. Node 6 would be chosen even in the case the communication
occurs through neighbor 5. Packets find similar obstacles through neighbor 1, because
node 10 is misbehaving and node 2 is involved in the other two connections. The only
way to successfully deliver packets to the destination would be through the nodes on the
border of the network (i.e. 5, 8, and 9), but this path is longer and intermediate nodes do
not have knowledge in order to deviate traffic there. Hence, the protraction of intermittent
losses (experienced on almost all used routes) slows down the TCP sender that stabilizes
on low sending rate. Figure 3.14 shows the total TCP throughput of FTP clients, as a
function of time. In this case, we also report the results obtained with a load-balancing
policy, which equally spreads traffic among all possible routes to the destination. We
remark that this policy, as well as our p-route policy, makes a per-packet and per-hop
choice. P-route achieves the higher throughput and keeps it constant for the whole time,
showing high tolerance to misbehaving nodes. Instead, the other forwarding policies are
more sensitive to packets dropping; as soon as the misbehaving node starts discarding
packets, both single-path and load-balancing experience a sharp drop of network
throughput. This result confirms the ineffectiveness of a plain multi-path forwarding, as
studied in [LXG03].

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 55 of 222

Figure 3.13. TCP throughput on FTP clients obtained by applying the
different forwarding policies, in presence of a misbehaving node.

In conclusion, in presence of misbehaving nodes, the p-route policy significantly
improves the performance and reliability of TCP connections, achieving a twofold
advantage: 1) the amount of packets successfully delivered at destination is increased up
to 100%; 2) TCP connections benefit from a delivery service of higher quality, which
provides continuous connectivity to the communicating end-points, hiding the effects of
misbehaving nodes.

(a) Node 2 is FTP client of node 6. (b) Node 6 is FTP client of node 1.

Figure 3.14. Sequence number of TCP packets received by FTP clients as function of time,
in a network without misbehaving nodes.

Totally cooperative network. To show that REEF yields better performance even in
absence of misbehaving nodes, we repeated the simulation on the same network scenario,
with the difference that all nodes cooperate to packet forwarding. In this case, packet loss
can be caused only by temporary fault conditions. Behavior of TCP connections is
depicted in Figures 3.14 and 3.15 Plots show that the p-route policy is globally better
than single path forwarding, as it almost always achieves the highest sequence number;
the only exception is for the connection between nodes 6 and 2 (see Figure 3.14(a)).

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 56 of 222

The connection between nodes 0 and 7 shows results similar to the case with the
misbehaving node. The low performance for both policies confirms the motivations
previously stated. This connection suffers from congestion events on intermediate nodes,
and the higher distance between source and destination increases the negative effects.
Finally, Figure 3.16 shows the predominance of p-route over single path. The achieved
throughput is on average higher and more uniform for p-route, while single path
forwarding presents wide fluctuations, staying often below the p-route curve. The load-
balancing policy again performs worse than single path.

(a) Node 7 is FTP client of node 0.

(b) Node 9 is FTP client of node 2.

Figure 3.15 Sequence numbers of TCP packets received by FTP clients as function of time,
in a network without misbehaving nodes.

Figure 3.16 TCP throughput on FTP clients
obtained by applying p-route and single path
forwarding, in absence on intentional nodes
misbehavior.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 57 of 222

C. The impact of REEF on TCP: A steady state analysis

With a steady-state analysis, we show aggregate results on general scenarios, to evaluate
the scalability of the REEF mechanism. Specifically, we measure the average total
network throughput as a function of the percentage of misbehaving nodes, and mobility.
The experiments have been conducted in various network scenarios. We fixed the
network size to 20 nodes, placed in a 1000x700 area, and configured 5 TCP connections.
We used Telnet sessions as traffic generators. Packets inter-arrival times are chosen from
an exponential distribution with average 0.2 seconds. All TCP connections are
established at time 60 (to allow the routing table construction), and last for the whole
simulation time that is 15 minutes (900 s). Connection end-points are generated randomly
and, for each scenario, 10 runs are performed to decrease the impact of randomness. We
then introduced misbehaving nodes that cooperate to routing (and hence they appear in
routing tables of the other nodes) but do not forward TCP traffic. The experiments were
repeated for the different forwarding policies and the presented results are the average of
the 10 runs. Hereafter, we present the performance analysis of our forwarding policy
according to the aforementioned parameters.

Figure 3.17 Mean TCP throughput in a
network of 20 nodes with 5 TCP
connections as function of the percentage
of misbehaving nodes.

Figure 3.18 Mean TCP throughput as
function of nodes mobility in a network of
20 nodes with 5 TCP connections and
30% of misbehaving nodes.

Percentage of misbehaving nodes. The first set of experiments aimed at evaluating the
effect of an increasing percentage of misbehaving nodes on the network throughput. To
this end, we produced random scenarios with increasing number of misbehaving nodes,
which are not endpoints of TCP connections. We created 6 different scenarios, with
respectively 0, 2, 4, 6, 8, 10 misbehaving nodes (i.e., 0% to 50%). Figure 3.17 shows that
when TCP works on top of load-balancing, it always behaves worse than using single
path, regardless of the percentage of misbehaving nodes. This negative result is caused by
the combination of two factors: i) spreading traffic among multiple routes increases the
possibility to run into unreliable routes (with consequent packet loss); ii) TCP sensitively
reacts to packet loss, decreasing the transmission rate.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 58 of 222

Hence, some communications encounter misbehaving nodes, even if the shortest
path between the endpoints is free of them. This causes TCP to slow down the sending
rate, with consequent performance degradation. On the other hand, p-route outperforms
single path forwarding whenever misbehaving nodes are present, while the two methods
are comparable in cooperative networks (i.e. the percentage of misbehaving nodes is 0).
Specifically, the performance gain grows up to 50% in the case of 20% and 30% of
misbehaving nodes. This is a visible improvement.

Nodes mobility. In the following set of experiments we wanted to study the effects of
nodes mobility on the total network throughput. To this end, we generated random way-
point mobility scenarios using the set-dest utility shipped with ns-2. Considering a fixed
population of 20 nodes moving over a rectangular area of 1000 by 700 square meters,
with nodes speed uniformly ranging inside [1, 5] m/s, we created three sets of mobility
scenarios: 1) a slow scenario with pause times up to 10 seconds; 2) a medium scenario
with pause times up to 5 seconds; 3) a fast scenario where nodes continuously move as
the pause time is set to 0. The percentage of misbehaving nodes is set to 30% (i.e., 6
nodes discard TCP traffic). Figure 3.18 shows that even in presence of nodes mobility the
p-route policy globally achieves better performance than single path forwarding, with a
constant increase in network throughput around 10%. This is a significant result because
p-route is able to distribute traffic among multiple routes even a dynamic environment.
It is worth noting that throughput increases while mobility goes up. This effect is caused
by the random way-point mobility model that tends to group nodes in the middle of the
simulation area, making nodes closer and routes shorter. A denser network allows nodes
to easily reach each other, increasing their ability to communicate.
Intuitively, we believe that p-route performance can be further improved by providing the
REEF mechanism with a cache on reliability indexes. Instead of deleting a node from the
reliability table as soon as it is not anymore a neighbor, the idea it to keep it for some
time, so as to remember its reliability value in the case it appears again as neighbor node.
Ongoing work is evaluating this caching mechanism on different mobility models, such
as Group and Manhattan mobility.

3.2.4. Conclusions
The performability of data transfer in ad hoc environments is highly sensitive to packets
loss, which may be caused by several factors, such as congestion and lossy links, as well
as selfish and malicious nodes. When designing protocols for nodes communications,
special care has to be taken to consider all the causes that may degrade the system
performance. In the case of TCP traffic, even the use of multiple paths may have negative
effects on the network throughput.
This work proposes a new multi-path forwarding policy, performability-route (p-route),
which address nodes misbehavior and network faults. Focusing on TCP traffic, we show
how the p-route policy tolerates the negative effects that packet loss has on the protocol
behavior, and overcomes the limitations of using multiple paths for TCP packets. To
show such improvement, we carried on a simulation analysis in realistic environments,
with a multi-path routing protocol, and TCP file transfers. We also simulated nodes

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 59 of 222

misbehavior, so as to investigate the effectiveness of our forwarding policy in both
cooperative and partially misbehaving networks. The performability achieved with the p-
route policy is compared with the standard single path forwarding, which chooses always
the shortest route. Simulation outcomes elect the p-route policy as the more efficient
forwarding method, as it shows good tolerance to packets loss, maintaining a satisfactory
level of connectivity among nodes, and avoiding delivery interruptions typical of single
path forwarding. By increasing the percentage of misbehaving nodes (from 0% to 50%),
p-route maintains a high level of efficiency, with a TCP throughput improvement up to
50%. The predominance of p-route is visible even in comparison with a plain multi-path
forwarding, or in presence of nodes’ mobility.
One may argue that the p-route policy may not make the correct decision in choosing
alternative paths, as in some cases the one-link reliability does not correctly capture the
reliability of the whole path from a sender to a specific destination. This is possible when
some nodes do not communicate spontaneously (open TCP connections) with other
parties, and hence have no mean for updating their reliability indexes. In REEF jargon,
this is equivalent to have “blind” nodes, where reliability indexes are set to the initial
value, and nodes are unable to distinguish the proximity of misbehaving nodes. This
behavior has been observed in the simulation study. Obtained results show that choices
made by blind intermediate nodes do not cause inefficiency, in comparison with single
path forwarding, and result in a multi-path forwarding mechanism that favors shorter
routes.

3.3. TPA Implementation and Preliminary Experimental
Analysis

This section describes the implementation and preliminary experimental evaluation of the
TPA (Transport Protocol for Ad hoc networks) protocol. TPA is a novel transport
protocol for Mobile Ad hoc Networks (MANETs) developed in the framework of the
MobileMAN project as part of the of the cross-layer network architecture (see
Deliverable D13). It was conceived as an alternative to the TCP protocol in MANETs.
TCP was originally designed under the assumption that nodes are static and
communication links are characterized by a relatively small Bit Error Rate (BER). Under
these assumptions packet losses are mainly due to buffer overflows at intermediate
routers. However, these assumptions are no longer valid in MANETs since (i) nodes may
be mobile, (ii) wireless links have a BER higher than wired links typically used in
traditional networks, and (iii) congestion phenomena are mainly caused by contention at
the link layer (while buffer overflow at intermediate nodes are rare). Therefore, TCP
exhibits poor performance in MANETs, especially when nodes are mobile. Unlike TCP,
TPA is tailored to the characteristics of MANETs. In particular, it includes mechanisms
for managing route changes and route failures that can occur as a consequence of node
mobility. In addition, it uses a different congestion control mechanism with respect to
TCP. Finally, the protocol is targeted to minimize the number of useless (re-)
transmissions in order to save energy.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 60 of 222

A detailed description of the protocol, with a preliminary simulation analysis, was
included in Deliverable D13, see also [AACP05]. In this report we present a prototype
implementation of the TPA protocol in a UNIX environment. This prototype was used to
evaluate the performance of the TPA protocol in a real environment. To this end we set
up a testbed based on laptops running the UNIX operating system, and measured the
performance of the TPA and TCP, respectively. The results obtained have shown that
TPA outperforms TCP.

Hereafter we first describe the protocol implementation in a UNIX environment.
Then we introduce the experimental environment used for performance evaluation, and
we discuss the results obtained in different operating scenarios.

3.3.1. TPA protocol implementation

Design Guidelines
Network protocols are usually implemented in the kernel space and can be accessed by
network application through an interface consisting of a set of system calls (e.g., the
socket-based interface). Security and performance are the main motivations behind this
approach. We refer to such an organization as monolithic [TNML93] because all protocol
stacks supported by the system are implemented within a single address space. However,
there are several factors that motivate a non-monolithic organization, i.e., implementing
network protocols out of the kernel space. The most obvious of these factors is ease of
prototyping, debugging and maintenance. A user-level implementation is appealing
especially when developing a novel network protocol as it allows the following benefits.

 Shortest revise/test cycle. Kernel development includes an additional step in the
revise/test cycle: a system reboot. This inconvenience increases the turnaround
between revisions from a few seconds to a few minutes.

 Easier debugging. User-level development allows for easier source-level
debugging.

 Improved stability. When developing protocols in a user-level environment, an
unstable stack affects only the application using it and does not cause a system
crash.

Therefore, we decided to implement TPA in the user space. Specifically, we implemented
it as a user-level library that can be used by software developers for programming
network applications for ad hoc networks. Figure 3.19 shows the TPA location in the
network protocol stack. Since TPA only requires a datagram service it is implemented on
top of the UDP/IP protocols that are accessed through the socket-based system calls.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 61 of 222

Figure 3.19. Protocol stack

When using a traditional transport protocol implemented in the kernel space, a user application
can access protocol services through the socket interface. Therefore, messages generated by the
application are passed down from the user space to the kernel space. On the other hand, when
using the TPA protocol, data generated by the application are accumulated by the TPA protocol
to form a block. Blocks are then segmented and each single segment, or packet, is sent through
the network. In our implementation the segmentation process and the processing of each single
segment, according to the protocol specifications, are obviously performed by the user-level
library implementing the TPA protocol. Therefore, in our implementation, each single segment
(not the entire message generated by the application) is passed down from the user space to the
kernel space.
In the design of the TPA software architecture our main concern was to allow a transparent and
easy integration of legacy applications with the TPA protocol. Therefore, we followed the design
principles.

 Transparent integration with applications. The original semantics of applications
must be preserved without changing their source code.

 Socket API exportation. The TPA must provide the same socket application
programming interface (API) provided by TCP protocol. This allows the re-use of
a legacy application on top of TPA with only minor changes. This requirement is
a consequence of the previous one.

The user-level library has been implemented by using the C programming language. This
allows the following benefits.

1. it permits to manage bits very quickly and efficiently;

2. it is fully compatible with all Unix/Linux systems.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 62 of 222

Application Programming Interface
The application programming interface provided by the TPA protocol is similar to the
interface available in a UNIX system when using the TCP protocol. Specifically it
consists of a set of functions, each corresponding to a TCP system call. The list of
functions provided by the user-level library implementing the TPA protocol is shown in
Figure 3.20, whereas the meaning of each function is explained in Table 3.3.

int tpa_socket();
int tpa_connect(int sockfd, const char* ip, int port, struct sockaddr_in *from, socklen_t
addrlenfrom, struct sockaddr_in *to, socklen_t addrlento);
int tpa_bind(int sockfd, struct sockaddr_in *from, socklen_t addrlen, int port, const char*
ip);
int tpa_listen(int sockfd, struct sockaddr_in *from, socklen_t *addrlen);
int tpa_send(int socketid, const void* packetbuf, int packetlen);
int tpa_recv(int socketid, void *buff, int len);
void tpa_close(int sockfd);

Figure 3.20. List of functions provided by the TPA protocol

Function name Meaning
tpa_socket() Creates a TPA socket. It returns an integer value that represents the

socket ID
tpa_connect() Binds a socket with a server identified by ip parameter passed as

argument in the TPA connection opening phase.
tpa_bind() Binds the socket descriptor sockfd to the address specified into from

structure.
tpa_listen() Accepts TPA connection requests.
tpa_close() Closes a TPA connection opened with the socket ID passed as

argument.
tpa_send() Sends data over a TPA connection identified by the socket ID passed

as argument.
tpa_recv() Receives data over TPA connection identified by the socket ID passed

as argument.
Table 3.3. Functions provided by the TPA library.

In addition to the functions listed in Figure 3.20, the TPA library also includes internal
functions that are used by functions in Figure 3.20. The fundamental idea behind the TPA
software design is that a TCP legacy application can be on top of the TPA protocol by
simply introducing very minor modifications. Specifically, each system call must be
modified by introducing the tpa_ prefix. To better clarify this issue Figure 3.21 shows
changes that must be introduced in a client program when passing from TCP to TPA.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 63 of 222

/* ... */
s = socket(...);
connect(s, ...);
send(s, ...);
recv(s, ...);
/* ... */
close(s);

 /* ... */
s = tpa_socket(...);
tpa_connect(s, ...);
tpa_send(s, ...);
tpa_recv(s, ...);
/* ... */
tpa_close(s);

Standard Library TPA Library
Figure 3.21. A simple example showing changes to be introduced in a legacy application when using the
TPA protocol.

Software organization
The TPA protocol has been implemented with distinct execution flows that interact
according to the client/server and producer/consumer models. Specifically, we structured
the TPA protocol by means of three processes: a data-processing process, a sender
process, and a receiver process. The data-processing process gathers data passed by the
application process (by using the tpa_send() function in a buffer to form blocks. Data
blocks are managed by the sender process according to the TPA specification. Finally the
receiver process is in charge of processing ACKs and data coming from the network.

For the sake of space we omit here the detailed description of the above processes.
We only provide some details about the timer implementation in the next section.

Timer implementation
The TPA protocol requires starting a timer for each packet sent. Therefore, we used
software timers managed by a timer scheduler [L90]. Specifically, we implemented a list
of data structures, each representing a timer. The timer whose data structure is at the head
of the list is the timer active at the current time. All the other timers are updated in order
to timeout and/or removal of any timer.

Figure 3.22. Implementation of software timers

Figure 3.22 shows a simple example. A timer that will expire in 4 second is started.
Therefore, an item with value 4 in inserted in the list by the timer scheduler. Then, a new
timer that will expire in 7 second is started. A second item is thus inserted in the list

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 64 of 222

whose value (3) is given by the difference between the timer value (7) and value of the
active timer (4).

To achieve a finer time granularity, in the timer scheduler implementation we
used the system call setitimer() instead of alarm(). This allows to achieve an accuracy in
the order of milliseconds (alarm () only provides an accuracy in the order of seconds),
which is very important in a MANET environment.

3.3.2. Testbed description
The TPA protocol was evaluated in a Linux environment using the Mandriva Linux LE
2005 distribution (version 10.1) that implements the kernel version 2.6.11. The wide
variety of commercial wireless cards -- whose drivers are not always fully compatible --
suggested us to use the same wireless cards in all the machines involved in the
experiments. Specifically, we used IBM ThinkPad R50e with bundled Intel
PRO/Wireless 2200BG wireless cards. We considered the 802.11b version of wireless
cards, and set the data rate to 2 Mbps so as to compare the experimental results with the
simulation results provided by the ns-2 simulation tool in the same operating conditions.
The routing protocol used in our experiments is DSR. Specifically, we used the Uppsala
University implementation of DSR (Dynamic Source Routing), throughout referred to as
DSR-UU. Finally, in our tests we set the transmission power (txpower) to the minimum
value (12dB) in order to minimize the transmission range. This allows the deployment of
laptops at reasonable distances, and makes easier to experiment networks with a
relatively large number of hops (e.g. 3 hops). Using the minimum transmission power we
measured a transmission range of approximately 8.5m and a Carrier Sensing Range of
about 16.2m. Based on these values we set the distance between consecutive nodes to 6.5
m. The above parameters are summarized in Table 3.4.

Node distance 6.5 m
TX_range 8.5 m
CS_range 16.2 m

Table 3.4. Network parameters.

3.3.3. Experimental results
We compared the performance of the TPA protocol with those of the TCP NewReno with
SACK extension and an MSS value of 1024 bytes. Since the TPA protocol implements a
congestion window of 2 and 3 packets (the packet size is equal to the TCP MSS value), in
our experiments we limited the TCP congestion window size to 2 and 3 MSSs,
respectively. However, for comparison we also considered the default value for the TCP
congestion window (Wmax=85 Kbytes). We considered a string topology where
consecutive nodes are at a distance of 6.5m, as anticipated above. In particular, we
investigated three specific scenarios, where the distance between the sender and receiver
is 1, 2, and 3 hops, respectively. For each scenario we measured the throughput achieved
by both protocols for different values of the congestion window size.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 65 of 222

Single-hop network
We started our experimental analysis by considering a single-hop network consisting in
only two static nodes: a sender and a receiver (Figure 3.23). The results obtained in this
scenario are shown in Figure 3.24-left, and summarized in Table 3.5. Figure 3.24-right
shows the simulation results provided by the ns-2 tool in the same operating conditions.

Figure 3.23. Single-hop network.

TCP
W=2

TCP
W=3

 TCP
W=Wmax

TPA
W=2

TPA
W=3

0

0,4

0,8

1,2

1,6

2
Rete 2Mbps - 1hop

Th
ro

ug
hp

ut
 (M

bp
s)

0

0,4

0,8

1,2

1,6

2
Rete 2 Mbps - 1 hop (ns2)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP
W=2

TCP
W=3

 TCP
W=Wmax

TPA
W=2

TPA
W=3

Figure 3.24. Throughput achieved by TCP and TPA in a single-hop scenario with different congestion
window sizes: experimental measurements (left) and simulation results (right).

TCP1 hop

Wsize THavg
(Mbps)

THmin
(Mbps)

THmax
(Mbps)

2 1,53 1,50 1,55

3 1,50 1,48 1,53

Wmax 1,49 1,46 1,51

TPA1 hop

Wsize THavg
(Mbps)

THmin
(Mbps)

THmax
(Mbps)

2 1,39 1,38 1,40

3 1,42 1,42 1,43

Table 3.5 Throughput achieved by TCP and TPA for different congestion window sizes.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 66 of 222

The simulation results do not show a significant difference between TCP and TPA. On
the other hand, from the experimental analysis it comes out that the throughput provided
experienced by the receiver is better when using the TCP protocol (in the order of 5-
10%). This apparently strange behaviour can be explained by observing that TPA is
implemented in the user space while TCP is implemented in the kernel space. Therefore,
TPA protocol accounts for a higher overhead due to process synchronization, timer
management and so on. All these issue contribute to decrease the protocol efficiency. In
addition, in a single-hop environment packet losses have not a sever impact on the
performance of TCP.

2-hop network
We now considered a 2-hop network of static nodes (Figure 3.25). We still have a string
topology, but the sender is now transmitting to the receiver through an intermediate node.
The results obtained in this scenario are shown in Figure 3.26-left, and summarized in
Table 3.6. As above, Figure 3.26-right shows the simulation results provided by the ns-2
tool in the same operating conditions.

Figure 3.25. 2-hop network.

TCP
W=2

TCP
W=3

 TCP
W=Wmax

TPA
W=2

TPA
W=3

0

0,4

0,8

1,2

1,6

2
Rete 2 Mbps - 2 hop

Th
ro

ug
hp

ut
 (M

bp
s)

0

0,4

0,8

1,2

1,6

2
Rete 2 Mbps - 2 hop (ns2)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP
W=2

TCP
W=3

 TCP
W=Wmax

TPA
W=2

TPA
W=3

Figure 3.26. Throughput achieved by TCP and TPA in a 2-hop scenario with different congestion window
sizes: experimental measurements (left) and simulation results (right).

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 67 of 222

TCP2 hop
Wsize THavg

(Mbps)
THmin

(Mbps)
THmax

(Mbps)
2 0,53 0,43 0,57
3 0,52 0,43 0,58

Wmax 0,52 0,38 0,58

TPA2 hop
Wsize THavg

(Mbps)
THmin

(Mbps)
THmax

(Mbps)
2 0,65 0,59 0,67
3 0,60 0,58 0,62

Table 3.6. Throughput achieved by TCP and TPA for different congestion window sizes.

As above, the simulation results show that there is no significant different between TPA
and TCP. However, from the experiments in real conditions it clearly emerges that the
throughput achieved by the receiver node when using TPA is significantly higher. In
detail, TPA with congestion window equal to 2 provides a throughput 20% higher than
that provided by TCP in the same conditions (16% when the congestion window size is
set to 3). TPA performs better even if it is implemented at the at the user level.

The discrepancy between the simulation and experimental results can be
explained because in the simulation analysis the wireless channel is assumed to be ideal,
i.e., packet losses are only due to contentions. Obviously, in a real environment there are
interferences and other problems that increase the packet loss rate. In addition, in a 2-hop
scenario the impact of packet losses on TCP is much more severe.

3-hop network
We now consider a (static) string topology with for nodes. The sender and receiver are
thus 3 hops apart. The results obtained in this scenario are shown in Figure 3.27-left, and
summarized in Table 3.7. As above, Figure 3.27-right shows the simulation results
provided by the ns-2 tool in the same operating conditions.

Figure 3.27. 2-hop network.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 68 of 222

TCP
W=2

TCP
W=3

 TCP
W=Wmax

TPA
W=2

TPA
W=3

0

0,4

0,8

1,2

1,6

2
Rete 2 Mbps - 3 hop

Th
ro

ug
hp

ut
 (M

bp
s)

0

0,4

0,8

1,2

1,6

2
Rete 2 Mbps - 3 hop (ns2)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP
W=2

TCP
W=3

 TCP
W=Wmax

TPA
W=2

TPA
W=3

Figure 3.27. Throughput achieved by TCP and TPA in a 3-hop scenario with different congestion window
sizes: experimental measurements (left) and simulation results (right).

TCP3 hop

Wsize THavg
(Mbps)

THmin
(Mbps)

THmax
(Mbps)

2 0,32 0,26 0,42
3 0,32 0,24 0,36

Wmax 0,30 0,24 0,40

TPA3 hop
Wsize THavg

(Mbps)
THmin

(Mbps)
THmax

(Mbps)
2 0,39 0,36 0,42
3 0,36 0,33 0,41

Table 3.7. Throughput achieved by TCP and TPA for different congestion window sizes.

Also in this scenario TPA outperforms TCP. With a congestion window size equal to 2
the difference in terms of throughput experienced by the final receiver is about 23% (14%
for a congestion window of 3 packets).

3.3.4. Conclusions
In this section we have described an implementation of the TPA protocol, a novel
transport protocol specifically tailored to MANETs. The protocol has been implemented
at the user level mainly for decreasing the time needed by software development. In fact,
this approach shortens the revise/test cycle, and makes the debugging process easier and
faster. Our implementation of TPA protocol offers an Application Programming Interface
(API) similar to the one provided by the TCP in a UNIX environment, thus allowing
legacy application to be used with very minor changes.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 69 of 222

We used the user-level TPA implementation to set up an experimental testbed and
compare the performance of TCP and TPA in a real environment. The results obtained
have shown that in a real environment TPA outperforms TCP even in a static scenario,
especially when the number of hops increases. We are currently extending the
experimental analysis by considering additional scenarios and performance indices

3.3.5. References
[AACP05] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella, “TPA: A Transport Protocol for

Ad hoc Networks: Extended Version”, http://www.iet.unipi.it/~anastasi/papers/tpa.pdf/.

[CRVP98] K. Chandran, S. Raghunathan, S. Venkatesan, R. Prakash, “A Feedback Based
Scheme for Improving TCP Performance in Ad-Hoc Wireless Networks”, Proceedings of
ICDCS '98, pp. 472-479.

[HV02] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc
networks”, Wireless Networks, Vol.8, pp. 275-288, 2002.

[L90] D. Libes, “Implementing Software Timers”, C User’s Journal, November 1990.

[LS01] J. Liu and S. Singh, “ATCP: TCP for Mobile Ad Hoc Networks”, IEEE J-SAC, Vol. 10,
No. 7, July 2001.

[SM01] D. Sun and H. Man, “ENIC - An Improved Reliable Transport Scheme for Mobile Ad
Hoc Networks”, Proceedings of the IEEE Globecom Conference, 2001.

[S94] W.R. Stevens, “TCP/IP Illustrated”, Vol. 1, Addison Wesley, 1994.

[TNML93] C.A. Thekkath, T.D. Nguyen, E. Moy, E.D. Lazowska, “Implementing Network
Protocols at User Level”, IEEE/ACM Transactions on Networking, vol. 1(5), pp. 554-565,
October 1993.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 70 of 222

4. INTERCONNECTION AD HOC - INTERNET

4.1. Architecture
In this Section propose and evaluate a practical architecture to build multi-hop hybrid ad
hoc networks used to extend the coverage of traditional wired LANs, providing mobility
support for mobile/portables devices in the local area environment. Traditionally,
MANETs have been considered as stand-alone networks, i.e., self-organized groups of
nodes that operate in isolation in an area where deploying a networking infrastructure is
not feasible due to practical or cost constraints (e.g., disaster recovery, battlefield
environments). However, it is now recognized that the commercial penetration of the ad
hoc networking technologies requires the support of an easy access to the Internet and its
services. In addition, the recent advances in mobile and ubiquitous computing, and
inexpensive, portable devices are further extending the application fields of ad hoc
networking. As a consequence, nowadays, multi-hop ad hoc networks do not appear as
isolate self-configured networks, but rather emerge as a flexible and low-cost extension
of wired infrastructure networks, coexisting with them. Indeed, a new class of networks is
emerging from this view, in which a mix of fixed and mobile nodes interconnected via
heterogeneous (wireless and wired) links forms a multi-hop hybrid ad hoc network
integrated into classical wired/wireless infrastructure-based networks [BCG05].
More precisely, we envisage a hybrid network environment in which wired and multi-hop
wireless technologies transparently coexist and interoperate. In this network, separated
group of nodes, without a direct access to the networking infrastructure, form ad hoc
“islands”. Special nodes, hereafter indicated as gateways, having both wired and wireless
interfaces, are used to build a wired backbone interconnecting separated ad hoc
components. To ensure routing between these ad hoc parts, a proactive ad hoc routing
protocol is implemented on both gateways' interfaces. In addition, the gateways use their
wired interfaces also to communicate with static hosts belonging to a wired LAN. The
network resulting from the integration of the hybrid ad hoc network with the wired LAN
is an extended LAN, in which static and mobile hosts transparently communicate using
traditional wired technologies or ad hoc networking technologies.
In this Section we specifically address several architectural issues that arise to offer IP
basic services, such as routing and Internet connectivity, in the extended LAN. First, we
propose a dynamic protocol for the self-configuration of the ad hoc nodes, which relies
on DHCP servers located in the wired part of the network, and it does not require that the
ad hoc node to be configured has a direct access to the DHCP server. In addition, we
design innovative solutions, which exploit only layer-2 mechanisms as the ARP protocol,
to logically extend the wired LAN to the ad hoc nodes in a way that is transparent for the
wired nodes. More precisely, in our architecture the extended LAN appears to the
external world, i.e., the Internet network, as a single IP subnet. In this way, the hosts
located in the Internet can communicate with ad hoc nodes inside the extended LAN as
they do with traditional wired networks. Previous solutions to connect ad hoc networks to
the Internet have proposed to use access gateways that implement Network Address
Translator (NAT) [RFC2663] or a Mobile IP Foreign Agent (MIP-FA) [RFC3344].
However, such approaches are based on complex IP-based mechanisms originally

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 71 of 222

defined for the wired Internet, like IP-in-IP encapsulation and IP tunneling, which may
introduce significant overheads and limitations, as discussed in depth in the following
sections. On the other hand, the architecture we propose in this paper is a lightweight and
efficient solution that avoids these overheads operating below the IP level. By positioning
our architecture at the layer 2 (data link layer), we may avoid undesired and complex
interactions with the IP protocol and provide global Internet connectivity and node self-
configuration in a very straightforward way.
In the past, other architectures have been proposed to provide ad hoc support below IP.
For example, in [AMB02] label switching was employed to put routing logic inside the
wireless network card. More recently, the LUNAR [TGRW04] ad hoc routing framework
and the Mesh Connectivity Layer (MCL) [DPZ04] have been proposed. These solutions
locate the ad hoc support between the layer 2 (data link layer) and layer 3 (network
layer). This “layer 2.5” is based on virtual interfaces that allow abstracting the ad hoc
protocols from both the specific hardware components and network protocols. However,
this interconnection layer requires its own naming and addressing functionalities distinct
from the layer-2 addresses of the underlying physical devices. This may significantly
increase the packet header overheads. On the contrary, our proposed architecture is
totally located inside layer 2, reducing implementation complexity and ensuring minimal
additional overheads.
We have prototyped the main components of our architecture in a general and realistic
test-bed, in which we have carried out various performance measurements. The
experimental results show the performance constraints with mobility and Internet access,
and indicate that an appropriate tuning of the routing protocol parameter may
significantly improve the network performance.

4.1.1. Network Model
Figure 4.1 illustrates the reference network model we assume in our architecture. We
consider a full-IP network in which all the traffic is transported in IP packets. In this
network, mobile/portable nodes far away from the fixed networking infrastructure
establish multi-hop wireless links to communicate (e.g., using IEEE 802.11 technology).
As shown in the figure, gateways, i.e., nodes with two interfaces - both wired and
wireless - are used to connect the ad hoc components to a wired LAN (e.g., an Ethernet-
based LAN). In our architecture, it is allowed the multi-homing, i.e., the presence of
multiple gateways within the same ad hoc component. Consequently, specific
mechanisms are required to support the handoff between gateways without TCP-
connection breaks. In general, between pairs of gateways in radio visibility of each other,
two direct links can be established, both wired and wireless. However, in our model we
assume that the gateways always use the wired link to communicate. The motivations
behind this requirement will be clearly discussed in Section 4.1.4. However, this is a
quite reasonable assumption, since wired links have higher bandwidth than wireless links,
and the routing protocol should assign them a lower link cost.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 72 of 222

Figure 4.1. 3 Reference network model.

The wired LAN is interconnected to the external Internet through a default router R. In
addition, one or more DHCP servers are located in the wired LAN to allocate network
addresses to hosts. In the following sections, we will explain how these DHCP servers
could be used to assign IP configuration parameters also to the ad hoc nodes. For the
purpose of simplicity, we assume that all the IP addresses are allocated from the same IP
address block IPS/L. According to standard notation, IPS indicates the network prefix, and
L is the network mask length, expressed in bits (e.g., IPS/L = X.Y.96.0/22). Assuming
that the extended LAN adopts a unique network address implies that the extended LAN
appears to the external world, i.e., the Internet network, as a single IP subnet.

Standard IP routing is used to connect the extended LAN to the Internet. However, a
specific ad hoc routing protocol is needed to allow multi-hop communications among the
ad hoc nodes. In this work we decided to use a proactive routing protocol as the ad hoc
routing algorithm (such as the Optimized Link State Routing (OLSR) protocol
[RFC3636] or the Topology Dissemination Based on Reverse-Path Forwarding (TBRF)
routing protocol [RFC3684]). The motivation behind this design choice is that proactive
routing protocols usually support gateways, allowing these nodes to use special routing
messages to set up default routes in the ad hoc network. Indeed, default routes are an
efficient mechanism to forward traffic that does not have an IP destination locally known
to the ad hoc network. In addition, proactive routing protocols, adopting classical link

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 73 of 222

state approaches, build the complete network-topology knowledge in each ad hoc node.
This topology information could significantly simplify the operations needed to acquire
Internet connectivity. In this work, the reference ad hoc routing algorithm is OLSR, but
our architecture is general and it is equally applicable to other proactive routing
protocols.

4.1.2. Related Work
The implemented solutions to provide Internet connectivity in MANETs are mainly
based on two different mechanisms.
One approach is to set up a Mobile IP Foreign Agent (MIP-FA) in the gateway and to run
Mobile IP [RFC3344] in the MANET. In this way, the ad hoc node may register the
foreign agent care-of-address with its Home Agent (HA). Whenever an ad hoc node MN
wants to contact an external host X, it uses its home address (i.e., a static IP address
belonging to its home network) as source address. As a consequence, the return traffic is
routed to the home network through standard IP routing. The HA intercepts the traffic,
encapsulating it using the care-of-address. Then, it tunnels the encapsulated packets to the
FA. The FA removes the outer IP header and delivers the original packets to the visiting
host MN. Different versions of this approach have been proposed and implemented for
proactive [BMAAA04] and reactive [JALJM00] ad hoc networks. A drawback of these
solutions is that they require significant changes in the Mobile IP implementation since
the FA and the mobile node cannot be considered on the same link. Moreover, the mobile
node has to be pre-configured with a globally routable IP address as its home address,
limiting both the ability of forming totally self-configuring and truly spontaneous
networks, and the applicability of these schemes.
An alternative solution to interconnect MANETs to the Internet is to implement a
Network Address Translation (NAT) [RFC2663] on the gateway. In this way, the
gateway may translate the source IP address of outgoing packets from the ad hoc nodes
with an address of the NAT gateway, which is routable on the external network. The
return traffic is managed similarly, with the destination IP address (i.e., the NAT-gateway
address) replaced with the IP address of the ad hoc node. NAT-based solutions have been
designed for both proactive [ETHE04] and reactive [EE04] ad hoc networks. NAT-based
mechanisms appear as easier solutions than MIP-FA-based schemes to provide Internet
access to MANETs. However, a problem that arises with NAT-based solutions is multi-
homing, i.e., the support of multiple gateways in the same MANET. Indeed, to avoid
session breakages it is necessary to ensure that all the packets from the same session are
routed over a specific gateway. A proposed solution to this issue is to explicitly tunnel all
the outgoing traffic from the same communication session destined to the external
network to one of the available gateways, instead of using default routes. A limitation of
this strategy is the additional overhead introduced by the IP-in-IP encapsulation.
Moreover, the ad hoc nodes should be provided with the additional capability of
explicitly discovering the available gateways. This would eventually require extensions
to the ad hoc routing protocols.
Both the two classes of solutions discusses above implicitly assume that either there is a
dynamic host configuration protocol designed to configure the nodes such as to properly
working in the MANET, or the ad hoc nodes are configured a priori. Indeed, a node in an

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 74 of 222

IP-based network requires a unique IP-based address, a common netmask and,
eventually, a default gateway. In traditional networks, hosts rely on centralized servers
like DHCP [D97] for configuration, but this cannot be easily extended to MANETs
because of their distributed and dynamic nature. However, various protocols have been
proposed recently in literature for the purpose of address self-configuration in MANETs.
In general, with protocols using stateless approaches nodes arbitrarily select their own
address, and a Duplicate Address Detection (DAD) procedure is executed to verify its
uniqueness and resolve conflicts. On the other hand, protocols based of stateful
approaches execute distributed algorithms to establish a consensus among all the nodes in
the network on the new IP address, before assigning it. The protocols proposed in [V02]
and [NP02] are examples of the latter and former approach, respectively, while [WZ04]
presents a general overview of the several solutions currently available. Generally, all
these protocols assume reliable flooding in order to synchronize nodes' operations and
resolve inconsistencies in the MANET, but this is difficult to be guaranteed in ad hoc
networks. Another main limitation of these solutions is that they are designed to work in
stand-alone MANET, while no protocols have been devised to take fully advantage of the
access to external networks. In addition, the problems of selecting a unique node address,
routing the packets and accessing the Internet are still separately addressed, while a
unified strategy may be beneficial, reducing complexities and overheads.

4.1.3. Protocol Descriptions
This Section gives a short description of the protocols, which our architecture is based on.

OLSR
The OLSR protocol [RFC3636], being a link-state proactive routing protocol,
periodically floods the network with route information, so that each node can locally
build a routing table containing the complete information of routes to all the nodes in the
ad hoc network running on their interfaces the OLSR protocol. The OLSR routing
algorithm employs an efficient dissemination of the network topology information by
selecting special nodes, the multipoint relays (MPRs), to forward broadcast messages
during the flooding process. The link state reports, which are generated periodically by
MPRs, are called Topology Control (TC) messages. MPRs grant that TC messages will
reach all 2-hop neighbors of a node. In order to allow the injection of external routing
information into the ad hoc network, the OLSR protocol defines the Host and Network
Association (HNA) message. The HNA message binds a set of network prefixes to the IP
address of the node attached to the external networks, i.e., the gateway node. In this way,
each ad hoc node is informed about the network address and netmask of the network that
is reachable through each gateway. In other words, the OLSR protocol exploits the
mechanism of default routes to advertise Internet connectivity. For instance, a gateway
that advertises the 0.0.0.0/0 default route, will receive all the packets destined to IP
addresses without a known route on the local ad hoc network.
ARP Protocol
IP-based applications address a destination host using its IP address. On the other hand,
on a physical network individual hosts are known only by their physical address, i.e.,
MAC address. The ARP protocol [RFC826] is then used to translate, inside a physical

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 75 of 222

network, an IP address into the related MAC address. More precisely, the ARP protocol
broadcasts the ARP Request message to all hosts attached to the same physical network.
This packet contains the IP address the sender is interested in communicating with. The
target host, recognizing that the IP address in the packet matches its own, returns its
MAC address to the requester using a unicast ARP Reply message. To avoid continuous
requests, the hosts keep a cache of ARP responses.
In addition to these basic functionalities, the ARP protocol has been enhanced with more
advanced features. For instance, in [RFC1027] it has been proposed the Proxy-ARP
mechanism, which allows constructing local subnets. Basically, the Proxy ARP technique
allows one host to answer the ARP requests intended for another host. This mechanism is
particularly useful when a router connects two different physical networks, say NetA and
NetB, belonging to the same IP subnet. By enabling the Proxy ARP on the router's
interface attached to NetB, any host A in NetA sending an ARP request for a host B in
NetB, will receive as response the router's MAC address. In this way, when host A sends
IP packets for host B, they arrive to the router, which will forward such packets to host B.

4.1.4. Proposed Architecture
Our design goal in the definition of the rules and operations of the proposed architecture
is to provide transparent communications between static nodes (using traditional wired
technologies) and mobile nodes (using ad hoc networking technologies), employing
mechanisms that run below the IP layer. As discussed previously, in this Section we
address two relevant issues: node self-configuration and global Internet connectivity.

Ad Hoc Node Self-configuration
The main obstacle to use a DHCP server for self-configuration of ad hoc nodes is that the
DHCP server may be not reachable to the new node, due to mobility or channel
impairments. In addition, the ad hoc nodes may need multi-hop communications to reach
the DHCP server, but a unique address is necessary to execute ad hoc routing algorithms
capable of establishing such communications. To solve these problems, we assume that
the DHCP servers are located only in the wired part of the network, while in the ad hoc
part of the network we implement dynamic DHCP Relay agents. These are special relay
nodes passing DHCP messages between DHCP clients and DCHP servers that are on
different networks.

As illustrated in Figure 4.2, when a new mobile host i not yet configured attempts joining
the ad hoc part of the extended LAN, it broadcasts a special message, the Neighbor Req
message. At least one neighbor that is already configured, i.e., it has joined the ad hoc
network, will respond with a Neighbor Reply message. Node i selects one of the
responders j as intermediary in the process of address resolution. Then, node i sends a
Conf Req message to the chosen node j that replies with a Conf Ack message to inform
node i that it will execute on its behalf the process of acquiring the needed IP
configuration parameters (i.e., node j acts as a proxy for the node i). In fact, on receiving
the Conf Req message from node i, node j activates its internal DCHP Relay agent, which
issues an unicast DHCP Request to one of the available DHCP servers. The DHCP server
receiving the requests will answer to the DHCP Relay with a DHCP Ack, containing the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 76 of 222

IP configuration parameters. The configuration process is concluded when the DHCP
Relay forwards the DHCP Ack message to the initial node i that is now configured, and
can join the network. After joining the network, node i may also turn itself into a DHCP
Relay for the DHCP server from which it received the IP configuration parameters,
letting other nodes to subsequently joining the ad hoc component. Finally, it is worth
noting that it is not needed any initialization procedure for the ad hoc network, because
the gateways are directly connected to the wired LAN and can broadcast a
DHCP Discover message to locate available servers. In this way, the first mobile node to
enter the ad hoc network may find at least one gateway capable of initiating the
illustrated configuration process.

Figure 4.2. Message exchanges during the ad hoc node self-configuration.

Our proposed node self-configuration mechanism is somehow similar to the one
described in [NP02]. In that paper, a preliminary message handshake was used to
discover a reachable MANET node that could act as initiator of the configuration process.
On the contrary, in our solution the initiator node exploits the resources of the external
wired network to which the ad hoc component is connected, to perform the IP address
resolution.

Global Internet Connectivity
Our design goal is to support Intranet connectivity (i.e., communications with nodes
inside the same IP subnet) and Internet connectivity (i.e., communications with nodes of
external IP networks) for the mobile nodes, without any configuration change in the pre-
existing wired LAN. The assumption that we take as starting point in our proposal is that

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 77 of 222

the mobile nodes are configured with an IP address belonging to the same IP subnet of
the wired LAN. This is achieved using the mechanism described above.
In the following we will separately explain how the proposed architecture ensures
connectivity for outgoing and incoming traffic.

Connectivity for Outgoing Traffic
As outlined in Section 4.1.3, the OLSR protocol builds the routing tables with entries that
specify the IP address of the next-hop neighbor to contact to send a packet destined to
either another host or subnetwork. More precisely, to send a packet to a destination IP
address, the mobile host searches for the longest IP prefix in the routing table matching
the destination IP address. The matching routing table entry provides the next hop to send
the packet. Since the gateways advertise 0.0.0.0/0 as default route, all packets destined
for IP addresses without a specific route on the ad hoc network, will be routed on a
shortest-hop basis to the nearest gateway and forwarded to the Internet. However, using
0.0.0.0/0 as default route for outgoing packets, introduces an inconsistency when a
mobile host sends IP packets to a wired host inside the LAN.

Figure 4.3. Illustrative network configuration.

To explain this problem let us consider the simple network configuration depicted in
Figure 4.3. For illustrative purposes we assume that the IP subnet of the extended LAN is
IPS/L = X.Y.96.0/222. If the mobile node N (IPN = X.Y.97.151/22) wants to deliver
packets to the wired node H (IPH = X.Y.99.204/22), the routing table lookup on node N

2 On the gateways’ wireless interfaces we set up private IP addresses to save address space. In this way, the
gateways are globally reachable using the IP address on their wired interfaces.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 78 of 222

will indicate that the node H is connected to the same physical network of node N's
wireless interface. This will result in a failed ARP request for the IPH address. To resolve
this inconsistency, we will exploit the properties of the IP longest-matching rules. More
precisely, we split the original IP subnet into two consecutive smaller subnets IPSL/(L+1)
and IPSU/(L+1), such as to have that the union of these two sets is equal to IPS/L. In the
considered case IPSL/(L+1) = X.Y.96.0/23 and IPSU/(L+1) = X.Y.98.0/233. Then, we
configure all the gateways in such a way that they announce, through the HNA messages,
also the connectivity to these two subnetworks. In this way, each mobile host will have,
for any host on the local wired LAN, a routing table entry with a more specific
network/mask than the one related to its wireless interface. To better clarify this point, let
us consider the node N’s routing table as shown in Table 4.1. The entries 8, 9, and 11 are
the ones induced by the HNA messages arrived from GW1. The entry 10 is automatically
set up by the operating system when the wireless interface is configured with the IP
parameters. However, when searching the routing table for matching the IPH address,
node N will found the routing entry 9 more specific than entry 10. Consequently, the
longest-match criterion applied to the routing table lookup, will result in node N correctly
forwarding traffic to gateway GW1 (i.e., the nearest one) to reach node H.

Table 4.1: Node N's routing table.
Entry Destination Next hop Metric interface
1 X.Y.97.51/32 X.Y.96.102 2 eth0
2 X.Y.96.102/32 0.0.0.0 1 eth0
3 X.Y.98/44/32 0.0.0.0 1 eth0
4 X.Y.98.24/32 X.Y.98.44 2 eth0
5 X.Y.96.18/32 X.Y.96.102 3 eth0
6 192.168.111.1/24 X.Y.96.102 2 eth0
7 192.168.111.2/24 X.Y.96.102 3 eth0
8 X.Y.96.0/23 X.Y.96.102 2 eth0
9 X.Y.98.0/23 X.Y.96.102 2 eth0
10 X.Y.96.0/22 0.0.0.0 0 eth0
11 0.0.0.0/0 X.Y.96.102 2 eth0
12 127.0.0.0/8 127.0.0.1 0 eth0

The mechanism described above resolves any eventual IP inconsistency that could occur
in the mobile hosts, but it may cause problems for the gateways. In fact, being part of the
ad hoc component, the gateways will receive HNA messages sent by other gateways,
setting up the additional routing entries advertised in these messages. However, when a
gateway wants to send packets to a wired host on the local wired LAN (e.g., node H), the
routing table lookup will choose one of these two entries, instead of the entry related to
its wired interface (i.e., X.Y.96.0/22). The effect is that the IP packet will loop among the
GW nodes until the TTL expires, without reaching the correct destination H. To resolve
this problem, we statically add in each gateway two further routing entries in addition to
the one related to the default router X.Y.96.1. These two additional entries have the same

3 It is straightforward to observe that this operation is always feasible, at least for L<32.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 79 of 222

network/mask as the two announced in the HNA messages, but with lower metric. Again,
to better clarify the routing operations, let us consider the illustrative example shown in
Figure 4.3. In Table 4.2 we have reported the GW1’s routing table. In this example, eth0
is the GW1’s wireless interface and eth1 is the GW1’s wired interface. When gateway
GW1 wants to send packets to node H, it will found two routing table entries matching
the same number of bits of node H's IP address. These are entry 9 (derived from HNA
messages received from GW2) and entry 11 (statically configured on the gateway).
However, entry 11 has a lower metric than entry 9 (i.e., metric 0 against metric 1). As a
consequence, the packets destined to host H can be correctly forwarded to the host H on
the local wired LAN through the GW1’s wired interface.

Table 4.2: Gateway GW1's routing table.
Entry Destination Next hop Metric interface
1 X.Y.96.102/32 0.0.0.0/0 1 eth0
2 X.Y.97.151/32 X.Y.96.102 2 eth0
3 X.Y.98.44/32 X.Y.96.18 3 eth1
4 X.Y.98.24/32 X.Y.96.18 2 eth1
5 X.Y.96.18/32 0.0.0.0 1 eth1
6 191.168.111.2/24 X.Y.96.18 1 eth1
7 192.168.111.0/24 0.0.0.0 0 eth0
8 X.Y.96.0/23 X.Y.96.18 1 eth1
9 X.Y.98.0/23 X.Y.96.18 1 eth1
10 X.Y.96.0/23 0.0.0.0 0 eth1
11 X.Y.98.0/23 0.0.0.0 0 eth1
12 X.Y.96.0/22 0.0.0.0 0 eth1
13 0.0.0.0/0 X.Y.96.1 0 eth1
14 0.0.0.0/0 X.Y.96.18 1 eth0
15 127.0.0.0/8 127.0.0.1 0 l0

Connectivity for Incoming Traffic
A mechanism is required to ensure that the return traffic coming from hosts on the local
wired LAN or from the Internet (through the default LAN router, as shown in Figure 4.1),
gets correctly routed to the mobile hosts. Our basic idea is to introduce specific Proxy
ARP functionalities into each gateway, in such a way that the gateways can hide the ad-
hoc node identity on the wired physical network, which the gateways are connected to.
Thus, all mobile nodes located in the ad hoc component will appear to wired hosts as
being one IP-hop away. Internally to the ad hoc component, the ad hoc routing protocol
will transparently provide the multi-hop connectivity and the mobility support. This is
somehow similar to what is implemented in the LUNAR framework [TGRW04], in
which the entire ad hoc network appears as a single virtual Ethernet interface.
In our proposed solution, a Proxy ARP server runs on the wired interfaces of each
gateway. The Proxy ARP server periodically checks the gateway’s routing table and ARP
table, such as to publish the MAC address of the gateway’s wired interface for each IP
address having an entry in the routing table with a netmask 255.255.255.255, and the next

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 80 of 222

hop on the gateway's wireless interface. The former condition is verified only by mobile
hosts that have joined the ad hoc network. The latter condition implies that the gateway
can deliver traffic to that node only over multi-hop paths not traversing other gateways4.
Thus, it is highly probable that the considered gateway is the default gateway selected by
that ad hoc node. To illustrate how the proposed mechanism works, let us consider the
network in Figure 4.3. When a node on the wired local LAN (e.g., node H) wants to send
packets to an ad hoc node (e.g., node N), it assumes that the ad hoc node is on the same
physical network. Hence, node H checks its ARP table for IP-MAC mapping and, if it is
not present, it sends an ARP request. The gateway GW1 fulfills the previously defined
conditions (i.e., node N’s IP address has an entry in the GW1’s routing table with a
netmask 255.255.255.255, which is related to its wireless interface), while GW2 does not.
Consequently, only GW1 is allowed by the Proxy ARP server to answer with an ARP
reply. This ARP reply will insert the mapping [node N's IP address - MAC address of
GW1's wired interface] into the node H’s ARP table. Thus, the packets sent from node H
to node N will be delivered to GW1, which will forward them to node N. On the other
hand, node N will reply to node H using GW1, as indicated by its routing table (see
Table 4.2).
There are some network configurations where asymmetric routing may occur, i.e., the
forward path is different from the return path. For instance, let us consider the case in
which node N is in radio visibility of two gateways GW1 and GW2. In this situation, the
OLSR routing algorithm will randomly select one of these gateways as default gateway
for node N. However, both gateways are allowed to send ARP replies for ARP requests
issued by node H for the node N's IP address. In this case, the wired node H will update
its ARP table using the information delivered in the last received ARP reply. Let us
assume that GW1 is the default gateway for node N, but GW2 has sent the last ARP reply
to node H. In this case, node H sends the traffic destined to node N to GW2, which routes
it to node N. On the other hand, node N sends packets destined to node H to GW1, which
forwards them to node H. It is important to note that asymmetric paths are not by
themselves a problem. Indeed, both node N and H correctly receive and send their
packets. In addition the asymmetric routing occurs only in symmetric topologies. Thus, it
is reasonable to assume, in this local environment, that both paths are characterized by
similar delays.

Mobility Support
In general, solutions to support Internet connectivity for ad hoc networks, which are
based on gateways, experience TCP-session breaks when the default route changes,
depending on dynamics and mobility in the network. To avoid that TCP sessions break,
in [EE04] it was proposed to replace default routes with explicit tunneling between the
mobile nodes and the gateways. However, this complicates significantly the
implementation and introduces relevant overheads. On the contrary, in our architecture
the mobility is supported in a transparent way for the higher protocol layers. Indeed, the

4 It is worth reminding that gateways are always interconnected using their wired interfaces. Hence, a route
to reach a mobile node can traverse two gateways only if one of the links along the path is a wired link. In
this case the farthest gateway will have the next-hop routing entry for that mobile node on its wired
interface.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 81 of 222

only effect of changing the default gateway for node N, is that the node N’s outgoing
traffic is routed towards the new gateway (e.g., GW2), while the initial gateway (e.g.,
GW1) continues to receive the incoming traffic and to forward it to node N. This results
into asymmetric routing. However, this asymmetry can be easily removed by using an
advanced feature of the ARP protocol. More precisely, when GW2 becomes aware that
the next hop for the node N switches from its wired interface to its wireless interface, it
generates a Gratuitous ARP on the wired interface for node N’s IP address. This will
update the ARP table in all of the wired hosts that have an old entry for the node N’s IP
address, which was mapped with the MAC address of GW1’s wired interface. This action
restores a symmetric path for the active packet flows destined to and/or originated from
node N.

4.2. Evaluation
We have prototyped the core functionalities of our architecture. In particular, we have
developed the software components described in Section 4.1.4, concerning the support of
Internet and Intranet connectivity for the ad hoc nodes. Currently, we are completing the
implementation of the modifications to the DHCP Relay agents for testing the auto-
configuration functionality. For these reasons, in the following we will show
experimental results measuring the network performance with mobility and Internet
access, while we left for further work the testing of the performance (such as address
allocation latency and communication overheads) of the proposed node self-configuration
scheme.
In our test-beds we have used IBM R-50 laptops with Intel Pro-Wireless 2200 as
integrated wireless card. We have also used the OLSR UniK implementation for Linux in
version 0.4.8 [T04]. The installed Linux kernel distribution was 2.6.9. The ad hoc nodes
are connected via IEEE 802.11b wireless links, transmitting at the maximum rate of
11 Mbps. To generate the asymptotic UDP and TCP traffic during the experiments we
used the iperf tool (online available at http://dast.nlanr.net/Projects/Iperf/). More
precisely, the iperf server (termination of the traffic sessions) runs in a static host in the
wired LAN, while iperf clients (originators of traffic sessions) have been set up on the
mobile nodes. If not otherwise specified, the packet size is constant in all the experiments
and the transport layer payload is equal to 1448 bytes. Differently from other studies
[ETHE04], in which the network topology was only emulated by using the IP-tables
feature of Linux, our experiments were conducted in realistic scenarios, with hosts
located at the ground floor of the CNR building.

4.2.1. Performance Constraints of Internet Access
To measure the performance constraints in case of Internet access, we executed several
experiments in the test-bed shown in Figure 4.4. The distances between the ad hoc nodes
were set up in such a way to form a 4-hop chain topology with high-quality wireless
links.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 82 of 222

Figure 4.4. Trial scenario for testing Internet access using a chain network.

The first set of experiments was conducted to evaluate the impact on the UDP and TCP
throughput of the number of wireless hops traversed in the ad hoc network to reach the
gateway. During these tests all the OLSR configuration parameters have been set up
according to the default values indicated in the RFC specification [RFC3636]. Figure 4.5
and Figure 4.6 show the UDP and TCP throughput, respectively, obtained during a single
experiment, as a function of the time and for different chain lengths. Several observations
can be derived from the shown experimental results. First, we can note that the maximum
UDP throughput is always greater than the maximum TCP throughput, for every network
configuration. This is obviously due to the additional overheads introduced by the TCP
return traffic, which consists of TCP ACK packets. In addition, as expected, the longer
the route, the lower is the peak throughput achieved by the session flow (both TCP and
UDP). The figures show also that, although the nodes are static, the throughput is not
stable, but both UDP and TCP flows could be in a stalled condition for several seconds.
An initial explanation of this route instability is that losses of routing control frames can
induce the loss of valid routes. Indeed, the routing control frames are broadcast frames,
which are neither acknowledged nor re-transmitted; hence they are more vulnerable to
collisions and channel errors than unicast frames. However, a careful analysis of the
routing log files has pointed out another relevant condition that contributes to the route
instability in our static network. Indeed, we discovered that the OLSR protocol
implements an over pessimistic estimation of the link quality that may cause to consider
as lost a link that is overloaded.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 83 of 222

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200

M
bp

s

Time (sec)

1 hop
2 hops
3 hops
4 hops

Figure 4.5. Throughput of a single UDP flow for different chain lengths.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200

M
bp

s

Time (sec)

1 hop
2 hops
3 hops
4 hops

Figure 4.6. Throughput of a single TCP flow for different chain lengths.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 84 of 222

More precisely, each node keeps updating a link quality value for each neighbor
interface. Every time an OLSR packet is lost link quality = (1-α) link quality5. While
every time an OLSR packet is correctly received link quality = (1-α) link quality+α,
where the α value is the smoothing factor of the estimator. The OLSR specification
suggests as default configuration α = 0.5. This implies that the link quality value is
halved after each OLSR packet loss. The link quality parameter is used to estimate the
link reliability, according to a procedure denoted as link hysteresis [RFC3636]. More
precisely, the value of the link quality is compared with two thresholds, called
HYST_THRESHOLD_LOW and HYST_THRESHOLD_UP. When the link quality value is
lower than HYST_THRESHOLD_LOW, the link is considered as pending, i.e., not
established. A pending link is not completely dropped because the link information is still
updated for each HELLO message received. However, a pending link is not a valid link
when computing routing tables. In addition, a pending link can be considered again as
established only when link quality value becomes bigger than HYST_THRESHOLD_UP.
The OLSR specification suggests as default configuration
HYST_THRESHOLD_LOW = 0.3 and HYST_THRESHOLD_UP = 0.8. According to
these values and to the scaling factor α, even a perfect link (i.e., a link with
link quality= 1) will be purged from the routing tables when two consecutive OLSR
packets are lost. We argue that the standard setting of the hysteresis parameters
introduces a critical instability in the routing tables, because it is not infrequent to loose
broadcast packets (as the OLSR packets are) when the channel is overloaded.

Table 4.3: UDP Throughput in a chain network, with and without link
hysteresis.

UDP
HYST NO HYST

1 hop 6.124 Mbps (304 Kbps) 6.363Mbps (393 Kbps) +4%
2 hop 1.252 Mbps (55 Kbps) 2.501 Mbps (57 Kbps) +100%
3 hop 700.4 Kbps (60 Kbps) 1.206 Mbps (87 Kbps) +86%
4 hop 520.6 Kbps (54 Kbps) 1.141 Mbps (56 Kbps) +119%

To verify our claim we have carried out a second set of experiments in the same network
configuration depicted in Figure 4.4, disabling the OLSR hysteresis process. To provide
statistically correct results, we have replicated each experiment five times. Tables 4.3 and
Table 4.4 show the average and standard deviation (in parenthesis) values of the
measured throughputs for the UDP and TCP case, respectively. From the results we
observe that the throughput performances are significantly improved, with the
improvement for a 4-hop chain reaching 119% in the UDP case and 82% in the TCP
case. The study of routing table logs clearly indicates that these throughput increases are
due to an improvement in the route stability with less frequent declarations of link drops
due to erroneous estimations of links’ reliability. It is worth pointing out that this issue

5 To identify the loss of an OLSR packet two mechanisms are used: 1) tracking the sequence numbers of
the received OLSR packets, or 2) monitoring OLSR packet receptions during an HELLO emission interval
[RFC3636],

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 85 of 222

has not been identified in previous experimental studies because either the multi-hop
communications where only emulated [EE04], or the channel was loaded with low-
intensity ping traffic [B05].

Table 4.4: TCP Throughput in a chain network, with and without link
hysteresis.

TCP
HYST NO HYST

1 hop 5.184 Mbps (335 Kbps) 5.172Mbps (393 Kbps) ≈=
2 hop 956.1 Kbps (123 Kbps) 1.517 Mbps (57 Kbps) +58%
3 hop 638.1 Kbps (149 Kbps) 891.7 Kbps (77 Kbps) +39%
4 hop 345.9 Kbps (47 Kbps) 631.2 Kbps (74 Kbps) +82%

In addition to the hysteresis process, the OLSR protocol employs several other
mechanisms, as the link sensing, neighbor detection and topology discovery, which
significantly affect the route stability. Indeed, recent works [B05, GGP05] have
investigated how the setting of the classical OLSR routing parameters may affect the
network performances. However, these works have specifically focused on the time
required for route recalculation after a link drop due to node mobility. On the contrary, to
conclude this section we will analyze the impact of different OLSR parameter settings on
the performance limits of Internet access in static network configurations. More
precisely, each OLSR packet, and the information it delivers, has a fixed validity time.
For instance, the information provided in a HELLO message is considered valid for a
NEIGHB_HOLD_TIME. This implies that a node detects a link loss with a neighbor from
the lack of HELLO messages during a NEIGHB_HOLD_TIME. A similar check is
performed for the TC messages, whose validity time is TOP_HOLD_TIME, and for the
HNA messages, whose validity time is HNA_HOLD_TIME. A possible strategy to avoid
that links and routes are dropped from the routing tables because the related information
has not been refreshed within the corresponding timeout, is to increase the frequency
used to generate OLSR packets. This may increase the probability that at least one new
OLSR packet is received before its validity time expires. The drawback of this approach
is that the more frequent the OLSR protocol generates control messages, the higher is the
routing overheads. To quantify the trade-off between routing overhead increases and
route stability improvements, and how this impacts network performance, we have
carried out a set of experiments in a 3-hop chain using the OLSR parameter settings
shown in Table 4.5. As listed in the table, we compare the default parameter setting with
disabled hysteresis (set1) with the cases in which the frequency of OLSR packet
generations is two times (set2) and four times (set3) higher, while the validity times are
kept constant.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 86 of 222

Table 4.5: OLSR parameter configurations.
OLSR parameters set1 set2 set3 set4
HELLO_INTERVAL(s) 2 1 0.5 2
NEIGH_HOLD_TIME(s) 6 6 6 6
TC_INTERVAL(s) 5 2.5 1.25 5
TOP_HOLD_TIME(s) 15 15 15 15
HNA_INTERVAL(s) 5 2.5 1.25 5
HNA_HOLD_TIME(s) 15 15 15 15
Hysteresis no no no yes

Table 4.6: UDP and TCP throughputs in a 3-hop chain network for
different OLSR parameter settings.

Parameter Setting UDP TCP
set1 700.4 Kbps (60 Kbps) 638.1Kbps (149 Kbps)
set2 1.306 Mbps (87 Kbps) 838.5 Mbps (79 Kbps)
set3 1.605 Mbps (76 Kbps) 1.020 Kbps (105Kbps)
set4 1.84 Mbps (106 Kbps) 1.306 Kbps (56 Kbps)

The experimental results obtained by replicating five times the throughout measurements
for UDP and TCP traffic are listed in Table 4.6, in which the average throughput and its
standard deviation (in parenthesis) are reported. The shown results indicate that
increasing the frequency the OLSR packets are generated by a factor of four, and
maintaining the default validity times, it is possible to improve the average throughput of
40% in the UDP case, and of 55% in the TCP case. We have analyzed the routing table
logs generated during the trials, and again we have observed that the throughput increases
are due to an improvement in route stability. On the other hand, the increase of routing
overheads has a negligible impact on the throughput performance.
In summary, our experimental study indicates that the network performance of Internet
access in static configurations can be significantly enhanced (in some cases we have
more than doubled the measured throughputs) by properly setting the OLSR parameters
such as to improve route stability.

4.2.2. Performance Constraints with Mobility
To test the mobility support in a multi-homed network configuration we considered the
network layout illustrated in Figure 4.7. In our experiments, node MN2 alternates
between position P1 and position P2. More precisely, it starts in position P1, where it is
in radio visibility of node MN1. After 50 seconds it moves in position P2, where it is in
radio visibility of node MN3. The time needed for moving from P1 to P2 is 20 seconds.
After other 50 seconds, host MN2 goes back to position P1. This mobility patterns is
periodically repeated throughout the test. The HNA messages from GW1 and GW2 form
default routes to the external network on a short-hop basis. Hence, while connected to
MN1, the node MN2 uses GW1 as default gateway. On the contrary, when connected to
node MN3, the routes are recalculated and MN2 uses GW2 as default gateway. The new
default gateway GW2 will also begin to act as Proxy ARP for the mobile node. The

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 87 of 222

return traffic will be consistently routed through the new gateway as soon as either a new
ARP request for the MN2’s IP address is issued by the external host, or the gateway
GW2 sends a Gratuitous ARP; otherwise it will continue to arrive at the GW1 (see
Section 4.1.4 for the details).

Figure 4.7. Trial scenario for testing mobility support.

Figure 4.8 shows the TCP throughput achieved by MN2 during a mobility test. We
compare these results against the throughput measured when node MN2 is fixed in
position P1. During both experiments, the hysteresis process was disabled and the other
OLSR parameters were set up according to the default values indicated in the RFC
specification [RFC3636]. The shown results confirm that the TCP session does not break
when node moves. The major effect of node mobility is to introduce holes in the TCP
traffic due to the time needed to recalculate the new routes to reach the default gateway.
In the considered case of “soft” handoff, i.e., the mobile nodes is in radio visibility of
both node MN1 and node MN3 when changing position, we measured up to 20 seconds
for re-computing a consistent routing table in node MN2. It is worth noting that in similar
experiments conducted in [ETHE04], the throughput of mobile node was approximately
30% lower when mobile node changed position. This was expected because the TCP-
session continuity was ensured at the cost of using IP tunneling that introduces significant
additional overheads. On the contrary our solution is very efficient and lightweight,
because it operates directly at the data link layer.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 88 of 222

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

M
bp

s

Time (sec)

P1 P2 P1 P2 P1

mobility
static

Figure 4.8. Throughput of a single TCP flow with node mobility.

4.3. References

[AMB02] A. Acharya, A. Misra, and S. Bansal, “A Label-switching Packet Forwarding

Architecture for Multi-hop Wireless LANs,” in Proc. of ACM WoWMoM 2002,
Atlanta, Georgia, USA, September, 28 2002, pp. 33–40.

[B05] E. Borgia, “Experimental evaluation of ad hoc routing protocols,” in Proc. of
IEEE PerCom 2005 Workshops, Kauai Island, Hawaii, March, 8–12 2005.

[BCG05] R. Bruno, M. Conti, and E. Gregori, “Mesh Networks: Commodity Multihop Ad
Hoc Networks,” IEEE Communications Magazine, vol. 43, no. 3, pp. 123–131,
March 2005.

[BMAAA04] M. Benzaid, P. Minet, K. Al Agha, C. Adjih, and G. Allard, “Integration of
Mobile-IP and OLSR for a Universal Mobility,” Wireless Networks, vol. 10, no.
4, pp. 377–388, July 2004.

[DPZ04] R. Draves, J. Padhye, and B. Zill, “The architecture of the Link Quality Source
Routing Protocol.” Microsoft Research, Tech. Rep. MSR-TR- 2004-57, 2004.

[EE04] P. Engelstad and G. Egeland, “NAT-based Internet Connectivity for On Demand
MANETs,” in Proc. of WONS 2004, Madonna di Campiglio, Italy, January, 18–
23 2004, pp. 4050–4056.

[ETHE04] P. Engelstad, A. Tønnesen, A. Hafslund, and G. Egeland, “Internet Connectivity
for Multi-Homed Proactive Ad Hoc Networks,” in Proc. of IEEE ICC’2004, vol.
7, Paris, France, June, 20–24 2004, pp. 4050–4056.

[GGP05] C. Gomez, D. Garcia, and J. Paradells, “Improving Performance of a Real Ad-
hoc Network by Tuning OLSR Parameters,” in Proc. of IEEE ISCC 2005,
Cartagena, Spain, June, 27–30 2005, pp. 16–21.

[JALJM00] U. Jonsson, F. Alriksson, T. Larsson, P. Johansson, and G. Maguire Jr.,

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 89 of 222

“MIPMANET - Mobile IP for Mobile Ad Hoc Networks,” in Proc. of MobiHoc
2000, Boston, MA, USA, August, 11 2000, pp. 75–85.

[NP02] S. Nesargi and R. Prakash, “MANETconf: Configuration of Hosts in a Mobile
Ad Hoc NEtwork,” in Proc. of INFOCOM 2002, vol. 2, New York, NY, June,
23–27 2002, pp. 1059–1068.

[RFC1027] S. Carl-Mitchell and J. Quarterman, “Using ARP to Implement Transparent
Subnet Gateways,” RFC 1027, October 1987. [Online]. Available:
http://www.ietf.org/rfc/rfc1027.txt

[RFC2131] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131, March 1997.
[Online]. Available: http://www.ietf.org/rfc/rfc2131.txt

[RFC2663] P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT)
Terminology and Considerations,” RFC 2663, August 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2663.txt

[RFC3344] C. Perkins, “IP Mobility Support for IPv4,” RFC 3344, August 2002. [Online].
Available: http://www.ietf.org/rfc/rfc3344.txt

[RFC3636] T. Clausen and P. Jaquet, “Optimized Link State Routing Protocol (OLSR),”
RFC 3626, October 2003. [Online]. Available: http:
//www.ietf.org/rfc/rfc3626.txt

[RFC3684] R. Ogier, F. Templin, and M. Lewis, “Topology Dissemination Based on
Reverse-Path Forwarding (TBRPF),” RFC 3684, February 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3684.txt

[RFC826] D. Plummer, “An Ethernet Address Resolution Protocol,” RFC 826, November
1982. [Online]. Available: http://www.ietf.org/rfc/rfc0826.txt

[T04] A. Tønnesen. (2004, December) Implementation of the OLSR specification
(OLSR UniK). Version 0.4.8. University of Oslo. [Online]. Available:
http://www.olsr.org/

[TGRW04] C. Tschuding, R. Gold, O. Rensfelt, and O. Wibling, “LUNAR: a Lightweight
Underlay Network Ad-hoc Routing Protocol and Implementation,” in Proc. of
NEW2AN’04, St. Petersburg, Russia, February, 2–6 2004.

[V02] N. Vaidya, “Weak Duplicate Address Detection in Mobile Ad Hoc Networks,” in
Proc. of ACM MobiHoc 2002, Lausanne, Switzerland, June, 9–11 2002, pp. 206–
216.

[WZ04] K. Weniger and M. Zitterbart, “Address Autoconfiguration on Mobile Ad Hoc
Networks: Current Approaches and Future Directions,” IEEE Network, vol. 18,
no. 4, pp. 6–11, July/August 2004.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 90 of 222

5. COOPERATION MECHANISM: CORE
In this Section we carry out a simulation-based study of the CORE mechanism,
implemented as an add-on component for the Glomosim [1] network simulation suite.
The features of CORE are analyzed in terms of simulation metrics that we deem relevant
to assess the basic properties of a cooperation enforcement mechanism: the energetic cost
beard by CORE-enabled nodes and the efficiency of the detection and punishment
mechanisms used in CORE. Similarly to the simulation approaches available in the
literature (refer to Chapter 3 in [2]) we run our experiments for various type of scenarios
by taking into account both static and dynamic networks as well as different traffic
patterns. In our simulation study, we use a simple model of node selfishness (refer to
Chapter 2 in [2]) whereby misbehaving entities are defined at the beginning of the
simulation and node behavior is independent of simulation time.
Simulation results are used to understand if and when a mechanism to distribute
reputation information could be necessary in order to improve punishment efficiency:
reputation distribution is an optional feature of the CORE mechanism and constitutes the
main element to discriminate between CORE and other reputation-based cooperation
enforcement mechanisms.
Even if interesting results can be obtained through an accurate simulation-based
evaluation of cooperation schemes, we claim that the node selfishness model used in
most work available in the literature is not sufficient to grasp the salient features of
mechanisms intended to stimulate cooperation among self-interested entities. By
assuming a static node misbehavior whereby nodes are defined as selfish for the whole
network lifetime, it is arguable that the incentive properties of cooperation schemes can
be properly shown. A selfishness model that does not take into account eventual
variations in the behavior of the nodes is not appropriate for the validation of a
mechanism that is intended to guide selfish nodes (or end-users operating the nodes)
towards a more cooperative behavior.
Since a large fraction of existing cooperation enforcement schemes are based on
principles akin to decision making and economic modeling, a natural tool that emerged to
be suitable for the validation of such mechanisms is game theory. In [2] we define two
analytical models that describe the MANET environment and the nodes participating to
the network operation in game theoretical terms. Our research has been presented in a
preliminary work [3], and has been extended in [4-7]. Using game theoretical models to
validate a cooperation mechanism allows the definition of a dynamic node behavior that
follows a "rational" strategy imposed by the end-user operating the node. A rational
strategy represents the behavior of a self-interest user that tries to maximize her profits
(in terms of energy consumption) while knowing that other users in the system could do
the same or could use a cooperation strategy to enforce cooperation.
Game theoretical models of MANETs are however limited in that they do not realistically
represent the underlying mechanisms (and their inherent limitations) that are used to
operate the ad hoc network, such as medium access control and routing protocols. In the
approaches presented in this Section we overcome to some of the limitations dictated by a
high level representation of nodes' interactions within the network by including in our
models the salient features of the mechanisms that are analyzed: for example, in the first

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 91 of 222

model presented in the sequel of this Section we take into account the issues related to the
watchdog technique that have been exposed in Chapter 4 in [2].
By combining the results obtained through the simulation-based analysis and through the
game-theoretical analysis of CORE we conclude that our scheme not only meets all the
requirements that have been presented in Chapter 2 in [2] but also performs better than
other cooperation strategies evaluated in the literature when a realistic network model is
assumed.

5.1. MANET simulation with CORE-enabled nodes
In this section we present a simulation-based analysis of the CORE mechanism. We
provide a description of CORE implementation choices, with an emphasis on the
determination of the system parameters that have been presented in Chapter 4 in [2]. We
then describe the simulation set-up by specifying the scenarios that have been chosen to
test the features of CORE and the metrics used to judge the efficiency of the detection
and punishment of selfish nodes eventually present in the network. We further
concentrate on the consequences in terms of energetic consumption when CORE is used
by the nodes. A thoughtful discussion on what is it possible to show through our
simulations and what cannot be studied because of the inherent limitations of selfishness
model is provided.
The validation of the CORE cooperation mechanism is presented through the analysis of
simulations results and by further examination of reputation distribution requirements as
well as efficiency of the punishment mechanism.

5.1.1. CORE implementation
The CORE mechanism has been implemented as a plug-in mechanism for the Glomosim
network simulator: by referring to Figure 3.1 that describes the CORE components, we
implemented the detection mechanism that relies on the promiscuous mode operation of
802.11 based radio cards, the reputation management component in which only local
reputation information is used, and the punishment mechanism that modifies the
forwarding behavior of a legitimate node that detected a selfish neighbor.
The detection mechanism implemented in each node monitors the behavior of
neighboring nodes with respect to the (data) packet forwarding function and relies on a
FIFO buffer that can store up to B past observations. We recall here that by observation
we mean the result of the comparison between an expected packet stored in the
expectation table (refer to Chapter 4 in [2]) and the observed packets overheard by the
promiscuous listening of neighborhood operations. We give the value 1+=kσ for the
successful observation (made at time k) in which the expected packet equals the observed
packet, and the value 1−=kσ for an unsuccessful observation. The monitoring
mechanism is based on the watchdog technique, for which we set a timeout value

msWDTO 50= and a sampling frequency 1=freqWD [observation per packet]. The choice of
the timeout value has been tailored to meet memory allocation requirements and
detection capabilities: a too high value would result in a huge amount of temporary

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 92 of 222

memory wasted to store expected packets that are accumulated in the expectation table at
the rate of one expected packet per data packet generated.

Figure 5.1. Core modular architecture.

On the other side, a too low value for the timeout would negatively impact the detection
capabilities in a heavily loaded network by triggering false negative observations since
eventual collisions at the MAC level or full queuing buffers due to a high number of data
packets in transit slow down the forwarding response time of neighboring nodes.
The reputation management component has been implemented taking into account only
local observations provided by the monitoring mechanism, while reputation information
is not distributed in the network. In Chapter 4 in [2] we argued that the distribution of
reputation information is utterly insecure and through our simulation study we want to
study in which situations the detection capabilities of CORE would be improved if
indirect reputation ratings would be used. For the sake of simplicity, we implemented the
simplest reputation evaluation filtering function, which is a moving average low-pass
filter with a window size of B. A reputation value is calculated for every neighboring
node with respect to the packet forwarding function, thus the functional reputation
method presented in Chapter 4 in [2] is not used in our simulation implementation.
Finally, the punishment mechanism has been implemented by temporarily disabling the
packet forwarding function for neighboring nodes that have a reputation value that falls
below the punishment threshold 0=thP , that is, a node jn is punished at time k by node in

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 93 of 222

because considered to be selfish if her reputation 0)(<j
k

n nr
i

. This implies that selfish
nodes cannot send but can eventually receive data packets.

In the results section we analyze the effectiveness of the punishment mechanism when
constant bit rate (CBR) data flows are defined between pairs of communicating nodes:
we show that CBR sessions based on the UDP transport mechanism are blocked for
selfish nodes because data packets originated by selfish sources are not forwarded, even
in the case that a valid route has been provided to the selfish node. On the other hand,
also HTTP Client-Server sessions based on the TCP transport protocol would be blocked
using our punishment mechanism since a selfish node would not be able to send
HTTP_Requests to the corresponding servers.
Table 5.1 summarizes the CORE parameters choices we made in our implementation.

Table 5.1. CORE system parameters.

5.1.2. Simulation set-up
In this section we describe the simulation parameters we used in our study and the
different scenarios that have been considered for the evaluation of CORE.
In our simulations we consider an ad hoc network formed by N=16 nodes that use the
DSR routing protocol for a simulation time equals to 2000s6.

6 The size of the network has been chosen to simplify the discussion of the results, however we also studied
the properties of CORE in a larger network obtaining similar results as the one depicted in the plots in the
following results section.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 94 of 222

Node placement have been manually selected to follow a grid pattern as depicted in
Figure 5.2 and the distance between two nodes on the grid have been set in order to allow
only communications that are on the rows or columns of the gird, whereas diagonal links
cannot be established due to the wireless radio range limits.

Figure 5.2. 4x4 grid network used in our simulations, with radio range and route example
from source node 0 to destination node 15

Nodes are free to move (if specified in the scenario) in a 1000x1000 square meters area:
the mobility model we chose is the Random Waypoint Model, in which nodes move to a
random destination at a speed uniformly distributed between 1m/s and a maximum of
20m/s. Once they reach this destination, they stay there for as long as specified in the
pause time, which we will use as a simulation parameter as defined later in this section.
The radio propagation model used in our scenarios is the realistic two-ray ground
reflection model and we take into account physical phenomena such as signal strength,
propagation delay and interference. The radio range has been set to the usual value of
250m.
We have defined two families of simulation scenarios: in the first set of simulations we
consider a static network while in the second family we use the Random Waypoint
mobility model to simulate a dynamic network in which we vary the pause time
parameter.
To infer the salient characteristics of the CORE mechanism, we completed our simulation
scenarios with a further parameter that we call path diversity, which is defined for node

in as:

i
i

neighbors

it
D N

l
p =

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 95 of 222

where il is the number of incoming (or outgoing) routes to node in and
ineighborsN is the

number of node in 's neighboring nodes at simulation time t.

Now, the DSR routing protocol is not a multi-path routing protocol since it does not use
multiple paths to reach a destination: however it stores multiple route replies that
correspond to different routes from a source to a destination in order to improve
responsiveness in the case of link outage. Thus, in our simulations we "manually"
introduce the path diversity parameter by defining the following traffic patterns that use
constant bit rate (CBR) communications based on UDP, and in which 1000 packets of
size equals to 64 bytes are sent at a rate of 1 packet per second:

- High path diversity traffic pattern: sources and destinations of the CBR traffic are
chosen to produce a fully connected network in which every possible source has
to send data to every possible destination (excluding all one-hop communications)
in the network, while the beginning time of CBR sessions is uniformly distributed
between 0s and 800s.

- Low path diversity traffic pattern: sources and destinations of the CBR traffic are

chosen randomly (excluding all one-hop communications), as well as the
beginning time and the number of distinct CBR sessions.

As we will see in the results section, the path diversity parameter has an important
influence on the performance of CORE: however, the "manual" configuration of the path
diversity parameter revealed to be difficult to control in the dynamic network scenario.
Indeed, when node mobility is high, it is hard to predict if the properties offered by the
communication patterns defined at the beginning of the simulation will hold through
time. However, path diversity can still be used in the dynamic case to explain some of the
phenomena that appears in the result plots.
Furthermore, excluding one-hop communications is important in order to avoid the
particular case in which the punishment mechanism implemented in CORE cannot be
used. Again, when node mobility is introduced in the network, it is difficult to predict if a
route counting more than one hop will hold through time: the metric used to measure the
performance of CORE and described in the following section excludes one-hop
communications eventually formed through the simulation run.
We additionally defined a simulation parameter that takes into account the dimension of
the FIFO buffer used to store up to B past observations on neighborhood behavior: this
parameter has been used in one specific set of simulations where we study the eventual
errors in the punishment mechanism, that we call false positives.
Taking as a reference the selfishness model described hereafter, in the ideal scenario in
which nodes cannot temporarily fail, that there are no obstacles and that the monitoring
mechanism based on the promiscuous listening produces no errors, one observation
would be sufficient to detect and exclude eventual selfish nodes. However, in the more
realistic scenario in which temporary misbehavior is due to the presence of detection
errors, a more sophisticated technique such as the one proposed in CORE has to be used.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 96 of 222

Throughout our simulation study we analyze the impact of the buffer size B on the
punishment errors due to failures in the detection mechanism.
For every scenario that is possible to define using the parameters described in this
section, we run 20 experiments and took the average of the metrics used in the simulation
and described in the following section. Further, we enriched the simulation scenarios by
considering three additional experiment configurations: we consider and ad hoc network
in which there are no selfish nodes, and ad hoc network that has a pre-defined percentage
of selfish nodes and a CORE-enabled network that is populated with selfish nodes. We
took as a reference a network with a low percentage of selfish nodes (6%) and a network
in which a rather high percentage (25%) of nodes are selfish.

Selfishness model
The selfishness model used in our simulation study follows the definition that has been
given in Chapter 2 in [2].
A selfish node is defined as a node that participate to routing operations but that
systematically fails in forwarding data packets, by disabling the packet forwarding
function at the network layer. As a practical example, a misbehaving end-user that
operates a node can easily disable the packet forwarding function by using the IPTABLES
command in a Linux powered ad hoc node.
In our simulations, during the simulation setup, we define the total number of selfish
nodes: selfish nodes drop data packets for the whole duration of the simulation.
In the discussion section we argue that this simple model is not adequate to show how the
CORE mechanism is able to promote cooperation of nodes: the necessity for a more
complex model that takes into account node "rationality" is discussed, while in [2] we
explain our proposed solution to overcome the limitations imposed by a simplistic
selfishness model.

5.1.3. Simulation metrics
This section describes the metrics we used to evaluate CORE: the results presented in the
following section refer to the metrics defined hereafter.

- Energy consumption
The GloMoSim network simulator has a built-in energetic model that we use to evaluate
the energetic consumption that nodes operating the ad hoc network have to bear. By
default, in GloMoSim a node in an IDLE status consume 500mW per hour. We used this
value as a basis to infer the further consumption that derives from the network operation
and from the application running on the nodes: power consumption statistics are collected
through the whole simulation run, whereby a wireless channel-dependent energetic cost is
associated to every transmitted or received packet.
In the following graphs, we present the energetic consumption for three set of
experiments: an ad hoc network with no selfish nodes, a defenseless ad hoc network with
selfish nodes, and a CORE-enabled network with selfish nodes.
Further, we show the average gain of a CORE-enabled network with respect to a
defenseless network with selfish nodes. The average gain is defined as follows: we take
the aggregate average energetic consumption for all the legitimate nodes in the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 97 of 222

defenseless network and compare it to the aggregate average energetic consumption of
the legitimate nodes in the CORE-enabled network and express the difference in
percentage: as an example, an average gain of 10% indicates that, in average, the nodes
of a CORE-enabled network saves up to 10% of energy with respect to a defenseless
network.
We estimate energetic consumption to be a relevant metric since it represents the
additional energetic cost beard by nodes that use a cooperation enforcement mechanism.
This additional cost has to be limited since it could be a further source of node
selfishness.

- Punishment efficiency
The punishment efficiency metric is defined as follows:

where N' is the subset of legitimate nodes in the network and S' is the subset of selfish
nodes in the network;

pd is the number of data packets originated by selfish nodes and discarded by the
punishment mechanism implemented in all legitimate nodes;
s is the number of packets originated by each selfish node in the set S' that have a valid
route to the intended destination and h represents the number of packets eventually
originated by selfish nodes that are on a one-hop route.
For example, suppose that N'=15, S'=1, pd =800, s=1000 and h=100:

Ep = 88.89%.

The punishment efficiency metric provides an overall metric to judge the effectiveness of
the CORE mechanism that takes into account both the detection and the punishment
mechanism: indeed, a legitimate node punishes a selfish node when a predefined number
of observations have been collected through the monitoring mechanism and processed by
the reputation manager component.

- False positives
The false positive metric is similar in its definition to the punishment efficiency:

With this metric we analyze the percentage of packets that have been erroneously
dropped by legitimate nodes and that were originated by other legitimate nodes. Again,
we do not take into account one-hop communication patterns.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 98 of 222

NOTE: in our simulation-based analysis of CORE we do not show packet delivery ratio
variations for legitimate nodes. As opposed to the other cooperation enforcement
mechanism available in the literature, CORE does not punish selfish nodes by using the
path rater technique described in [2]. The consequence is that we cannot show through
our simulations that the packet delivery ratio or alternatively the aggregate throughput of
the network increases when the CORE mechanism is used by the nodes. We already
discussed the drawbacks of the path rater technique in [2]: furthermore we do not believe
that a performance metric based on throughput is meaningful to show the salient aspects
of a cooperation enforcement mechanism.
Through our simulation study we are able to show the impact of CORE in terms of
energetic consumption (which we recall, is the main source of a selfish behavior) and in
terms of punishment efficiency, but we claim that the ability of CORE (and other
cooperation enforcement mechanisms) to promote cooperation requires the definition of a
different selfishness model that allows a selfish node to act rationally, i.e. minimizing
energy consumption while knowing that other nodes will undertake the appropriate
countermeasures whenever a selfish behavior is detected.

5.2. Simulation results
In this section we discuss the results of our simulation study: the plots presented hereafter
are organized in two sections, one that shows the nodes' energetic consumption, and one
that shows detection and punishment capabilities of a CORE enabled network.
Throughout our simulation study, we were able to assess not only that CORE introduce a
low power consumption overhead (also with respect to other cooperation enforcement
mechanisms available in the literature), but also that it entails a significant power saving
for legitimate nodes that use CORE. Thus, CORE stimulates cooperation of selfish nodes
to the network operation and introduces an incentive for legitimate nodes to use CORE as
a cooperation enforcement mechanism since they save energy.

5.2.1. Energetic consumption
The following plots (Figures 5.3, 5.4, 5.5) present the average energetic consumption (per
node) provided by the GloMoSim simulation statistics for different scenarios. We
considered both static and dynamic networks and we varied the path diversity parameter
(as described in the setup section) and the percentage of selfish nodes. Note that in the
following plots, when the percentage of selfish nodes is 6%, only one node misbehave:
precisely, in our plots the node with ID=6 is misbehaving. On the other hand, when the
percentage of selfish nodes is 25%, there are 4 selfish nodes in the network: the following
plots depict a network in which nodes with ID=2, 6, 9, 11 are misbehaving.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 99 of 222

Figure 5.3. Static network, S\% of selfish nodes: routes with more than 1 hops and high
path diversity.

The first observation that we can make by an overall analysis of the plots derives from a
comparison between the power consumption of an ad hoc network without selfish nodes

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 100 of 222

and a defenseless network with a defined percentage of selfish nodes. If it is not
surprising to see that selfish nodes save energy by dropping data packets, it is interesting
to observe that also legitimate nodes' power consumption is impacted by the presence of
selfish nodes: in average, also legitimate nodes might gain in energetic savings when
selfish nodes are present in the network.
Indeed, consider for example the following n+2-hop path from a legitimate source S to
the corresponding destination D: <S, N1, N2, N3, N4,..., Nn, D>
If we consider the extreme scenario in which N1 is dropping data packets because of a
selfish behavior, also all the other down-link nodes {N2...N_n} towards the destination
will save energy because they will not receive any data packets to forward.
On the other hand, in the opposite scenario in which the last hop before the destination
(namely, Nn in our path example) is selfish, all the up-link nodes towards the source will
waste energy by forwarding data packets that will never reach the destination.
The use of a multi-path routing scheme with a high path-diversity would mitigate the
waste in terms of energy of legitimate nodes that detected the presence of a selfish node
in the route; at the same time, a multi-path routing scheme allows nodes to "probe"
multiple routes and eventually increase detection capabilities.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 101 of 222

Figure 5.4. Static network, S\% of selfish nodes: routes with more than 1 hop and low
path diversity.

On the other side, when comparing energetic consumption of nodes in a defenseless
network as opposed to nodes in a CORE-enabled network, it is possible to see that nodes

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 102 of 222

in a CORE-enabled network save energy by punishing selfish sources that originate data
traffic. Consider the following path, in which the source node S has been detected as
selfish by (all) her neighbors: <S, N1, N2, N3, N4,..., Nn, D>

If the network has no countermeasures to cope with node selfishness, every node on the
path towards the destination wastes energy by forwarding "illegitimate" traffic generated
by a selfish source that does not cooperate to the network operation.
On the contrary, in a CORE-enabled network if node N1 detected a selfish behavior of
the source, she will then punish the selfish source by denying data forwarding. Moreover,
all nodes down-link towards the destination will benefit from the punishment of the
selfish source performed by N1 and will save energy.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 103 of 222

Figure 5.5. Dynamic network, S\% of selfish nodes [pause time = 0].

The plots presented in the previous figures also show the average gain in terms of
energetic consumption of a CORE-enabled network with respect to a defenseless
network, without taking into account the gain of selfish nodes: as it is possible to see in

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 104 of 222

the figures, average gains vary depending on mobility settings as well as percentage of
selfish nodes in the network and path diversity parameter. In Figure 5.5 we set the pause
time parameter to 0 seconds in order to tackle with an extreme mobility scenario: nodes
constantly move with a speed uniformly distributed between 1m/s and 20m/s.
When comparing plots with the same amount of selfish nodes in the network but different
mobility settings, it is possible to see that average gains in static networks (~17%) are
higher than in the dynamic case (~4-5%): indeed, node mobility not only introduces a
high amount of traffic overhead due to frequent link breaks but, as it will be shown in the
punishment efficiency plots, it has an impact on the detection and punishment
mechanisms.
Furthermore, it is possible to deduce from the plots that the average energetic gain is
higher when a larger portion of nodes of the network is set to be selfish: this result
follows the discussion on the position (and number) of selfish nodes in a path from a
source to a destination and the number of selfish sources in the network, as described in
the beginning of this section.
As it will be clearer in the section dedicated to punishment efficiency plots, also the path
diversity parameter has an influence on the average energetic gain: detection and
punishment capabilities are impacted by the presence of multiple path towards and from a
selfish node. A reduced path diversity, which we simulated through a small number of
CBR connections in the network, degrades the detection and punishment capabilities of
CORE.

5.2.2. Punishment efficiency
In this section we present the plots for the punishment efficiency (Ep) metric versus the
pause time parameter: when we consider a static network, the pause time has no influence
on the results, whereas for the dynamic case the impact of node mobility is more
important. For every pause time value (i.e. pause time = {0, 10, 100, 300, 600, 900}
seconds) we run 20 experiments varying the selfish node percentage and the selfish node
position (i.e. the selfish node ID) in the network. In the static case, we also varied the
path diversity parameter.
Figure 5.6 presents a summary of the punishment efficiency for all simulation scenarios
we used, while Figures 5.8, 5.9 are enriched with measurement errors for every specific
scenario we considered.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 105 of 222

Figure 5.6. Summary of Ep for different simulation scenarios.

In Figure 5.6 it is possible to observe that, in average, punishment efficiency is higher for
a static network as compared to a dynamic network. Furthermore, our plots show that the
path diversity parameter has a significant influence on the punishment efficiency (and
detection capabilities) of a CORE-enabled network. Lastly, as for the energy
consumption plots, a higher percentage of selfish nodes in the network produce higher
punishment efficiency.
To explain the behavior of the punishment efficiency plots, we refer now to the following
specific scenarios.

Static network
When the nodes of the network do not move, the punishment efficiency depends on the
path diversity parameter. Let's give a practical example to explain how path diversity
impacts both detection and consequently punishment capabilities of CORE.
The following figure depicts the gird network used in our simulation, where node N6 is
selfish.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 106 of 222

Figure 5.7. Static grid network with 1 selfish node: path diversity example.

Detection capabilities as a function of path diversity are depicted in Figures 5.7 (a) and
(c), while punishment capabilities are depicted in Figures 5.7 (b) and (d). When path
diversity is high, all neighboring nodes of node N6 have some routes that use the selfish
node as a relay (either because they are sources or because they are relaying packets on
behalf of distant nodes): in this case the detection mechanism assures that all neighboring
nodes detect and classify node N6 as selfish. In the same way, when path diversity is
high, if node N6 has routes that use at least one neighboring node, the punishment
efficiency reaches almost 100%. Figure 5.8 shows an average value of 99% since our
path diversity has been manually imposed through an appropriate traffic pattern setting,
which however does not guarantee the same results that we would have obtained by using
a true multi-path routing protocol.
On the other side, when path diversity is low (Figures 5.7 (c) and (d))only nodes N2 and
N10 uses routes that go through the selfish node N6: only two nodes over four neighbors
would detect the selfish behavior. Now, in the non negligible case in which node N6 uses
only routes that go through node N3 and N7, the punishment efficiency would be 0%.

This example shows the limitations of CORE: in the absence of a reputation distribution
mechanism, legitimate nodes that never directly experienced transmission failures that

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 107 of 222

can be attributed to a selfish behavior would not punish the selfish node. However, this
limitation can be overcome in different ways: we already mentioned that a multi-path
routing protocol that exploits path diversity would inherently solve the problem.
Furthermore, in [2] we proposed a CORE enhancement that relies on peer nodes which
are able to observe selfish behavior without being involved in a forwarding transaction.
Figure 5.8 shows the average punishment efficiency that we experienced in our
simulations: in average, the punishment efficiency is below 100%; however we believe it
sufficient to represent a strong incentive for selfish nodes to participate to the network
operation.

Figure 5.8. Ep for a static network, with measurement errors.

Dynamic network
By taking into account node mobility, parameters such as route hop count and path
diversity are more difficult to control with respect to the static case. In the plots presented
in the following figures, we vary the percentage of selfish nodes in the network and we
analyze the variation of the punishment efficiency metric with respect to the pause time
parameter of the Random Waypoint mobility model. The nodes' initial position is defined
using the same grid network showed for the static case, which is then deformed due to
node movements.
As it is possible to observe in figures 5.9 a) and b), punishment efficiency grows in the
pause time, and reaches high efficiency values (i.e. ~100%) starting from a pause time of

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 108 of 222

900s. On the other side, when node mobility is very high, i.e. when nodes continuously
move to random destinations, punishment efficiency is comparable to the one evaluated
for the static network with low path diversity.
Since the nodes of the network rely on the DSR routing protocol which uses only one
path that is reconstructed every time a link break is detected, path diversity is hard to
estimate, even b imposing the adequate traffic patterns. We believe that path diversity
registers negative variations due to node mobility: for example, neighbors that detected a
selfish behavior could move away from the selfish node before she sends packets that
would be dropped by the punishment mechanism. Other nodes that never used the selfish
node as a relay (i.e., they could not detect it as being selfish), could fall within the
wireless radio range of the selfish node and thus be used as relays for forwarding selfish
traffic.
Even if the punishment efficiency offered by CORE in a dynamic network can be
estimated as an effective incentive for node cooperation, we envision in our future work
to use a variation of the DSR protocol that exploits multiple paths and that do not use
gratuitous route reply or route error messages, which we deem a source of a low path
diversity.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 109 of 222

Figure 5.9. Ep for a dynamic network, with measurement errors.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 110 of 222

False positives
The last plot we present shows punishment errors due to the shortcomings of the
watchdog technique.

Figure 5.10. False positives with 25\% of selfish nodes in a dynamic network.

In the plots, we varied the B parameter, which has always been set to B=5 in all other
simulation runs. We believe that the filtering function and the filter parameters used to
evaluate reputation metrics for neighboring nodes is the main responsible for errors in the
classification of selfish nodes. Assuming that the monitoring mechanism is imperfect, we
want to study which is the impact of the parameter B on the false positive metric.
As it is possible to see in Figure 5.10, the false positive metric is inversely related to the
pause time parameter, which we varied as in the punishment efficiency evaluation.
When the observation buffer size is B=5, a non negligible percentage of false positives
appear only in the case of a high mobility scenario: however, globally, for every
legitimate node in the network, only 2 packets per 100 packets sent by legitimate nodes
might be dropped erroneously. Varying the pause time parameter, or by doubling the
buffer size B=10, is sufficient to render the percentage of false positives almost
negligible.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 111 of 222

5.3. Discussion
The results section provides a detailed analysis of CORE performance under different
networking scenarios: as we observed, the punishment efficiency is for most of the
scenarios adequate to promote node cooperation since performance of selfish nodes is
drastically reduced in a CORE-enabled network.
Furthermore we demonstrated throughout our simulation study that CORE provides not
only incentives for selfish nodes to cooperate, but also that CORE is attractive for
legitimate nodes in that they might save up to 24% of energy which, as a consequence,
extends the network lifetime in the case that all nodes use CORE.
In some cases, we noticed that the distribution of reputation information could increase
detection capabilities when path diversity is low or when we consider high node mobility
scenarios. However we suggest that using a multiple-path routing protocol that exploits
high path diversity would inherently solve the problems pointed out in the results section.

Furthermore, by using the extended version of CORE which implements the peer
validation technique described in section [2], punishment efficiency can be improved also
in the case of a single-path routing protocol. Our simulation study has also been used as a
basis for the design of a test-bed implementation of CORE and might be used for the
fine-tuning of CORE parameters.

We believe, however, that the selfishness model implemented in our simulation study
(and in other simulation study available in the literature) is not sufficient to grasp the
salient aspects of node cooperation when "rational" end-users selfishly operate the nodes
of the network. Indeed, a static selfishness model in which a misbehaving node never
changes her behavior is not realistic: if changes in the selfish behavior are not allowed,
then it is impossible to show in our simulations the capabilities of CORE to stimulate
cooperation. In our work presented in [2], we build an analytical model of an ad hoc
network in which rational selfish agents operate the network maximizing their profits in
terms of energy consumption while at the same time knowing that other agents in the
network could do the same or could use a cooperation enforcement mechanism like
CORE to enforce node cooperation.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 112 of 222

5.4. References

[1] Glomosim, available at http://pcl.cs.ucla.edu/projects/glomosim/

[2] P. Michiardi, Cooperation enforcement and network security mechanisms for mobile
ad hoc networks, PhD Thesis Dissertation, available at PASTEL, Paris Institute of
Technology, http://pastel.paristech.org/archive/00001114/

[3] P. Michiardi and R. Molva, Report on a Working Session on Security in Wireless Ad
Hoc Networks, ACM Sigmobile Mobile Computing and Communication Review, 2002
volume 6, number 4

[4] P. Michiardi and R. Molva, Analysis of Coalition Formation and Cooperation
Strategies in Mobile Ad hoc Networks, Elsevier - Ad hoc Networks Journal (Special
Issue, 2004

[5] E. Altman and A. Kherani and P. Michiardi and R. Molva, Non cooperative
forwarding in Ad hoc Networks, INRIA Sophia Antipolis Research Report RR-5116,
February 2004

[6] E. Altman and A. Kherani and P. Michiardi and R. Molva, Non cooperative
forwarding in Ad hoc Networks, in Proceedings of IFIP Networking Conference,
Waterloo, Canada, May 2005

[7] E. Altman and A. Kherani and P. Michiardi and R. Molva, Some game-theoretic
problems in wireless ad hoc networks, in Proceedings of the EURO-NGI Workshop,
Dagstuhl, Germany, October 2004

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 113 of 222

6. MIDDLEWARE
Mobile ad hoc networks (MANETs) represent complex distributed systems comprised of
wireless mobile nodes that can freely and dynamically self-organize into arbitrary and
temporary, “ad-hoc” network topologies. This spontaneous form of networking allows
people and devices to seamlessly exchange information in areas with no pre-existing
communication infrastructure, e.g., disaster recovery environments. While the early
MANET applications and deployments have been military oriented, civilian applications
have also grown substantially since then. Especially in the past few years, with the rapid
advances in mobile ad hoc networking research, mobile ad hoc networks have attracted
considerable attention and interests from commercial business industry, as well as the
standards community. The introduction of new technologies, such as the Bluetooth and
IEEE 802.11, greatly facilitated the deployment of ad hoc technology outside of the
military domain, generating a renewed and growing interest in the research and
development of MANET.

While ad hoc networking applications appeared mainly in specialized fields such as
emergency services, disaster recovery and environment monitoring, MANET flexibility
makes this technology attractive for several applicative scenarios like, for example, in
personal area and home networking, law enforcement operation, search-and-rescue
operations, commercial and educational applications, and sensor networks. Currently
developed mobile ad hoc systems adopt the approach of not having a middleware, but
rather rely on each application to handle all the services it needs. This constitutes a major
complexity/inefficiency in the development of MANET applications. Indeed, most of the
MANET research concentrated on the enabling technologies, and on networking
protocols (mainly routing), see [CCL03], while research on middleware platforms for
mobile ad hoc networks is still in its infancy. Recently, in research circles, some
middleware proposals for mobile ad hoc environments appeared in [BCM05, MPR01,
MCZE02].

Their emphasis is on supporting transient data sharing [MPR01] between nodes in
communication range, data replication for disconnected operations [BCM05, MCZE02],
or both [H03]. To achieve this, classical middleware technologies have been adopted.
These include tuple spaces, mobile agents, and reactive programming through the usage
of events' publishing/subscribing [ADGS02, PC02]. While these technologies provide
service abstractions that highly simplify application development, their efficiency in ad
hoc environments is still an open issue.

Ad hoc networking shares many concepts, such as distribution and cooperation, with the
peer-to-peer (p2p) computing model [SGF02]. A defining characteristic of p2p systems is
their ability to provide efficient, reliable, and resilient message routing between their
constituent nodes by forming virtual ad hoc topologies on top of a real network
infrastructure. The difference with traditional distributed computing systems is the lack of
a central authority that controls the various components; instead, nodes form a dynamic
and self-organizing system. The applications best suited for p2p implementation are those

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 114 of 222

where centralization is not possible, relations are transient, and resources are highly
distributed [PC02]. In particular, the range of applications covered by the p2p model
includes file sharing, distributed search and indexing, resource storage, collaborative
work, etc. The key aspect of p2p systems is the ability to provide inexpensive, but at the
same time scalable, fault tolerant and robust platforms. For example, file sharing systems,
like Gnutella [KM02], are distributed system where the contribution of many participants
with small amounts of disk space results in a very large database distributed among all
participant nodes.

The distributed nature of ad hoc networks fits well the p2p model of computation.
Systems based on the p2p model are those where centralization is not possible, relations
are transient, and resources are highly distributed. These are also main requirements and
characteristics of MANET environments. This duality makes exploiting the p2p paradigm
for designing middleware platform for MANETs a very promising direction.

In this chapter we investigate the efficiency of p2p middleware platforms when
implemented in mobile ad hoc networks. Specifically, we focus on two well known
platforms like Gnutella and Pastry. Through simulations, we show the limitations and the
inefficiencies that these p2p systems exhibit in MANET environments. Finally, the
chapter ends by showing, through experimentation, the potentialities of a cross-layer
interaction between a proactive routing protocol and a p2p platform that offers the same
functionalities and semantic of Pastry [DR01]. We give perspectives on how costs and
complexity of building and maintaining a Pastry-like overlay network can be reduced
through cross-layer interactions.

6.1. Performance of Peer-to-peer platforms in ad hoc
environments

A key challenge to the usability of a data-sharing peer-to-peer system is implementing
efficient techniques for search and retrieval of shared data. The best search techniques for
a system depend on the needs of the distributed application. For example, applications
like group multicasting, web caches or archival systems focus on availability, and need
guarantees on content location (if it exists). However, these requirements are usually met
at the expense of flexibility, for example by having search indexes organized by data
identifiers, which allow quick lookup procedures by limiting the subject space, or
imposing strict rules on their format, and by exactly controlling how the search index
should be organized in the distributed system. In contrast, other kinds of applications, like
for example file sharing or publish/subscribe systems, require the ability to issue rich
queries such as regular expressions, meant for a wide range of users from autonomous
organizations. Moreover, this second class of applications requires a greater respect to the
autonomy of individual peers, without requiring them to host parts of the distributed
search index. These requirements clearly relax assumptions and expectations on the
performance of the p2p system. The aforementioned differentiation on the requirements
of distributed data sharing applications, led to two p2p computational models: structured
and unstructured platforms.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 115 of 222

Structured platforms are such that peers organize themselves in a distributed search index
(also called a structured overlay network), that usually contains information on the exact
location of each shared data. In these systems, each peer maintains only a partial
knowledge of the index, establishing “key” network relationships with other peers, so to
make possible an almost complete coverage of the search structure. The main idea is to
map both peers and data identifiers on the same logical space, and assuming that a peer
with a logical identifier P gets relevant information about data logically close to P. This
approach allows for subject-based lookup procedures, where a peer with the identifier D
of the wanted data item (e.g., a file name or a multicast group identifier), initiates a
distributed search algorithm that hop after hop in the structured overlay ends up on the
peer logically closest to D. There are various proposals in the area of structured data
sharing. For example, Pastry [DR01] and Chord [SMKK01] organize the overlay as a
distributed ring of identifiers, while CAN [RFHKS01] use the concept of a distributed
quad-tree on an n-dimensional space. All these platforms achieve optimal lookup
performances, guaranteeing retrieval of shared content information in a logarithmic
number of hops in the overlay, and requiring each node to establish a little number of
relationships in the overlay.

Unstructured platforms are such that peers do not self-organize in a distributed search
index, and are not required to maintain relevant information about shared content owned
by other entities (e.g., a distributed search index). Peers establish network relationships in
a pseudo-random fashion starting from a given entry point (i.e., a boot peer), and look for
shared data initiating flood search procedures. This approach does not match availability
guarantees like in the case of structured platforms, but allows for content-based lookup
procedures based on regular expressions, to retrieve shared data. Content-based lookups
are directly applied on the published content, and assume that a large number of peers get
hit by search requests, for example through query propagation schemes based on
flooding. Platforms like Gnutella [KM02] or KaZaa [KaZaa] witness the flexibility
offered by the unstructured approach in supporting very large-scale file sharing
applications on the Internet. Moreover, the characteristic of being open platforms, with
discussion and development forums, brought existing systems to an established maturity,
where available protocol specifications make it easy to adopt and deploy them with new
implementations, introducing innovative optimizations directly in real test-beds.

In the context p2p computing for mobile ad hoc networks, it is advisable to consider both
unstructured and structured approaches, as they could better support one or the other kind
of application for distributed data sharing. Furthermore, an initial evaluation of the
capacity and the performance of existing data sharing platforms in ad hoc environments
would provide an important starting point for future discussions and new proposals. To
this end, in the following we show algorithmic details regarding Gnutella and Pastry,
respectively two representatives of the unstructured and structured classes. Through
simulative and experimental results, we provide clear pictures about their capacity and
performance when employed in ad hoc scenarios.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 116 of 222

6.1.1. The Gnutella protocol
In this section, we describe the Gnutella protocol for overlay maintenance and data
lookup. For more details, please refer to the latest specification [KM02]. Some of the
information in this section is not part of the original protocol (e.g., the behavior of a peer
accordingly to its connectivity in the overlay), but represents details added for clarity.
Note that the Gnutella specification makes distinction between ordinary and super peers.
Super-peers are those making up the overlay and providing the search infrastructure, and
are usually represented by nodes with permanent Internet connection. In contrast,
ordinary (or leaf) peers have intermittent connectivity, so they don't take part to the
overlay formation, but simply attach themselves to an arbitrary number of super-peers,
proxying queries through them. In the context of this chapter, we are interested in the
general properties of the overlay formation protocol, so we don't consider ordinary peers
in following discussion.

State maintenance. Gnutella operations rely on the existence of an unstructured overlay
network. Peers open and maintain application layer connections among them, forming
logical links in the overlay. Messages dedicated to peer discovery, link control and data
lookup, are then exclusively sent along the overlay. As each peer is allowed to open only
a limited amount of connections, establishing direct relationships with a few other peers,
message forwarding is a necessary cooperative task, in order to achieve a broad coverage
of the overlay. The messages lifespan is controlled by assigning bounded Time To Live
(i.e., at application layer), which decrements at each logical hop.

To establish a connection, as shown in Figure 6.1, a peer P1 initiates a handshaking
procedure with a peer P2, sending a request message (C-request). Peer P2 could then
reply using either a connection accept (C-accept) to signal its willingness to link with P1,
or a connection reject (C-reject) to signal for example that it has no more available
connection slots. The handshaking ends up successfully for P1 when it receives C-accept
message, and for P2 when it receives a confirm message (C-confirm) from P1. These
events trigger an update of the connection tables, and both peers will then behave
accordingly to their internal status. This mechanism assumes that each peer is given a
boot-server to establish its entry point (or first connection) in the overlay. In real Gnutella
networks, this information comes directly from the user, or through a lookup against a
Gnutella Web Cache (See http://www.gnucleus.com/gwebcache/ as an example), where
peers that are already part of the overlay publish their addresses.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 117 of 222

Figure 6.1. Gnutella handshaking procedure.

Gnutella peers usually store information on the state of active connections in a dedicated
table, which we refer to as connection table. The size of the connection table is expected
to range inside a lower and an upper bound (LB and UB). These bounds are not directly
reported in the Gnutella specification [KM02], but provide a systematic way of modeling
the behavior of Gnutella peers [CCR04]. In particular, they guarantee that each peer
opens a minimal amount of links (at least LB), without overdoing the overall connectivity
(exceeding UB), and consequently abusing of network resources. These two limits
influence peers behavior, identifying three operational states:
While the table size is smaller than LB, the peer remains in a connecting state, where it i)
performs peer discovery, ii) initiates connections towards discovered peers, and iii)
accepts incoming connection requests from foreign peers.
As the table size reaches LB, the peer enters a connected state, where it stops doing peer
discovery and does not initiate connection requests anymore. In this state it still keeps
accepting incoming connection requests from remote peers, as long as its table has free
slots available. Clearly, if the table size falls back down under LB, the peer transits back
in state connecting.
Finally, when the table size reaches the UB, the peer enters a full state, where it also stops
accepting incoming connection requests. Again, as the table size falls down under UB,
the peer returns in state connected.
In each of the above states, the system performs data lookup on demand (i.e., driven by
the user), and periodically probes its active connections, using one-hop probe Ping
messages. A connection becomes not active if the peers are not able to probe-ping each
other for more than a specified amount of time. Finally, a peer can intentionally drop
active connections by issuing Bye messages.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 118 of 222

Symbols and constants
PT Pong Threshold, is the minimum

number of valid entries in the
Pong cache that a peer should
have in order to directly answer a
query. The Gnutella specification
suggests 10 as fair value.

FULL This indicates the state full of the
peer behavior.

TTLmax This is the maximum TTL value
that can be assigned to a message.
The Gnutella specification
suggests 7 as the correct value.

Objects
Name Field or Method
PingMsg
or
PongMsg

ttl = message Time to Live

PingMsg
or
PongMsg

hops = number of hops in the
overlay performed by the message

PingMsg
or
PongMsg

msgID = unique message
identifier

PingMsg IsProbePing() = checks whether
this Ping is a Probe Ping (i.e., ttl =
1 and hops = 0)

PingMsg IsDiscoveryPing() = checks
wheter this Ping is a valid
discovery Ping (ttl + hops <=
TTLMAX)

PeerTable This object represents the
connection table

PeerTable state = current peer behavior

Algorithm 1. Pseudo-code for Gnutella peer discovery and pong caching.

Peer discovery, pong caching and queries. We now briefly describe how peers
discover each other, pointing at Algorithm 1 for a detailed pseudo-code description. After
having established their first connection, peers discover other agents by sending over it
multi-hop discovery Ping messages with TTL equal to 7 [KM02]. At each hop in the
overlay, discovery Pings get their TTL field decremented before being forwarded over
each active connection listed by the current peer (except the one where the Ping came
from). This bounds the horizon of the application layer broadcast to 7 hops, ``the edge''
where discovery Pings are discarded due to TTL expiration. Peers receiving a valid
discovery Ping, reply back with a Pong message containing credentials for future
connections (i.e., network address and port number). Note that this last step is executed
only if the peer is not in state full. In fact, in this state the peer could not even accept
incoming connection requests. Pong replies are given enough TTL so that they are able to
reach the Ping originator, which can then use the embedded credentials to open new
connections. Note that each Pong reply is back propagated along the overlay path of the
related Ping. In fact, the originators of discovery Pings associate unique identifiers to the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 119 of 222

messages, making possible for intermediate peers to remember where Pong replies should
be forwarded.

The standard discovery procedure can be enhanced with Pong caching. On receiving
Pong messages, a peer stores the embedded credentials in a local cache. Incoming Ping
messages could then be directly answered if the local cache contains enough items (i.e.,
up to a predefined threshold), without further forwarding the discovery Ping. In this case,
a certain number of items are selected from the Pong cache and returned all together in a
series of replies to the originator. Otherwise, if the cache does not contain enough items,
the peer performs the standard Ping forwarding procedure. This caching scheme
significantly reduces the discovery overhead.

Queries are handled similarly to discovery Pings. On receiving a Query message, a peer
looks up the locally shared content using the constraints contained in the Query. If one or
more matches are found, the peer replies back with a Query Hit, providing pointers to
local results. In any case, the peer decrements the TTL field, forwarding the Query
message to its neighbors. Subsequent data downloads are carried out outside the overlay
through direct file transfers.

Performance of Gnutella in mobile ad hoc environments. To better understand the
capacity and limitations of Gnutella when employed in mobile ad hoc environments, we
performed a set of simulations to put the platform through typical ad hoc scenarios, using
the Network Simulator (ns2 version 2.27). In this chapter, we only report some results
related to i) scenarios with mobile nodes moving with different patterns, and ii) scenarios
where we recreated partitioning of the physical network, referring to [CGT05] for a
complete analysis and a detailed discussion. In these scenarios we analyzed the overhead
of the protocol as the amount of network traffic generated in a time unit, and its capacity
of building the overlay, measured as the average number of per peer connections (i.e.,
average peer degree).

Figure 6.2. Average Gnutella peer degree
under increasing nodes mobility, with
the OLSR routing protocol.

Figure 6.3. Effects of network partitioning
on the overhead generated by Gnutella
peers, with both OLSR and AODV.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 120 of 222

The plots reported in Figure 6.2 show the average degree achieved by Gnutella peers
under three different mobility patterns. This study highlighted that nodes mobility
severely impacts on the overlay formation capacity of Gnutella. Only in static scenarios
the peers were able to reach (on average) the minimum amount of connectivity (LB),
fixed to 4 connections per-peer [CCR04]. When we introduced mobility patterns based
on the random waypoint mobility model, the average peer degree fell down to 3.7
connections per peer in a slow configuration where nodes moved up to 5m/s, and down to
2 connections per peer in fast configuration where nodes moves up to 15m/s. These
conditions resulted in high rates of overlay partitioning and consequent low rates of
information discovery.

The study related to Figure 6.3 draws the attention on the reaction of Gnutella peers
under network partitioning situations. These experiments were carried out for 600
seconds simulation time, leaving an overlay of 30 peers stabilize its activity in the first
200 seconds, introducing a network partitioning around time 270, and finally resuming
the original network around time 430. This was achieved by placing the 30 nodes in
mutual visibility on a static grid, and letting those in the center move in opposite
directions so as to break the network in two halves. The plots report the reactions (in term
of amount generated network traffic [kB/s]) of Gnutella peers in correspondence of the
network partitioning and rejoining events (i.e., see vertical lines). We could observe
bursts of networking activity in correspondence of the beginning and termination of the
network partitioning: up to 300% of traffic increase in the former, and up to 200% in the
latter case. The straightforward explanation for this behavior is that peers transit back in
state connecting while the network breaks up in two halves, and perform even broader
discovery procedure when the connectivity is restored at the physical layer. The plots also
show that Gnutella behavior is independent from which routing algorithm (i.e., OLSR or
AODV) is in use at network layer. However, the implementation of OLSR used in these
simulations provided routes of better quality: the overhead generated by Gnutella on top
of AODV results bigger of a factor ranging between 10% and 20%.

From these simulations, we could verify that although Gnutella meets important
requirements for the management of data-sharing overlay network, it was not designed
for ad hoc networks, and suffers from node mobility, causing peers not to achieve
minimum connectivity requirements. Moreover, when put through network partitioning,
the protocol generates traffic bursts in correspondence of topological reconfigurations.
This is clearly not desirable in mobile ad hoc situations where the network partitions
frequently, or where groups of nodes enter and leave the network.

A cross-layer optimization of Gnutella. Exploiting the cross-layer interface presented
in Deliverable D13, we realized an event-based interaction between Gnutella peers and
OLSR agents at the network layer. The main re-design addressed the Gnutella peer
discovery procedure, replacing PING flooding with peer advertisements - also referred to
as Optional Information (OI) - spread around in conjunction with routing information.
We introduced two classes of cross-layer events:

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 121 of 222

1. SpreadOI events, to which the routing agent subscribes, receiving notifications from
the Gnutella platform. These events are used to ask the OLSR agent to advertise local
peer credentials around, together with the next Hello or Topology Control message,
respectively if the node is a Multi Point Relay or a leaf node.
2. RecvOI events, to which the local Gnutella peer subscribes, in order to receive
notifications from the underlying OLSR agent. These events are used to notify the local
peer about the credential advertisement of a remote peer, received together with a routing
control message.
This cross-layer framework allows each peer to periodically advertise its credentials,
additionally enabling reaction to events like the reception of new advertisements
signaling the discovery of a new peer, and the failure of peers due expiration of old
advertisements.
On receiving cross-layer events, peers fill up a local table of advertisement generated by
foreign agents. This advertisement table took the place of the Pong cache of the legacy
implementation. Moreover, as advertisements travel the network along with routing
control packets, we were able to get each time an accurate estimation of the physical
distance (in number of hops) of the peer originating the advertisement. This topological
information enriched the advertisement table, and allowed us to play a smarter overlay
formation protocol, introducing a link selection policy based on the physical distance of
discovered peers. In other words peers were able to prioritize the establishment of closer
connections over further ones, with the goal of building an overlay network topologically
closer to the physical network. Note that this deterministic selection of overlay links is
meaningful in ad hoc environments, where one could eventually assume a small number
of opportunistic (and hence heterogeneous) participants to the Gnutella network.
Additionally, the network participants get reshuffled by mobility and by the arrival of
new nodes. The same rational would not apply on the Internet, where overlay formation
with random walks has been proved more effective than deterministic approaches. Apart
from the new peer discovery approach, we left unaltered the rest of the Gnutella protocol
(i.e., connection handshaking, link probing and queries), as well as the states identified by
the peer degree and the LB and UB bounds.
We modified our Gnutella peers to react on three kinds of situation, in correspondence of
the updating of the advertisement table. On receiving an advertisement from a new peer,
the agent always attempts a connection request if it is in state connecting. If the current
state is connected, the agent checks the physical distance of the new peer. In case this is
closer than any of the already connected peers, the agent attempts a connection request to
it. The same procedure triggers in state full, but in this case the peer additionally drops
the furthest connection, once the new one becomes active. Similar steps are performed
for an advertisement refresh, because with nodes mobility, a peer can receive subsequent
advertisements from the same foreign agent at different distances. The third situation is
the expiration of an advertisement due to consecutive miss of refreshes. This event is
detected internally by the advertisement table, which then directly notifies the peer,
causing a connection drop in case the Gnutella protocol didn't detect it using probe Pings.
The cross layer approach eliminates the need of bootstrap servers, reducing and
stabilizing the overhead of the protocol, and finally improving the connectivity and the
quality of the generated overlays. The next section proves the validity of these claims,

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 122 of 222

evaluating the cross-layer version of Gnutella (XL-Gnutella). XL-Gnutella peers issue
credential advertisements every 30 seconds.

Figure 6.4. Average XL-Gnutella peer
degree under increasing nodes mobility.

Figure 6.5 Comparison of the overhead
generated by Gnutella and XL-Gnutella
under network partitioning.

As shown in Figure 6.4, the behavior of the average peer degree which falls down from 7
to 5-6 connections per peer as the mobility increases, but remains in the [LB - UB] range.
However, fast node mobility induces frenetic oscillations of the average degree. By
stressing XL-Gnutella with the network partitioning scenarios, we obtained again
interesting results: cross-layer peers loose connectivity when the network splits in two
halves, but they timely recover the original level when links are re-established at the
network layer. Additionally, this happens with no traffic bursts in correspondence of
topological reconfigurations, which is not the case for the legacy protocol (as shown in
Figure 6.5).

In the last set of experiments, we wanted to prove the effectiveness of our topology-
aware link selection policy. To this end, we studied the path stretch generated by XL-
Gnutella and Gnutella overlays. The path stretch is defined as the ratio of the end-to-end
delay (measured in number of hops in the physical network) along the path connecting
two peers in the overlay, to that along the direct unicast path in the physical network. The
path stretch measures how far (from a topological point of view) the overlay is from the
physical network, and characterizes the overhead induced by the former on the latter. By
definition, the direct unicast between two nodes in the physical network has a path stretch
of unity. The closer the path stretch of a p2p platform to unity, the better. In order to
perform this analysis, we turned on periodic query issues with TTL equal to 7, to get
multi-hop overlay messages also for XL-Gnutella.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 123 of 222

Figure 6.6. Comparison of the average
path stretch produced by Gnutella and
XL-Gnutella under increasing peer
densities.

Figure 6.7. Comparison of the average
query success rate produced by Gnutella
and XL-Gnutella under increasing peer
densities.

Peer density Gnutella XL-Gnutella
20% 8.5% 0%
33.3% 25% 0%
50% 29.4% 0%
100% 62% 0.1%

Table 1. Comparison of Gnutella and XL-Gnutella average overlay
partitioning rate under increasing peer densities.

We prepared scenarios with 40 static nodes uniformly distributed on a rectangular area,
configuring an increasing percentage of them as peers (respectively 20%, 33%, 50% and
100%). Figure 6.6 shows the obtained average path stretch with 95% confidence interval.
Not only XL-Gnutella produces overlays significantly closer to the underlying networks
when compared to the legacy Gnutella (e.g., respectively 1.35 against 2.1 with a 50% of
peers), but the cross-layer protocol exhibits a more stable behavior with smaller
variances. Moreover, by looking at the average overlay partitioning rates (see Table 1), it
was important to notice that with a one-to-one nodes/peers correspondence, 62% of
Gnutella peers weren't able to reach each other in the overlay, compared with the 0.1%
for XL-Gnutella on the same density. Finally, the numbers shown for overlay partitioning
were directly verifiable in a simple experiment on the query success rate. We used the
same simulation scenarios as for the path stretch, but additionally distributed shared
content on the peers, before making them issue queries on it. This allowed peers to reply
with hit messages when reached by query constraints matching their local shared content.
We loaded a different file name on each peer, forcing it to issue one query for each file
shared by the other peers. The results are reported in Figure 6.7, where the Gnutella query
success rate clearly degrades accordingly to the overlay partitioning rate: from nearly
95% with 20% peer density (and 8.5% of partitioning), down to 43% with 100% peer
density (and 62% partitioning). In the same Figure, the 95% confidence interval
highlights once again the stability exhibited by XL-Gnutella in satisfying queries on
existing content.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 124 of 222

6.1.2. The Pastry protocol
The overlay network defined by Pastry [DR01] is represented by a large circular space of
2128-1 logical identifiers, also called ring overlay. Each Pastry node chooses a 128-bit
identifier (nodeId), which represents a logical position in the ring. The nodeId is
calculated at join time, when the node hashes one of its physical identifier (e.g., IP
address, hostname, public key etc.) through a strong hash function H. The function H
uniformly distributes inputs in the ring space, and guarantees little chances of mapping
two different physical identifiers on the same nodeId, and great chances of scattering
nodes with closer nodeIds far apart in the ring.

Subject-based message routing. The fundamental service offered by a Pastry ring, is
that peers exchange messages through a subject-based mechanism. The idea is to
associate a logical subject (or a key) to an application layer message, and route it hop by
hop in the ring, until it arrives at a peer with a nodeId that results the closest to the
message’s subject. This final peer is considered the root for the message and is
responsible to handle the message content at the application layer. The association
between messages and subjects happens through the same hash function H used for
mapping nodes to logical addresses, which guarantees the same aforementioned
distribution properties. To give an example, consider a file sharing application where
each file is represented by its name. The typical interaction with Pastry would be to create
two types of messages, one to publish in the ring the sharing of a file associated to a
given name, and another to lookup the node (or the nodes) sharing a file with a given
name. In this scenario publish and lookup messages get routed through the same logical
identifiers, and the corresponding root peers associate them at application layer.

The subject-based routing policy used by Pastry is based on a numerical proximity metric
between message subjects and nodeIds. From the algorithmic standpoint, consider logical
identifiers to be represented as a sequence of digits with base 2b, where the parameter b is
defined a priori. At each step of a routing procedure, a Pastry peer P forwards the
message with subject K to a peer Q whose nodeId shares with K a prefix that is at least
one digit (b bits) longer than the prefix shared with P. If no such node is known, P tries to
forward the message to a peer L that has the same common prefix with K, but is
numerically closer to K with respect to P (this can be easily identified by looking at the
digit after the common prefix). The expected maximum number of hops in the overlay
between a source and a destination peers is equal to log2

b N in an overlay of N nodes
[DR01].

State representation. To support this routing procedure, each peer maintains information
related to other peers in the overlay, using the following data structures:
• Routing table. This structure is organized into log2

b N rows with 2b-1 entries each.
Each entry at row n of the routing table refers to a node whose nodeId shares with
the local nodeId the first n digits, but whose n + 1th digit differs (it has the same
value of the column index). If there are no nodeIds with this characteristic, the entry

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 125 of 222

is left empty. In practice, a destination node is chosen, between those known by the
local node, based on the proximity of its logical identifier to the value of the key.
This choice provides good locality properties, but only in the logical space. In fact
nodes that are logically neighbors, have a high probability to be physically distant.
In addition, the choice of the parameter b determines a trade-off between the size of
this data structure and the maximum number of hops in subject-based routing
procedures, that is expected to be equal to log2

b N, and simulations results
confirmed this [DR01].

• Neighborhood set. This structure represents the set of nodes that are physically close
to the local node. The neighborhood set is not normally used in routing messages,
but could be useful for maintaining physical locality properties among nodes.

• Leaf set. This structure represents the set of nodes with the closest logical identifiers
to the current node. The leaf set is centered on the local node P, with half of the
identifiers larger than P, and the other half smaller than P. The leaf set represents the
perfect knowledge that each peer has of its logical contour.

In routing a given message, the node first checks to see if the related subject falls within
the range of nodeIds covered by its leaf set. If so, the message is directly forwarded to the
destination node, namely the leaf set entry whose nodeId is logically closest to the
message subject. If the subject is not covered by the leaf set, then the routing table is
used, and the message is forwarded to a node that shares a common prefix at least one
digit longer than the local nodeId. Sometimes, it is possible that the appropriate entry in
the routing table is empty, or that the associated node is currently disconnected from the
network, but the overlay is still not updated; in this case the message is forwarded to a
node (if any exists) that shares the same prefix as the local node, but is numerically closer
to subject. Each Pastry data structure entry maintains a correspondence between the
logical identifier of each node and its credentials (IP address and port number), in order
to allow the establishment of direct peer connections driven by application needs.

State management. The main procedures used by Pastry to establish and maintain the
overlay network (i.e., the previously presented data structures), consists of join and
disjoin operations. First of all, when a new node, say X, decides to join the overlay, it
needs to initialize its internal data structures, and then informs other nodes of its
presence. It is assumed that the new node knows at least one of its physical neighbors,
say A, which already takes part to the overlay. Typically, this bootstrap node can be
located automatically, for instance by sending “expanding ring” queries, or be obtained
by the system administrator through outside channels. Node X then asks A to route a
special “join” message with the key equal to X. Like any message, Pastry routes the join
message to the existing node Z whose id is numerically closest to X, passing through
some intermediate nodes. In response to the “join” request, nodes A, Z, and all the
intermediate peers, send the content of their tables to X. At this point, the new node X
processes the received information, and initializes its own structures in the following
way:
The neighborhood set is initialized with the contents of that of node A, since it is a
physical neighbor of X.
The leaf set is initialized with that of node Z, which has the closest existing nodeId to X.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 126 of 222

The ith row of the routing table is initialized with the corresponding row of the routing
table of the ith node (Bi) encountered in the routing path from A to Z (as it shares a prefix
of length i with X).
At the end, X informs all the newly known nodes about its arrival, transmitting a copy of
its resulting state. This procedure ensures that X initializes its state with appropriate
values, and that the state in all other involved nodes is updated.

The management of departure nodes is another important feature of Pastry. In [DR01] it
is assumed that Pastry nodes may fail or depart without warning. In particular, a node is
considered failed when its logical neighbors can no longer communicate with it. To this
aim, nodes in the leaf set are periodically probed with UDP ping messages. Leaf entries
that do not reply to probe pings are considered failed, and get replaced by entries of the
leaf set relative to the live node with the largest index on the side of the failed node. In
this way each node can easily repair its leaf set, and the delay with which it becomes
aware of logical neighbors failure depends on the probing frequency. A similar probing
mechanism is used to maintain a consistent neighbor set. Instead, a node realizes that an
entry in its routing table is failed, only when it attempts to connect to it to forward an
application message. This event does not normally delay message routing, as another
destination node could be selected. Anyway, the failed routing table entry has to be
replaced. To this end, the peer contacts the entries belonging to the same row of the failed
one, asking for a nodeId that can replace it. If none of them has a pointer to a live node
with the appropriate prefix, the local node has to contact nodes belonging to the
successive row of the routing table. In this way, many remote connections could be
required to manage single entries of the routing table.

The maintenance procedures explained above, highlight the complexity related to the
management of a structured overlay network. The many remote connections needed to
check the validity of table entries, considerably increase the overhead introduced on the
underlying network. In addition, peers that are considered failed have no way to get back
in the ring apart from performing once again a join procedure. For example, if a node
temporary looses its network connection, it has to reboot the system and join the overlay
again. This limitation represents a major problem in mobile ad hoc networks, where
frequent topology reconfigurations could cause situations of intermittent connectivity,
which clash with the low tolerance offered by Pastry maintenance procedures.

To better understand the overhead introduced by ring-maintenance operations in Pastry,
we analyzed its behavior in a small real test-bed. Specifically, we evaluated an open
source implementation of Pastry called FreePastry [FreeP]. During our study, we focused
on both reactive and proactive solutions for the routing protocol at the network layer,
using AODV in the former case and OLSR in the latter. A complete analysis of the
results obtained from our real testbed has been presented in [BCDP05].
For our study, we set up a real ad hoc network of 8 nodes inside the CNR campus in Pisa,
where the structural characteristics of the building and the nearby presence of access
points and measurement instrumentations, limit the transmission capabilities of nodes.
These force the establishment of a multi-hop ad hoc network. The network topology

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 127 of 222

configuration used for the experiments related to FreePastry is shown in Figure 6.8,
where all nodes ran one of the routing protocols while only 6 ran a distributed application
on top of FreePastry. In particular, nodes B and G just worked as routers, allowing the
packet forwarding from the source to the destination through the optimal path.

Figure 6.8 Experimental network topology

From experimental results we noticed that, due to the limited number of peers
participating to the FreePastry ring, the overlay data structures maintain logical identifiers
of almost all peers. For this reason, there were rare generations of multi-hop subject-
based routing procedures. However, operations needed to create and maintain the
overlay, introduced high overheads on the underlying ad hoc networks, causing errors
depending on the used routing protocol. In fact, FreePastry implements maintenance
operations using both UDP and TCP connections to remote peers, introducing further
overhead on the network as overlay relationships do not take into account neighborhood
information.

Figure 6.9. Pastry on OLSR: traffic related
to main nodes

Figure 6.10. Pastry on AODV: traffic
related to main nodes

In order to obtain a performance evaluation of Pastry, we numerically calculated the
traffic generated to maintain the overlay, in addition to the one produced by the routing
protocol at the network layer. Specifically, Figure 6.9 and 10 show the amount of traffic
observed by some nodes of the network, respectively running OLSR and AODV. In both
cases the amount of traffic generated by node B and G, which just worked as routers, was

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 128 of 222

negligible. In fact, also the proactive protocol does not introduce a high overhead on the
network, encapsulating different routing messages (Hello, and Topology Control) into
single routing packets. By configuring an incremental ring formation, UDP and TCP
connections used by FreePastry peers to collect initial overlay information, generates
evident traffic peaks. Even if the total amount of traffic is not so high related to the WiFi
bandwidth, those peaks can negatively influence additional transmission of application
data. Furthermore, we could observe that the successful creation of the overlay depends
on the reliability of the path discovery process implemented by the routing protocol. In
the case of AODV, a high number of TCP retransmissions and connection failures
occurred, mainly due to the delay introduced to discover a route toward a destination, and
to the use of unidirectional links as valid routes.

To summarize, experimentations carried out with FreePastry, showed the generation of
heavy overheads related to overlay management procedures, due to a high number of
remote connections opened between peers. The lack of attention toward the usage of
network resources greatly reduces the overall system performances in ad hoc networks.
In order to improve the system, Pastry nodes should become aware of the underlying
network topology, maintaining a tight correspondence between physical and logical
address space. The work in [CDH] presents a reorganization of Pastry’s overlay
exploiting network proximity information, in order to improve application performances
and network usage. This solution is based on additional location discovery protocol that
estimates physical distances between nodes, showing the potential improvement
introduced by proximity information at the expense of running another protocol in
conjunction to the p2p platform. The last section of this chapter shows an alternative
solution based on a full cross-layer protocol stack architecture, which allowed us to
greatly optimize ring management procedures by exploiting interactions between the p2p
platform and routing protocols at the network layer.

Performance of Pastry in mobile ad hoc environments. As in the case of Gnutella, we
performed ns2 simulations to understand the capacity of the platform in typical ad hoc
scenarios. By putting Pastry through the same mobility scenarios used for Gnutella, we
studied the capacity of building the overlay, measured as the average number of entries in
Pastry routing tables, and the rate of unsuccessful subject-based message routing
procedure. For the latter we re-created a simple subject distribution model, in which each
Pastry peer was configured to be root for one subject, and performed a route procedure
toward the subject maintained by other peers. We considered successful a route
procedure for a subject k, if it terminated at the peer responsible for k.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 129 of 222

Figure 6.11. Average number of Pastry
routing table entries collected by peers
under pattern of increasing nodes mobility.

Figure 6.12. Effects of patterns of
increasing nodes mobility on the rate of
unsuccessful subject-based routing
procedures.

In our simulation models, we configured a network of 30 mobile nodes, and then varied
the density of Pastry peers to be exactly 100% and 50% of the network size (respectively
30 and 15 Pastry peers). The plots reported in Figure 6.11 show the average number of
routing table entries collected by Pastry peers under patterns of increasing nodes
mobility. The Pastry protocol [DR01] defines a logarithmic lower bound (i.e., log2

b(n)
where n is the size of the overlay) on the number of entries that each peer should collect
in internal tables, in order to guarantee high rates of successful subject-based routing
procedures (the original Pastry paper [DR01] reports a maximum of about 5% failed
routing procedure as acceptable values). The horizontal lines in Figure 6.11 report the
lower bounds relative to the two overlay sizes (respectively log4(30) and log4(15)). As
already observed in the case of Gnutella, nodes mobility has a big negative impact on the
protocol capacity of building the overlay. The scenarios with mobile nodes (in both slow
and fast configurations) determined a sharp reduction in the amount of ring overlay
knowledge that each Pastry peer was able to collect, respectively 1.5 for the slow
scenario and 1.2 for the fast scenario, in the case of a one to one nodes-peers
correspondence.

The above results were confirmed by a study on the failure rate of subject-based routing
procedures. As applications based on structured platforms focus on availability, subject-
based routing procedures should maintain very low failure rates, for example below 20%
in the case of mobile ad hoc environments. Medium or higher failure rates determine the
non-usability of platform. The results reported in Figure 6.12 show that the performance
of a straightforward implementation of the Pastry protocol quickly degrades under
patterns of increasing nodes mobility: from around 5-10% in the case of static network, to
70-80% and more in the case of slow and fast mobility patterns.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 130 of 222

6.1.3. CrossROAD: a Cross-layer Ring Overlay for AD hoc
Networks

From the results illustrated in the previous sections, we can conclude that the two
analyzed p2p platforms have significant performance degradation when operating over an
ad hoc network. Specifically, the simulation results indicate that, only in static
configurations, the protocols we analyzed are able to construct overlays that meet
necessary quality criteria, and guarantee good performance. Furthermore, experiments
with real testbeds indicate that, also in static configurations, while the FreePastry
implementation correctly operates on top of our multi hop ad hoc network, severe
problems have been identified from the performance standpoint. These are mainly due to
several factors that affect a MANET behavior in a real environment. IEEE 802.11
operates in the ISM spectrum and hence experienced a lot of noise from external sources.
The quality of the wireless links is therefore highly variable and this affects the higher
layer protocols (e.g., routing, forwarding and transport) behavior. At the end, this affects
the overlay construction and management. For example, as FreePastry maintenance
operations are also based on TCP services, the platform performance was negatively
affected by poor TCP performances. In addition, as Pastry operates its own subject-based
routing ring independently from the underlying ad hoc network, it introduces a significant
and bursty overhead on the ad hoc network.

Both simulation results and experiences with a real implementation provided us with
some indications for solving the performance problems in MANET environments.
Specifically, results related to FreePastry indicate that significant performance benefits
can be expected by exploiting routing information (extended with services information)
at the middleware layer. This allows realizing ring overlay maintenance operations
avoiding the big overheads connected with implementing it via middleware operations.
Similar indications have been obtained for Gnutella [CGT05].

To verify the effectiveness cross-layering also from an experimental standpoint, we have
designed and implemented CrossROAD (Cross-layer Ring Overlay for AD hoc networks)
[D05, D13], a ring overlay platform with Pastry-like semantic, optimized through cross-
layering. In order to compare and contrast the performances of CrossROAD with those of
Pastry, we used a simple Distributed Messaging (DM) application traffic generator.
Nodes running DM set up and maintain an overlay network related to this service. Once a
node has created/joined the overlay, the application provides the possibility to
create/delete one or more mailboxes and send/receive short messages. As mailboxes get
distributed on the ring overlay, their physical location is randomly selected applying the
hash function to the associated identifier, which is also used to address the related
messages. To perform an experimental comparison between CrossROAD and FreePastry,
we considered the same 8-node network shown in Figure 6.8. In the first set of
experiments, we measured the overhead introduced by the two platforms. Figure 6.13
shows the overhead produced by CrossROAD to maintain the overlay, while the results
related to FreePastry are those reported in Figures 6.9 and 6.10.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 131 of 222

Figure 6.13. CrossROAD overhead related to main nodes.

The figure points out that the overhead traffic is for all nodes less than 100B/sec, which is
much lower than that observed with FreePastry. In addition, traffic peaks introduced by
FreePastry, corresponding to TCP and UDP connections used to initialize and maintain
the overlay data structures, completely disappear in CrossROAD. Another important
feature of CrossROAD is represented by the timeliness with which every node becomes
aware of the other participants (see [BCDG05]). This is an important property to
guarantee a correct behavior of the overlay when network partitioning and rejoining
occur.

Figure 6.14. Network partitioning scenario.

To highlight this, we analyzed a possible network partitioning and the consequent
reaction of CrossROAD in the overlay management. To do this, a new network topology,
shown in Figure 6.14, has been set up. The network consists of 5 nodes, and only nodes
in adjacent positions are in the transmission range of each other. All nodes are also
CrossROAD peers. When all nodes are correctly connected to the overlay, node C starts

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 132 of 222

periodically sending an application message with a specified key value (period equal to
1sec). Initially, the key value results to be logically closest to the node identifier of B,
hence node C sends those messages directly to B. Then after about 30sec, node C starts
moving towards position X with a speed of about 1m/sec, generating a network
partitioning: nodes A and B create an independent ad hoc network as well as nodes C, D,
and E. Since the direct link B-C is lost, the cross-layer interaction between CrossROAD
and the routing protocol allows node C to become aware of the network partitioning and
the consequent removal of nodes A and B from the overlay. Hence, the successive
messages sent by node C on the overlay with the same key value, are directly sent to the
new best destination: node D. After 2 minutes, node C starts coming back to the initial
position re-establishing a single ad hoc network. At this point, the following messages are
sent again to node B. As shown in Figure 6.15, CrossROAD, correctly manages data
distribution in case of overlay and network partitioning. Specifically, the figure shows
that i) during the first phase (a single ad hoc network), node C data are stored on node B;
ii) when the partition occurs, after a transient, node C data are delivered to node D; and
iii) when the network is again connected, C data are again stored on node B.

Figure 6.15. CrossROAD data distribution during network
partitioning.

6.2. Summary and Conclusions

Ad hoc networks are distributed systems composed of self-organized wireless nodes. As
these systems cannot benefit from any centralized infrastructure, networking
functionalities, like packet forwarding, routing and network management, as well as
application services, should be distributed among user devices. The distributed nature of
ad hoc networking finds in the peer-to-peer (p2p) interaction its natural model of
computation.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 133 of 222

Recently, several self-organizing overlay platforms have been proposed for building
decentralized and distributed applications for the Internet. The variety of applications and
services realizable on top of these overlays suites also ad hoc scenarios. Thus, having
them working in ad hoc environments would be an advantage for the MANET
technology. However, it is not clear how these overlays should be ported, and how they
will perform on ad hoc networks.
In this chapter we focused both on structured and unstructured p2p platforms,
investigating their effectiveness when operating on top of a mobile ad hoc network.
Specifically, we investigated via simulation the performance of Pastry and Gnutella, as
representatives of the structured and the unstructured classes. Our results indicated that
only in static scenarios these platforms are able to construct effective overlays.
Furthermore, measurements on the performance of FreePastry (an open source
implementation of Pastry) on a real testbed highlighted that also in static scenarios
overlay management procedures may introduce a significant overhead on ad hoc
networks.
To summarize, our results indicated that in MANET environments, implementing an
overly that is completely independent from the network physical topology results in poor
system performance. To avoid this, we used the MobileMAN cross-layer architecture to
re-design key components of two well-known data-sharing platforms, letting them usable
in mobile ad hoc scenarios.

6.3. References

[ADGS02] E. Anceaume, A. K. Datta, M. Gradinariu, and G. Simon

“Publish/subscribe scheme for mobile networks”, Proc. ACM Workshop
On Principles Of Mobile Computing 2002, pp. 74 – 81.

[BCDP05] E. Borgia, M. Conti, F. Delmastro, and L. Pelusi, “Lessons from an Ad hoc
Network Test-bed: Middleware and Routing issues”, Ad Hoc & Sensor
Wireless Networks An International Journal, Vol. 1 N. 1-2, 2005.

[BCDG05] E. Borgia, M. Conti, F. Delmastro, and E. Gregori, “Experimental
comparison of Routing and Middleware solutions for Mobile Ad Hoc
Networks: Legacy vs. Cross-Layer approach”, in Proc. of the Workshop on
Experimental Approaches to Wireless Network Design and Analysis (in
conjunction with SIGCOMM 2005), Philadelphia, PA, USA, Aug 2005.

[BCM05] P. Bellavista, A. Corradi, and E. Magistretti “Lightweight Replication
Middleware for Data and Service Components in Dense MANETs”, Proc.
6th IEEE Symposium on a World of Wireless Mobile and Multimedia
Networks (WoWMoM 2005), Taormina, June 13-16, 2005.

[CCL03] I. Chlamtac, M. Conti, and J. Liu, “Mobile Ad hoc Networking:
Imperatives and Challenges”, Ad Hoc Networks Journal, Vol.1 N.1
January-February-March, 2003.

[CCR04] M. Castro, M. Costa, and A. Rowstron, “Peer-to-peer overlays: structured,
unstructured, or both?”, Technical report, 2004. Microsoft Research,
Cambridge, Technical Report MSR-TR-2004-73.

[CDH] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Exploiting Network

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 134 of 222

proximity in peer-to-peer overlay networks”, Technical Report available at
http://freepastry.rice.edu/PAST.

[CGT05] M. Conti, E. Gregori, and G. Turi, “A Cross-Layer Optimization of
Gnutella for Mobile Ad hoc Networks”, Proceedings of the 6th ACM
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc
2005), Urbana-Champaign, IL, USA, May 2005.

[D05] F. Delmastro, “From Pastry to CrossROAD: Cross-layer ring Overlay for
AD hoc networks”, in Proc.of Workshop of Mobile Peer-to-Peer 2005 in
conjunction with IEEE PerCom 2005, Kauai Island, Hawaii, March 2005.

[D13] MobileMAN Deliverable 13, http://cnd.iit.cnr.it/mobileMAN.
[DR01] P. Druschel and A. Rowston, “Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems”, in IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, November 2001.

[FreeP] FreePastry, www.cs.rice.edu/CS/Systems/Pastry/FreePastry.
[H03] Klaus Hermann, “MESHMdl - A Middleware for Self-Organization in Ad

hoc Networks”, Proc. IEEE Workshop on Mobile and Distributed
Computing (MDC 2003) in conjunction with ICDCS 2003, 19 May 2003.

[KaZaa] http://www.kazaa.com.
[KM02] T. Klinberg and R. Manfredi, “Gnutella Protocol Specification v0.6”.

http://rfc-nutella.sourceforge.net/src/rfc-0 6-draft.html, June 2002.
[MCZE02] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich, “XMIDDLE: A

Data-Sharing Middleware for Mobile Computing,” Wireless Personal
Communications, vol. 21, pp. 77–103, 2002.

[MPR01] A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: A middleware for
physical and logical mobility”, in Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS-21), Phoenix, AZ,
USA, pp. 524–233, April 16-19, 2001.

[PC02] I. Pratt and G. Crowcroft, “Peer-to-Peer systems: Architectures and
Performance”, Networking 2002 tutorial session, Pisa, Italy, May 2002.

[RFHKS01] S. Ratsanami, P.Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network”, in Proc. SIGCOMM, San Diego,
CA, Aug. 2001, pp. 161-172.

[SGF02] R. Schollmeier, I. Gruber, and M. Finkenzeller, “Routing in Mobile Ad
Hoc and Peer-to-Peer Networks. A Comparison.”, in Proc. of Networking
2002 Workshops, Pisa, Italy, May 2002.

[SMKK01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications”,
in Proc. SIGCOMM, San Diego, CA, Aug. 2001, pp. 149-160.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 135 of 222

7. APPLICATIONS

7.1. UDDI4m Experimental Evaluation

In this section we present an evaluation of the UDDI4m implementation. This evaluation
focuses on two features:

1. the load balancing in data sharing among the nodes of the network;
2. the amount of resource used when the application runs.

The first evaluation analyzes the load balancing of data distributed on the peer nodes that
form the UDDI4m overlay network. The second evaluation is aimed to understanding if
our application can run on resources constrained devices, or in other words, which are the
requirements for running our application. Indeed, the devices that can form an ad hoc
network are heterogeneous: laptops, PDAs or mobile phones etc., and the amount of their
resources, i.e. memory and CPU, are highly variable.
The evaluation presented hereafter was performed in an ad hoc environment to have
realistic results.
In this section we first provide a brief presentation of the UDDI4m implementation
model, and then we describe the experimental environment set-up. A discussion on
resource constraints to run our application concludes the section.

7.1.1. Implementation model

The UDDI4m mechanism is implemented by tuning the UDDI standard [UD02] for ad
hoc environments. To know more details regarding the UDDI4m implementation, please
refer to Deliverables D13 and [UM05].
In the Figure 7.1 is shown the interaction among the layer middleware and new service
layer. The UDDI4m software architecture is fully modular. The modules that are been
implemented in the UDDI4m mechanism are:

• The UDDI4m client generates requests to the UDDI4m server module, using the
ID-Number, connects to the (local or remote) UDDI4m server to publish or
recovery contents.

• The UDDI4m server side is divided in two part: one block (UDDI4m Manager)
that implements and provides the API to publish the information on databases
(publishing API) and to retrieve the information from databases (inquiry API),
these API are used from UDDI4m_Service module that is the core of the
UDDI4m service because implements the methods of the service: publishService,
findService, updateService and deleteService; a block (DB Management) that
implements the data structure.

• UBR4m Table module manages the database, translating the client requests in
queries to the database. This module is optional, so it cannot be installed on all

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 136 of 222

nodes of the network, e.g. devices with resource constraints, like IPAQs, cannot
manage the UBR4m Table, therefore if these devices want to publish their
services they must publish them on other nodes.

• The UDDI4m Message module implements the messages exchanged among
nodes in the network by middleware layer.

Figure 7.1. UDDI4m software architecture

The functionalities of the UDDI4m mechanism that have been implemented during the
experiments are: the publication and recovery of a service.
When we run the web application, we open a web server (Mozilla) to connect to the local
home page where it is possible choosing between service publication, and discovery (see
Figure 7.2 for the code flows). The messages, generated during these phases are sent to
the middleware and the data are stored in the registry of nodes that are reachable in the ad
hoc network.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 137 of 222

Figure 7.2. code flows during a publication and find of a service, respectively

7.1.2. Environment set-up

We considered different scenarios for the two evaluations.

Data Load Balancing
To evaluate how data are stored in the UBR4m registry of the nodes in the network, we
are considered a scenario with 6 peer nodes running the application, and 5 service
categories. We assumed that the services, available in the ad hoc network, can be
classified in the following service categories: Content Sharing (CS); chat (chat), Video
Conference (VC), Device (DV), E-Commerce (EC).

We used 8 laptops (IBM R50 centrino 1.6GHz) with integrated card wireless PRO 2200
b/g, 2 laptops were routers while the others 6 were running the application; all laptops
communicated by a single hop. Each laptop published 2 different service categorizations;
in Table 7.2 we report the services published by each laptop.

Node number First publication Second Publication
1 CS VC
2 CS chat
3 VC DV
4 CS EC
5 DV EC
6 CS DV

Table 7.2 service categories per node

Table 7.3 shows the number of publication for each service category.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 138 of 222

Service Categorization Publication number

CS 4
chat 1
VC 2
DV 3
EC 2

Table 7.3 publication number for each service categorization

Wasted Resource
To evaluate the resource wasted by a device when running the application, we have
configured 2 laptops (hp Compaq nx9010 with wireless card Compaq 802.11b), and we
have evaluated the resource wasted during a service publication estimating the amount
memory and CPU used from the processes that run when the publication is activated. The
processes that we considered are:

1. Java virtual machine (java) because the language used in the UDDI4m and
middleware implementation is java language, so the application, when runs,
can invocate java class;

2. Graphic Interface (X) because we run the operative system with graphic
interface to show the home page of web application;

3. database (mysql) because a service publication involved insert of data in the
database;

4. server web (mozilla) because must run to run our web application
The wasted resources are calculated from information recovered with top command line.
While publishing a service, the top command store in an out file the information relative
to:

• SIZE: the size of the task’s code plus data stack space;
• RSS: total amount of physical memory used by the task;
• %CPU: the task’s share of the CPU time expressed as a percentage of total CPU

time processor;
• %MEM: the task’s share of the physical memory.

We calculated the resources wasted in the worst case: the case of a publication that
involves all the tables of the UBR4m registry.

7.1.3. Results and Discussions

Data Load Balancing
By considering the scenario described above -- where we detailed the publication
numbers for each service category: 4 services of Content Sharing (CS), 3 of Device (DV),
2 of Video Conference (VC) and E-Commerce (EC) and 1 of chat (chat) -- the data
spreading among the peer nodes is shown in Table 7.4.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 139 of 222

Node Number Number of service
categorization

1 1
2 1
3 0
4 3
5 0
6 0

Table 7.4 load balance data in the peer nodes

The node 4 is more overloaded than other nodes: its registry has stored the information
related to 3 service categorization; other 2 nodes have 1 service categorization only,
while 3 nodes have nothing to store. This indicates the need to implement dynamic (i.e.
adaptive to the status of the system) criteria to decide where to publish in order to obtain
a more equilibrated distribution of the data on the network nodes.

Wasted Resource
We have considered the case of a publication of the service using our application and we
have investigated the wasted resource to understand if this application can be installed on
resources constrained devices.
The processes we considered are explained in the previous section and the resources
wasted by each process are shown in Table 7.5, where we show the worst case of each
process.

 SIZE(KB) RSS(MB) %CPU %MEM
java 34172 23 4,9 3,5
X 78996 12 4,1 1,3

mysql 11280 11 0,3 1,1
mozilla 23568 23 3,7 2,4

Table 7.5 result obtained from top command line

Specifically, the total SIZE is 148016 KB and the total RSS is 69MB, this requirement
can be satisfied from many devices (e.g., PDAs) that you can find in the market.

The laptop involved in this evaluation had a 750 MHz CPU, and the percentage %CPU
indicates the wasted CPU time by each process. The process that used more CPU time is
the java virtual machine but it is a low percentage that can be satisfied from devices with
limited resources.

The most interesting information is the %MEM; from this index, considering that the
laptop used during the experiments has 1GB RAM, we can calculate the wasted memory
by the application. More precisely, from the top command information, the used memory
results 950MB, so calculating the percentage of each process we obtained the results
shown in the Table 7.6.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 140 of 222

Java X mysql mozilla
33,25MB 12,35 MB 10,45 MB 22,80 MB

 Table 7.6 950MB (used memory) * %MEM of each process

The total wasted memory is 78.85 MB in the worst case. The most demanding process is
the java virtual machine. If we wish to reduce the memory requirements we can avoid
considering the database (as explained in deliverable D13 we have this option in the
implementation).

wasted memory

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14

timestep

M
B

java
X
mysql
mozilla

Figure 7.3 wasted memory trend

The above result represents the worst case, but while the application runs there are time
instants in which some processes are down. In Figure 7.3, we show the wasted memory
trend of each process during all application flow, the values of wasted memory are
sampled at interval time of 5 seconds. We can observe that the Graphic Interface (X) is
always up and uses 12.35 MB of memory; the mozilla process is up when we launch the
web browser and uses 22.80 MB of memory. These 2 processes, on a PDA device or
mobile telephone, can be lighter. The mysql process is optional, a node may have not the
UBR4m registry. Finally, the java process is the most critical process because uses a lot
of memory when the application invocate a java class. In our case, there are 4 calls to
java classes and in these time instants the wasted memory is around 32 MB.

7.1.4. References

[UD02] UDDI Version 2.03 Data Structures Reference, UDDI Committee

Specification, 19 July 2002.

[UM05] P. Cremonese, V. Vanni, “UDDI4m: UDDI in Mobile Ad Hoc Network”,
WONS 2005, St Moritz,

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 141 of 222

7.2. The Whiteboard Application
Even though research on MANETs has been very active in the last decade, real
applications addressed to people outside the research community still have to be
developed. The typical simulation-based approach for the performance evaluation of
MANETs is one of the main reasons of this. Often, simulation results turn out to be quite
unreliable if compared to real-world measurements [ABCGP05, GLNT05], and real
world experiments are highly required for MANET applications to become reality,
despite their high costs (in terms of time to set up) and intrinsic limitations (number of
nodes).

By leveraging the self-organising nature of MANETs, group-communication applications
can be an outstanding opportunity from this standpoint. In this work, we focus on a
significant example of this class of applications, and we evaluate complete networking
solutions that could be used to develop it. Specifically, we consider the Whiteboard
application (WB), which implements a distributed whiteboard among MANET users (see
Figure 7.4). Each MANET user runs a WB instance on her device, selects a topic she
wants to join, and starts drawing on the canvas. Drawings are distributed to all nodes
subscribed to that topic, and rendered on each canvas. We believe that these simple,
“Plug&Play” applications will be of great value for MANET users.

Figure 7.4: The Whiteboard interface.

Developing this kind of applications in MANETs is a challenging task. In this work we
present the networking solutions we have studied and tested to this end. We present
alternative networking frameworks for supporting WB-like applications. Then, we
compare a standard P2P system (Pastry [RD01]) with CrossROAD [D05], the P2P
system optimised for MANETs that we have designed within these frameworks.
Advantages of the CrossROAD approach are presented by means of experimental results.

The main contribution of this work is evaluating through real experiments complete
networking solutions for developing distributed applications such as WB in real-world
MANETs. We evaluate our prototype at two different levels, i.e., we quantify i) the QoS
perceived by WB users, and ii) the quality of the multicast tree generated by Scribe. First
of all, we show how a proactive routing protocol performs better than a reactive one with

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 142 of 222

regard to this kind of applications. Then, we highlight that a solution based on Pastry and
Scribe is not suitable for MANET environments. WB users perceive unacceptable high
data loss and delays. Furthermore, both the Pastry overlay network and the Scribe
multicast tree get frequently partitioned. This results in some WB users to be completely
isolated from the rest of the network. Finally, we show that some of these problems can
be avoided by using CrossROAD. Specifically, the structure of the Scribe tree is quite
more stable when CrossROAD is adopted, and partitions problems experienced with
Pastry completely disappear. Thus, CrossROAD turns out to be a very promising P2P
system for MANET environments.

7.2.1. WB integration in MANETs
Group-communication applications such as WB are distributed, self-organising,
decentralised in nature. Designing them on top of P2P systems guarantees a great
flexibility and optimised performances exploiting P2P policies to distribute and recover
information. Figure 7.5 depicts the abstractions we have used to support WB. The
network level provides basic connectivity among nodes through IP-like routing and
transport protocols. On top of them, a structured overlay network, comprising nodes that
participate in the WB application, is built. The overlay abstraction is the fundamental
substrate for any P2P application, providing functionalities such as logical node
addressing (instead of topological, IP-like addressing) and subject-based routing. Finally,
an additional multicast level is used to efficiently distribute contents generated by
application users to all nodes in the overlay. These abstractions make quite
straightforward develop group communication applications. They hide the complexity of
low-level communications, group management, and data distribution, and provide a
robust, flexible, self-organising networking environment.

Figure 7.5: Abstraction supporting WB.

Figure 7.6 shows the complete networking solutions we have used to support WB in real-
world MANETs. We have defined a first architecture (referred to as legacy), that uses
state-of-the-art components to implement the abstractions in Figure 7.5. Specifically, it
uses either AODV [AODV] or OLSR [OLSR] at the network level, Pastry [RD01] at the
middleware level, and Scribe [CDKR03] at the multicast level. While AODV and OLSR

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 143 of 222

represent standard models for ad hoc reactive and proactive routing protocols, Pastry and
Scribe have been designed for wired networks. The evaluation of the “legacy solution”
indicates weaknesses of these components, and ways to improve them. In order to
optimize the entire system performances, a cross-layer architecture, as depicted on the
right-hand side of Figure 7.6, has been proposed in [CMTG04]. Specifically, the NeSt
module allows cross-layer interactions between protocols at different layers. To this aim,
NeSt provides well-defined interfaces and data abstractions to protocols [CMTG04],
joining the advantages of cross-layering and the scalability of traditional layered
approach. CrossROAD represents an optimised solution at the middleware layer that
exploits cross-layer interactions with a proactive routing protocol (OLSR in this case) in
order to optimise the creation and management of the overlay network. In this work we
do not discuss any other MANET-optimised solutions that could be integrated into the
cross-layer architecture. However, other such components both at the routing level (Hazy
Sighted Link State [SSR01]), and at the multicast level (X-layer Scribe) are being studied
and currently under development.

Figure 7.6: Network solutions: legacy (left) and cross-layer (right).

7.2.2. WB and its middleware support
For the reader convenience, before discussing the results of our experiments we now
briefly recall the main characteristics of Pastry, CrossROAD, and Scribe.

Pastry and CrossROAD
Pastry is a P2P system based on a DHT to build a structured overlay network (ring) at the
middleware level. A logical identifier (node id) is assigned to each node hashing one of
its physical identifiers (e.g., IP address, hostname). Messages are sent on the overlay by
specifying a destination key k belonging to the logical identifiers’ space. Pastry routes
these messages to the node whose id is numerically closest to k value. To route messages,
Pastry nodes maintain a limited subset of other nodes’ logical ids in their internal data
structures (middleware routing tables). Periodic data exchange between nodes of the
overlay is needed to update the state of the overlay. Finally, in order to initially join the
overlay network, each Pastry node executes a bootstrap procedure, during which it
initialises its middleware routing table by collecting portions of other nodes’ routing
tables. Specifically, each nodes has to connect to an already existing Pastry node (i.e., it
needs to know its IP address) in order to correctly start the bootstrap procedure.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 144 of 222

Figure 7.7: Cross-layer interactions between CrossROAD and OLSR.

The bootstrap phase and the periodic data exchange between nodes constitute the main
network overhead of Pastry. CrossROAD [D05] provides the same Pastry functionalities
through the P2P commonAPI [DZDK+03], but it drastically reduces the overlay
management traffic by exploiting cross-layer interactions with a proactive routing
protocol. Specifically, CrossROAD implements a Service Discovery protocol that
exploits the broadcast flooding of routing packets to distribute services information. An
example of cross-layer interaction between CrossROAD and OLSR is shown in Figure
7.7. Each application running on CrossROAD has to register itself by specifying a service
id (step 1). The list of service ids registered at the local node (Node A in the figure) is
maintained by the Cross-Layer Plugin (XL-Plugin), which can be seen as a portion of the
NeSt module (step 2). The XL-Plugin embeds the list of local service ids into periodic
Link-State Update packets generated by OLSR (step 3). On the other nodes of the
network (nodes B, C, D in the figure), upon receiving LSU packets containing such list,
the routing level notifies XL-Plugin to store the list in its internal data structures. This
way, each CrossROAD node has a complete knowledge of all the other nodes providing
the same service in the MANET, and it is able to autonomously build the overlay network
without generating any further management traffic (step 5). Furthermore, in case of
topology changes, the status of the overlay network converged as quickly as the routing
protocol does.

Scribe
Scribe exploits Pastry-like routing to build multicast groups (see Figure 7.8). From the
standpoint of the application running on Scribe, the group is identified by a topic. Scribe
uses the hash function provided by Pastry (or CrossROAD) to generate the topic id (tid)
in the logical space of node ids. In order to join the Scribe tree, nodes send a join message
on the overlay with key equal to tid (e.g., node E in the figure). This message reaches the
next hop (B in the figure) towards the destination on the overlay network. The node
originating the join message (E) is enrolled as a child of B. If not already in the tree, B
itself joins the tree by generating a join message anew. Eventually, such a message
reaches the node whose id is the closest one to tid (C in the figure) and is not propagated
further. This node is defined as the root of the Scribe tree. Join messages for further
nodes (D in the figure) which occur to share some part of the overlay path towards the
root node have to travel just up to the closest branching point (B in the figure).

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 145 of 222

Figure 7.8: Scribe building the tree.

Application messages are sent on the overlay with key equal to tid (e.g., D sends a
message in Figure 7.9). Hence, they reach the Scribe root, which is in charge of
delivering them over the tree. To this end, it forwards the messages to its children, which
further forward them to their children, and so on.

Figure 7.9: Scribe delivering messages.

Finally, the Scribe maintenance procedure is as follows. Each parent periodically sends a
HeartBeat message to each child (application-level messages are used as implicit
HeartBeats). If a child does not receive any message from the parent for a given time
interval (20 sec. in the default case), it assumes that the parent has given up, and re-
executes the join procedure. This simple procedure allows node to discover parent
failures, and re-join the tree, if the case.

7.2.3. Experimental Environment
The experiments reported in this work are based on a static MANET. This allows us to
highlight limitations that originate from Pastry and Scribe design, rather than to mobility.
Extending the results in the case of mobility is subject of future work.

The experiment test-bed is as depicted in Figure 7.10. We set up an indoor MANET
consisting of 8 nodes. To have a homogeneous test-bed, all nodes are IBM ThinkPad R50
laptops. We use the built-in Intel PRO-Wireless 2200 802.11 card, with ipw2200 driver
(on Linux 2.6 kernel). The data rate is set to 11 Mbps. In addition the transmission power
of each card has been adjusted to reproduce the topology shown in the figure and obtain a
multi-hop ad hoc network. During the experiments, nodes marked A through to F
participate in the overlay network, and run the WB application (they will be throughout
referred to as “WB nodes”). Nodes marked with “R” are used just as routers. It is worth
pointing out that this setup lies within the “802.11 ad hoc horizon” envisioned in
[GLNT05], i.e. 10-20 nodes, and 2-3 hops. Therefore, it is a valid example of possible
real-world MANETs.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 146 of 222

Figure 7.10: Map of the experiment setup.

In order to have a controllable and reproducible setup, a human user at a WB node is
represented by a software agent running on the node. During an experiment, each
software agent interleaves active and idle phases. During an active phase, it draws a burst
of strokes on the canvas, which are sent to all the other WB nodes through Scribe (please
note that in our experiment each stroke generates a new message to be distributed on the
Scribe tree). During an idle phase, it just receives possible strokes from other WB nodes.
After completing a given number of such cycles (a cycle is defined as a burst of strokes
followed by an idle time), each agent sends a Close message on the Scribe, waits for
getting Close messages of all the other nodes, and shuts down. Burst sizes and idle phase
lengths are sampled from exponentially distributed random variables. The average length
of idle phases is 10 s, and is fixed through all the experiments. On the other hand, the
average burst size is defined on a per-experiment basis. As a reference point, we define a
traffic load of 100% as the traffic generated by a user drawing, on average, one stroke per
second. Finally, the number of cycles defining the experiment duration is fixed through
all the experiments. Even at the lowest traffic load taken into consideration, each agent
draws – on average – at least 50 strokes during an experiment. For the performance
figures defined in this work (see below) this represents a good trade-off between the
experiment duration and the result accuracy.

Some final remarks should be pointed out about the experiment start-up phase. Nodes are
synchronised at the beginning of each experiment. Then, in the Pastry case, the Pastry
bootstrap sequence occurs as follows (the same schedule is also used to start
CrossROAD, even though a CrossROAD node does not need to bootstrap from another
node): node C starts first, and generates the ring. Nodes E and D start 5 seconds after C,
and bootstrap from C. Node B starts 5 seconds after E and bootstraps from E. Node A
starts 5 seconds after B and bootstraps from B. Finally, node F starts 5 seconds after D
and bootstraps from D. After this point in time, the Scribe tree is created and, finally, WB
instances start sending application messages (hereafter, WB messages). This way, the
Scribe tree is built when the overlay network is already stable, and WB starts sending
when the Scribe tree is completely built.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 147 of 222

Performance Indices
Since Pastry and Scribe have been conceived for fixed networks, we investigate if they
are able to provide an adequate Quality of Service to users in a MANET environment. To
quantify the “WB user satisfaction” we use two performance indices:

• Packet Loss: at each node i, we measure the number of WB messages received
and sent (iR and iS , respectively) during an experiment; the packet loss

experienced by node i is defined as
∑

=

i
i

i
i S

R
pl .

• Delay: the time instant when each packet is sent and received is stored at the
sending and receiving node, respectively. This way, we are able to evaluate the
delay experienced by each node in receiving each packet. If ijd is the delay
experienced by node i in receiving packet j, and iN the total number of packets
received by i during an experiment, the average delay experienced by node i is

defined as
i

j
ij

i N

d
D

∑
= .

Furthermore, we define two more indices, to quantify the quality of the multicast tree
created by Scribe.

• Node Stress: for each node, it is defined as the average number of children of that
node. If ijt is the time interval (within an experiment) during which node i has jn

children, the average node stress of node i is
∑

∑
=

j
ij

j
ijj

i t

tn
NS .

• Re-subscriptions: for each node, we count the number of times (during an
experiment) this node sends new subscriptions requests, because it can’t
communicate with the previous parent anymore.

7.2.4. Performance with Pastry
The results we report in this section are obtained by using Pastry as DHT and either
OLSR or AODV as routing protocol. Experiments are run by increasing the traffic load
starting from 20% up to 80%.

Before presenting the results in detail, let us define what hereafter will be referred to as
“crash of the Scribe Root Node”. In our configuration Pastry assigns node ids by hashing
the IP address and the port used by Scribe on the node. Hence, each node always gets the
same node id. Furthermore, the topic used by the WB users is always the same. Under the
hypothesis that Pastry generates a single ring encompassing all WB nodes, the Root of
the Scribe tree (i.e., the node whose id is closest to the WB topic id) is the same through
all the experiments, and is node C in Figure 7.10. This node will be throughout referred

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 148 of 222

to as the Main Scribe Root Node (MSRN). Due to the Scribe algorithm, each WB
message to be distributed on the tree is firstly sent to MSRN, and then forwarded over the
tree. Often, this is an excessive load for MSRN, which, after some point in time, becomes
unable to deliver all the received messages. Instead, messages are dropped at the MSRN
sending queue. We refer to this event as a crash of MSRN. Of course, since the
application-level traffic is randomly generated, the MSRN crash is not a deterministic
event.

User Satisfaction
Figures 5.2.8 and 5.2.9 show the packet loss and the delay indices experienced by the
WB nodes considering experiments where the MSRN does not crash. Specifically, we
consider AODV experiments with 10% and 20% traffic load, and OLSR experiments
with 20%, 50% and 80% traffic load, respectively. There is no point in running AODV
experiments with higher traffic load, since performances with AODV are quite bad, even
with such a light traffic load. In the figure legend we also report the rings that Pastry
builds during the bootstrap phase (please note that, theoretically, just one ring should be
built, encompassing all WB nodes). Finally, an “x” label for a particular node and a
particular experiment denotes that for that experiment we are not able to derive the index
related to the node (for example, because some component of the stack crashed during
the experiment).

Figure 7.11: Packet Loss w/o MSRN crash

Figure 7.11 allows us to highlight an important Pastry weakness. If a WB node is unable
to successfully bootstrap, it starts a new ring, and remains isolated for the rest of the
experiment. In MANET environments, links are typically unstable, and the event of a
WB node failing to contact the bootstrap node is quite likely. Clearly, once a node is
isolated, it is unable to receive (send) WB messages from (to) other nodes for the rest of
the experiment, and this results in packet losses at all nodes. In the “AODV 10%”
experiment, nodes A and F are isolated, and create their own rings. This results in packet
loss of about 80% at those nodes (i.e., they just get their own WB messages, which is
about one sixth of the overall WB traffic), and about 33% at nodes B, C, D and E. Similar
remarks apply to the “OLSR 50%” experiment. It is more interesting to focus on the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 149 of 222

“AODV 20%” experiment. In this case, node A is isolated, while nodes B, C, D, E and F
belong to the same ring. As before, A’s packet loss is about 80%. The packet loss at the
other nodes due to the isolation of node A is about 18% (one sixth of the overall traffic).
It is interesting to notice that nodes B and D experience a higher packet loss, meaning
that they are unable to get WB messages generated within the “main” Pastry ring (i.e.,
nodes B, C, D, E, F). Finally, in the case “OLSR 20%”, Pastry is able to correctly
generate a single ring, and the packet loss is quite low. In the case “OLSR 80%”, nodes A
and F crash. However, the packet loss experienced by the other nodes is negligible.

Figure 7.12: Delay w/o MSRN crash

Similar observations can be drawn by focusing on the delay index (Figure 7.12). First of
all, it should be pointed out that the delay related to nodes that are the sole member of
their own ring (e.g., node A in the “AODV 10%” case) is obviously negligible. Even
though – in general – the delay in this set of experiments is low, it can be noted that better
performances are achieved by using OLSR instead of AODV. Finally, it should be noted
that MSRN (node C) always experiences a lower delay with respect to the other nodes in
the same ring.

Figure 7.12: Packet Loss w/ MSRN crash

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 150 of 222

Figure 7.14: Delay w/ MSRN crash

Figures 5.2.10 and 5.2.11 show the packet loss and the delay indices in cases of MSRN
crash. The packet loss experienced by nodes in the same ring becomes higher than in
cases where MSRN does not crash. In the first three experiments, node A isolation causes
a packet loss of about 18% on the other nodes. Hence, the remaining 60% packet loss is
ascribed to the MSRN crash. Quite surprisingly, OLSR with 80% traffic load shows
better performance than OLSR with 50% traffic load. It is also interesting to note that the
packet loss at MSRN is always lower than at other nodes in the same ring. This highlights
that MSRN is able to get, but unable to deliver over the Scribe tree WB messages
generated by other nodes. Similar observations can be drawn by looking at Figure 7.14,
as well. The delay experienced by nodes B, D, E and F can be as high as a few minutes,
either by using AODV or OLSR. Finally, the delay experienced by MSRN is very low in
comparison to the delay experienced by the other nodes.

To summarise, the above analysis allows us to draw the following observations. The
Pastry bootstrap algorithm is too weak to work well in MANETs, and produces
unrecoverable partitions of the overlay network. This behaviour is generally exacerbated
by AODV (in comparison to OLSR). Furthermore, MSRN is clearly a bottleneck for
Scribe. MSRN may be unable to deliver WB messages also with moderate traffic loads,
resulting in extremely high packet loss and delay. Moreover, the performance of the
system in terms of packet loss and delay is unpredictable. With the same protocols and
traffic load (e.g., OLSR and 50% traffic load), MSRN may crash or may not, resulting in
completely different performance figures. In cases where MSRN crashes, packet loss and
delay are clearly too high for WB to be actually used by real users. However, even when
MSRN does not crash, the high probability of WB users to be isolated from the overlay
network makes Pastry based solutions too unreliable. These results suggest that Pastry
and Scribe need to be highly improved to actually support group communication
applications such as WB in MANET environments.

Multicast Tree Quality
In this section we analyse the node stress and re-subscription indices, with respect to the
same experiments used in the previous section.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 151 of 222

Figures 5.2.12 and 5.2.13 plot the average node stress with and without MSRN crashes,
respectively. In both cases, the node stress is significantly higher at MSRN than at any
other node. This means that the Scribe tree is a one-level tree, and MSRN is the parent of
all the other nodes. This behaviour is expected, and can be explained by recalling the way
Scribe works. In our moderate-scale MANET, all nodes are in the Pastry routing table of
each other. Hence, Scribe join messages reach MSRN as the first hop, and MSRN
becomes the parent of all other nodes (in the same ring). Together with the way
application-level messages are delivered, this phenomenon explains why MSRN is a
bottleneck, since it has to send a distinct message to each child when delivering WB
messages over the tree. This is a major limitation of the Scribe algorithm, and
optimisations of the P2P system are clearly not sufficient to cope with it.

Figure 7.15: Node Stress w/o MSRN crash

Figure 7.16: Node Stress w/ MSRN crash

In Figures 7.15 and 7.16 we have added “R” labels to indicate nodes that occur to become
Scribe Root during the corresponding experiment. When MSRN does not crash (Figure
7.15) other nodes become Scribe root only as a side effect of a failed Pastry bootstrap. On
an isolated WB node, Scribe builds a tree which consists only of the node itself that is
thus the root. However, Scribe partitions may also occur due to congestion at the Pastry
level in cases where MSRN crashes. By looking at Figure 7.16, it can be noticed that

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 152 of 222

nodes other than MSRN may become root also if they belonged (after the Pastry
bootstrap phase) to the same overlay network of MSRN. This phenomenon occurs, for
example, at node A in the OLSR 80% case, and at node B and F (whenever they become
root). It should be noted that a node with id n1 (other than MSRN) becomes root when i)
it looses its previous parent, and ii) the Pastry routing table does not contain another node
id n2 such that n2 is closer to the WB topic id than n1. Figure 7.16 shows that the
congestion at the Pastry level is so high that the Pastry routing table of some nodes
becomes incomplete (i.e., MSRN disappears from other nodes’ routing table). Thus, the
Scribe tree gets partitioned in several isolated sub-trees. Clearly, this contributes to the
high packet loss measured in these experiments. Another effect of Pastry congestion
during MSRN crashes is a possible reshaping of the Scribe tree. Figure 7.16 shows that
the average Node Stress of E is close to 1 in the “AODV 20%” and “OLSR 80%” cases.
This means that MSRN disappears from the Pastry routing table of some node, which –
instead of becoming a new root – finds node E to be the closest one to the WB topic id.
This phenomenon could be considered a benefit, since it reduces the MSRN node stress.
However, it derives from an incorrect view of the network at the Pastry level, originated
from congestion.

Figure 7.17: Re-subscriptions w/o MSRN crash

Figure 7.18: Re-subscriptions w/ MSRN crash

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 153 of 222

Figures 7.17 and 7.18 show the re-subscription index for the same set of experiments.
Figure 7.17 shows that, when MSRN does not crash, the Scribe tree is quite stable. Most
of the re-subscriptions occur at node F, which is the “less connected” node in the network
(see Figure 7.10). In these experiments, the performance in the AODV cases is worse
than in OLSR cases. Furthermore, upon MSRN crashes (Figure 7.18), the number of re-
subscriptions increases drastically, even in case of “well-connected nodes” (i.e., node B,
D and E). MSRN crashes make other nodes unable to get messages from their parent (i.e.,
MSRN itself), increasing the number of re-subscriptions. It is interesting to point out that
this is a typical positive-feedback control loop: the more MSRN is congested, the more
re-subscriptions are sent, and more congestion is generated.

To summarise, the multicast tree generated by Scribe on top of Pastry is quite unstable,
especially in cases of MSRN crashes. The tree may get partitioned in disjoint sub-trees,
and many re-subscriptions are generated by nodes. Furthermore, Scribe is not able to
generate a well-balanced multicast tree, since MSRN is the parent of all other nodes.
Directions to optimise Scribe are discussed in Section 5.2.6.

7.2.5. Improvements with CrossROAD
In this section we show that using a P2P system optimised for MANETs is highly
beneficial to the stability of the Scribe tree. In this set of experiments, we use
CrossROAD instead of Pastry, and set the traffic load to 20%, 50% and 100%,
respectively. We concentrate on the performance figures related to the quality of the
multicast tree, i.e., the average node stress (Figure 7.19) and the number of re-
subscriptions (Figure 7.20). Complete evaluations of the User Satisfaction parameters, as
well as, further optimisations of the Scribe algorithm are for further studies.

The first main improvement achieved by using CrossROAD is that neither the overlay
network, nor the Scribe tree, gets partitioned. CrossROAD is able to build a single
overlay network in all the experiments. Furthermore, even at very high traffic loads (e.g.,
100%), MSRN is the only root of the Scribe tree. Therefore, CrossROAD is able to
overcome all the partition problems experienced when Pastry is used.

Figure 7.19: Node Stress with CrossROAD

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 154 of 222

Figure 7.19 clearly shows that the node stress still remains quite unbalanced among the
nodes. MSRN is typically the parent of all other nodes, and this contributes to make it a
bottleneck of the system, as highlighted above. This behaviour is expected, since it
derives from the Scribe algorithm, and cannot be modified by changing P2P system.

Figure 7.20: Re-subscriptions with CrossROAD

Finally, Figure 7.20 shows that the Scribe tree is more stable (i.e., requires less re-
subscriptions) using CrossROAD instead of Pastry. To be fair, we have to compare
Figure 7.20 with both Figures 7.17 and 7.18. It is clear that CrossROAD outperforms
Pastry when used on top of AODV. The “20%” case of CrossROAD should be compared
with the “OLSR 20%” case of Figure 7.17, since in both experiments the overlay network
is made up of all nodes. The number of re-subscriptions measured at node F is the same
in both cases, while it is higher at node E when Pastry is used. The CrossROAD “50%”
case shows a higher number of re-subscriptions with respect to the “OLSR 50%” case in
Figure 7.17. However, it should be noted that in the latter case the overlay network
encompasses less nodes, and hence the congestion is lower. It should also be noted that,
with the same nodes in the overlay network, with the same protocol stack and traffic load,
Pastry experiments may suffer MSRN crashes (Figure 7.18). In this case, the number of
re-subscriptions is much higher than in the CrossROAD case. Finally, results in the
CrossROAD “100%” case should be compared with the “OLSR 80%” case of Figure
7.18, since the overlay network is the same in both experiments. CrossROAD achieves
comparable performance, and at some nodes it outperforms Pastry, even if the application
traffic is significantly higher.

Overlay Management Overhead
In the previous section we have shown that adopting CrossROAD significantly improves
the performance of Scribe. In this section we highlight that one of the main reasons for
this improvement is the big reduction of the network overhead. This is a key advantage in
MANET environments.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 155 of 222

Figure 7.21: Network Load with Pastry

Figure 7.21 shows the network load experienced by nodes A, C and by the two nodes
which just act as routers, during the Pastry “OLSR 80%” experiment in which MSRN
crashes (we do not take into account AODV experiments, since OLSR has clearly shown
to outperform AODV). Each point in the plot is computed as the aggregate throughput (in
the sending and receiving directions) over the previous 5-seconds time frame. We take
into consideration the traffic related to the whole network stack, from the routing up to
the application layer. Specifically, nodes A and C are representative for WB nodes,
pointing out the difference with nodes that just work as routers. The discrepancy between
the curves related to node A and C confirms that the MSRN node has to handle a far
greater amount of traffic with respect to the other WB nodes, due to the Scribe
mechanisms. Furthermore, it should be noted that the curves related to the two routers
can hardly been distinguished in Figure 7.21, since they are about 400Bps. This means
that the lion’s share of the load on WB nodes is related to Pastry, Scribe and the WB
application.

Figure 7.22: Network Load with CrossROAD

Figure 7.22 plots the same curves, but related to the “100%” CrossROAD experiment.
Also in this case, MSRN (node C) is more loaded than the other WB nodes. However, by
comparing Figures 7.22 and 7.23 we can highlight that the Pastry network load is far
higher than the CrossROAD network load. By considering the average value over all

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 156 of 222

nodes in the MANET, the Pastry load is about 3 times greater than the CrossROAD load.
More specifically, the average load of C and A is 48.5 KB/s and 16.5 KB/s in the Pastry
case, while drops to 21.1 KB/s and 2.96 KB/s in the CrossROAD case. The reduction of
the network load achieved by CrossROAD is thus 56% at node C and 82% at node A.
Since the other stack components are exactly the same, CrossROAD is responsible for
this reduction (the actual reduction is even higher, since the application-level traffic is
100% in the CrossROAD case). Furthermore, it should be noted that, during several time
intervals, the load of node A is just slightly higher than that of “routing” nodes. This
suggests that the additional load of CrossROAD management with respect to the routing
protocol is very limited.

7.2.6. Conclusions and Future Works
Results presented in this work allow us to draw the following conclusions. Pastry and
Scribe seem not to be good candidates to support group communication applications in
MANET environments. Pastry is particularly weak during the bootstrap phase, causing
the overlay network to be partitioned into several sub-networks, and some nodes to be
unable to join application services. Further partitions may occur in the Scribe tree due to
congestion at the Pastry level. Finally, the delivery algorithm implemented by Scribe
generates a severe bottleneck in the tree, which is highly prone to get overloaded. All
these limitations result in unacceptable levels of packet loss and delay for applications.
Many of these problems can be avoided by adopting a cross-layer optimised P2P system
such as CrossROAD. Thanks to the interactions with a proactive routing protocol
CrossROAD is able to avoid all the partition problems experienced with Pastry, and to
drastically reduce the network overhead. Clearly, CrossROAD cannot solve the problem
of bottlenecks in the Scribe trees. Therefore, optimized versions of Scribe are required for
group communication applications such as WB to be really developed in MANETs. The
direction we are exploring is building a single distribution tree, optimised through cross-
layer interactions with a proactive routing protocol. Building a single-tree, instead of a
new tree for each source node, allows for a more scalable solution. In addition, cross-
layering allow us to retain the subject-based features of Scribe (e.g., locating a tree by
means of its topic), while exploiting also topological information to build the tree.
Furthermore, the tree can be built in a completely distributed way, by exploiting greedy
policies such as those used in YAM [CC97] and ALMA [GKF04]. Finally, the data-
distribution phase can be optimised so as to avoid each message to be sent to the MSRN
and then delivered to other nodes. For example, while travelling towards MSRN,
messages can be duplicated and delivered at each branching point in the tree. These
policies are expected to drastically mitigate the bottleneck problems experienced by
Scribe. Furthermore, they raise very interesting arguments about causal ordering of
messages that we are planning to address, as well.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 157 of 222

7.2.7. References
[ABCGP05] G. Anastasi, E. Borgia, M. Conti, E. Gregori and A. Passarella,

“Understanding the Real Behavior of Mote and 802.11 Ad hoc Networks:
an Experimental Approach”, Pervasive and Mobile Computing, Vol. 1,
Issue 2, pp. 237-256, July 2005.

[AODV] AODV, Dept. of Information technology at Uppsala University (Sweden),
http://user.it.uu.se/ henrikl/aodv/.

[CC97] K. Carlber and J. Crowcroft, “Building Shared Trees Using a One-to-
Many Joining Mechanism”, ACM Computer Communication Review, pp.
5-11, Jan. 1997.

[CDKR02] M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, “SCRIBE: A
large-scale and decentralised application-level multicast infrastructure”,
IEEE Journal on Selected Areas in Communication (JSAC), Vol. 20, No,
8, October 2002.

[CJKR+03] M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H.
Wang and A. Wolman, “An Evaluation of Scalable Application-level
Multicast Built Using Peer-to-peer overlays”, Infocom 2003, San
Francisco, CA, April, 2003.

[DZDK+03] F. Dabek and B. Zhao and P. Druschel and J. Kubiatowicz and I. Stoica,
“Towards a common API for Structured Peer-to-Peer Overlays”, Proc. of
the the 2nd International Workshop on Peer-to-peer Systems (IPTPS’03),
Berkeley, CA, Feb. 2003.

[CMTG04] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross layering in mobile
ad hoc network design”, IEEE Computer, Feb. 2004.

[D05] F. Delmastro, “From Pastry to CrossROAD: Cross-layer Ring Overlay for
Ad hoc networks”, in Proc. of Workshop of Mobile Peer-to-Peer 2005, in
conjuction with the PerCom 2005 conference, Kauai Island, Hawaii, Mar.
2005.

[D04] M. Dischinger, “A flexible and scalable peer-to-peer multicast application
using Bamboo”, Report of the University of Cambridge Computer
Laboratory, 2004, available at
http://www.cl.cam.ac.uk/Research/SRG/netos/futuregrid/dischinger-
report.pdf.

[GKF04] M. Ge, S.V. Krishnamurthy, and M. Faloutsos, “Overlay Multicasting for
Ad Hoc Networks”, Proc. of the Third Annual Mediterranean Ad Hoc
Networking Workshop (MedHocNet 2004), June 2004.

[GLNT05] P. Gunningberg and H. Lundgren and E. Nordström and C. Tschudin,
“Lessons from Experimental MANET Research”, Ad Hoc Networks
Journal, (Special Issue on “Ad Hoc Networking for Pervasive Systems”),
Vol. 3, Number 2, March 2005.

[OLSR] OLSR, Andreas Tonnesen, Institute for informatics at the University of
Oslo (Norway), http://www.olsr.org.

[RD01] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems”, Middleware 2001,
Germany, November 2001.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 158 of 222

[SSR01] C.A. Santivanez, I. Stavrakakis, and R. Ramanathan, ”Making link-state
routing scale for ad hoc networks”. In Proceedings of the 2nd ACM
Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC’01), 2001.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 159 of 222

7.3. VoIP
Voice over IP (VoIP) provides voice telephony service utilizing the exiting wide spread
Internet infrastructure. VoIP has been around for several years but it is gaining
momentum especially because of its low cost deployment requirements, and its low cost
service for users.

7.3.1. VoIP introduction
VoIP is a speech transmission technology utilizing the packet switched networks. It is
built on top of IP protocol. In order to provide users with similar experience to the analog
telephony service, VoIP must be able to deliver non-interrupted continuous stream of
voice with as minimum delay as possible. This basic requirement will govern the
selection of transport protocol and trade offs between real time audio delivery and high
quality audio.

TCP/IP provides mechanisms to offer guaranteed packet delivery. However, this does
not suite the requirements and needs of VoIP. TCP/IP makes sure a packet is delivered
and the packets arrive in order, using retransmission. However, the TCP mechanisms
result in the overall increase of the end-to-end delay. VoIP requires sending packets as
fast as possible and delivering them to receiver after as short delay as possible. VoIP
includes mechanisms at the reception to alleviate some of the problems inherent in the IP
protocol, where Jitter buffering is the most important. Even though IP protocol offers
only a best-effort service, packets can be delivered out of order, corrupted, duplicated,
with different delay for each packet or the packets can even bet lost. Therefore, VoIP
uses the IP stack to send separate datagrams (i.e. UDP transport) quickly without any
congestion control or retransmission mechanism. Afterwards, the appropriate techniques
are applied to buffer and re-order the packets in order to provide a voice service resilient
to packet loss and variable packet arrival delay.

7.3.2. VoIP techniques
VoIP takes care of transmitting the voice after recording and breaking it down into small
packets at the transmitter. The receiver will receive those packets and has to reconstruct
and play them back. The transmitter starts by sampling the analog audio signal, digitizing
it to audio bytes at a sampling frequency. Then it compresses sampled audio and
generates audio packets that will be transmitted using a transport protocol such as Real
Time Protocol (RTP [1]) that provides packet sequence order and additional information
for reconstructing the audio stream in the receiver. The receiver takes care of unpacking
the RTP messages, interpreting the sequence numbering and implementing the buffering
of audio packets to ensure continuous playback. After buffering enough packets, the
receiver decompresses the audio packets and reconstructs the audio samples to play them
back.

The typical value (i.e. PCM format) for audio streams is 8000 Hz sampling frequency, 8
bit per sample, resulting in a 64 kbps audio stream.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 160 of 222

7.3.3. VoIP testbed
The VoIP testbed we have developed uses components from other research institutions
[2]. In order to increase the QoS in Ad hoc networks, enhancements in the VoIP
application have been implemented. The experiment was carried out in the laboratories of
the Consiglio Nazionale delle Ricerche (IIT-CNR), Pisa, Italy. The test logs and
additional information can be found in the project site at networking laboratory [3]. The
experiment measures the overall performance of audio sessions using VoIP in Ad hoc
wireless LAN environment.

The VoIP client is running in both Laptops and iPAQs and additionally they require the
following software: a GSM library [4] and an RTP library [5]. The tests are performed
with two different routing protocols; OLSR and ADOV. We analyze the routing protocol
effect in the overall performance.

7.3.4. Testbed objectives
The objective of the testbed is to measure the overall performance of VoIP sessions in ad
hoc wireless LAN networks. VoIP applications have to deal with new requirements
because of the mobility and nature of Ad hoc networks. The Ad hoc routing protocols do
not affect the VoIP sessions after the route is established. However, the routing protocols
have to ensure reliable routes and they have to react quickly to route changes to provide a
smooth VoIP service.
The testbed analyses the VoIP service from an end-to-end point of view and test different
situations to see the effect of certain parameters in the overall performance.

The main parameters considered in the testbed to analyze the performance of VoIP
service in ad hoc networks, in terms of QoS, signaling overhead, etc, are the following.

• Routing protocol; OLSR or AODV.
• Receiver jitter buffer length.
• RTP payload length.

The two routing protocol selected are a proactive routing protocol (i.e. OLSR), and a
reactive routing protocol (i.e. ADOV). These two routing protocols have been chosen to
analyze the signaling overhead, the route stability and the reaction to link breaks provided
by each protocol.

The Jitter buffer length has two main consequences from audio session quality point of
view. Increasing the jitter buffer length will reduce the perceived pauses in audio
playback. This results in smooth playback but will increase the over all delay. ITU-T
recommends a maximum delay of 400 ms, and 250 ms for a quality audio session. A
high delay is translated in a bad experience for the user. On the other hand, if we reduce
the jitter buffer, the overall delay is reduced. However the overall result is a low quality
session with lots of pauses in the playback. These two extremes result in an annoying
and difficult to understand conversation. Therefore the jitter buffer is a balance between
these two extremes.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 161 of 222

The other parameter consists of the RTP payload length, which consists of the amount of
audio data inserted on each RTP message. If we increase the RTP payload (i.e. we
increase the amount of audio data in each RTP packet), then we enhance the audio
playback at the receiver since each packet holds enough audio data to play until the next
packet arrives. Nevertheless, increasing the payload means longer time to record
resulting in higher over all delay. In addition, if one packet is lost, a larger mount of
audio data is lost resulting in longer pauses in the playback.

7.3.5. Testbed Metrics
We have collected an exhaustive amount of data from the tests in order to analyze the
performance.

Table 7.7. Transmitter Metrics

Statistics
RTP Traffic % The percentage of RTP bytes sent versus the total amount of bytes

captured at the transmitter.
GSM data % The percentage of GSM bytes sent versus the total bytes captured.

The GSM packet length is 33 bytes.
Signaling to
Capacity Overhead
%

The percentage of bytes related to the routing protocols (i.e. OLSR
or AODV) sent and received versus the total number of bytes
captured.

Signaling Overhead
%

The percentage of bytes related to the routing protocols sent and
received versus the total number of GSM bytes successfully sent.

Succ GSM packets Total number of GSM packets successfully sent.
Succ GSM bytes Total number of GSM bytes successfully sent.
Succ Audio time Total audio data sent. This is equal to the successful GSM packets

sent multiplied by 20ms of audio samples sent per each GSM
packet.

Succ Audio % The percentage of total amount of audio data sent during the test.

Table 1.8 Receiver Metrics.
Statistics
RTP Traffic % The percentage of RTP bytes received versus the total amount of

bytes captured at the receiver.
GSM data % The percentage of GSM bytes received versus the total amount of

bytes captured at the receiver.
Lost Packets Number of RTP packets lost calculated from gaps in the sequence

number.
Succ packets Number of RTP packets received correctly without duplicates or

errors.
Duplicates Number of duplicate RTP packets received.
Duplicate % The percentage of duplicate RTP packets received versus to the

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 162 of 222

total amount of RTP packets received.
Signaling to
capacity Overh. %

The percentage of bytes related to the routing protocol
(OLSR/AODV) sent and received versus the total amount of bytes
captured.

Signaling overhead
%

The percentage of bytes related to the routing protocol sent and
received versus the total amount of GSM bytes successfully
received.

Succ GSM packets Total number of GSM packets successfully received.
Succ GSM bytes Total number of received GSM bytes.
Succ Audio time The total audio received. This is equal to the successful GSM

packets received multiplied by 20ms of audio samples sent on
each GSM packet.

Succ Audio % The percentage of total amount of audio data received during the
test.

Table 7.9 End to End statistics.
Statistics RTP
Sender
Highest Seq Num Highest sequence number generated by the sender.
Representing (sec) Time equivalent to the highest sequence number.
Receiver
Highest RX Seq
Num

Highest Sequence number received.

Lost RX The amount of RTP packets lost counted from gaps the in
sequence number of the RTP packets received.

Duplicate RX The amount of duplicate RTP packet received.
Succ RX The amount of RTP packets successfully received.
Received (sec) The amount of audio successfully received.
Link
Lost in Link The amount of packets lost in the link.

QoS
Overall The percentage of RTP packets successfully received versus the

total amount of RTP packets generated.
Loss in Link The percentage of RTP packets lost in the link versus the total

amount of RTP packets transmitted.
Time lost The amount of audio samples (i.e. in ms) lost.
Time lost % The percentage of audio lost.
Jitter The Jitter measured at the receiver during the test.
Jitter, during cont
period

The Jitter measured in the receiver during a continuous reception
time.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 163 of 222

7.3.6. Testbed layout
The test was carried out at the IIT-CNR laboratory and it included four nodes (i.e. 2
iPAQs and 2 laptops). The gray areas in Figure 7.23 represent rooms, and the white areas
are the corridors where we carried out the tests. The numbers beside each node represent
the last part of IP address in 10.0.0.X. For example, the number 6 means IP address
10.0.06. The diagram also shows where we used iPaqs and laptops. We carried out
several tests with this Topology only.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 164 of 222

Figure 7.23. Testbed layout

The testing equipment used are:

1. Two HP 3850 iPAQs, running Familiar linux distribution. They are equipped
with PCMCIA wlan cards.

a. 206 MHz Intel StrongARM processor
b. 64 MB memory
c. http://h18000.www1.hp.com/products/quickspecs/10977_na/10977_na.HT

ML
d. Familiar project: http://familiar.handhelds.org/
e. VoIP client version 1, JRTP Lib version 2.9, GSM codec version 06.10.
f. AODV version
g. OLSR version

2. Two IBM laptops
a. AODV version
b. OLSR version

The iPAQs has version 1 of RTP client. This client utilizes the following components:

• GSM library version 06.10 (http://kbs.cs.tu-berlin.de/~jutta/toast.html)
• JRTPLib version 2.9 (http://research.edm.luc.ac.be/jori/jrtplib/jrtplib_old.html)

6

1 50 5

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 165 of 222

Test conditions
The testing environment was extremely noisy since the laboratory had several wireless
networks. There are electromagnetic and a cellular-network labs in the vicinity of the
testing area. The wireless link between two iPAQs having a line of sight path was quite
bad even at short distances. Trying to ping between those two iPAQs will result on 10%-
15% packet loss, even at short distances. We faced a great deal of troubles just trying to
setup the topology to make sure that each node sees the next one only, and the link
between them was good enough.

7.3.7. Test Cases
The tests consist of setting up a VoIP session between nodes 5 and 6 while changing the
session parameters (i.e. routing protocol, GSM buffer, RTP payload) to analyze the
performance. The network topology as shown in 7.23 consists of two iPAQs separated by
2 laptops. The distance between two nodes was between 5 to 10 meters and each node
cannot see more than the next one.

Test Number 5.1 6.1 7.1 8.1
Protocol OLSR OLSR AODV AODV
GSM Buffer 60 msec 100 msec 60 msec 100 msec
GSM/RTP 3 3 3 3

Test Case 5.1

 Figure 7.24. Traffic measurements test 5.1.

LEGEND Non RTP traffic
RTP Traffic
OLSR Traffic

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 166 of 222

Statistics
From Node 5 to Node 6 From Node 6 to Node 5

Statistics RTP
Sender
Highest Seq
Num 2379
Representing (sec) 142.74
Signaling Over head 12.64%

Receiver
Highest RX Seq Num 2379
Lost RX 949
Duplicate RX 0
Succ RX 1430
Representing (sec) 85.8
Signaling Over head 6.10%

Link
Lost in Link 949

QoS
Overall 60.11%
Loss in Link 39.89%
Time lost 56.94
Time lost % 39.89%
Jitter 0.52708
Jitter, during cont period 0.52708

Statistics RTP
Sender
Highest Seq
Num 3108
Representing (sec) 186.48
Signaling Over head 14.82%

Receiver
Highest RX Seq Num 2838
Lost RX 1269
Duplicate RX 76
Succ RX 1493
Received (sec) 89.58
Signaling Over head 18.73%

Link
Lost in Link 1615

QoS
Overall 48.04%
Loss in Link 51.96%
Time lost 96.9
Time lost % 51.96%
Jitter 0.617955
Jitter, during cont period 0.182292

Observations
There were a lot of link breaks and the percentage of packets lost in the link is 40%. The
end-to-end delay was low but the traffic showed an asymmetric behavior (i.e. traffic
going from node 6 to 5 where totally lost).

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 167 of 222

Test Case 6.1

Figure 7.25. Traffic measurements test 6.1

Statistics
From Node 5 to Node 6 From Node 6 to Node 5

Statistics RTP
Sender
Highest Seq
Num 7758
Representing (sec) 465.48
Signaling Over head 14.64%

Receiver
Highest RX Seq Num 7758
Lost RX 3602
Duplicate RX 0
Succ RX 4156
Received (sec) 249.36
Signaling Over head 20.65%

Link
Lost in Link 3602

QoS
Overall 53.57%
Loss in Link 46.43%
Time lost 216.12
Time lost % 46.43%
Jitter 0.869446
Jitter, during cont period 0.045297

Statistics RTP
Sender
Highest Seq
Num 7062
Representing (sec) 423.72
Signaling Over head 15.96%

Receiver
Highest RX Seq Num 7062
Lost RX 3777
Duplicate RX 132
Succ RX 3153
Received (sec) 189.18
Signaling Over head 18.88%

Link
Lost in Link 3909

QoS
Overall 44.65%
Loss in Link 55.35%
Time lost 234.54
Time lost % 55.35%
Jitter 0.758336
Jitter, during cont period 0.083759

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 168 of 222

Observations
Link breakage is more frequent and shorter in this experiment.

Test Case 7.1

Figure 7.26 Traffic measurements test 7.1

Statistics
From Node 5 to Node 6 From Node 6 to Node 5

Statistics RTP
Sender
Highest Seq
Num 5574
Representing (sec) 334.44
Signaling Over head 8.95%

Receiver
Highest RX Seq Num 5574
Lost RX 282
Duplicate RX 59
Succ RX 5233
Received (sec) 313.98
Signaling Over head 8.69%

Statistics RTP
Sender
Highest Seq
Num 5467
Representing (sec) 328.02
Signaling Over head 8.62%

Receiver
Highest RX Seq Num 5467
Lost RX 3621
Duplicate RX 19
Succ RX 1827
Received (sec) 109.62
Signaling Over head 28.30%

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 169 of 222

Link
Lost in Link 341

QoS
Overall 93.88%
Loss in Link 6.12%
Time lost 20.46
Time lost % 6.12%
Jitter 0.107875
Jitter, during cont period 0.073521

Link
Lost in Link 3640

QoS
Overall 33.42%
Loss in Link 66.58%
Time lost 218.4
Time lost % 66.58%
Jitter 0.700415
Jitter, during cont period 0.151487

Observations
This test case is almost the best one we had. The lost in link packets percentage is very
low (6%). The delay was very acceptable, the quality was clear.

Test Case 8.1

Figure 7.27 Traffic measurements test 8.1

Statistics
From Node 5 to Node 6 From Node 6 to Node 5

Statistics RTP
Sender
Highest Seq 7974

Statistics RTP
Sender
Highest Seq 8547

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 170 of 222

Num
Representing (sec) 478.44
Signaling Over head 7.91%

Receiver
Highest RX Seq Num 7974
Lost RX 1399
Duplicate RX 433
Succ RX 6142
Received (sec) 368.52
Signaling Over head 10.46%

Link
Lost in Link 1832

QoS
Overall 77.03%
Loss in Link 22.97%
Time lost 109.92
Time lost % 22.97%
Jitter 0.579396
Jitter, during cont period 0.055566

Num
Representing (sec) 512.82
Signaling Over head 9.00%

Receiver
Highest RX Seq Num 8543
Lost RX 5755
Duplicate RX 37
Succ RX 2751
Received (sec) 165.06
Signaling Over head 25.67%

Link
Lost in Link 5796

QoS
Overall 32.19%
Loss in Link 67.81%
Time lost 347.76
Time lost % 67.81%
Jitter 1.8566112
Jitter, during cont period 0.1595774

The tests were repeated changing the following variables to determine the optimum audio
parameters.

1. Size of audio device buffers.
2. Number of audio device buffers.
3. RTP payload length
4. Code timing.

Test Number Audio buffers Buffer size

(byte)
1 2 1024
2 4 512
3 8 512
4 4 1024

Test Case 1
Test with 2 iPAQs with no middle nodes and with the following RTP parameters.

• RTP initial jitter buffer length: 60 msec.
• Maximum payload length: 10 GSM Packets

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 171 of 222

• Using audio device for recording and playback (not files)
• 2 Audio buffers, each 1024 bytes long

The payload length was dynamically changed during the call.

GSM packets (RTP
Payload length)

Observation

1 Very bad, too much popping sound, a lot of discontinuity,
voice can not be understood

2 Acceptable, low delay, infrequent popping sound, voice clear
and of good quality

3 Acceptable, low delay, no popping sound at all, voice
understandable, clear and of high quality

4 Acceptable, acceptable delay, clear and understandable voice
of high quality

5-7 Acceptable, somewhat acceptable delay, clear and
understandable voice of high quality

8-10 Very good quality, significant delay, if a packet is lost, there
is a long pause in voice, therefore, the need to ask to repeat
what was said is noticed.

The best jitter values are
when the payload length
is 2. It then grows too
much as the payload
length increases.

0

100

200

300

400

500

600

700

1 53 105 157 209 261 313 365 417 469 521 573 625 677 729 781 833 885 937 989 1041 1093 1145 1197 1249 1301

Jitter plot, also shown is the payload length

Test Case 2

Test with 2 iPAQs with no middle nodes and with the following RTP parameters.

• RTP initial jitter buffer length: 60 msec.
• Maximum payload length: 10 GSM Packets
• Using audio device for recording and playback (not files)

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 172 of 222

• 4 Audio buffers, each 512 bytes long

The payload length was dynamically changed during the call. The delay with these
smaller buffers was lower than the case with larger buffers.

GSM packets (RTP Payload
length)

Observation

1 Very bad, too much popping sound, a lot of
discontinuity, voice can not be understood

2 Very good, low delay, infrequent popping sound, voice
clear and of good quality

3 Excellent, low delay, no popping sound at all, voice
understandable, clear and of high quality

4 Excellent, acceptable delay, clear and understandable
voice of high quality

5-7 Excellent, somewhat acceptable delay, clear and
understandable voice of high quality

8-9 Very good quality, significant delay, if a packet is lost,
there is a long pause in voice, therefore, the need to ask
to repeat what was said is noticed.

The jitter is the best for
payload length 2. 3 is also
acceptable

0

100

200

300

400

500

600

700

1 63 125 187 249 311 373 435 497 559 621 683 745 807 869 931 993 1055 1117 1179 1241 1303 1365 1427 1489 1551

Test Case 3
Test with 2 iPAQs with no middle nodes and with the following RTP parameters.

• RTP initial jitter buffer length: 60 msec.
• Maximum payload length: 10 GSM Packets
• Using audio device for recording and playback (not files)
• 8 Audio buffers, each 512 bytes long

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 173 of 222

The payload length was dynamically changed during the call. The delay with the smaller
buffers was lower than the case with the larger buffer.

GSM packets (RTP Payload
length)

Observation

1 Very bad, too much popping sound, a lot of discontinuity,
voice can not be understood

2, 3 Very good, low delay, infrequent popping sound, voice
clear and of good quality

4-9 Bad quality, strange high volume popping sound, with a
constant poping frequency that decreases as the payload
increases. The delay increases from 4 to 10.

By far the worst setting. The
jitter values are never as
good as any other
experiment.

0

100

200

300

400

500

600

700

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576 601 626 651 676 701 726 751 776

Test Case 4
Test with 2 iPAQs with no middle nodes and with the following RTP parameters.

• RTP initial jitter buffer length: 60 msec.
• Maximum payload length: 10 GSM Packets
• Using audio device for recording and playback (not files)
• 4 Audio buffers, each 1024 bytes long

The payload length was dynamically changed during the call. The delay with these
smaller buffers was lower than the case when the buffers are larger.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 174 of 222

GSM packets (RTP Payload
length)

Observation

1 Very bad, too much popping sound, a lot of discontinuity,
voice can not be understood

2, 3 Very good, noticeable delay, voice clear and of good
quality

4-9 Good audio quality, but high delay.
Note that when payload
length goes over 4, the jitter
becomes significant.

0

200

400

600

800

1000

1200

1400

1 47 93 139 185 231 277 323 369 415 461 507 553 599 645 691 737 783 829 875 921 967 1013 1059 1105 1151

7.3.8. Results and Analysis
From the tests we deduce that choosing a payload length of only 1 GSM packet per RTP
packet is not a good choice at all. The results in all the cases were a high popping sound,
unclear voice and a large number of short pauses.

The best audio parameters settings were using 4x512 bytes buffers, and the payload
length can be ranging from 2 to 5, 2 sometimes having popping sound, 3 being the best,
and 5 with somewhat more delay but excellent quality. The selection was made to start
any audio session with 3 GSM packets per payload.

7.3.9. Future work
There can be many areas of improvements for the VoIP client, among which:

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 175 of 222

• Testing against different types of codecs is essential. AMR is a good candidate
for this.

• Deeper traces of audio device performance, in order to get a better control on the
delay. Maybe a different kind of sound system should be used.

• Support of conference calls.
• Support for video.

7.3.10. References
1. H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: A Transport

Protocol for Real-Time Applications,” RFC 1889 Jan. 1996.
2. AODV-UU, Ad Hoc On Demand Distance Vector implementation created at

Uppsala Universtity (http://user.it.uu.se/~henrikl/aodv/).
3. Helsinki University of Technology, Networking Laboratory

(http://www.netlab.hut.fi/~mayyash/pisa/index.htm).
4. GSM library v06.10 (http://kbs.cs.tu-berlin.de/~jutta/toast.html)
5. RTP library v2.9 (http://research.edm.luc.ac.be/jori/jrtplib/)
6. Programmers Guide to OSS http://www.opensound.com/pguide/index.html
7. Ethereal user guide: http://www.ethereal.com/docs/user-guide/

7.3.11. Ethereal Analysis
Each test case and each section contains analysis, statistics and traffic graphs obtained
using the Ethereal tool. It is worth mentioning that this tool was used to sniff everything
being heard on the channel, whether it was sent or received to the current node, or some
traffic between two other nodes that just happened to be heard on the current node.
The filters that were used in this tool to get the required plots and statistics are:

1. Time Limit
frame.time >= "Oct 1, 2004 20:24:26.502118" && frame.time <= "Oct 1, 2004
20:33:23.024789"
The time stamps are examples only. It is used to limit packet filtering between the
starting and ending time stamps. The reason for limiting time periods is to analyze the
relevant part of the experiment. During the execution of the experiment, there was a
starting period of time when the testers were just getting ready and an ending period of
time when the testers were finishing up. The logs reflects this as sniffed packets but with
no RTP traffic. The time stamps were decided by looking at the logs as a whole then
selecting the best period of time when actually talking was happening.

2. RTP With Time limit
ip.ttl==64 && udp.port == 55000 && ip.src == 10.0.0.6 && !icmp.type &&
frame.time >= "Oct 1, 2004 19:44:31.599465" && frame.time <= "Oct 1, 2004
19:53:28.418081"
This filter is used to list all sent RTP packets, in this example from node 6. It filters out
RTCP, ICMP and those packets that are sniffed as being forwarded by the next node.
When a packet is sent, the IP TTL field is set to 64, when it is received by the next node,
TTL field is decremented to 63 and then transmitted to the following node, however, this

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 176 of 222

transmission is heard by the first node and logged in the TCP dump as a second copy of
the same RTP packet except that IP TTL field is 63. This is important so as not to have
double the number of RTP packets sent in the analysis.

3. Received RTP packets with IP TTL field 63
ip.ttl== 63 && udp.port == 55000 && ip.src == 10.0.0.6 && !icmp.type &&
frame.time >= "Oct 1, 2004 20:24:26.502118" && frame.time <= "Oct 1, 2004
20:33:23.024789"
In this example, the filter lists packets sent from node 6 to node 5 with IP TTL field 63,
meaning those packets making the trip in two hope only. This happened sometimes
because, for example, it was still possible for laptop 50 and node 6 to see each other
directly. The filter also removes ICMP packets.

4. Received RTP packets with IP TTL field 62
ip.ttl==62 && udp.port == 55000 && ip.src == 10.0.0.6 && !icmp.type && frame.time
>= "Oct 1, 2004 20:24:26.502118" && frame.time <= "Oct 1, 2004 20:33:23.024789"
Same as filter 3, except it filters for those packets making the trip in 3 hops.

5. Received RTP packets with IP TTL field 63 OR 62
(ip.ttl== 63 || ip.ttl==62) && udp.port == 55000 && ip.src == 10.0.0.6 && !icmp.type
&& frame.time >= "Oct 1, 2004 20:24:26.502118" && frame.time <= "Oct 1, 2004
20:33:23.024789"
A combination of filters 3 and 4. It gives a total idea about the received RTP traffic
whether it made it in 2 or 3 hops.

6. AODV Traffic
aodv && frame.time >= "Oct 1, 2004 20:24:26.502118" && frame.time <= "Oct 1, 2004
20:33:23.024789"
This filter will list the AODV routing traffic between the two time stamps. It lists both
received and sent AODV packets.

7. OLSR Traffic
olsr && frame.time >= "Oct 1, 2004 18:27:52.979226" && frame.time <= "Oct 1, 2004
18:30:18.468502"
This filter will list the OLSR routing traffic between the two time stamps. It lists both
received and sent OLSR packets.

Audio device capabilities
The audio system model used is OSS (Open Sound System). This system provides audio
buffers for playback and recording. They are filled sequentially upon request. The code
can specify how many buffers the system should use and how large each buffer is.
It is important to keep the audio buffer segments small specifically in realtime
applications [OSS manual page 97]. Following the recommendation of OSS manual,
very short segments will not be used [OSS manual page 98]. Every buffer under run will
result in a popping sound [OSS manual page 98]
Since GSM encoding requires 13 bits per sample, 8000 sample per second (8KHz), the
audio device is configured to record 16 bits sample at 8KHz mono stream. The GSM
library used accepts 16 bits per sample audio steam and handles that correctly to encode
and decode GSM packets. In other words, the incompatibility between 16bit audio on
iPAQ and the 13bit GSM codec requirements is wrapped and solved inside the GSM

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 177 of 222

codec library. Since each GSM packet represents 20 msec of audio, this gives 160
samples at 8KHz 160 (sample) = 20/1000 (sec) * 8000 (sample/sec)
Each sample is 16 bit, hence the block of bytes to be requested from the audio device
each time a GSM packet is to be sent is 2 * 160 = 320 bytes. Most of our trials should
that the best situation is 3 GSM packets, i.e. 960 Bytes.
The best buffer setup, as observed from the trials, is 4x512 bytes audio buffers. The
observation is that the more fragmented the audio buffer, the better achieved
performance, but some limits apply.
First, the larger one segment means it will introduce buffers of the audio device looks
like:

The software starts by requesting 960 bytes from the audio device, and waits until they
are available. Then it starts encoding and sending them, meanwhile, it keeps the audio
device busy recording the next audio data. On average, the measured time the code takes
to encode and send 60 msec of audio is 10 msec.
The audio device will have to record full segments before delivering back the audio data
[OSS manual page 95]. It will record 2 segments full of 512 bytes. 512 bytes equals
256 sampls, each 16 bit. That is equivalent to 256/8000 = 32 msec. For the audio device
to record 2 of those segments, it requires 64 msec. It is there where the misalignment
between the request audio time by the code and the audio time the audio device must
spend in delivering it. The code is asking for 60 msec of audio, but the audio device can
deliver that in 64 msec, of course, after recording 64 msec worth of audio, not just 60
msec. It is not possible to interrupt the audio device while recording once the 60 msec
are available, and it is not possible to retrieve them once they are available, the audio
device must finish the current segment. The cycle should look like this:

512

512

512

512

512

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 178 of 222

Note how the 4 msec wait is to be added to every cycle every 2 cycles. First the audio
device records 64 msec, then the code takes out 60 msec and leaves 4, the second cycle,
the audio device has to record 60 msec only, since there are already 4 left from last cycle.
The code in this case will wake up in exactly the same time when the audio device
finishes recording, and will be able to take 60 msec immediately. It leaves the buffer
segments totally empty. Now the cycle repeats, the audio device will spend 64 msec
recording, after 60 msec, the code wakes up to request 60 msec, but it has to wait 4 msec
until recording is complete.

Ideally, the code should expect enough full segments to send when it wakes up. A delay
is introduced if that does not happen. If the code wakes up and the audio device for some
reason is still recording, or if the code wakes up and there are not enough full fragments,
then a call from the code to the audio device to get the recorded audio will be blocked
until the audio device can fill enough segments and deliver the requested audio. This is
added delay to the sending time, and in the worst case, specially of the audio device is
configured in a different way that will not allow the aforementioned cycle, it will be the
time to record 2 segments, which is the reason why sometime transmission deadlines are
missed. A solution to this problem is the jitter buffering at the receiver side. The
following diagram illustrates:

Record 64 msec Record 60 msec

P Sleep

Record 64 msec

P Sleep

P: Processing: Reads 60msec worth of bytes, leaves the
rest. Then it encodes the GSM packets, packs them in
RTP packets, and then sends them. Typically, 10 msec is
needed.

60
 ~10 msec processing

0

64

4

P Sleep

Record 60 msec

 Wait 4

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 179 of 222

Record X msec
P Sleep

Record X msec
Sleep

P: Processing: Reads 60msec worth of bytes, leaves the
rest. Then it encodes the GSM packets, packs them in
RTP packets, and then sends them. Typically, this takes
10 msec

Record X msec
Empty buffers, wait…

Audio available
now

10 msec to process

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 180 of 222

8. MOBILEMAN MEDIUM SCALE TEST BED

An extensive experimentation of MobileMAN solutions was carried out in Pisa at CNR
(Italian National Research Council) last summer in five different days: 29 May, 3 June,
11 June, 17 June and 23 July 2005. The participants of MobileMAN Experimentation
were selected from students of Computer Engineering of University of Pisa. Since we
have received many requests to participate in this experimentation, a selection between
candidates based on technical skills was necessary. In particular, we were interested in
selecting students with a basic knowledge of Linux operating system and the ability to
configure wireless cards in ad hoc mode. Moreover, we chose students that were willing
to use their own laptops during the experimentation in order to obtain a heterogeneous
configuration of the network. Specifically, the following 20 students were selected
among Bachelor’s degree candidates (first group) and Master’s degree candidates (second
group):

• Gaetano Anastasi, Giovanni Bianchi, Roberto Corradi, Marco D’Alò, Danilo
Levantesi, Fabrizio Lovino, Damiano Macchi, Matteo Mattei, Luca Melette,
Luca Niccolini, Mario Olivari, Stefano Pallicca

• Annalisa Bizzarrini, Chiara Boldrini, Edoardo Canepa, Mario Di Francesco,
Salvatore Gerace, Ilaria Giannetti, Iacopo Iacopini, Giacomo Santerini

These two groups of people, coordinated by CNR research assistants, Eleonora Borgia
and Franca Delmastro, set up in CNR campus a MobileMAN network involving up to 23
nodes.

The experimentation focused on the analysis of different layers of the protocol stack to
compare a legacy architecture performance with those of a cross-layer architecture. In
particular we focused on:

- a comparative performance analysis of two different routing protocols (OLSR and
AODV) both in static and mobile scenarios;

- a comparative analysis of two different middleware platforms (Pastry for the
legacy architecture and CrossROAD for the cross-layer architecture). In case of
Pastry an open source implementation called FreePastry has been used on top of
the two routing protocols. On the contrary, CrossROAD, which requires a
proactive routing protocol, ran exclusively on top of OLSR. In addition its
implementation has been enhanced with a cross-layer service discovery protocol.
Both systems were analyzed in static and mobile scenarios.

A great number of experiments had been conducted during this experimentation. A
detailed description of all of them is available in Appendix A. In following sections the
most meaningful experiments are described and main results on system performance are
detailed.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 181 of 222

8.1. Experimental Environment
All the experiments took place at the ground floor in CNR campus in Pisa. Since more
than 20 nodes were involved in this experimentation, a wide area has been used for
testing a medium scale network. Hence, in addition to the CED Area used in previous
experimentations, the Conference Area located in the adjacent building was also used
(see Figure 8.1). The structural characteristics of these buildings strictly determine the
transmission capabilities for nodes of a wireless network located within. Rooms are
generally delimited by masonry padding walls situated between reinforced concrete
pillars; in addition, in the CED area some locations are separated by either “sandwich
panels” of plastic materials which don’t reach the height of the ceiling, or metal panels
till the ceiling. Wireless links are also influenced by the presence nearby of Access Points
and measurement instrumentations which introduce quite a lot of noise.
Moreover, about 30-40 people work in this floor every day and get around from office to
office or towards service areas with coffee machines, toilets, etc. This makes the
transmission coverage characteristics of the floor and the stability of the links modify
continuously and in an unpredictable manner. For this reason all the experiments were
executed during Saturday or non-working days to reduce human interferences
maintaining a realistic environment to test an ad hoc network.

Figure 8.1: Experiment Area

Devices
Devices used for these experiments were laptops running Linux with different hardware
capabilities. They were equipped with wireless cards compliant to IEEE 802.11b standard
working at the constant data rate of 11Mbps. Most laptops were equipped with an
integrated wireless card, while for the others PCMCIA cards were used. The variety of
devices caused appearing/disappearing of some links in different experiments, depending

CED Area

Conference Area

Restaurant Area

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 182 of 222

on the power of wireless cards. In the following list, devices are referred to as numbers
corresponding to the last byte (digit) of their IP address assigned during the
experimentation.

Laptops

.1:
Model: IBM ThinkPad R40 Series - Centrino® Mobile Technology
Processor: Intel® Pentium® M - 1300MHz
Wireless LAN PC Card: D-Link DWL 650

.20:
Model: IBM ThinkPad R40 Series - Centrino® Mobile Technology
Processor: Intel® Pentium® M - 1300MHz
Wireless LAN PC Card: Intel PRO/Wireless 2100 Integrated wireless card

.40:
Model: IBM ThinkPad R40 Series
Processor: Mobile Intel® Pentium® 4 - 2 GHz
Wireless LAN PC Card: D-Link DWL 650

.52, .53,.54, .55, .56, .57, .58, .59, 111:
Model: IBM ThinkPad R50 Series
Processor: Mobile Intel®– 2.000GHz
Wireless LAN PC Card: Intel PRO/Wireless 2200 Integrated wireless card

.100:
Model: Asus LK8470
Processor: Intel® Pentium® 3 – 1.13 GHz
Wireless LAN PC Card: D-Link DWL 650

.104:
Model: ECS G553 - Centrino ® Mobile Technology
Processor: Intel® Pentium® M – 1.6 GHz
Wireless LAN PC Card: Intel PRO/Wireless 2200 Integrated wireless card

.105:
Model: ASUS L8400L
Processor: Intel® Pentium® 3 – 800 MHz
Wireless LAN PC Card: Sitecom

.106:
Model: CDC Premium HI BRITE
Processor: Intel® Pentium® M – 1.6 GHz
Wireless LAN PC Card: Intel PRO/Wireless 2200BG Integrated wireless card

.107:
Model: HP Pavilion ze4932ea
Processor: Intel® Pentium® M - 1.4 GHz
Wireless LAN PC Card: Broadcom 802.11b/g 54

.108:
Model: ASUS Z8000
Processor: Mobile Intel® Pentium® 4 – 3 GHz
Wireless LAN PC Card: Broadcom Integrated wireless card

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 183 of 222

.109:
Model: ASUS z8100 A4D
Processor: Amd 3000+
Wireless LAN PC Card: Sitecom WL100

.110:
Model: Acer Travelmate 292 LMi
Processor: Mobile Intel® Pentium® 4 - 1.5 GHz
Wireless LAN PC Card: Intel 802.11b/g Integrated wireless card

.112:
Model: ASUS a28
Processor: Mobile Intel® Pentium® 4 - 3.4 GHz
Wireless LAN PC Card: Broadcom Integrated wireless card

.113:
Model: HP pavilion ze4500
Processor: AMD Athlon XP 2500+
Wireless LAN PC Card: Sitecom WL-112

.115:
Model: Acer Travelmate 8104 WLMi
Processor: Intel® Pentium® M – 2 GHz 2
Wireless LAN PC Card: Intel PRO/Wireless 2915ABG Integrated wireless card

Software
As in the MobileMAN experimentation on small-scale ad hoc networks, the main goal of
this work was to test different implementations of protocols at different layers. In
particular routing, middleware and application solutions were considered using more
recent software versions. We divided all experiments in two main groups based on the
layer of interest.

The first set of experiments focused on evaluating a reactive and a proactive routing
protocol. We used UU-AODV v.0.8. [1], developed by Uppsala University (Sweden), as
reactive protocol. On the other hand we used UNIK-OLSR v.0.4.8 [2], developed by
University of Oslo (Norway) as proactive protocol.

The second set of experiments focused on evaluating performance of two middleware
platforms on this real ad hoc network of 23 nodes. First of all we analyzed FreePastry,
starting from previous experimental results presented in [3]. Then we evaluated
CrossROAD [4] performance, exploiting a first prototype of cross-layer architecture
based on UNIK-OLSR that has been already presented in [4]. The software
implementation of Pastry used in these experiments was FreePastry-1.3 [5], an open-
source implementation developed by the RICE University, while CrossROAD has been
entirely developed by the IIT Institute of CNR in Pisa. All laptops have been equipped
with the j2sdk-1.4.02 [6] Java Virtual Machine. In addition, each type of experiment
related to Pastry was repeated running UNIK-OLSR and UU-AODV to completely

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 184 of 222

evaluate the system performance and the impact of these two different routing protocols
on a real ad hoc network of such dimensions.

A simple application of Distributed Messaging (DM) was installed on top of both
systems, aimed at creating the overlay network and distributing data. This application
implements the P2P common API originally proposed in [7] and also developed by
FreePastry. Specifically, the application developed for FreePastry 1.3 implements main
features of the original definition, while in case of CrossROAD a cross-layer
enhancement of the same commonAPI (XL-CommonAPI) has been defined in [8] and
completely developed. The main feature of these interfaces consists of defining a
common interface between applications and middleware platforms based on structured
overlay networks, to guarantee the portability of several services on different overlays. In
particular, in case of XL-CommonAPI, cross-layer information mainly comes from the
routing protocol, and they are exported to applications to optimize their behaviour on top
of ad hoc networks.

DM specifies the IP address of the local node as its logical identifier. Its numerical
representation strictly depends on the hash function chosen by the underlying system (e.g.
FreePastry and CrossROAD use the SHA-1 hash function, but FreePastry also adds a
random quantity to the final value). In case of Pastry, the application recovers the IP
address of the bootstrap node from a configuration file, since the local node must know
one of its neighbours to join the overlay. If no bootstrap node is specified, the local node
creates a new overlay. The bootstrap procedure is needed by Pastry to initialize overlay
data structures used to communicate with other nodes of the system. Then, periodical
monitoring procedures are used to update the same data structures. On the other hand,
CrossROAD does not need any bootstrap procedure. The cross-layer service discovery
protocol spreads and collects services information exploiting the proactive flooding of the
routing protocol. Hence, CrossROAD autonomously builds its overlay collecting IP
addresses of nodes providing the same service, and applying the hash function to their
values. No bootstrap nodes are required, and the overlay data structures are initialized
and updated with the same frequency of the routing protocol updates which contain the
services information.

In both cases, once the local node has created/joined the overlay, the application allows
users to create/delete a mailbox, and to send/receive messages to/from a specific mailbox.
The subject-based routing of these systems requires that a key is assigned to each
message. The key represents a logical identifier of the overlay so that the related message
is sent to the node logically closest to the value of the key. For this reason, in order to
create a mailbox and store it on a node of the system, users have to specify an identifier
that represents the key of the “CREATE” message. Then they can send and receive
messages from the same mailbox specifying its identifier.

To make experiments as much automatic as possible, a set of scripts has been developed
and the application has been enhanced with some features that allow the periodical
generation of messages with random keys, guaranteeing the data distribution on all nodes
of the network.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 185 of 222

Figure 8.1. Physical position of nodes.

8.2. The network topology
The first step to set up the ad hoc network and start investigating software features was
configuring the network topology. We had 23 nodes to be distributed inside the CNR
campus to carry out a multi-hop ad hoc network as much large, as possible. For this
reason we used a heterogeneous environment consisting of indoor and outdoor spaces
since not all buildings are strictly connected between them. We started from the same
configuration used in the experimental session of July 2004 with 12 nodes, explained in
[3]. Since we used a greater number of laptops with different capabilities (also for the
transmission range of wireless cards), a new measurement of the link connectivity had to
be done. In this case the interested area was extended from the CED area to the
neighborhood of the conference area as shown in Figure 8.1. Most part of nodes (17) was
located inside buildings. In particular we placed 13 at the ground floor (red circles), three
at the first floor (green circles), and one on the stairs (the blue circle). The last six nodes
were located outside the buildings (violet circles) along the street or the corridor between
the involved buildings. In order to verify the coverage area of every device, each node
started running UNIK-OLSR for five minutes storing the kernel routing table in a log file
every second. Then, we analyzed the set of 1-hop neighbors of each node to define the
final network topology. Considering a large multi-hop ad hoc network we could test and
evaluate features and performance of a complete MANET architecture. For this reason,
since many devices had a wireless card with a high transmission power, we had to reduce

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 186 of 222

it on single nodes (if allowed by the driver of the wireless card) to remove some
redundant links. We repeated this procedure many times to check that the obtained
configuration was stable. Figure 8.2 shows the final network topology, where straight
lines point out the presence of stable links (two nodes directly see each other), dashed
lines show the presence of weaker links (the communication between two nodes is
affected by a considerable packet loss). We thus obtained a multi-hop MANET of 23
nodes with the maximum extension of eight hops. To simplify the explanation of single
experiments, we referred to the network topology through the graph illustrated in Figure
8.3.

Figure 8.2. Network topology

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 187 of 222

Figure 8.3. Topology graph

8.3. Routing Algorithms Experiments
The second step was investigating the performance of OLSR and ADODV routing
protocols for MANET in static and mobile scenarios. We analysed several parameters to
make a comparison between them. In particular we focused on:

• the Overhead introduced in the network due to routing messages

• the Packet Loss suffered at the application level

• the Delay introduced in data transfer

In mobile networks case, we concentrated the analysis on packet loss and average delay
to analyze the network reconfiguration due to topology changes. In addition to routing
protocols we introduced some application traffic using the Ping utility. This guarantees
that AODV also runs in a complete manner, otherwise its routing information is reduced
only to the exchange of Hello packets and no route is calculated.

We performed the following type of experiments (more details are in Appendix A):

a. STATIC SCENARIO:

Experiment 1: all nodes started running the OLSR protocol together. After 30sec the external
nodes A and Y started pinging all the other nodes in the network, for 1 minute each, with
a random sequence. The two sequences used for the ping operation were different and
precisely:

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 188 of 222

Pinging sequence for node A: R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G,
P, W, D.

Pinging sequence for node Y: E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S,
C, T, N, Q.

Experiment 2: all nodes started running the OLSR protocol together. After 30sec all the nodes
started pinging for 1 minute all the other nodes in the network with a random sequence.
Table A.1 in Appendix A shows the sequences used by each node during the ping
operation. Nodes ran the routing protocol for other 30 sec before stopping. The whole
experiment took 23 minutes.

Experiment 3: in this case we used ADOV as routing protocol; the methodology is that of the
previous experiment, and the sequences used in the ping operation are the same of Table
A.1 to have a direct comparison between the two routing protocols.

b. MOBILE SCENARIO:

Experiment 1: this experiment is a “2-Central nodes Swap” in which the central nodes J and
N changed their position during a continuous ping operation from two external nodes.
More precisely, all nodes started running the OLSR protocol together (t=0). After 30sec
the external node Y started pinging node A continuously for 210 sec. At t=90 nodes, J
and N (two central nodes) started moving and swapped their positions after 30sec
(t=120), then they remained in this new configuration until the end of the experiment. At
t= 240 the experiment ended, so the ping operation and the routing protocol stopped
running.

Experiment 2: this experiment can be referred as “4-Central nodes Swap”. The four central
nodes J, M, O and N changed their positions in clockwise manner during a continuous
ping operation from two external nodes. More precisely, all nodes started running the
OLSR protocol together (t=0). After 30sec (needed for network stabilization), the
external node Y started pinging node A continuously for 300 sec. At t=90 node N started
moving and reached the position of node J in 30 sec (event 1), then it remained in this
new location until the end of the experiment. At t=120 node J started moving toward
node M and reached the new position after 30 sec (event 2). Event 3 started at t=150
when node M moved and it finished when M reached the position of node O at t=180. In
the same instant node O moved to the initial location of node N (event 4) stopping after
30 sec. At t=330 the experiment ended, so the ping operation and the routing protocol
stopped running. Figure 8.4 shows the 4 events of the experiments.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 189 of 222

Figure 8.4. 4-Central nodes Swap scenario

Experiment 3: this experiment can be referred as Roaming node: all the nodes were static
except the “roaming node” that moved crossing the entire network. The reference
scenario is shown in Figure 8.5. The experiment lasted 410 sec. After an initial phase for
OLSR (protocol) stabilization (30 sec), node Y started pinging node A for 380 sec. At
t1=90 from the initial position near node A, the pinger Y started moving inside the
building along the corridor with a speed of about 1 m/sec. It reached position of node C
after 30 sec (t2=120), position of node I after 15 sec (t3=135), then node K after 15 sec
(t4=150), node O after 15 sec (t5=165), position of node S after 30 sec (t6=195) and finally
it reached the opposite side of the network near node X after other 30 sec (t7=225). Once
it has reached the last position, it immediately moved in the opposite direction following
the reverse path and taking the same lags as in the forward path (from t7 to tf). Finally it
reached the starting position near node A after 2 min and 15 sec (tf=350).

Figure 8.5. Roaming node scenario

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 190 of 222

Experiment 4: in this case we repeated experiment 1 with the reactive routing protocol
running on each node.

Experiment 5: we repeated experiment 2 running AODV on each nodes.

Experiment 6: experiment 3 is repeated with AODV.

8.3.1. Static Scenario
In this section we compare OLSR and AODV referring to results obtained in experiment
2 and 3 (the reference scenario is shown in Figure 8.2). Specifically, we evaluate the
protocols’ performance by using the three indices introduced in the previous section.

Throughput analysis
Figure 8.6 presents the total overhead introduced by OLSR and AODV as a function of
the experiment 2 time instants. The curves are generated taking into account the amount
of control traffic generated by each node and forwarded by it, averaged between all nodes
taking part to the experiment.

As it clearly appears from the picture, OLSR and AODV have different behaviour. The
proactive protocol produces a load of about 600 Bps in the starting phase (first 40 sec),
then its load decreases to 400 Bps for the next 50 sec, finally a new steady state is
achieved till the end around 250 Bps. On the contrary, AODV reaches a steady phase
with a load of 400 Bps between 40 and 80 sec, then its load doubles with a peak of about

Figure 8.6. Overhead introduced by OLSR and AODV routing protocols.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 191 of 222

750 Bps around 90 sec, finally it stabilizes again varying from 300 and 500 Bps till the
end of the test-run. OLSR introduces a higher overhead during the starting phase, then
after a second phase in which its throughput coincides with AODV throughput, OLSR
performs better for the rest of the experiment. From the quantitative standpoint, OLSR
overhead falls in a range of [200-700] Bps, while using the reactive routing protocol it is
around [180-750] Bps. These results confirm that also in medium scale network the
overhead introduced by routing protocols, either using proactive and reactive approaches,
doesn’t affect negatively the system performance, indeed it reduces the available 802.11
bandwidth only of a small quantity.

Figure 8.7 and Figure 8.8 show the average overhead introduced by OLSR and AODV,
respectively, for different nodes depending on their position in the network. Since there
are 23 nodes in the network, in order to obtain a sharper graph only some of them are
plotted. Referring to OLSR results (Figure 8.7), note that node C, J, and O observe the
highest load since they are better connected with the rest of the network with 5 or more
neighbors each, instead nodes E, H, and T have an intermediate load since they have less
neighbors. At last nodes A and W obtain the lowest traffic around 100 Bps because they
are located in marginal position since they are leaves for the network (see Figure 8.3).
For AODV (see Figure 8.8) node F and O have the highest throughput, instead an
intermediate load is performed by nodes L and B. In this case the lowest load is
experienced by node E that, even though it isn’t a leaf, has a marginal location with only

Figure 8.7. Overhead introduced by OLSR for different nodes.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 192 of 222

two neighbors. An explanation of this behavior is the reactive nature of AODV that
makes the throughput also dependent on the application traffic

Figure 8.8. Overhead introduced by AODV for different nodes.

Packet Loss analysis

In the following paragraphs we analyze network’s performance taking experiment 2 and
3 as reference scenarios. Table 8.1 shows the overall Packet Loss suffered by the routing
protocols for different number of hops. Each percentage is obtained averaging all Ping
operations between two nodes distant x hops. Looking at the obtained results we can
notice that OLSR performs better than AODV delivering packets with less packet loss. In
particular OLSR has a good behavior at 1-hop distance delivering a huge number of data,
and then it suffers a packet loss of [15%-45%] with nodes distant more than 2 hops.
Finally it performs an error of more than 50% when ICMP packets pass through 6 or 7
nodes. On the contrary, problems with the reactive protocol are more evident. AODV
doesn’t work properly also in the nearby performing a packet loss of 20%, its
performance decreases experiencing a 50% loss rate when communicating with nodes at
a 2-hop distance. Finally its behavior drastically degenerates when the distance becomes
more than 3 hops, finishing successfully only 10% of Ping operations at 7-hop distance.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 193 of 222

 1 2 3 4 5 6 7

OLSR 5% 15% 28% 35% 45% 52% 67%

AODV 20% 51% 51% 61% 67% 86% 89%

Table 8.1. Overall Packet Loss suffered by OLSR and AODV for different number of hops.

Another observation can be derived taking into account results from the indoor string
topology as explained in Section 3.1. To summarize, in that scenario the OLSR
performance is acceptable in all Ping operations towards each node in the string, instead
AODV loses 50% of ICMP packets when communicating with nodes at 3-hop distance
(see Table 3.1.). On the contrary, in this medium-scale environment, also with few hops
we observe a high percentage of undelivered packets. Possible explanations are the
different network size (small vs. medium) and the complexity of the experiment (1 Ping
operation vs. 23 simultaneously Ping operations). In particular with concurrent
connections in the network each node can act as destination for a Ping operation and also
as router for another one. Thus the probability of collision at MAC layer is increased
considerably.

Delay analysis
To evaluate the delay introduced by the routing protocols we measured the end-to-end
latency for completing a Ping operation between couples of nodes. In particular we
consider two different delays in the network:

• Average delay to deliver the 1° successful packet

• Average delay to deliver all successful packets

Figures 8.9 and 8.10 present graphs of delay (expressed in milliseconds) suffered by the
routing protocols for different number of hops. Each value is calculated averaging time
required to complete Ping operations between two nodes distant x hops.

Figure 8.9 shows the average delay needed to complete successfully the first ping
operation. As it clearly appears, OLSR curve is (as expected) lower than AODV curve
due to the different nature of the routing protocols. In particular, OLSR curve increases
almost linearly up to 6 hops, and then it doubles at 7 hops. The reason is the instability of
the network that implies a network reconfiguration and hence an increase of time. On the
contrary, AODV curve is a step function. It needs about 2-sec delays to discover routes to
neighbours, then it introduces delays of about 10 sec in the range [2-5] hops and finally it
requires 15-17 sec to discover valid paths towards nodes distant more than 6 hops. These
high delays are due to the several attempts performed in the route discovery process. In

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 194 of 222

fact each node makes about 5-6 attempts in order to discover a valid route to its
destination.

Figure 8.9. Average Delay on 1° packet
suffered by OLSR and AODV for different
number of hops.

Figure 8.10. Average Delay on delivered
packets suffered by OLSR and AODV for
different number of hops.

Looking at Figure 8.10, note that OLSR requires delays in the range of (20msec, 60msec)
independently from the number of crossed hops, while AODV introduces higher delays.
More precisely, AODV Ping connections perform the following delays: about 200 msec
when they are shorter than 6 hops, about 700 msec towards nodes distant 6 hops and
about 1 sec toward nodes at 7-hop distant. The log files give an indication of these high
values. AODV doesn’t maintain the first discovered path to the same destination for the
entire duration of the connection, but it requires 1 or 2 attempts in order to re-establish a
valid route to the destination.

8.3.2. Mobile Scenario
In this section we compare routing protocols considering mobile scenarios with nodes
that change positions during the entire experiment. In the first scenario referred as
Roaming node, a node moves along the network; in the second scenario two central
nodes exchange their position and it is referred as 2-Central node swap; in the third
experiment 4 central nodes change their position (4-Central node swap). In all the
performed experiments each mobile node moves in the network with a speed of about
1m/s, i.e., low mobility scenarios. We analyze their results with particular attention to the
packet loss and the introduced delays for network reconfiguration.

Packet Loss analysis
Considering the Roaming node experiment (experiment 3 and 6), OLSR experiences a
25% packet loss, while AODV correctly delivers only 50% of packets. Examining the log
files, we observe that for OLSR the packet loss mainly occurs in the way back between
node X and Q (see Figure 8.5). In particular during this gap the Y routing table becomes
empty and node Y recovers the route to the destination only near node Q, so all packets
are completely lost. AODV instead loses all ICMP packets when node Y goes beyond
node D, so when the connection becomes longer than 4 hops none of ICMP packets

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 195 of 222

reaches the destination. Increasing the complexity of the proposed scenarios the
performance of the routing protocols becomes unacceptable: only a little percentage of
Ping operations is completed successfully. Two are the main causes. Firstly, the Ping
operation between node Y and A is a 7-hop connection. In the previous section we have
shown how the network’s performance decreases in static networks. Secondly, adding
mobility, the complexity of the network increases. To better understand, let’s consider the
similar scenario analyzed in the small scale network (see Section 3.1). Also in that case
more than 40% of packets were lost with both routing protocols. Hence, these two factors
cause the network breakdown.

Delay analysis
To evaluate the delay introduced in the network in the three scenarios we investigated the
time needed to update the routing tables with a valid route to the destination after
topology changes, independently from the correct delivery of packets. All the values are
measured from the standpoint of node Y. Starting from the Roaming node scenario,
OLSR performs a delay in a range of [4-9] sec to update routing table each time the
connection length increases of 1 hop. AODV suffers delays between [4-10] secs to
discover routes to node A from 1 to 4 hops long. The route discovery process takes more
than 10 sec when Y goes beyond node O (in this case routes are 5 or 6 hops long), but
since valid paths are maintained in the routing table only for few seconds no ICMP
packets are delivered successfully. Both protocols do not introduce any additional delay
in the reverse path. In the 2-Central node Swap the tested routing protocols lose a valid
path to the destination for 30 sec needed for central nodes’ exchange. OLSR is able to
reconfigure an 8-hop route properly only after 5 sec from the end of the exchange, instead
AODV requires other 90 sec to discover a valid route to node A. In the 4-Central nodes
scenario OLSR and AODV suffer high delays. In particular, OLSR loses the routing
table’s entry to node A from 1 to 4 sec after the start of each event and it needs delays
between 5 sec to 50 sec to reconfigure properly the routing table. AODV becomes aware
of the new event after 3-8 sec from the beginning and needs from 5 to 10 sec to re-
establish a valid route with also a peak of 60 sec when all network changes are
completed. Note that, in case of AODV, most of the discovered routes are stored in
routing tables only for few seconds, thus the discovery process is repeated frequently.
This is due to the nature of AODV that discovers also unstable paths. As consequence
Ping packets aren’t received correctly by the destination decreasing the overall system
performance. On the contrary, even though OLSR generates higher delays to network
reconfigurations due to a slow propagation of topology changes, its new paths are
maintained in the routing tables till the beginning of the new event. In fact the proactive
protocol looks for more stable routes and this allows the source to send and receive
application data successfully.

8.3.3. Conclusions
We investigated the performance of OLSR and AODV setting up a network of 7-8 hops
size with up to 23 nodes. We performed an extensive set of experiments comparing them
in static and mobile scenarios. The throughput analysis confirms that also in medium

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 196 of 222

scale networks the use of a proactive protocol doesn’t reduce the system performance
since it introduces an overhead of the same order of AODV. In addition with an OLSR a
higher amount of data is delivered successfully even with long connections. Referring to
delay introduced in the network, OLSR response times are much better than AODV.
Finally, considering the mobile scenario, even though OLSR is slower than AODV to
propagate the network changes, it performs better than the reactive protocols discovering
more stable routes and hence delivering more application data.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 197 of 222

8.4. Middleware Experiments
In the middleware experiments we compared CrossROAD and FreePastry in static and
mobile scenarios. In static scenarios we mainly analysed the overhead introduced by the
overlay management on the network in terms of throughput and delay. On the other hand,
in case of mobile scenarios, we focused on CrossROAD performance to distribute data on
the overlay nodes and the responsiveness of the cross-layer architecture to topology
changes. The network topology used in these experiments is shown in Figure 8.11.

Figure 8.11. Network topology

Since Pastry requires the knowledge of a bootstrap node to join the overlay, each node
running FreePastry must define a priori the IP address of that node to directly send its
join request. Obviously, the bootstrap node has to be active before other nodes sending
their join request. A time interval is thus associated with each join procedure to be
compliant with the bootstrap sequence and avoid connection failures during this phase.
To maintain a correspondence between the two different sets of experiments, the same
bootstrap sequence is also used for CrossROAD experiments. A description of the
overlay set up, and the joining procedure for each set of experiments, is detailed in
Appendix A. In addition for all these experiments all nodes were synchronized and
started running the routing protocol for 30 seconds to have the network topology
stabilized. Then they ran the DM application with different start-up delays, and they are
all active after 60 seconds from the starter of the overlay. In particular, to numerically
evaluate system performance grouped by throughput, delays, and data distribution, we
defined different types of experiment:

A

B

C

D

E

G

F I

H

K

J

P

M

N R

L

O Q

S

T

W

X

Y

A

B

C

D

E

G

F I

H

K

J

P

M

N R

L

O Q

S

T

W

X

Y

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 198 of 222

− Experiment 1: All nodes started running the routing protocol, followed by DM
application on top of CrossROAD or FreePastry. In this experiment no application
messages were sent in order to evaluate only the overhead introduced by the overlay
management on the routing protocol. DM ran for 4 minutes, and then each node explicitly
closed it. The routing protocol stopped after 30 seconds after DM ending.

− Experiment 2: All nodes started running the routing protocol, followed by DM
application. In this experiment one application message (“Create Mailbox” message) of
100 Bytes with a random key was generated and sent on the network by each node every
100 msec for 120 seconds. Before sending those messages, nodes waited for all the others
joining the overlay. Therefore, the first message was sent (on each node) after 60 seconds
from the first node that had started the overlay. The “Create Mailbox” message requires
to the destination node to store a mailbox with the specified identifier as the key of the
message. It does not require any reply.

− Experiment 3: All nodes started running the routing protocol, followed by DM
application. In this experiment one application message (“Create Mailbox” message) of
100 Bytes with random key was generated and sent on the network by each node (except
for nodes A and Y). Messages were sent with a period of 100 msec for a last of 120
seconds. At the same time, A and Y generated a “Get” message with a random key using
the same frequency of other nodes. As in the previous case, before sending all messages,
nodes waited for all the others joining the overlay. The “Get” message notifies to the
destination node the request of the list of messages stored in the mailbox with logical
identifier equals to the key of the message (the mailbox had to be previously created by a
“Create” message). The node selected as best destination for this kind of messages has to
directly reply to the sender with the list of messages. Using a timestamp inside the
application message, a round-trip delay can be measured.

− Experiment 4: All nodes started running the routing protocol, followed by DM
application. In this experiment 10 nodes (A, Y, T, R, M, H, I, C, E, G) generated a “Get”
message every 100 msec for 120 seconds, while the others (N, D, F, J, O, P, S, B, K, W,
Q, X) only maintained the overlay, receiving messages and replying directly to their
sender.

− Experiment 5: It is the same procedure of experiment 2 changing the frequency of
messages: all nodes generated a “Create Mailbox” message every 500 msec for 120
seconds. This experiment was conducted to analyze the effect of a traffic reduction on the
system performance.

− Experiment 6: data distribution in case of delayed joining of the overlay with
CrossROAD. In this experiment node L was not available, and all nodes, except for N
and M, started running UNIK-OLSR and XL-plugin creating two different ad hoc
networks (see Figure 8.12). They only ran the routing protocol for 30 seconds to have the
two network topologies stabilized. Then they ran DM application with different delays
following the same sequence specified for the first set of experiments on CrossROAD. N
and M, which are central nodes, started the routing protocol and the overlay with a delay
of 2 minutes joining the two networks in an only one. On the other hand, when all nodes
of the first group correctly participated in the overlay, A and Y started sending a “Get”
message every 200 msec for 6 minutes.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 199 of 222

A detailed description of each experiment can be found in Appendix A. In the following
sections the analysis of main performance results obtained by this experimentation is
presented. In particular, the overhead to maintain these two different overlays in terms of
throughput is presented in Section 0. Then, measured delays to distribute and recover
data are analyzed in Section 8.4.2 and, finally, the responsiveness of the cross-layer
interactions between CrossROAD and OLSR to distribute data in a partitioned overlay is
described in Section 0.

Figure 8.12. Network topology of the delayed joining of the overlay.

8.4.1. Throughput analysis

To analyse the overhead introduced on the ad hoc network by the different overlays
(Pastry or CrossROAD), we considered the experiment number 2, in which every node
generated an application message every 100 msec for 120 seconds after the initial phase
of 30 seconds to stabilize the network topology using the routing protocol only. We
defined the average throughput as the aggregation of the overlay management
throughput, the application data traffic, and the routing traffic sampled every second and
mediated on the number of network nodes. Considering the routing traffic together with
the overlay and application traffic is important in case of CrossROAD, because, on the
opposite of Pastry, CrossROAD does not introduce additional overhead to maintain the
overlay data structures at the middleware layer, but it exploits the routing protocol to
distribute services information and locally compute contents of the overlay data
structures. For this reason the overhead introduced to manage the overlay is moved at the
routing layer, thus slightly increasing the routing traffic (see Figure 8.14b). The average

M

N

A

B

C

D

E

G

F I

H

K

J

P R

O Q

S

T

W

X

Y

Network 1 Network 2

M

N

A

B

C

D

E

G

F I

H

K

J

P R

O Q

S

T

W

X

Y

M

N

A

B

C

D

E

G

F I

H

K

J

A

B

C

D

E

G

F I

H

K

J

A

B

C

D

E

G

F I

H

K

J

P R

O Q

S

T

W

X

Y

P R

O Q

S

T

W

X

Y

P R

O Q

S

T

W

X

Y

Network 1 Network 2

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 200 of 222

throughput is shown in Figure 8.13 considering three different cases: CrossROAD,
FreePastry running on top of OLSR, and FreePastry on top of AODV. As shown by the
figure, the overhead introduced by Pastry is much higher than that of CrossROAD, either
in case of OLSR or AODV routing protocols. This is mainly due to periodical TCP and
UDP connections needed by FreePastry to monitor the status of other nodes of the
overlay and consequently update overlay data structures. On the other hand, in case of
CrossROAD, each node becomes aware of changes in the overlay directly from the cross-
layer interactions with the proactive routing protocol. The cross-layer service discovery
protocol does not significantly overload the routing protocol since service information
piggybacked in routing packets consists of few bytes: the service identifier (int value of
32 bit) and the port on which the service is provided (int value of 16 bit). This
information is spread on the network with the same frequency of Hello packets (every 2
seconds).

Figure 8.13. Average aggregate throughput.

Note that the average throughput is close to zero for the first 30 seconds of the
experiment compared to high values in the second part of the experiment. In fact nodes
spent 30 seconds running only the routing protocol to stabilize the network topology, and
then they spent 60 seconds for the bootstrap procedure to wait for all nodes joining the
overlay. In case of Pastry, when the second node tried to connect to its bootstrap, a set of
data exchange is flooded on the network and increases the average throughput. Instead, in

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 201 of 222

case of CrossROAD, the throughput assumes low values until nodes started sending
application messages. Actually, the routing throughput is not zero. In fact, as is shown by
Figures 8.14 a) and b), in the first phase AODV assumes the lowest values since it only
sends Hello packets to discover one hop neighbours. On the other hand, OLSR enhanced
with XL-plugin coincides with the original protocol, since in that phase no services
information are flooded on the network. Instead, from 30 to 90 seconds the throughput
increases of about 60%, since in that period nodes started running CrossROAD at
different instants and they received service information from the others. After the
bootstrap procedure, the overhead approaches to the same values of OLSR, considering
the periodical sending of service information on the network with the same frequency of
Hello packets.

Since the additional overhead introduced by the cross-layer interaction on OLSR is
negligible, the average throughput of CrossROAD corresponds to the data traffic
introduced by DM application, while in case of Pastry the overlay management is much
higher than the application traffic (see Figure 8.15).

In addition, comparing the average throughput of FreePastry on AODV and OLSR on
each single node, we noticed that some groups of nodes measured highly different
throughput in these experiments. This is mainly due to the bootstrap procedure needed to
join the overlay in case of Pastry. Figures 8.16 (a, b, and c) show the state of the overlay
after the joining phase. In case of CrossROAD every node of the network participated in
the same overlay, since the cross-layer service discovery protocol notifies other nodes of
connection/disconnection events. On the other hand, in case of Pastry running on top of

Figure 8.14

a) Average aggregate throughput, the first phase. b) Routing throughput

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 202 of 222

OLSR, four overlays had been carried out and five in case of Pastry on AODV. These
phenomena depend on connection failures occurred during the join procedure, and they
influence the entire last of the experiment. In fact, when a node fails the connection to its
bootstrap node, it creates a new overlay. The failure can be due to the absence of a route
to the destination, or to the instability of the selected link. If some other nodes
consequently connect to the failed node, they join the new overlay and a future rejoining
with the original overlay is not possible. In Pastry, nodes are not aware of the network
topology and each of them is responsible only for maintaining information related to its
overlay. Hence, the amount of data to be exchanged in a small overlay is lower than that
exchanged in a wider one (see Table 8.2).

Figure 8.15. Average aggregate throughput and data traffic.

In Table 8.2 some entries are empty because during the execution of the experiment not
every node correctly ran the tcpdump utility to store sent and received packets. In case
of CrossROAD, the distribution of the average throughput of single nodes mainly
depends on the location of nodes in the network topology, since most connected nodes

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 203 of 222

and central ones not only see packets generated and received by themselves, but also
packets that they forward to other nodes. On the other hand, in case of Pastry, nodes that
had built an independent overlay, without other participants, measured a very low
throughput (e.g. node A in OLSR measured 446 Bps, while node G in AODV measured
550.56 Bps). In these cases the measured throughput refers to the routing overhead and to
periodical tentative connections to the original bootstrap node to recover information on
other nodes taking part in the same overlay. In these cases application messages are only
sent to the local node without involving the network socket, since every random key is
nearest to the local node identifier. In addition, nodes that originated an overlay of two or
three participants measured about the same amount of throughput either in case of AODV
and OLSR. For example, nodes K and J in the OLSR experiment measured about the
same throughput of nodes A and B in the AODV experiment. On the other hand, highest
values of throughput were measured by nodes participating in the original overlay. Since
the number of nodes in the original overlay in case of OLSR is greater than that in case of
AODV, the average throughput of Pastry on OLSR is higher than that of Pastry on
AODV. In fact, the average throughput shown in Figure 8.13 represents the average on
all nodes of the network, independently from the number of overlays.

 Figure 8.16.

a) CrossROAD overlay b) Pastry on OLSR overlays c) Pastry on AODV overlays

A

B

C

D

E

G

F I

H

K

J

P

M

N R

L

O Q

S

T

W

X

Y

A

B

C

D

E

G

F I

H

K

J

P

M

N R

L

O Q

S

T

W

X

Y

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 204 of 222

Nodes
CrossROAD

Bps

Pastry on OLSR

Bps

Pastry on AODV

Bps

A 7864.83 446.02 9818.63

B 14340.44 21105.81 10121.92

C 6987.27 50445 15074.81

D 9825.43 29758.44 7810.33

E 6425.7 10801.22 2434.22

F 13929.36 67684.04 8875.53

G 17517.3 50711.24 550.56

H 7485.49 3626.05 5308.8

K 3625.77 9750.221 102910.1

J 14441.47 9983.44 -

I 11457.44 3662.84 10988.85

M 2499.88 6712.37 8308.95

N 13353.95 74777.96 10070

O 13171.84 10574.02 5368.29

P 10455.38 3007.5 -

Q - 10171.61 10960.5

R 10684.71 57114.13 5334.54

S - 5985.35 -

T 13830.02 12480.14 14180.41

W 3667.63 3463.5 5418.92

X 13217.73 - -

Y 12741.6 10300.04 11917.92

Table 8.2. Average throughput per node.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 205 of 222

.

8.4.2. Delays Analysis
To analyze the distribution of delays measured by nodes to send a specific message and
receive the related reply, we considered the experiment number 4. In this experiment 10
nodes (A, Y, T, R, M, H, I, C, E, G) generated a “Get” message every 100 msec for 120
seconds, while the others (N, D, F, J, O, P, S, B, K, W, Q, X) only maintained the
overlay, receiving messages and replying directly to the sender. Even though only a part
of nodes is involved in the message transmission, this experiment is the most suited for
analysing delays. In fact in each “Get” message a timestamp was added to the original
content by the sender. When it thus receives the related reply maintaining the original
timestamp, it directly computes the delay as the difference between the local time and the
original timestamp.

Percentiles CrossROAD

Pastry on OLSR

(main overlay of
15 nodes)

Pastry on AODV

(main overlay of 12
nodes)

0,6 599 msec 11.171 sec 9.138 sec

0,7 2.306 sec 20.032 sec 16.055 sec

0,8 4.692 sec 34.846 sec 28.823 sec

0,9 10.648 sec 46.340 sec 75.475 sec

0,95 23.025 sec 61.858 sec 88.701 sec

0,99 60.468 sec 111.560 sec 105.649 sec

Table 8.32. Percentiles of the delay distribution.

The delay distribution and related percentiles, shown in Figure 8.17 and Table 8.3,
respectively, highlight that delays reach the order of 100 seconds in case of Pastry and 60
seconds in case of CrossROAD, but the most part of them is concentrated on the
following time intervals: (0, 100msec) and (100msec, 500msec). In order to have a
consistent view of the distribution, only packets generated and received by nodes of the
main overlay were considered. In fact, in case of the smaller overlays, delays are reduced
to few milliseconds because few packets have to be managed by the involved nodes.
High delays measured in the main overlay can be due to processing data packets and
concurrently managing overlay data structures with other TCP and UDP connections (in
case of Pastry). In addition, since the network topology is also characterized by
redundancy, and in some cases unstable links, the distribution of data packets through
TCP connections can be delayed by many retransmissions, increasing the related timeout.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 206 of 222

Figure 8.17. Delays distribution (seconds)

8.4.3. Data Distribution in case of delayed joining of the overlay
To analyse the responsiveness of the cross-layer interactions of CrossROAD with the
routing protocol, we carried out a set of experiments in which central nodes started the
routing protocol and the overlay with a delay of 2 minutes after the others. In this way,
even though nodes were not moving, the topology changes, and CrossROAD became
aware of these changes; this has an important consequence for the application. We
analysed results from experiment number 6, where, referring to the topology graph shown
in Figure 8.12, all nodes, except for N and M, started running UNIK-OLSR and XL-
plugin creating two different ad hoc networks. N and M, which are central nodes, started
the routing protocol and the overlay with a delay of 2 minutes joining the two networks in
one. Note that the first group of nodes not only created two different ad hoc networks but,
running CrossROAD and DM application, they also generated two different overlays. In
addition, when all nodes of the first group correctly participated in the overlay, A and Y
started sending a “Get” message every 200 msec for 6 minutes. Since the key of each
message was randomly selected, messages were originally sent to random destination
inside the network area of the sender (i.e. node A sent messages to nodes of Network 1,
while node Y sent messages to nodes of Network 2). Then, when nodes N and M joined
the routing protocol, the cross-layer service discovery protocol flooded the service
information of all participating nodes on the entire network. From that moment senders
became aware of the topology change through the cross-layer interaction with the routing

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 207 of 222

protocol, and their random messages were sent also to nodes located in the other network
area. In addition, when N and M also joined the overlay, they became also possible
receivers of those messages. As is shown by Figure 8.18, messages are initially
distributed on nodes of the same area of the sender and, after the first 100 packets, they
are also sent on the other area.

8.4.4. Conclusions
By setting up a large-scale ad hoc network, we really examined system features and
performance in real conditions, using both static and mobile scenarios. Even though this
kind of experimentation is difficult to be carried out, due to the high number of people
and devices involved, it allowed us to analyze advantages and drawbacks of a complete
MANET architecture. Analyzing performance of a simple distributed application on top
of two different p2p systems, we pointed out advantages of using a cross-layer approach
to exploit network topology information at the middleware layer, and drawbacks of using
a legacy p2p system on ad hoc networks. The main purpose of a structured overlay
network consists of defining a good policy to distribute workload on all nodes of the
network.

Figure 8.18. CrossROAD data distribution in case of partitioned overlay and consequently
joining.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 208 of 222

In a legacy solution, for fixed Internet, there are no connectivity problems and the joining
procedure that requires a bootstrap node is not a problem. On the other hand, on ad hoc
networks characterized by unstable links and mobile nodes, the high possibility of
connection failures during this phase negatively influences the system performance. In
addition, using a great number of UDP and TCP connections to update overlay data
structures increases the network overhead and delays of application messages. From these
results we pointed out that a cross-layer solution developed to optimize the structured
overlay on ad hoc networks increases the system performance making nodes independent
of each other in managing the overlay, and able to notify them their connection or
disconnection events through a proactive routing protocol. The overhead needed to
maintain the overlay is thus transferred at the routing layer, but it is quite negligible.
However, high application delays have to be investigated to study further optimizations
in order to improve the system performance.

8.5. References
[1] http://www.olsr.org

[2] http://user.it.uu.se/~henrikl/aodv.

[3] D8: MobileMAN First phase, http://cnd.iit.cnr.it/mobileMAN/pub-deliv.html

[4] D13: MobileMAN domain modelling, http://cnd.iit.cnr.it/mobileMAN/pub-
deliv.html

[5] FreePastry, www.cs.rice.edu/CS/Systems/Pastry/FreePastry.

[6] Java API specification, http://java.sun.com.

[7] P. Druschel J.Kubiatowicz I. Stoica F. Dabek B. Zhao, “Towards a common API
or structured peer-to-peer overlays”, Proc. of IPTPS’03 Workshop, Berkeley,
CA, Feb. 2003.

[8] M. Conti, F. Delmastro, and E. Gregori, “Cross-Layer extension of the P2P
CommonAPI for structured overlay networks”. Technical Report available at
http://cnd.iit.cnr.it/people/fdelmastro/

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 209 of 222

8.6. Appendix A: Journal of the Experiments

28th May: Setting up the topology

During the first day we investigated the network topology. Our goal was to create an ad hoc

network of 23 nodes as much large, as possible in a heterogeneous environment. For this reason

we used a heterogeneous environment consisting of indoor and outdoor spaces since not

all buildings are strictly connected between them. We started from the same

configuration used in the experimental session of July 2004 with 12 nodes, explained in

[3]. Since we used a greater number of laptops with different capabilities (also for the

transmission range of wireless cards), a new measurement of the link connectivity had to

be done. In this case the interested area was extended from the CED area to the

neighbourhood of the conference area as shown in Figure A.1.

Figure A.1. Physical position of nodes.

Most part of nodes (17) was located inside buildings. In particular, 13 at the ground floor

(red circles), three at the first floor (green circles), and one on the stairs (the blue circle).

The last six nodes were located outside the buildings (violet circles) along the street or

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 210 of 222

the corridor between the involved buildings. In order to verify the coverage area of every

device, each node started running UNIK-OLSR for five minutes storing the kernel

routing table in a log file every second. Then, we analyzed the set of 1-hop neighbors of

each node to define the final network topology. Considering a large multi-hop ad hoc

network we could test and evaluate features and performance of a complete MANET

architecture. For this reason, since many devices had a wireless card with a high

transmission power, we had to reduce it on single nodes (if allowed by the driver of the

wireless card) to remove some redundant links. Most of the transmission power of cards

had been set to 12 dBm. We repeated this procedure many times to check the obtained

configuration was stable. Figure A.2 shows the final network topology, where straight

lines point out the presence of stable links (two nodes directly see each other), dashed

lines show the presence of weaker links (the communication between two nodes is

affected by a considerable packet loss). We thus obtained a multi-hop MANET of 23

nodes with the maximum extension of eight hops.

Figure A.2. Network topology.

In the following paragraphs we refer to the network topology as the graph shown in Figure A.3.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 211 of 222

Figure A.3. Network topology graph.

3rd June: Experiments with Routing Protocols on static network

In this set of experiments we investigated the behavior of the selected routing protocols

considering only static scenario. In addition to UNIK-OLSR and UU-AODV we introduced some

application traffic using the Ping utility. This guarantees that AODV also run in a complete

manner, otherwise its routing information is reduced only to the exchange of Hello packets and

any route is calculated.

Experiment 1: all nodes started running the OLSR protocol together. After 30sec the external
nodes A and Y started pinging all the other nodes in the network, one minute each, with a
random sequence. The two sequences used for the ping operation were different and
precisely:

Pinging sequence for node A: R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G,
P, W, D.

Pinging sequence for node Y: E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S,
C, T, N, Q.

At the end of the ping operation each node ran OLSR for other 30sec and then stopped.
The experiment lasted 23 minutes.

Experiment 2: all nodes started running the OLSR protocol together. After 30sec all the nodes
started pining for 1 minute all the other nodes in the network with a random sequence.
Table A.1 shows the sequences used by each node during the ping operation. Nodes ran

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 212 of 222

the routing protocol for other 30 sec before stopping. The whole experiment took 23
minutes.

Experiment 3: in this case we used ADOV as routing protocol; the methodology and the last
are equal to the previous experiment, and the sequences used in the ping operation are the
same of Table A.1 in order to have a direct comparison between the two routing
protocols.

PINGER PINGING SEQUENCE

A R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W, D.
B L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K.
C T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S.
D A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W.
E F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y.
F M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E.
G P, W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J.
H K, B, L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M.
I J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O.
J G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I.
K B, L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H.
L O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B.
M X, H, K, B, L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F.
N Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S, C, T.
O I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L.
P W, D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G.
Q Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S, C, T, N.
R S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A.
S C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R.
T N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S, C.
X H, K, B, L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q, Y, E, F, M.
Y E, F, M, X, H, K, B, L, O, I, J, G, P, W, D, A, R, S, C, T, N, Q.
W D, A, R, S, C, T, N, Q, Y, E, F, M, X, H, K, B, L, O, I, J, G, P.

Table A.1. Sequence for the ping operation used by each node.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 213 of 222

June 11th, 2005: Experimenting CrossROAD in static scenarios

Every node of the network ran CrossROAD and DM application on top of UNIK-OLSR.

Since CrossROAD exploits a cross-layer interaction with OLSR, the prototype of the

cross-layer architecture has to run on all nodes. As presented in [D13], it has been

developed as a dynamic library for latest versions of UNIK-OLSR (v.0.4.8 and v.0.4.9)

and it has been called XL-plugin.

XL-plugin is dynamically loaded by the OLSR daemon at the start-up but it is involved in

the entire system only when a new instance of CrossROAD is created. Each instance of

CrossROAD is strictly related to a particular service. It thus provides the specific service

identifier to XL-plugin, which forwards the same information to the routing protocol as

additional information to be piggybacked in routing packets. Therefore, the proactive

flooding of the routing protocol guarantees a complete knowledge not only of the

network topology but also of the list of services currently provided.

For all the experiments in static scenarios, all nodes started running UNIK-OLSR and

XL-plugin. They only ran the routing protocol for 30 seconds to have the network

topology stabilized. Then they ran DM application with different delays trying building a

single overlay network. Specifically, referring to Figure A.3:

− N started DM as the first node of the overlay;

− E, K, M, L, R, O started DM after 10 seconds from N, as its 1-hop neighbours;

− D, J, Q, S, P started DM after 20 seconds from N, as its 2-hops neighbours;

− C, B, G, F, I, T, Y, W started DM after 30 seconds from N, as its 3-hops
neighbours;

− A, H, X started DM after 40 seconds from N, as its 4-hops neighbours.

This order has been defined to reproduce the starting sequence of Pastry, where each

node has to connect to one of its physical neighbour to join the overlay. Even though

CrossROAD does not need to group nodes dependently on their physical position, this

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 214 of 222

allows us to better evaluate CrossROAD and XL-plugin in publishing services identifiers

and building the overlay network. Single sessions of experiments are detailed below:

− Experiment 1: All nodes started running OLSR and XL-plugin, followed by DM
application as specified in the aforementioned sequence. In this experiment no
application messages were sent in order to evaluate the overhead introduced by the
overlay management on the routing protocol. DM ran for 4 minutes, and then each node
explicitly closed it producing a DisconnectMessage from the XL-plugin to notify the
disconnection from the overlay. The routing protocol stopped after 30 seconds after DM
ending.

− Experiment 2: All nodes started running OLSR and XL-plugin, followed by DM
application as specified in the aforementioned sequence. In this experiment one
application message (“Create Mailbox” message) of 100 Bytes with a random key was
generated and sent on the network by each node every 100 msec for a last of 120 seconds.
Before sending those messages, nodes waited all the others to join the overlay. Therefore,
the first message was sent on each node after 60 seconds from N had started the overlay.
The “Create Mailbox” message notifies to the destination node the storage of a mailbox
with the specified identifier as the key of the message on itself. It does not require any
reply.

− Experiment 3: All nodes started running OLSR and XL-plugin, followed by DM
application as specified in the aforementioned sequence. In this experiment one
application message (“Create Mailbox” message) of 100 Bytes with random key was
generated and sent on the network by each node, except nodes A and Y, every 100 msec
for a last of 120 seconds. At the same time, A and Y generated a “Get” message with a
random key using the same frequency of other nodes. Before sending all messages, nodes
waited all the others to join the overlay. Therefore, the first message was sent on each
node after 60 seconds from N had started the overlay. The “Get” message notifies to the
destination node the request of the list of messages stored in the mailbox with logical
identifier equals to the key of the message (the mailbox had to be previously created by a
“Create” message). The node selected as best destination for this kind of messages has to
directly reply to the sender with the list of messages. Using a timestamp inside the
application message, a round-trip delay can be measured.

− Experiment 4: All nodes started running OLSR and XL-plugin, followed by DM
application as specified in the aforementioned sequence. In this experiment 10 nodes (A,
Y, T, R, M, H, I, C, E, G) generated a “Get” message every 100 msec for 120 seconds,
while the others (N, D, F, J, O, P, S, B, K, W, Q, X) only maintained the overlay
receiving messages and replying directly to their sender.

− Experiment 5: It is the same procedure of experiment 2 changing the frequency of
messages sending: all nodes generated a “Create Mailbox” message every 500 msec for
120 seconds. This experiment was conducted to analyze the effect of a traffic reduction
on the system performance.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 215 of 222

June 11th, 2005: Experimenting FreePastry on top of OLSR in static scenarios

In this set of experiments every node of the network ran FreePastry and DM application

on top of UNIK-OLSR. As previously said, each node can join the overlay by directly

connecting to another participating node or it can create its own overlay. We defined the

starting sequence of these experiments setting the bootstrap node for each node of the

network as one of its one hop neighbours. In addition, different nodes that had the same

bootstrap started the join procedure with a delay of 1 second from each other, to reduce

the probability of overlay partitioning due to failed join procedures. Specifically, we

assumed that:

− N started DM as the first node of the overlay;

− E, K, M, and R joined the overlay using N as bootstrap node; the first one started
DM with a delay of 10 seconds after N.

− I and L joined the overlay using M as bootstrap node; the first one started DM
with a delay of 10 seconds after M.

− O and P joined the overlay using R as bootstrap node; the first one started DM
with a delay of 10 seconds after R.

− D joined the overlay using E as bootstrap node; it started DM with a delay of 10
seconds after E.

− B, C, and G joined the overlay using D as bootstrap node; the first one started
DM with a delay of 10 seconds after D.

− A joined the overlay using B as bootstrap node; it started DM with a delay of 10
seconds after B.

− F joined the overlay using C as bootstrap node; it started DM with a delay of 10
seconds after C.

− J joined the overlay using K as bootstrap node; it started DM with a delay of 10
seconds after K.

− H joined the overlay using I as bootstrap node; it started DM with a delay of 10
seconds after I.

− Q and S joined the overlay using O as bootstrap node; the first one started DM
with a delay of 10 seconds after O.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 216 of 222

− W joined the overlay using P as bootstrap node; it started DM with a delay of 10
seconds after P.

− T and Y joined the overlay using S as bootstrap node; the first one started DM
with a delay of 10 seconds after S.

− X joined the overlay using Y as bootstrap node; it started DM with a delay of 10
seconds after Y.

All nodes only ran the routing protocol for 30 seconds to have the network topology

stabilized. Then they ran DM application with specified delays trying building a single

overlay network. Single sessions of experiments are detailed below:

− Experiment 1: All nodes started running OLSR followed by DM application as specified
in the aforementioned sequence. In this experiment no application messages were sent in
order to evaluate only the overhead introduced by the overlay management on the routing
protocol. DM ran for 4 minutes, and then each node explicitly closed it. The routing
protocol stopped after 30 seconds after DM ending.

− Experiment 2: All nodes started running OLSR followed by DM application as specified
in the aforementioned sequence. In this experiment one application message (“Create
Mailbox” message) of 100 Bytes with a random key was generated and sent on the
network by each node every 100 msec for a last of 120 seconds. Before sending those
messages, nodes waited all the others to join the overlay. Therefore, the first message was
sent on each node after 60 seconds from N had started the overlay. The “Create Mailbox”
message notifies to the destination node to store a mailbox with the specified identifier as
the key of the message. It does not require any reply.

− Experiment 3: All nodes started running OLSR followed by DM application as specified
in the aforementioned sequence. In this experiment one application message (“Create
Mailbox” message) of 100 Bytes with random key was generated and sent on the network
by each node (except for nodes A and Y). Messages were sent with a period of 100 msec
for a last of 120 seconds. At the same time, A and Y generated a “Get” message with a
random key using the same frequency of other nodes. As in the previous case, before
sending all messages, nodes waited all the others to join the overlay. The “Get” message
notifies to the destination node the request of the list of messages stored in the mailbox
with logical identifier equals to the key of the message (the mailbox had to be previously
created by a “Create” message). The node selected as best destination for this kind of
messages has to directly reply to the sender with the list of messages. Using a timestamp
inside the application message, a round-trip delay can be measured.

− Experiment 4: All nodes started running OLSR followed by DM application as specified
in the aforementioned sequence. In this experiment 10 nodes (A, Y, T, R, M, H, I, C, E,
G) generated a “Get” message every 100 msec for 120 seconds, while the others (N, D, F,
J, O, P, S, B, K, W, Q, X) only maintained the overlay receiving messages and replying
directly to their sender.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 217 of 222

June 17th, 2005: Experimenting FreePastry on top of AODV in static scenarios

In this session all the experiments of FreePastry on top of OLSR were repeated running

FreePastry on top of UU-AODV. The bootstrap sequence and the typology of

experiments were maintained unchanged.

June 17th, 2005: Experimenting CrossROAD in case of delayed joint of the overlay

In this set of experiments (type experiment 6) node L was not available, and all nodes,

except for N and M, started running UNIK-OLSR and XL-plugin creating two different

ad hoc networks (see Figure A.4). They only ran the routing protocol for 30 seconds to

have the two network topologies stabilized. Then they ran DM application with different

delays following the same sequence specified for the first set of experiments on

CrossROAD. N and M, which are central nodes, started the routing protocol and the

overlay with a delay of 2 minutes joining the two networks in an only one. On the other

hand, when all nodes of the first group correctly participated in the overlay, A and Y

started sending a “Get” message every 200 msec for 6 minutes.

In this scenario when N and M joined the experiment, other nodes, that had been already

running the overlay, became aware of the new participants thanks to the cross-layer

interactions with the routing protocol. In fact nodes A and Y in the first phase of the

experiment (when N and M were not active) sent messages only to nodes of their

network, while after the joining of central nodes, they distributed messages on all nodes

of the network.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 218 of 222

Figure A.4. Initial network topology for the delayed joint overlay experiment both in case pf
CrossROAD and FreePastry

June 17th, 2005: Experimenting FreePastry on OLSR in case of delayed joining of the

overlay

The initial network topology of this set of experiments is the same of the Figure A.4.

Since central nodes started the experiment with a delay of 2 minutes after other nodes, the

original sequence of bootstrap nodes used for previous experiments with FreePastry has

to be updated. Specifically:

− R and E are the new starters of the overlay;

− I and J joined the overlay using F as bootstrap node;

− K joined the overlay using J as bootstrap node.

− N, that was the original starter of previous experiments, joined the overlay with a
delay of 2 minutes using E as bootstrap node;

− L and M, the other central nodes, joined the overlay using N as bootstrap node.
Their delays is 2 minutes and 10 seconds, to wait N to be active in the overlay.

M

N

A

B

C

D

E

G

F I

H

K

J

P R

O Q

S

T

W

X

Y

Network 1 Network 2

M

N

A

B

C

D

E

G

F I

H

K

J

P R

O Q

S

T

W

X

Y

M

N

A

B

C

D

E

G

F I

H

K

J

A

B

C

D

E

G

F I

H

K

J

A

B

C

D

E

G

F I

H

K

J

P R

O Q

S

T

W

X

Y

P R

O Q

S

T

W

X

Y

P R

O Q

S

T

W

X

Y

Network 1 Network 2

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 219 of 222

Starting delays of the overlay of these nodes were updated depending on the instant when

their bootstrap nodes had joined the overlay.

One of the main drawbacks of FreePastry on ad hoc network consists of the high

probability of bootstrap failure. This is mainly due to the presence of unstable links in the

network topology and consequently failures in remote connections to join and collect

overlay data structures information. For this reason generally more than one ring overlay

was constituted in most of the experiments, and no rejoining operation is provided by

Pastry. Specifically in this set of experiments, having more than one ring, nodes A and Y

couldn’t distribute messages on all nodes of the network, and results are not meaningful

as in case of CrossROAD.

17th June: Experiments with Routing Protocols on mobile network
In this set of experiments we added mobility to some nodes in the network in order to

investigate how the routing protocols react to changes of topology. Hence we decided to

reduce the number of active ping operation to only one connection between the two most

distant nodes. This type of experiments can be referred as 2-Central node Swap.

Experiment 1: all nodes started running the OLSR protocol together (t=0). After
30sec node Y started pinging node A continuously for 210 sec. At t=90 nodes M
and N (two central nodes) started moving and swapped their positions after 30sec
(t=120), then they remained in this new configuration until the end of the
experiment. At t= 240 the experiment ended, so ping operation and routing
protocol stopped running.

Experiment 2: we repeated the same experiment with AODV too, so the involved
nodes and the last are the same of experiment 1.

23rd July: Experiments with Routing Protocols on mobile network

In this set of experiments we continued investigating the behaviour and the performance

of UNIK-OLSR and UU-AODV in presence of mobile nodes. As in the previous day of

experimentation, we reduced the number of active ping operation to only one connection

between the two most distant nodes in order to simplify the complexity of the network.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 220 of 222

Furthermore, we had to decrease the number of nodes in the network to 22 for the whole

day due to technical problems with some laptops.

Experiment 1: this experiment is a 2-Central nodes Swap one in which the central nodes J and
N changed their position during a continuous ping operation from two external nodes.
More precisely, all nodes started running the OLSR protocol together (t=0). After 30sec
the external node Y started pinging node A continuously for 210 sec. At t=90 nodes J and
N (two central nodes) started moving and swapped their positions after 30sec (t=120),
then they remained in this new configuration until the end of the experiment. At t= 240
the experiment ended, so the ping operation and the routing protocol stopped running.

Experiment 2: this experiment can be referred as 4-Central nodes Swap: the four central
nodes J, M, O and N changed their positions in clockwise manner during a continuous
ping operation from two external nodes. More precisely, all nodes started running the
OLSR protocol together (t=0). After 30sec needed for network stabilization, the external
node Y started pinging node A continuously for 300 sec. At t=90 node N started moving
and reached the position of node J in 30 sec (event 1), then it remained in this new
location until the end of the experiment. At t=120 node J started moving toward node M
and once reached the new position after 30 sec (event 2). Event 3 started at t=150 when
node M moved and it finished when M reached the position of node O at t=180. In the
same instant node O moved to the initial location of node N (event 4) stopping after 30
sec. At t=330 the experiment ended, so the ping operation and the routing protocol
stopped running. Figure A.5 shows the 4 events of the experiments.

Figure A.5 4-Central nodes Swap scenario

Experiment 3: this experiment can be referred as Roaming node: all the nodes were static
except the “roaming node” that moved crossing the entire network. The reference
scenario is shown in Figure A.6. The experiment lasted 410 sec. After an initial phase for
OLSR (protocol) stabilization (30 sec), node Y started pinging node A for 380 sec. At
t1=90 from the initial position near node A, the pinger Y started moving inside the
building along the corridor with a speed of about 1 m/sec. It reached position of node C
after 30 sec (t2=120), position of node I after 15 sec (t3=135), then node K after 15 sec

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 221 of 222

(t4=150), node O after 15 sec (t5=165), position of node S after 30 sec (t6=195) and finally
it reached the opposite side of the network near node X after other 30 sec (t7=225). Once
it has reached the last position, it immediately moved in the opposite direction following
the reverse path and taking the same lags as in the forward path (from t7 to tf). Finally it
reached the starting position near node A after 2 min and 15 sec (tf=350).

Figure A.6. Roaming node scenario

Experiment 4: in this case we repeated experiment 1 with the reactive routing protocol
running on each node.

Experiment 5: we repeated experiment 2 running AODV on each nodes.

Experiment 6: experiment 3 is repeated with AODV.

July 23th, 2005: Experimenting CrossROAD in a mobility scenario

In this set of experiment we used 22 nodes with only 2 central nodes as shown in Figure

A.7a. The mobility scenario chosen for CrossROAD experiments consists of a temporary

partitioning of the network in two separate ad hoc networks and the subsequent re-

conjunction. To this aim central nodes started moving along blue dashed lines (see Figure

A.7b) causing the loss of all central links and the consequent partitioning of the network

and the overlay. After having the new topology stabilized for 1 minute, they came back in

the original positions, rejoining the original network topology. In Figure A7.b temporary

links are drawn as green dashed lines.

MOBILEMAN IST-2001-38113 October 2005

Deliverable D16 222 of 222

Figure A.7.

a) Physical position of nodes in the mobility
scenario.

b) Topology graph in the mobility scenario.

All nodes started running OLSR, XL-plugin, CrossROAD and DM application with the

same sequence of other experiments. Node A sent a “Get” message with key K* that was

logically closest to node Y every 100 msec for the entire last of the experiment. In

addition, nodes M and N started moving after 30 seconds from the beginning of the

application. They continuously moved in two different directions for 120 seconds, and

then they stayed in their new position for 60 seconds to stabilize the topology. After that

they spent 120 seconds to come back in the original positions, and after other 60 seconds

the experiment ended. When M and N reached their new position, the network was

partitioned in two different networks. A became aware of the topology change through

CrossROAD and it sent the message to the new best destination for K*, that was

identified by node B. Actually, in this particular experiment, node A didn’t have a stable

route towards node Y, and for this reason it couldn’t send the message to the real best

destination. It sent the selected message to node B for the entire last of the experiment.

For this reason we couldn’t obtain new results.

