
MOBILEMAN

IST-2001-38113

Mobile Metropolitan Ad hoc Networks

MOBILEMAN

MobileMAN Functionalities – Final Set

Deliverable D14

Contractual Preparation Date: August 2005
Actual Date of Delivery: 1 September 2005
Estimated Person Months: 25
Number of pages: 35

Contributing Partners: Consiglio Nazionale delle Ricerche (Italy), University of Cambridge (UK),
Eurecom Institut (France), Helsinki University of Technology (Finland), Netikos (Italy)

Authors: Marco Conti, Emilio Ancillotti, Eleonora Borgia, Raffaele Bruno, Franca Delmastro, Enrico
Gregori, Giovanni Mainetto, Antonio Pinizzotto (CNR), Jose Costa-Requena, Jarrod Creado, Mohhamad
Ayyash (HUT), Jon Crowcroft, Andrea Passarella (Cambridge), Refik Molva, Claudio Lavecchia, Pietro
Michiardi (Eurecom), Piergiorgio Cremonese, Veronica Vanni (Neitkos)

Abstract: The aim of this deliverable is to provide the software that implements, on the Linux operating
system, the functions required to set up a MobileMAN. Specifically, in addition to the revised version of the
software modules already delivered in D11 -- i) CORE watchdog mechanism, ii) ad hoc routing framework,
iii) p2p Pastry platform, and iv) VoIP and whiteboard applications -- we now also deliver: the CrossROAD
and XL-plugin modules (which implement a subset of the MobileMAN cross-layer architecture), and the
UDDI4m modules. The software modules are contained in the CD ROM associated with this deliverable
and are also made available in the Software web site http://keskus.hut.fi/tutkimus/MobileMan . In addition,
we deliver our Ad Hoc Proxy ARP daemon (AHPAd) that enables the interconnection of MobileMAN ad-
hoc islands with the Internet. The AHPAd code is reported in the Appendix.

Project funded by the European
Community under the “Information
Society Technologies” Programme (1998-
2002)

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 2 of 35

SUMMARY

The aim of this deliverable is to provide the software modules that implements, on the Linux

operating system, the functions required to set up a campus-wide MobileMAN, as identified in

D5, D10 and D13. Indeed, by integrating the software modules we developed with existing code,

we obtained a set of software architectures that enable us to test MobileMAN concepts and ideas.

Specifically, we have: i) a legacy (layered) TCP/IP architecture on which we run a VoIP

application; ii) a legacy (layered) p2p architecture on which we run Whiteboard and UDDI4m

applications, and iii) a p2p cross-layer architecture on which we run both Whiteboard and

UDDI4m applications. In this document we describe the main characteristics of the software

modules we deliver. More details on our solutions can be found in Deliverables D5, D10 and D13.

The software we are delivering is contained in the CD ROM associated with this deliverable and

which is also made available in the Software web site http://keskus.hut.fi/tutkimus/MobileMan.

In addition, in this deliverable, we also present our solution to interconnect MobileMAN ad hoc

islands among themselves and with the Internet. To this end, we implemented an Ad Hoc Proxy

ARP daemon (AHPAd). The AHPAd code is reported in the deliverable’s appendix.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 3 of 35

CONTENTS LIST

1. INTRODUCTION...4

2. SOFTWARE ...6

2.1 Cooperation enforcement mechanism: Watchdog ...7

2.1.1 Architecture..7

2.1.2 Functional Description...8

2.2 Routing Protocols...9

2.2.1 Common modules ..10

2.2.2 Reactive modules ...11

2.2.3 Proactive modules..11

2.2.4 Hybrid modules..11

2.3 Middleware Platforms ..12

2.3.1 FreePastry...12

2.3.2 CrossROAD and XL-plugin...13

2.4 Applications..15

2.4.1 Whiteboard...15

2.4.2 UDDI4m...18

2.4.3 VoIP ...20

3. SCENARIOS...21

4. INTERCONNECTION TO THE INTERNET..23

4.1 Our solution..24

5. REFERENCES..27

6. APPENDIX: AD HOC PROXY ARP DAEMON SOFTWARE29

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 4 of 35

1. INTRODUCTION

One of the MobileMAN project novelties is to tackle the lack of Integration, Experimentation and
Implementations/Testbeds in the MANET research. Specifically, the project aims to the
development and validation of solutions for the relevant technical issues of self-organizing
networks (routing and medium access control protocols, power management, security, and
location). Whenever possible, real testbeds are (and have been) used to validate the solutions we
devised to implement a MobileMAN.

.

middleware

transport and
network layer protocols

wireless ad-hoc technologies

application 1 application 2 application k

Cooperation m
odelPo

we
r

m
an

ag
em

en
t

Figure 1: MobileMAN original Reference Model

In Annex 1 we identified the legacy layered architecture shown in Figure 1, as the MobileMAN
reference model.

Figure 2: MobileMAN cross-layering Reference Model

According to the ideas and concepts developed during the first year of the project (see Deliverables
D4 and D5), and further refined during the second year of the project (see Deliverable D10), we
enhanced the reference model of MobileMAN in order to integrate the new view of “cross-
layering”. The enhanced reference architecture is shown in Figure 2. In this architecture, cross
layering is implemented through data sharing. As shown in the figure, the innovation of the
architecture is a shared memory, “Network Status” (NeSt) in the figure, which is a repository of all

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 5 of 35

the network status information collected by the network protocols. All protocols can access this
memory to write the information to share with the other protocols, and to read information
produced/collected from the other protocols. This avoids duplicating the layers’ efforts for
collecting network-status information, thus leading to a more efficient system design. In addition,
inter-layer co-operations can be easily implemented by variables sharing. However, protocols are
still implemented inside each layer, as in the traditional layered reference architecture.

In constructing real testbeds, whenever possible, we exploited software modules already available
in the literature, while we concentrated our software developments on novel and unsolved issues.
Hereafter, with reference to the MobileMAN architecture (both legacy and cross-layer), we present
where the project software development efforts have been concentrated.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 6 of 35

2. SOFTWARE

Hereafter we (briefly) introduce the software modules we have implemented for constructing a
MobileMAN network according to both the legacy and the enhanced (cross-layer) architecture.
To maximize the usefulness of project results, we limited the software development to novel
mechanisms and protocols we identified during the project, while we exploited as much as possible
valuable concepts/solutions (and the corresponding software implementations) already available in
the literature.

Figure 3: MobileMAN Software Architecture

Specifically, with reference to the MobileMAN software architecture shown in Figure 3, we
concentrated our development efforts on colorful boxes while white boxes represent the existing
modules that we integrated in our software architecture.
As far as the legacy architecture, we focused mainly on integration (and porting) of off-the-shelf
HW and SW components (802.11, AODV and OLSR for routing, Pastry as middleware platform,
etc.) in a MobileMAN testbed. In addition, when available solutions were not suitable for the
project aims, we implemented our own HW/SW solutions (e.g., 802.11 enhanced card,
applications).
For the cross-layer architecture, we implemented a subset of it to be used as a proof of concept of
the cross-layer principle. Specifically, we have designed and implemented:

i. a revised version of Pastry middleware (named CrossRoad) to optimize its
performance by exploiting cross layer interactions;

ii. a minimal set of the NeSt functionalities to guarantee cross layer interactions between
the middleware (CrossRoad) and the network layer;

iii. an enhanced version of the Common API in order to support p2p applications
(whiteboard and UDDI) on top of the cross layer architecture.

Hereafter, we will present the software modules used to construct the MobileMAN software
architecture. By integrating existing software modules with those implemented by us, we have
obtained a set a testbeds, see Section 3, that enable us to test MobileMAN concepts and ideas.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 7 of 35

2.1 Cooperation enforcement mechanism: Watchdog

This section describes the watchdog module as part of the implementation of reputation-based
cooperation enforcement mechanism for mobile ad hoc networks (i.e. CORE).

2.1.1 Architecture

The cooperation enforcement mechanism proposed for the MobileMan architecture is the CORE
mechanism. CORE is a collaborative monitoring mechanism based on reputation that strongly
binds network utilization to the correct participation to basic networking function like routing and
packet forwarding. CORE is being implemented as a Linux user-space daemon that runs on all the
nodes of a MANET and can possibly be used with different routing protocols. In the future CORE
will be able to store reputation information in a local storage accessible from different layers of the
MobileMAN stack in order to help inter-layer optimization. CORE can be decomposed in three
building blocks as shown in the CORE mechanism architecture depicted in Figure 4:
1) A monitoring mechanism implemented as a MAC layer sniffer. It monitors the packets that pass
across layer 2 of the TCP/IP stack of a node and deduces whether neighbors are participating or not
to basic networking functions. Monitoring of neighbors behavior is achieved by setting the WLAN
card in promiscuous mode.
2) A reputation function that according to the output of the MAC layer sniffer calculates a
reputation value for each neighboring node and marks neighbors as selfish when their reputation
falls below a given threshold.
3) A punishment mechanism that punishes neighbors marked as selfish. According to a simple
punishment model, a node punishes a selfish neighbor by refusing the forwarding of the selfish
neighbor packets. A selfish node can be reintegrated in the MANET if it restarts performing packet
forwarding function.

Figure 4 CORE architecture.

Reputation
function

Monitoring
Mechanism
(function f1)

Requests handler

Packet
forwarding

FROM MAC:
Promiscuous

listening

Expectation
Table

Reputation
Table

Packet forwarding (Alternative)
Application

behavior

Punishment
Mechanism

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 8 of 35

In the earlier stages of CORE design and implementation we consider the reputation as depending
only on the participation to the packet forwarding function and concentrate on selfish nodes
detection.
Further research and development will include integration of participation to the routing function
as an input of the reputation function as well as design of the punishment mechanism.

Detailed description of the CORE implementation concepts such as the expectation table and the
reputation function can be found in section 4.5 of MobileMAN deliverable D10.

2.1.2 Functional Description

CORE watchdog is implemented as a Linux daemon and packaged for installation on PDAs
running Familiar Linux distribution.
Once it is installed following the instructions contained in the README file, it can be run simply
by typing “watchdog” on the console.
CORE watchdog needs to be executed in cooperation with a WLAN card that works in
promiscuous mode. It has been successfully tested on the Dell TrueMobile 1150 WLAN card.
CORE watchdog module monitors neighboring nodes behavior and writes output to the console.
Some attributes of each packet captured within the transmission range are shown to the user, such
as source and destination IP and MAC addresses, TCP sequence number and so on.
CORE uses MAC addresses to identify neighbors. Each time CORE watchdog detects a selfish
behavior (i.e. a neighbor does not forward a packet coming from the node where the CORE
watchdog is running), a line with the information about the selfish neighbor is printed to the
console. Similar output is printed to the console when cooperative neighbors are detected.
The detection of selfish behavior is made by overhearing the packets that neighbors forward. When
a watchdog waits for a neighbor to forward a packet, it temporarily stores the packet into the
expectation table.
Operations on expectation table contents are printed on the standard output as well as other
messages that help the user to understand the operations of the CORE watchdog.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 9 of 35

2.2 Routing Protocols

The Ad Hoc routing framework is a software package, which can support different Ad Hoc
networks routing protocols, such as proactive, reactive and also some hybrid solutions. The Ad
Hoc routing framework can be installed in a node (PDA or Laptop) that runs Linux Operating
System. With this framework, we could add new routing protocols and other functionalities, such
as naming and service discovery. This section describes the existing components of the Ad Hoc
framework and all the subsystems including interfaces and the basic functionalities implemented in
the framework.

The framework has been designed in separate components with clearly defined interfaces. This
allows an easy integration of these components and the possibility of adding new functionalities.
The benefit of this component-based or plug-in design is that each individual component could
change its internal implementation while all components can still be integrated together if the
interfaces are kept consistent. This allows having a complex system, which can be divided into
small modules that are easy to implement.

The framework provides general functionalities for both proactive and reactive routing protocols.
The existing framework includes a reactive protocol (e.g. AODV [1]) and a proactive protocol (e.g.
OSLR [2]). In order to test the framework implementation with constrained devices, in addition to
laptops the framework is integrated into a small number of Personal Digital Assistants (PDA)
nodes (iPAQ). The iPAQ is a mobile node where the original operating system is PocketPC 2002.
The Operating system has to be changed to Linux in order to integrate the framework. Linux
supports the ARM architecture, which is used in the iPAQ.

We use the Familiar [3] operating system, which is a Linux portable version used on iPAQ. It is a
tailored Linux version to fit into limited resources of mobile devices. Because of the limited space
for the file system, we cannot install the Linux kernel source and a compile tool chain into iPAQ.
This means we cannot build native executables on iPAQ directly. In addition, the default Familiar
kernel does not include Netfilter (an operating system services for manipulating IP packets), but
we need it for the framework. For these reasons, we have to compile everything in a Linux [4] PC
to make ARM executables. Then, we transfer them to iPAQ and run them. This can be achieved by
using a GNU/gcc [5] compile tool chain for ARM.

The Ad Hoc Framework consists of four subsystems: the Common Cache Registry Server, the
Reactive modules, the Proactive modules and the Hybrid modules. The Common Cache includes
all the modules that must be kept constantly running in the node since they store routing
information and other data used by the other modules. The Reactive modules consist of the
software modules that implement the reactive routing protocols (e.g. in this case the Reactive
module consists of the module that implements AODV). The proactive modules consist of the
software modules that implement proactive routing protocols (e.g. in the actual framework the
proactive modules contain only a software module that implements OLSR). Finally, the hybrid
modules include all modules that will implement hybrid routing protocol such as ZRP. The four
modules of the Ad Hoc framework consist of independent software components that implement
specific routing protocols and store routing information into a single cache. The Ad Hoc
framework architecture is shown in Figure 5.

- Common modules: Common Cache Registry Server, Common Cache and Registry.
- Reactive routing modules: AODV module.
- Proactive routing modules: OLSR module.
- Hybrid routing modules.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 10 of 35

2.2.1 Common modules

The common modules consist of a Registry, the Common Cache and the Common Cache Registry
Server that communicates with the independent routing modules. The Common Cache keeps
routing and other information collected by the routing protocols that are running simultaneously in
the node. The Registry stores information of the routing protocols running in the node.

Figure 5 Ad Hoc framework architecture

The aim of the Ad Hoc framework design is to contain several independent routing protocols
running simultaneously as daemons (the actual implementation of the framework contains two
routing daemons: AODV and OSLR). The Common Cache and Registry Server (CCRS) act as the
front end of two data repositories: the Common Cache and the Registry. The daemons of the
routing protocols act as clients to the Common Cache and Registry Server for accessing the
Common Cache and the Registry.

The Common cache stores all the route information that the CCRS receives from all routing
protocols running in the node as daemons. The Registry contains the state information of all
routing protocols daemons (e.g. active, inactive, etc). The state information consists of
configuration parameters of the protocol that is active but also other parameters for sending
messages to the daemon in order to change its configuration during runtime. This allows the
implementation of new routing algorithms by exploiting the information provided by existing
routing protocols that are already running (e.g. hybrid routing protocols such as ZRP could be
implemented using existing AODV and OLSR daemons).

The Common Cache Registry Server (CCRS) is one of the most important common modules in the
Ad Hoc framework. The CCRS keeps listening to specific messages coming from the routing
protocols daemons that want to communicate either with the Common Cache or with the Registry.
Thus, when one routing protocol daemon starts running, it must upload its state information and
other protocol parameters into the registry through CCRS. Moreover, during the lifetime of the
routing protocol it updates its own routing table and the routing information in the common cache
through the CCRS. Thus, the Common Cache always stores the routes discovered by the separated
protocols running in the device simultaneously. Meanwhile, the registry keeps the latest state
information of the routing protocol daemons running in the node.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 11 of 35

When one routing daemon wants to know the status of other daemons, it can ask the information to
CCRS. Different daemons can also communicate through CCRS.
The communication between the daemons and the CCRS is implemented by different messages
defined in request/reply format. The CCRS server and the routing protocol acting as clients are
running in different processes and they communicate through a well-known port.

2.2.2 Reactive modules

The reactive modules consist of the software components that implement reactive routing protocols
(e.g. AODV).

AODV Module
This section describes a reactive module that implements the specific AODV reactive routing
protocol. We select AODV because it is the most widely implemented reactive algorithm.

The AODV module is based on UU-AODV [6]. The actual implementation of the Ad Hoc
framework contains version 0.8 of the UU-AODV. The aim of the Ad Hoc framework is not to re-
implement existing protocols but integrate existing implementations and reuse as much as possible
existing implementations that are already tested and debugged into a single framework. The
existing UU-AODV implementation has to include an additional component to communicate with
the CCRS implemented as part of the framework. Thus, the UU-AODV is included into the
framework as independent routing module that only provides the AODV protocol logic. An
additional component named CCRS proxy is added within the UU-AODV to slightly modify the
AODV behavior. The CCRS proxy will store the routes discovered by AODV into the CCRS so
making the routes available to the Linux kernel routing table for the node communications.

2.2.3 Proactive modules

The proactive modules consist of the software components that implement proactive routing
protocols (e.g. OLSR).

OLSR Module
OLSR is a proactive routing protocol that periodically sends control messages to maintain the
knowledge of the network topology. OLSR protocol is a link state protocol where a selected set of
nodes broadcast over the network the list of its neighbors. In this case all the nodes know all the
others. Therefore, the nodes have all the routes and thus the shortest path to all the destinations.

The OLSR module included in the Ad Hoc framework follows the same approach as the AODV
module. Thus, the OLSR module is based on UNIK-OLSR [7]. The actual implementation of the
Ad Hoc framework contains version 0.4.7 of the UNIK-OLSR. Similarly to the AODV, the
existing UNIK-OLSR implementation has to include an additional component allowing the
communication between the UNIK-OLSR and CCRS. Thus, an additional component named
CCRS proxy is added within the UNIK-OLSR to slightly modify the UNIK-OLSR behavior. The
CCRS proxy will store the routes discovered by OLSR into the CCRS so making the routes
available to the Linux kernel routing table for the node communications.

2.2.4 Hybrid modules

The hybrid modules consist of the software components that implement hybrid routing protocols
(e.g. ZRP) but the actual Ad Hoc framework implementation does not contain any implementation.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 12 of 35

2.3 Middleware Platforms

To implement the legacy architecture we integrated in the MobileMAN software architecture a
p2p middleware platform based on Pastry (FreePastry) that enables us to run simple p2p testing
applications on top of the multi-hop ad hoc network. FreePastry is briefly described in Section
2.3.1.
To optimize the middleware-platform performance by exploiting cross layer interactions, we have
designed and implemented an enhanced version of Pastry middleware, named CrossRoad.
CrossRoad and the part of the Network Status required to exploit cross-layer interactions between
routing and middleware are described in Section 2.3.2.

2.3.1 FreePastry

FreePastry [8] is an open source implementation of the Pastry overlay network model. Free Pastry
is developed by the Rice University and it completely follows Pastry principles as described in [9].
Particularly it defines the internal data structures aimed at maintaining overlay’s information, it
defines the bootstrap node needed to establish and join the ring and related remote connections
needed to recover those information.

In order to test FreePastry functionalities, we defined a simple application of Distributed
Messaging. This service is an example of messages' exchange between peers, storing contents on
distributed nodes of the network. Each node defines a “MailTable” data structure containing a
variable number of records. These records are represented by (mailboxID, msgList) pairs. Each
node can create more than one mailbox, specifying a unique identifier for each of them. They are
created on demand through a “create” request message, sent on the overlay specifying the
mailboxID as the key value. In this way a single node can maintain the mailbox of different nodes,
depending on the distribution of the identifiers on the ring and they can send messages with the
destination's mailboxID as routing key. The identifier of the first node is represented by the hash
function applied to the IP address of the local node, while the identifier of the others nodes is
autonomously calculated by FreePastry specifying only the IP address of a physical neighbor
already present in the overlay. At the same time the identifier of each mailbox is represented by the
hash function applied to a string chosen by the user as the identifier of the mailbox (mailboxID).
Each node maintains messages belonging to mailboxes with ID logically closest to its logical
address. In this way, specifying the mailboxID as the research key of the routing message, the
subject-based routing is correctly implemented and mailboxes are uniformly distributed on the
nodes joining the ring.

Once a mailbox is created and some messages received, a node can send a “get” request for this
mailbox to download messages without deleting the related entry in the Mailtable, except the case
in which a “delete” request is forwarded. When the node storing the mailbox receives the request,
it directly sends the message list to the requiring node, forcing the Pastry routing protocol to a
single peer-to-peer connection.

We can summarize as follows basic steps for the definition and the start up of the Distributed
Messaging application. First of all, the application requires the user to specify if the starting node
is the first node of the ring or not:
1) if the node is the first node that participates to the service, Pastry defines the ring starting from
the IP address of the local node
2) if the requiring node has a knowledge of the ring, it has to specify the IP address of a known
node (physical neighbour). In this case Pastry automatically recovers the ID of the specified node
and initializes the routing tables of the new node directly connecting with other participants of the
overlay.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 13 of 35

A preliminary phase to test original FreePastry functionalities was conducted using a set of PC
connected to a LAN, forming a classical P2P system. After an exhaustive test of FreePastry
implementation on the wired network, we configured the application for an ad hoc scenario using a
group of laptops equipped with PCMCIA wireless cards [10]. After setting up the connection
parameters for ad hoc mode and synchronizing nodes on the same frequency, it is necessary to
explicitly set the correspondence between the hostname and the ad hoc IP address before running
the application. At this point, to start the application and join the ring, is sufficient to use the local
IP address if the node is the first of the ring, or the IP address of a known host in the range of the
requiring node.

2.3.2 CrossROAD and XL-plugin

CrossROAD [11] represents an optimized p2p system for ad hoc networks, based on the Pastry
overlay network model [9]. Specifically it exploits a cross-layer architecture, using network
routing table information in order to maintain a correspondence between the physical network
topology and the logical address space, where nodes and data are mapped. In this case the cross-
layer interaction is limited to the middleware and the network layers. In fact, in order to have a
complete and updated knowledge of the network topology, a proactive routing protocol is needed,
and for this reason we selected an open source implementation of OLSR (Unik-OLSR v.0.4.8 [7]),
that we had already tested from the functionality and overhead standpoints, as described in
Deliverable D8 [10]. In addition this implementation allows the definition of libraries dynamically
loaded by the routing daemon at the startup, in order to export routing information to other
applications, or to define additional information to be sent on the network through the proactive
flooding of routing packets. These libraries are called plugins.

In case of a structured p2p system, each overlay consists of all nodes providing the same service,
but in the Pastry model each node has only a partial knowledge of the overlay due to the limited
dimensions of its internal data structures, and a lot of remote connections are needed to initialize
and maintain them. Instead, in case of CrossROAD, every node joining the overlay can directly
know all the others that are providing the same service, exploiting a new Service Discovery
protocol that associates a unique identifier to each service, and broadcasts this information on the
network, piggybacked in routing packets.

In this way, a plugin, called XL-plugin, has been defined in order to encapsulate additional
information in routing packets. This information is represented by services identifiers, used to
associate to each node the list of services locally provided. When OLSR receives a routing
message containing this additional information, it passes the contents to XL-plugin that provides to
store services identifiers of other nodes in its local data structures. For this reason XL-plugin
maintains two local data structures: LocalService Table and GlobalService Table. Specifically, the
LocalService Table maintains the list of services provided by the local node, while the
GlobalService Table maintains, for each service present in the network and currently running on
CrossROAD, the list of nodes providing it. All entries are timed out in order to preserve the
consistency of the service information. In this way, when a node starts running an application on
top of CrossROAD, it declares its service identifier and CrossROAD directly establishes a local
connection to the plugin in order to receive the list of nodes taking part to that specific overlay.
Then, when the local application sends a message with a specified key value, CrossROAD first
checks the consistency of its internal data structures with the list provided by the plugin, then it
determines the best destination for that key and directly sends the message to it. More details on
software architecture of CrossROAD and XL-plugin can be found in deliverable D13 [12].
In order to test CrossROAD and XL-plugin functions, comparing them with results obtained from
FreePastry [8] experimentation, the same Distributed Messaging application has been used.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 14 of 35

In addition other two applications have been developed on top of CrossROAD: Whiteboard from
University of Cambridge [13] [14] and UDDI4m from NetiKos.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 15 of 35

2.4 Applications

As explained in Deliverables D10 and D13, we identified a set of applications that enable us to test
both the legacy and enhanced architecture. Specifically, taking also into consideration users
indications we included in the MobileMAN software architecture:

• co-operative tools for document/content sharing based on a P2P architecture (Whiteboard
and UDDI);

• Voice over IP applications exploiting the legacy TCP/IP protocol stack.

2.4.1 Whiteboard

This section describes the functionality of the Whiteboard as a peer-to-peer multicast application
suitable for Ad Hoc networks. The Whiteboard developed by the Cambridge University is a Peer-
to-Peer multicast application based on any structured overlay network implementing the
commonAPI interface [18]. On top of it, the Whiteboard requires a p2p multicast layer to handle
group membership and data delivery. In order to make the design as flexible as possible, these
functions were implemented independently. We have developed the Whiteboard application for
both reference network architectures used as reference within the MobileMAN project, i.e., the
Legacy and the Cross-Layer Architecture (see Deliverable D13). Finally, it is worth noticing that
the Whiteboard application should be looked at as a placeholder for several Group-Communication
Applications (instant messaging, file sharing, video streaming, etc) that could be deployed on ad
hoc networks based on the same protocol stacks.

In this section we describe the main functionalities of the Whiteboard application and the p2p
multicast substrate. Then, we focus on how the software we have developed is integrated into the
reference network architectures.

2.4.1.1 Whiteboard Functionalities

Target users of the Whiteboard application create a virtual group (a community) for a limited
amount of time in order to exchange dynamically generated content (e.g., drawings and text). From
this standpoint, the Whiteboard shares similarities with Instant Messaging applications. Figure 6
shows the graphical interface presented to the user once the Whiteboard is started.

Figure 6. The Whiteboard interface

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 16 of 35

The Whiteboard functionalities are very simple and intuitive. Firstly, a user has to choose the topic
he wants to associate to. All users subscribing to the same topic are allowed to exchange data
through the Whiteboard. Then, the user can draw strokes on the Whiteboard canvas. Locally
generated strokes are propagated to all users subscribed to the same topic. On the other hand, the
Whiteboard running on the user’s device renders on the canvas strokes generated by other users.
Finally, the user can erase the canvas and change the topic he is subscribed to.
The graphical input and output is handled through the awt and swing Java packages.
Specifically, an event handler is triggered upon mouse gestures inside the canvas areas. The event
handler draws the strokes on the canvas, and invokes Scribe to deliver the new strokes to the other
group members. On the other hand, the callback function invoked by Scribe when receiving new
messages from other peers draws the strokes contained in the message on the local canvas.

2.4.1.2 P2P Multicast Substrate Functionalities

The Whiteboard Application has been developed by exploiting middleware services provided by
standard p2p systems. Specifically, it exploits a p2p structured overlay network such as Pastry and
CrossROAD (i.e., implementing the commonAPI [18]). Furthermore, it also exploit Scribe, a p2p
multicast algorithm built on top of such an overlay network [19]. Since the Pastry and CrossROAD
functionalities have been already described in this deliverable, we now briefly sketch the main
Scribe functionalities.

Scribe exploits Pastry-like routing to build multicast groups. From the standpoint of the application
running on Scribe, the group is identified by a topic. Scribe uses the hash function provided by
Pastry (or CrossROAD) to generate the topic id (tid) in the logical space of node ids. In order to
join the Scribe tree, nodes send a join message on the overlay with key equal to tid. This message
reaches the next hop (say, N) towards the destination on the overlay network. The node originating
the join message is enrolled as a child of N. If not already in the tree, N itself joins the tree by
generating a join message anew. Eventually, such a message reaches the node whose id is the
closest one to tid and is not propagated further. This node is defined as the root of the Scribe tree.
Application messages are sent on the overlay with key equal to tid. Hence, they reach the Scribe
root, which is in charge of delivering them over the tree. To this end, it forwards the messages to
its children, which further forward them to their children, and so on. Finally, the Scribe
maintenance procedure is as follows. Each parent periodically sends a HeartBeat message to each
child (application-level messages are used as implicit HeartBeats). If a child does not receive any
message from the parent for a given time interval (20 s in the default case), it assumes that the
parent has given up, and re-executes the join procedure. This simple procedure allows node to
discover parent failures, and re-join the tree, if the case.

The Scribe services are exploited by Whiteboard in a quite straightforward way. When a user
selects a topic to associate to, Whiteboard invokes the Scribe join() procedure for that topic.
Scribe generates and propagates a join message as explained above. When a new stroke is drawn
on the canvas, the Whiteboard invokes the Scribe multicast() function, which triggers the
message delivery procedure described above. Finally, the Whiteboard is notified by Scribe when a
new message (generated by some other user) arrives. This is achieved through Whiteboard
callback functions that are registered upon associating to the Scribe substrate, and are invoked by
Scribe itself.

2.4.1.3 Whiteboard and Scribe in the reference network architectures

The Whiteboard application and the Scribe substrate have been integrated in both network
architectures used in the framework of the project. A pictorial representation is given in Figure 7.
As far as the Legacy architecture, the Scribe integration has been straightforward, since the

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 17 of 35

FreePastry package [8] already contains a Scribe implementation to be run on top of the standard
Pastry. Furthermore, the Whiteboard application has been ported to the Pastry platform, since it
was originally designed for Bamboo [20]. Then, the Scribe software has been ported to
CrossROAD. This was sufficient to achieve a complete porting to the Cross-Layer architecture,
since we took care of Scribe to maintain the same interface towards upper layers.

Figure 7. Whiteboard and Scribe in the reference network architectures.

2.4.1.4 Software Packages

Both versions of Whiteboard and Scribe have been implemented in Java. To simplify the
installation and running of Whiteboard, we have generated two self-contained jar packages
containing all the Java software required to run the Whiteboard in the legacy and in the Cross-
Layer Architecture, respectively. The routing protocols’ code has not been included in the
packages, and should be downloaded and installed separately. The version of OLSR enhanced with
XL-plugin is needed for the cross-layer solution.

Both packages can be run on any Java Virtual Machine, version 1.4.2 and above. However, all the
tests we have done have been carried out on Linux platforms. The two packages bundled with this
deliverable are named wb_pastry_v1.0.tar.gz and wb_cr_v1.0.tar.gz, respectively.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 18 of 35

2.4.2 UDDI4m

This section describes the functionality of the UDDI4m service and the application that uses this
service. The UDDI4m (UDDI for manets) [15] service is a publishing and discovering service for
mobile ad hoc network. This definition exploits the traditional UDDI standard introducing updates
to fit into the ad hoc environment, considering the features of this type of networks.

UDDI4m service
The UDDI4m is introduced as a new layer between middleware and application layer. This service
layer provides a service location distributed among all nodes in the network that are active at given
moment. The UDDI4m has been designed for peer-to-peer network where all the nodes work at the
same level and they have some policies to cooperate between them. Each UDDI4m node has a
server side and client side. The server side stores information about services provided by nodes of
the network, while the client side is used to publish and recover information about a specific
service. In order to optimize the distribution of services information on ad hoc networks, the
UDDI4m exploits the presence of a structured overlay network: Pastry in the legacy architecture
and CrossROAD in the cross-layer architecture. More specifically, UDDI4m defines a
categorization of services provided by nodes of the network, used by the overlay as research key
for the subject-based routing.

Figure 8. architecture software UDDI4m service

Figure 8 shows the software architecture of the UDDI4m service. The architecture has been
implemented using a modular architecture including the following components:

- The UDDI4m client generates requests to the UDDI4m server module.
- UDDI4m_Service module is the core of the UDDI4m service, implementing the methods

of the service: publishService, findService, updateService and deleteService;
- DB Management implements the data structure.
- UBR4m Table module manages the database.
- UDDI4m Message module implements the messages exchanged among nodes in the

network by middleware layer.

Additional details of the UDDI4m service and the specification of the modules are
included in deliverable D13 [12].

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 19 of 35

The UDDI4m service functionalities are:
- Publish a service on the distributed UBR4m registry.
- Recovery information relative to a service available in the network.
- Update or delete information relative to a service available in the network.

The UDDI4m service and all the modules are implement in java language to simplify the
interaction with the lower overlay network directly implementing the P2P commonapi supported
by Pastry and CrossROAD.
All modules of the UDDI4m service are packaged in a jar file called uddi4m.jar.

Client Application
The client application is a web application that uses the UDDI4m functionalities. This application
provides to the users a user-friendly interface to access the functionalities provided by the
UDDI4m service.
This version of the software provides the following functionalities:

- Publish a service on the distributed UBR4m registry.
- Recovery information relative to a service available in the network.

The user has to follow these steps to access the UDDI4m client application:
- Open a web browser and to connect to local url http://localhost:8080/uddi4m/index.jsp.

The web page is opened and two choices are shown: PUBLISH or FIND service.
- The user can choose whether to publish or find a service:

A) In case the user wants to publish its own service, then the application provides him a
html form page where the user has to insert all information related to the specific
service, included its category. Then a publish message containing all data is sent to the
overlay network specifying the service category as key value.

B) In case the user wants to find a service the application provides an html page with the
list of service categories defined a priori. After the user selection, a find message is
sent to the overlay with the selected key. The node with logical identifier closest to the
key replies directly to the requiring nodewith the list of nodes currently providing one
or more services included in that category. The reply message contains also for each
node the “access point url” that can be used by the user to access the service on the
selected node.

Functional Description
The uddi4m.jar module is implemented in java language and the client application is development
in jsp (java server page). The device running the application has to satisfy the following software
and hardware requirements:
The software module that represents the service layer is implemented in java language and the
client application is developed as a jsp (java server page). The device running the application has
to satisfy the following software and hardware requirements:

- Linux operative system
- Web server tomcat
- Mysql database to create the UBR4m registry
- OLSR routing protocol enhanced with the XL-plugin
- CrossROAD package
- Wifi card 802.11 b/g

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 20 of 35

2.4.3 VoIP

The Voice over IP is a real time application that is quite demanding for Ad Hoc networks.
However, voice communications is a service that will provide added value to Ad Hoc networks
since users will benefit from a communications without infrastructure support.
Following the same criteria and trying to re-use existing implementations we faced several
problems when considering devices with limited resources such as PDA (i.e. iPAQ). The existing
implementations of VoIP services required devices with enough processing power. Therefore, in
order to develop a VoIP service for real scenarios including portable devices with low resources,
we had to implement light version of VoIP application.
The VoIP application included in the Ad Hoc framework contains two main modules; signaling
module and data transport module. The results show that a VoIP service can be provided in Ad
Hoc networks with reasonable quality. However, since users have a good VoIP service with fixed
networks the existing implementation requires a QoS module in order to enhance the service
quality and meet user expectation.

2.4.3.1 Signaling module

The signaling module consists of the software component that will initiate the VoIP session with
other peer nodes in the Ad Hoc network. This module has been implemented specifically for the
Ad Hoc framework since existing implementations did require excessive resources (e.g. CPU,
memory, etc). The signaling module implements the SIP signaling protocol and utilizes IP
addresses for finding the peer nodes to initiate the VoIP session. The SIP signaling protocol can
run on UDP or TCP protocol but in order to minimize the requirements for maintaining the session
state in the nodes, the existing implementation uses UDP as the only transport protocol. The
session initiation also requires negotiating the media parameters using SDP protocol. In order to
minimize the negotiation process the signaling module uses the same codec for the VoIP session
(i.e. GSM). Therefore, the signaling module is compliant with the SIP protocol but having a single
codec optimizes the session set-up.
The SIP module is implemented specifically for the Ad Hoc network but the GSM codec is
obtained from public source [16].

2.4.3.2 Data transport module

The data transport module consists of the software component that after the VoIP session is set up,
takes care of exchanging the voice packets coded with the selected media format (i.e. in this case
GSM is the only codec used in the session).
The data transport module implements a RTP client for exchanging the voice packets. The RTP
client implements the functions for obtaining the audio samples from the microphone, encoding
them using the selected codec (i.e. GSM) and then exchange the packets using the RTP protocol.
The RTP client uses an publicly available RTP library for managing the RTP messages [17].

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 21 of 35

3. SCENARIOS

By exploiting the software we developed, and integrating it with existing software modules, we
obtained three (software) architectures to be used for testing MobileMAN ideas. Specifically, we
have:

1) a legacy TCP/IP architecture on which we run VoIP applications;
2) a legacy p2p architecture on which we run both Whiteboard and UDDI4m applications
3) a p2p cross-layer architecture on which we run both Whiteboard and UDDI4m applications

Scenario 1: VoIP on legacy TCP/IP architecture

The Voice over IP (VoIP) is a real time application that is highly demanding for ad hoc networks.
The VoIP application contains two main modules; signaling module and data transport module. In
the current implementation, the SIP signaling protocol uses UDP as the only transport protocol.
The data transport module implements a RTP client for exchanging the voice packets.
Figure 9 summarizes the software modules used in this scenario.

Figure 9: Scenario 1 software architecture

Scenario 2: Whiteboard and UDDI4m on legacy p2p architecture

In this scenario we investigate the behavior of content/document sharing applications based on a
legacy p2p middleware architecture. Specifically, we considered a whiteboard multicast
application, and a service discovery protocol and delivery mechanism, named UDDI4m, which is
based on the traditional UDDI protocol. UDDI4m introduces a level between the transport and
application level. The additional level of UDDI4m is composed by an overlay network, where each
node may have (at the same time) the role of client and server. Service discovery is realized
through the communication with the other servers on the overlay network. In this scenario the
overlay network is built using the Pastry platform. Both Whiteboard and UDDI4m exploit Pastry
services through the Common API.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 22 of 35

Figure 10: Scenario 2 software architecture

Scenario 3: Whiteboard and UDDI4m on cross-layer p2p architecture

In this scenario we wish to investigate the impact of cross-layer optimizations on Whiteboard and
UDDI4m. To this end we implemented CrossROAD, i.e., our cross-layer version of Pastry, and the
subset of the NeSt (XL-plugin) required to support cross-layer interactions between middleware
and routing.

Figure 11: Scenario 3 software architecture

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 23 of 35

4. INTERCONNECTION TO THE INTERNET

In the MobileMAN we mainly focus on ad hoc networks which operate as stand-alone networks,
i.e., as self-organized groups of nodes that operate in isolation (virtual community networks) with
no connection to an external network like the Internet. However, as we discussed in Deliverable
D5, an ad hoc network can either operate in isolation (virtual community network), but as shown in
Figure 12, can also be interconnected to the Internet through one (or more) Internet access router,
i.e., a node that has both a wireless interface to participate to the ad hoc network and a wired
interface that connects it to the Internet. In this section we present are approach to interconnect ad
hoc islands to the Internet and the software we developed to implement it.

Figure 12: MANET as Internet Extension

In this section we present the implementation of a practical architecture that allows constructing a
hybrid network environment interconnected to the Internet, in which wired and multi-hop wireless
technologies are used. In particular, we envisage that group of nodes forming separated ad hoc
“islands” are interconnected through wired links using special devices, hereafter indicated as
gateways, which have multiple networks interfaces, both wired and wireless, such as to establish
an hybrid ad hoc network. More precisely, this hybrid ad hoc network consists of: (i) mobile ad
hoc nodes establishing multi-hop wireless links with other ad hoc nodes, and (ii) a fixed backbone
formed by multiple gateways connected via wired links. which is interconnected with the ad hoc
islands via the gateways’ wireless interfaces. This backbone is interconnected with the ad hoc
islands through the gateways’ wireless interfaces. The gateways use their wired interfaces also to
communicate with static hosts belonging to a wired LAN. The network resulting from the
integration of the hybrid ad hoc network with the wired LAN is an extended LAN, in which static
and mobile hosts transparently communicate using traditional wired technologies or ad hoc
networking technologies. This is achieved by properly employing layer-2 mechanisms, such as the
ARP mechanism, and providing additional capabilities to the gateways. Our deployed solution
allows logically extending the wired LAN to the ad hoc nodes in a way that is transparent for the
wired nodes. In this way, the extended LAN appears to the external world, i.e., the external
Internet network, as a single IP subnet, such as that hosts located in the external Internet can

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 24 of 35

communicate with hosts inside in the extended LAN as they do with traditional Ethernet-based
networks.
Several other solutions have been proposed to support Internet connectivity between ad hoc
networks, which can be grouped into two general approaches. One approach is to implement a
Mobile IP Foreign Agent (MIP-FA) in the ad hoc node that acts as Internet access router, and to
run Mobile IP in all the ad hoc nodes [23]. A different approach relies on the implementation of a
Network Address Translation (NAT) in the Internet access router, which translates the IP addresses
of ad hoc nodes to an address on the NAT gateway, which is routable on the external network [24].
Such approaches are based on complex IP-based mechanisms originally defined for the wired
Internet, like the IP-in-IP encapsulation and explicit tunneling, which may introduce significant
overheads. On the other hand, the approach we propose in this section is a lightweight solution that
avoids these overheads to provide global Internet connectivity to the ad hoc nodes, by exploiting
only Layer 2 mechanisms.

4.1 Our solution

To better present our solution (in terms of the rules and operations used to execute the basic
services of addressing and routing), throughout this section, we will adopt the reference
interconnection scenario depicted in Figure 13. In this scenario we have two ad-hoc islands, which
can communicate through a wired LAN. In addition, a node in an ad hoc island can communicate
with the Internet through the access router connected to the wired LAN. More details on our
approach can be found in [21,22].

Figure 13: Interconnection scenario

Our solution assumes OLSR as the ad hoc network routing algorithm, although it can be applied to
any proactive scheme. Each OLSR-based ad hoc island (i.e., a group of mobile/static nodes
communicating through multi-hop wireless links using the OLSR routing protocol) has at least a
gateway. We define a gateway as a multi-interface device with both a wireless and one or more
wired interfaces. The wireless interface is used to connect the gateway to other ad hoc nodes, while
one wired interface is used to connect to other gateways. The OLSR protocol is running on both
wireless and wired interfaces to allow the interconnection of different ad hoc islands. Among the
gateways, one named the Master Gateway (MG) has special capabilities. The MG has two wired
interfaces, one of them used to communicate with static hosts belonging to the wired LAN. On the
other hand, the other gateways have a single wired interface and are named Slave Gateways (SGs).
Consequently, the OLSR-based ad hoc network consists of: (i) a set of OLSR-based ad hoc islands,
and (ii) a fixed backbone formed by one MG node and multiple SGs connected via wired links. The
MG also provides the interconnection between the OLSR-based hybrid ad hoc network and the
wired LAN, which provides the connectivity to the external Internet via a default access router.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 25 of 35

Our solution assumes that the wired LAN is organized as a single IP subnetwork, i.e., each wired
nodes has a static IP address belonging to the same IP subnet, hereafter indicated according to the
standard notation IPS/L, in which IPS is the IP network address and L is the network mask length
(for example IPS/L = X.Y.96.0/22). In this way, the wired hosts are able to exchange packets using
their ARP Table, which is a list of mappings between the IP address (Layer-3) and the MAC
address (Layer-2) of known hosts on the same subnet. The connectivity between the wired LAN
and the Internet is provided by a router and standard IP routing protocols.
To ensure a transparent interconnection between the wired LAN and the OLSR-based hybrid ad
hoc network, as explained in the following, we assume that ad hoc nodes are configured with static
IP addressees belonging to the same subnet of the wired LAN, i.e., IPS/L. The hybrid nodes’
interfaces (i.e., gateways’ interfaces) are configured with private IP addresses since they do not
generate data traffic but only control traffic (i.e., routing packets). This is also done to facilitate the
configuration of the MG node, as explained in [22]. It is worth remarking that we devised the SGs
nodes as simple entities supporting the ad hoc node mobility, and increasing the available
bandwidth between the MG node and the mobile nodes. For this reason they do not need a globally
routable IP address.
The ad hoc routing protocol is implemented by an OLSRd daemon, which runs on all the interfaces
-wireless and wired -of mobile nodes, SG nodes and MG node, with the exception of second MG-
node wired-interface, hereafter denoted as IFext, which provides access to the external network,
advertising Internet connectivity as default routes. This is done using special routing messages
called HNA messages, which inform the ad hoc nodes about the external hosts or networks that can
be reached through the MG.

Connectivity for Outgoing Traffic. The OLSRd daemon builds the routing tables with entries that
specify the IP address of the next hop neighbor to contact to send a packet destined to another host
or subnetwork. Since the MG node advertises 0.0.0.0/0 as default route, all packets destined for IP
addresses external to the IPS subnet will be routed to the MG node and forwarded to the wired
LAN and, eventually to the Internet via the default router. On the other hand, when an ad hoc node
wants to communicate with another ad hoc node, it will found in the routing table a specific entry
indicating the IP address of the next hop neighbor to contact to reach the destination. A special
case is when an ad hoc node wants to send a packet addressed to a node on the local wired LAN
(e.g., node H in Figure 13). In this case, in the routing table there is not a specific entry with the IP
address of the next hop neighbor to contact to reach node H, but only the default entry that
provides 0.0.0.0 as next-hop IP address for the subnet IPS/L. This implies that the source node will
assume that the destination node is directly connected to the node wireless interface. This will
result in a failed ARP Request for the IPH address, sent on the source node’s wireless interface.
To solve this problem, we have to add to the routing table in each ad hoc node a new entry that
forces the traffic destined to the node H to be directed towards the MG, without using the ARP
resolution procedures. To achieve this, we observe that the original IPS/L subnet could be split into
two consecutive smaller subnets, IPSL/(L+1) and IPSU/(L+1), such as to have IPS/L = IPSL/(L+ 1) ∪
IPSU/(L+ 1). It is worth pointing out that this operation is always feasible, independently of the
particular IPS/L choice. For example, the subnet X.Y.96.0/22 considered at the beginning can be
split into the two consecutive subnets X.Y.96.0/23 and X.Y.98.0/23. Hence, in addition to the
default route 0.0.0.0/0, the MG node has to advertise also these two subnets within the HNA
messages, such that the ad hoc nodes are forced to contact the MG to reach hosts belonging to
these subnets, and to which they have not more specific routing information. More precisely, each
ad hoc node will always have, for any host H on the local wired LAN, a routing table entry with a
more specific network/mask than the one related to its wireless interface (i.e., IPS/L).
Consequently, the longest-match criterion in the routing table lookup, will determine the right next
hop for the IPH address.

Connectivity for Incoming Traffic. To allow the nodes on the local wired LAN, including the
default router, to send packets to the ad hoc nodes, a specific daemon runs on the IFext interface of

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 26 of 35

the MG node, named Ad Hoc Proxy ARP daemon (AHPAd). The AHPAd code is reported in
Section 6. This daemon periodically checks the Master Gateway’s routing table and ARP table,
such as to publish the MG node’s MAC address for each IP address having an entry in the routing
table with a netmask 255.255.255.255. Indeed, the netmask 255.255.255.255 is the default netmask
associated by the OLSR algorithm to each ad hoc node in the network. In this way, the MG node
will act as a Proxy ARP for and only for the ad hoc nodes it is connected to. The entries related to
the IFext interface of the MG node and the SG nodes’ interfaces are excluded. When an host on the
wired LAN wants to send a packet to an ad hoc node, since it considers the destination belonging
to the same subnet, initially checks its ARP table for an IP-MAC mapping and, if it is not present,
it sends an ARP Request. The MG node answers with an ARP Reply providing its MAC
address and the packets can be correctly sent to the destination through the MG node.

To conclude some observations are necessary:
• on the MG node two wired interfaces are needed because the Proxy ARP does not allow to

answer to ARP Requests for IP addresses that are reachable through the same interface
on which the ARP Request was received. Nevertheless, they can be replaced by a
single wired interface and emulated by a bridging function and two virtual interfaces.

• The proposed architecture is working only with proactive ad hoc routing protocols. In
fact, the Proxy ARP on the MG node needs to know all the ad hoc nodes’ IP addresses,
which has to publish on its ARP Table.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 27 of 35

5. REFERENCES

[1] Charles E. Perkins, Elizabeth M. Belding-Royer and Samir Das, Ad Hoc On Demand Distance
Vector (AODV) Routing, IETF RFC.

[2] P. Jacquet et al, “Optimized Link State Routing Protocol for Ad Hoc Networks”, Hipercom
Project, INRIA Rocquencourt, BP 105,78153 Le Chesnay Cedex, France.

[3]Familiar homepage, http://www.handhelds.org, March 2003.

[4] Linux homepage, http://www.linux.org/

[5] GUN’s Not UNIX homepage, http://www.gnu.org/, February 2003

[6] Uppsala University AODV homepage, http://user.it.uu.se/~henrikl/aodv/, March 2003

[7] A. Tonnessen, OLSR: Optimized link state routing protocol. Institute for Informatics at the
University of Oslo (Norway). Available: http://www.olsr.org.

[8] FreePastry, http://freepastry.rice.edu

[9] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems". IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, pages 329-350, November, 2001.

[10] D8 “MobileMAN First Phase”, http://cnd.iit.cnr.it/mobileMAN/pub-deliv.html

[11] F. Delmastro, “From Pastry to CrossROAD: Cross-layer Ring Overlay for AD hoc networks”,
In Proceedings of Mobile Peer-to-Peer 2005 Workshop, in conjuction with PerCom 2005
Conference, Kauai Island, Hawaii, Mar. 2005

 [12] D13 “MobileMAN functionalities - final set”, http://cnd.iit.cnr.it/mobileMAN/pub-deliv.html

[13] F. Delmastro and A. Passarella, “An Experimental study of P2P Group-Communication
Applications in Real-World MANETs”, in Proceeding of IEEE ICPS Workshop onMulti-hop Ad
hoc Networks: from theory to reality (REALMAN) in conjunction with IEEE ICPS 2005, Santorini
(Greece), July 2005.

[14] M. Conti, J. Crowcroft, F. Delmastro, A. Passarella, “Cross-Layer Support for Group-
Communication Applications in MANETs”, in Proceeding of IEEE ICPS Workshop onMulti-hop
Ad hoc Networks: from theory to reality (REALMAN) in conjunction with IEEE ICPS 2005,
Santorini (Greece), July 2005.

[15] P. Cremonese, V. Vanni “UDDI4m: UDDI in Mobile Ad Hoc Network”, WONS 2005 – short
paper.

[16] GSM codec library, http://kbs.cs.tu-berlin.de/~jutta/toast.html

[17] JRTPLib version 2.9, http://research.edm.luc.ac.be/jori/jrtplib/jrtplib_old.html

[18] F. Dabek, B. Zhao, P. Druschel , J. Kubiatowicz and I. Stoica, “Towards a common API for
Structured Peer-to-Peer Overlays”, Proc. of the the 2nd International Workshop on Peer-to-
peer Systems (IPTPS’03), Berkeley, CA, Feb. 2003.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 28 of 35

[19] M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, “SCRIBE: A large-scale and
decentralised application-level multicast infrastructure”, IEEE Journal on Selected Areas in
Communication (JSAC), Vol. 20, No, 8, October 2002.

[20] M. Dischinger, “A flexible and scalable peer-to-peer multicast application using
Bamboo”, Report of the University of Cambridge Computer Laboratory, 2004,
available at http://www.cl.cam.ac.uk/Research/SRG/netos/futuregrid/dischingerreport.pdf.

[21] E. Ancillotti, R. Bruno, M. Conti, E. Gregori, A. Pinizzotto, “A Layer 2-based Framework for
Implementing Practical Mesh Networks”, IIT Technical Report, 2005.

[22] R. Bruno, M. Conti, E. Gregori, A. Pinizzotto, E. Ancillotti, “Experimenting a Layer 2-based
Approach to Internet Connectivity for Ad Hoc Networks”, in Proc. of IEEE REALMAN 2005
workshop, Santorini (Greece), 14 July, 2005.

[23] M. Benzaid, P. Minet, K. Al Agha, C. Adjih, and G. Allard “Integration of Mobile-IP and
OLSR for a Universal Mobility”, Wireless Networks, 10(4):377-388, July 2004.

[24] P. Engelstad, A. Tonnesen, A. Hafslund, and G. Egeland, “Internet Connectivity for Multi-
Homed Proactive Ad Hoc Networks”, in Proc. of ICC'2004, volume 7, pages 4050-4056,
Paris, France, June 20-24 2004.

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 29 of 35

6. APPENDIX: AD HOC PROXY ARP DAEMON SOFTWARE

This section contains the Perl code to implement the gateway (GW) interconnecting ad
hoc islands between themselves and with the Internet. The code is divided in two parts: the
running code, "ahpad", and a configuration file, ahpad.conf.

A.1 ahpad code

#!/usr/bin/perl -w

################################
#
ahpad - Ad Hoc Proxy Arp Deamon
#
This deamon periodically reads the routing table and the arp table;
then adds or deletes "pub" arp entries (used for proxy arp)
according to the following rule:
#
for each entry in the routing table with a mask 255.255.255.255
a "pub" arp entry must be present.
Some entry can be exluded if specified in the config file.
#
Usage:
./ahpad -f ahpad.conf # if debug level 1 or 2
./ahpad -f ahpad.conf >> ahpad.log & # if debug level 1 or 2
./ahpad -f ahpad.conf & # if debug level 0
#
#
Known limits:
this code is just a "prototype"; in fact it uses the output of the
system
command "netstat -rn", the syntax of the arp command and the output of
the
kernel variable "/proc/net/arp".
So if these output formats change, for example because of a linux
release
upgrade, this program could fail.
#
#
Created by
Antonio Pinizzotto <antonio DOT pinizzotto AT iit DOT cnr DOT it>
#
################################
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
################################

use Getopt::Std;

################################
config parameter names array
################################

@param_name = (
 "RefreshTime",

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 30 of 35

 "Interface",
 "Exclude",
 "DebugLevel",
);

$param_num = @param_name;

$RefreshTime = "";
$Interface = "";
$DebugLevel = 0;

################################
Other parameters
################################

$ahpadName = "ahpad";

####################################
Time Stamp subroutine
####################################

sub time_stamp {
 my
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst,$dec,$month,$date);

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)=localtime(time);
 $dec = int($mday/10); $mday = $dec . ($mday - $dec*10);
 $dec = int($hour/10); $hour = $dec . ($hour - $dec*10);
 $dec = int($min/10); $min = $dec . ($min - $dec*10);
 $dec = int($sec/10); $sec = $dec . ($sec - $dec*10);
 $month = (Gen,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec)[$mon];
 $year += 1900;
 $date = $hour . ":" . $min . ":" . $sec . " " . $mday . " " . $month
. " " . $year;

 return ("$date");
}

####################################

####################################
MAIN
####################################

################################
Get Options
################################

getopts('f:');

if ($opt_f) {
 $CfgFile = $opt_f;
} else {
 print "\n$ahpadName: syntax error: NO configuration file
specified!";
 print "\nCommand Syntax:";
 print "\n<path>\/$ahpadName -f <config_file_name> \&\n\n";

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 31 of 35

 exit;
}

################################
Read config file and set parameter values
################################

open(CONFIG, $CfgFile) or die "Can't open $CfgFile: $!\n";
while ($line = <CONFIG>) {
 chop($line);
 $_ = $line;
 while(s/^(\t|)//) {} # delete initial tabs or blanks
 $line = $_;
 if (!(($line eq "") || ($line =~ /^#/))) {
 for ($i = 0; $i < $param_num; $i++) {
 if ($line =~ /^$param_name[$i]:/) {
 $var_name = "\$" . $param_name[$i];
 $pos = index($line, ":");
 $var_value = substr($line, $pos + 1, 10000);
 $_ = $var_value;
 while(s/^(\t|)//) {} # delete initial tabs or
blanks
 while(s/(\t|)$//) {} # delete final tabs or
blanks
 while (s/\"/\010/) {} # substitute '"' with '\"'
 while (s/\010/\\\"/) {} # using "\010" char
 $var_value = $_;

 if ($var_name eq "\$Exclude") {
 $Exclude{$var_value} = "1";
 } else {
 $command = $var_name . " = " . "\"" . $var_value . "\";";
 eval($command);
 }
 }
 }
 }
}
close(CONFIG);

################################
Check for mandatory parameters
################################

if ($RefreshTime eq "") {
 print "\n\n$ahpadName: syntax error: NO RefreshTime value specified
in $CfgFile!\n\n";
 exit;
}
if ($Interface eq "") {
 print "\n\n$ahpadName: syntax error: NO Interface value specified in
$CfgFile!\n\n";
 exit;
}

################################
If debug level
################################

if ($DebugLevel >= 1) {

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 32 of 35

 print "\n\n++";
 print "\nAdHoc ProxyArp Deamon ($ahpadName) STARTED";
 print "\n++\n";
}
if ($DebugLevel >= 2) {
 print "--";
 print "\nReading Configuration File \"$CfgFile\"\n";
 print "\nRefreshTime = \"$RefreshTime\"";
 print "\nInterface = \"$Interface\"";
 print "\nDebugLevel = \"$DebugLevel\"";
 print "\nExcluded addresses:";
 $noone = 1;
 foreach $IPaddr (keys %Exclude) {
 print "\n $IPaddr";
 $noone = 0;
 }
 if ($noone == 1) {
 print " NO ONE";
 }
 print "\n--\n";
}
if ($DebugLevel >= 1) {
 print "++";
 print "\nPubArpTable Update Loop STARTED";
 print "\nRefresh period: $RefreshTime sec";
 print "\n++\n";
}

################################
Loop for "pub arp" update (CORE)
################################

while (1) {

 undef @raw_routetable;
 undef @raw_arptable;
 undef %rt_ip;
 undef %at_ip;

 # read routing and arp table in raw mode

 push (@raw_routetable, `netstat -rn`);
 chomp (@raw_routetable);
 push (@raw_arptable, `cat /proc/net/arp`);
 chomp (@raw_arptable);

 # read IP addresses from routing table with a netmask 255.255.255.255
 # and load them into keys of an hash array (%rt_ip)

 for ($i = 0; $i < @raw_routetable; $i++) {
 $_ = $raw_routetable[$i];
 while(s/(\t|)/ /) {} # reduce every space to a single
blank
 while(s/(^ | $)//) {} # delete initial and/or final
blanks
 $rtline = $_;
 if ($rtline =~ /255\.255\.255\.255/) {
 undef @tmpfield;
 @tmpfield = split (" ",$rtline);
 if (defined $tmpfield[2]) {

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 33 of 35

 if ($tmpfield[2] eq "255.255.255.255") {
 $rt_ip{$tmpfield[0]} = "";
 }
 }
 }
 }

 # read IP addresses from arp table with the PUB flag (used for proxy)
 # and load them into keys of an hash array (%at_ip)

 for ($i = 0; $i < @raw_arptable; $i++) {
 $_ = $raw_arptable[$i];
 while(s/(\t|)/ /) {} # reduce every space to a single
blank
 while(s/(^ | $)//) {} # delete initial and/or final
blanks
 $atline = $_;
 if ($atline =~ /0xc/) {
 undef @tmpfield;
 @tmpfield = split (" ",$atline);
 if (defined $tmpfield[2]) {
 if ($tmpfield[2] =~ /0xc/) {
 $at_ip{$tmpfield[0]} = "";
 }
 }
 }
 }

 # update arp table according to the information in
 # %rt_ip, %at_ip, %Exclude

 $DebugInfo = "";

 # add new ip addresses, if necessary

 foreach $IPaddr (keys %rt_ip) {
 if ((!(defined($at_ip{$IPaddr}))) and
(!(defined($Exclude{$IPaddr})))) {
 system("arp -s $IPaddr -i $Interface -D $Interface pub");
 $DebugInfo .= "\nADDED $IPaddr";
 }
 }

 # delete old ip addresses, if necessary

 foreach $IPaddr (keys %at_ip) {
 if ((!(defined($rt_ip{$IPaddr}))) or (defined($Exclude{$IPaddr}))
) {
 system("arp -d $IPaddr -i $Interface");
 $DebugInfo .= "\ndeleted $IPaddr";
 }
 }

 #######################
 # If debug level
 #######################

 if ($DebugLevel >= 2) {
 print "--";
 print "\n" . &time_stamp() . "\n";

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 34 of 35

 # print read information
 for ($i = 0; $i < @raw_routetable; $i++) {
 print "\n" . $raw_routetable[$i];
 }
 print "\n";
 for ($i = 0; $i < @raw_arptable; $i++) {
 print "\n" . $raw_arptable[$i];
 }
 print "\n";

 print "\nIP addresses found in routing table (host type)";
 foreach $IPaddr (keys %rt_ip) {
 print "\n$IPaddr";
 }
 print "\n";

 print "\nIP addresses found in arp table (pub type)";
 foreach $IPaddr (keys %at_ip) {
 print "\n$IPaddr";
 }
 print "\n";

 # print changes
 if ($DebugInfo ne "") {
 print "\n************************";
 print $DebugInfo;
 print "\n************************\n";
 }
 print "\n";
 }

 if ($DebugLevel == 1) {
 if ($DebugInfo ne "") {
 print "--";
 print "\n" . &time_stamp();
 print $DebugInfo;
 print "\n";
 }
 }

 #######################
 # Wait sleeping
 #######################

 sleep $RefreshTime;

}

#######
Eof
#######

MOBILEMAN IST-2001-38113 August 2005

Deliverable D14 35 of 35

A.2 ahpad.conf

##
Configuration file for ahpad (Ad Hoc Proxy Arp Deamon)
##

Refresh Time (in seconds)
The AdHoc ProxyArp Deamon refreshes the arp table every "RefreshTime"
seconds
No default value; the value MUST be specified

RefreshTime: 1

Proxy Bind Interface
The interface on which to bind the proxy arp information,
that is the interface from which the proxy arp will send arp replies.
Only ONE interface can be specified
No default value; the value MUST be specified

Interface: eth0

Excluded addresses
It is possible to exclude some unicast address from being used by the
proxy arp
More addresses can be specified
Default: no IP address specified

Exclude: 192.168.72.22
Exclude: 192.168.72.33

DebugLevel
Possible values:
0 - Debug OFF
1 - Debug ON
2 - Debug ON - VERBOSE
Debug information are displayed on standard output, that is on the
monitor.
Obviously, you can redirect it to a file (>> file).
Default value: 0

DebugLevel: 1

